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Periodic driving of optical lattices has enabled the creation of novel bandstructures not realizable
in static lattice systems, such as topological bands for neutral particles. However, especially driven
systems of interacting bosonic particles often suffer from strong heating. We have systematically
studied heating in an interacting Bose-Einstein condensate in a driven one-dimensional optical lat-
tice. We find interaction-dependent heating rates that depend both on the scattering length and the
driving strength and identify the underlying resonant intra- and interband scattering processes. By
comparing experimental data and theory, we find that for driving frequencies well above the trap
depth, the heating rate is dramatically reduced by the fact that resonantly scattered atoms leave
the trap before dissipating their energy into the system. This mechanism of Floquet evaporative
cooling offers a powerful strategy to minimize heating in Floquet engineered quantum gases.

Introduction.— Floquet engineering, the coherent
control of quantum systems by means of time-periodic
driving, enables the realization of novel band-structures
and many-body phases beyond what is possible in static
systems [1–12]. It has become an important tool for stud-
ies of quantum gases [13], where it e.g. enables the break-
ing of time-reversal symmetry and thereby the realiza-
tion of bands with non-vanishing Chern numbers even for
charge-neutral particles [5, 10–12]. In the form of infrared
laser pulses, time-periodic driving can give rise to novel
effects in traditional condensed matter systems, such as
graphene-like systems [14–16] or high-temperature super-
conductors [17–19]. It also lies at the heart of the recently
realized discrete time crystals [20–25].

Despite those recent accomplishments, successfully
combining periodic driving with interactions remains a
major experimental challenge, as can be seen already on
the level of general thermodynamic considerations: In a
driven system energy is not conserved, as the system can
absorb or emit energy from or into the drive. There-
fore, for any fully ergodic driven system, there can only
be one steady state, namely the fully mixed density ma-
trix corresponding to an infinite temperature state [26–
38]. While this scenario could be avoided by using non-
ergodic systems, such as e.g. many-body localized states
[39], their use cannot solve the problem in general, as
many interesting phases, such as fractional quantum Hall
states, are typically ergodic. Therefore, one has to find
setups and parameter regimes that allow experimental
studies of novel, driven phases on intermediate timescales
before the unavoidable heating dominates.

In this work, we experimentally study loss rates of
condensed atoms in a driven optical lattice as a func-
tion of both driving and interaction strength and can
thereby distinguish single-particle from interaction ef-
fects. Single-particle heating occurs via discrete single-
or multiphoton interband resonances [40] that can easily
be avoided. This is in contrast to two-particle processes,
which in one- or two-dimensional lattices are always res-

onant, as collisions can convert arbitrary energies into
transverse excitations [32, 34, 35]. This is in stark con-
trast to three-dimensional lattices where these processes
can be suppressed [28, 32, 34]. In particular, we focus
on the two experimentally most relevant driving regimes:
For low shaking frequencies ω much smaller than the res-
onance frequency to the first excited band but above the
bandwidth of the lowest band, the tunneling matrix ele-
ment of the lowest band is effectively renormalized by a
Bessel function (corresponding to dynamic localization
[41, 42]). At the same time, multiphoton resonances
are weak as they require many photons. This regime is
typically employed for engineering artificial gauge fields
[3, 5, 12]. The second regime lies between the two lowest
single-photon single-particle resonances. Here, the dis-
persion relation can acquire two separate minima that
can be exploited to study the formation of symmetry-
broken domains [4, 6]. We find that for large driving
frequencies heating is strongly reduced by the fact that
scattered particles with energy ∼ h̵ω typically leave the
trap before dissipating the absorbed energy into the sys-
tem.

Experimental setup.— We load an almost pure
Bose-Einstein condensate (BEC) of about 4 × 105 39K
atoms into the lowest band of a one-dimensional lattice
with lattice constant a = 425 nm, which is created by in-
terfering two blue-detuned laser beams with a wavelength
of λ = 736.8 nm at an angle of θ=120○, see Fig. 1 (a).
Then, we shake the lattice position by periodically mod-
ulating the frequency of one of the two laser beams.
The atoms feel a periodic inertial force in the frame
co-moving with the lattice, which is given by Fx(t) =

−(K/a) cos(ωt), where we have introduced the driving
amplitude K. In order to avoid strong, non-adiabatic
excitations to higher bands during the switch-on of the
modulation, we continuously ramp the driving amplitude
in 10 ms to its desired value. After a variable shaking du-
ration, we determine the heating and losses induced by
the drive by measuring the remaining atom number in the
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FIG. 1. Schematic of the experiment and frequency
scan. (a) Two lattice beams with linear out-of-plane polar-
ization intersect at an angle of 120○ to form a one dimen-
sional lattice of “pancakes”. By periodically modulating the
frequency of one of the two lattice beams we can shake the
lattice, i.e., modulate its position. (b) Normalized atom num-
ber after modulating for 50 ms (for ω/ω10 > 0.7) or 100 ms (for
ω/ω10 < 0.7) with variable frequency at a driving strength of
α ≃ 0.9. Error bars indicate the standard error of the mean
from four measurements per data point. The solid blue line
shows the theoretically expected single-particle excitations
to higher bands. Thin lines mark the resonance positions
of multiphoton transitions to higher bands labeled by (b, ν).
Green dashed lines mark the frequencies used in the subse-
quent study. In the frequency region from roughly 0.7ω10 to
1.1ω10 we observe a splitting of the BEC due to two degener-
ate minima in the lowest dressed band, which is included in
the theory curve. The insets show raw quasimomentum im-
ages of the BEC. (c) Zoom into the regime of small shaking
frequencies with α = 2.2 and 200 ms shaking duration.

BEC. To this end we abruptly stop the drive after an in-
teger number of shaking cycles, immediately followed by
bandmapping in the static lattice and 15 ms of time-of-
flight (TOF). This TOF is long enough to dilute any ther-
mal background such that we can reliably determine the
remaining number of condensed atoms. For all measure-
ments we use a lattice depth of V0 = 11.0(3)Er, where
Er=h

2/(8Ma2) ≈ h×7.1 kHz is the effective recoil energy
of this lattice with M being the mass of 39K. In this static
lattice, the first interband excitation at zero momentum
appears at a frequency of ω10 = 2π × 41.6(5) kHz.

Frequency scan.— Single-particle transitions only
occur at specific resonances where the shaking frequency
ω fulfills a multiphoton resonance condition νh̵ω ≃

∆b0(q), with ν being an integer and ∆b0(q) denoting
the separation of the lowest band to the bth excited band
at a given quasimomentum q. To ensure that we avoid
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FIG. 2. Loss rates in the presence of periodic driving.
(a,d) Effective loss rates for different driving amplitudes and
scattering lengths. Each dot corresponds to a single lifetime
measurement. The shaking frequency is (a-c) ω = ωl and (d-f)
ω = ωh. (b,e) Crosscuts at fixed scattering lengths. The solid
lines correspond to the theoretically predicted scattering rates
and error bars indicate fit uncertainties. (c,f) Corresponding
crosscuts at fixed driving strengths. Theory lines in (b,c) as-
sume fβh̵ω = 10 to account for the thermalization of scattered
atoms (see text).

these resonances, we measure the remaining BEC atom
number after shaking with variable frequency at a di-
mensionless driving strength α ≡ K/(h̵ω) and scattering
length of as = 60a0, with a0 being Bohr’s radius, using
a Feshbach resonance at 400 G [43], see Fig. 1. The solid
blue line shows the result of a numerical single-particle
simulation assuming a Gaussian width of the BEC in mo-
mentum space of ∆q = 0.2π/a (for method see [40, 44]).
While the resonances at large frequencies are clearly vis-
ible, multiphoton resonances at small driving frequencies
are highly suppressed. For our subsequent lifetime mea-
surements we choose ωl = 0.084ω10 and ωh = 1.27ω10

(green dashed lines) as low and high frequency, far away
from all single-particle resonances.

Experimental loss rates.— The total loss rate of
condensate atoms in our system is given by summing
over background losses in the static system, character-
ized by a lifetime τ , and heating and losses induced by
lattice shaking. We assume that all losses happen on a
sufficiently slow timescale such that the system heats up,
but stays in global thermal equilibrium, and describe the
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FIG. 3. Examples of two-particle scattering chan-
nels. The lowest two bands of a schematic lattice dispersion
are sketched by solid lines, Floquet modes shifted by −h̵ω
(m = −1) are depicted by dashed lines. The condensate is
represented by a large sphere, scattered particles by small
spheres. The pair of yellow wiggly arrows in (a) denotes a
two-photon scattering process, where the atoms absorb two
photons, while the red wiggly lines in (b,c) denote a zero-
photon (ordinary) collision between two atoms and blue ar-
rows describe single-photon interband transitions. (a) When
the driving frequency is much smaller than the band gap,
the dominant loss process are two-photon intraband collisions.
(b,c) For driving frequencies larger than the band gap, the
leading (subleading) excitation channels combine one (two)
single-photon interband transitions with zero-photon colli-
sions. Note that only one photon number m is associated
with the whole system and not one per particle as suggested,
for simplicity, in the diagrams.

condensed part using the Thomas-Fermi approximation.
We have verified independently that the cloud size indeed
shrinks according to the decreasing number of condensed
atoms N0 [44]. Within this approximation, the driving
induced loss rate of condensed atoms due to two-particle

collisions takes the form −κN
7/5
0 [44]. Including the back-

ground losses −N0/τ of the static system we obtain

N0(t) = N0(0)
e−t/τ

(1 +N0(0)2/5κτ (1 − e−2t/(5τ)))
5/2
. (1)

We measure τ independently for each scattering length
in the static lattice. In order to form a more intuitive
quantity, we define a scaled loss rate κ̃ = κN0(0)

2/5 such
that the initial driving-induced losses scale as ∝ κ̃N0(0).
As shown in Fig. 2, both stronger interactions and larger
driving strengths lead to dramatically higher loss rates
for the BEC.

Theoretical description.— In order to identify
and estimate the dominant heating channels associated
with two-particle scattering, we start by describing a ho-
mogeneous system in the Floquet space of time-periodic
states, where an integer Fourier index m describes the
change in “photon” number relative to a large classical
background, i.e., −m counts the number of absorbed pho-
tons. In this dressed-atom-like picture, the dynamics is
generated by the quasienergy operator Q. Within the

subspace of a given relative photon number m, it acts
like Qm,m = H(0) +mh̵ω, whereas the coupling between
subspaces m′ and m corresponds to an (m −m′) photon

process which is captured by Qm′,m = H(m′
−m). Here

H(ν) = 1
T ∫

T
0 dt eiνωtH(t) denotes the νth Fourier com-

ponent of the time-dependent Hamiltonian H(t). The

time-averaged Hamiltonian H(0) describes a dispersion
relation εb(kx) + E⊥(ky, kz), with effective band struc-
ture εb(kx) and transverse kinetic energy E⊥ = h̵

2(k2
y +

k2
z)/(2M), as well as interactions.
In Fig. 3 we sketch the lowest two bands b = 0,1 for

the relative photon numbers m = 0,−1 (solid and dashed
lines, respectively), given by εb(kx) + mh̵ω. The dia-
grams depict three examples of relevant scattering chan-
nels, where two particles (small spheres) are excited out
of the condensate into the states ∣b,k⟩ and ∣b′,−k⟩ ab-
sorbing ν =m −m′ photons, as indicated by the number
of particles transferred to the dashed bands (ν = 1 in
b and ν = 2 in a and c). The resonance condition for
two-particle excitations can be written as

εb(kx) + εb′(−kx) − νh̵ω − 2ε0(0) = −2E⊥ ≤ 0. (2)

Here, we have separated the transverse kinetic energy
2E⊥ = E⊥(ky, kz) + E⊥(−ky,−kz) created in the scatter-
ing process on one side of the equation. As there is no
lattice potential along these directions, the transverse ki-
netic energy can take arbitrary non-negative values. As
a consequence, in Fig. 3 all states with total energy below
the original BEC are accessible.

For the smaller driving frequency ωl, the tunneling in
the lowest band is modified by a Bessel-function Jeff =

J0(α)J0 [44, 45], where Jν(α) is a Bessel function and
J0 the tunneling matrix element of band b = 0. In this
regime, scattering particles to an excited band would
require absorbing a large number of photons. There-
fore, the dominant heating channel is intraband scatter-
ing with small ν. Processes with odd ν are forbidden by
symmetry for a condensate with zero momentum, and
only acquire small finite values due to the momentum
spread of the condensate. Therefore, two-photon scatter-
ing as depicted in Fig. 3 (a) remains the dominant process
in this case. For a ν-photon scattering process the ma-
trix element scales like ∼ h̵2asn0J0Jν(α)/(νh̵ωM) [44],
where n0 is the condensate density.

For the larger driving frequency, ωh, interband scat-
tering dominates. In this regime, single-photon single-
particle interband coupling is strong (with matrix ele-
ments ∼ αEr [44]) but off resonant. This leads to a
perturbative admixture of states from the first excited
band (b = 1) with m = −1 to the lowest band (b = 0)
with m = 0 and vice versa. As a result of this cou-
pling, already ordinary zero-photon collisions, which are
stronger than ν photon scattering processes, give rise to
excitations by scattering atoms between these dressed
bands. Another consequence of this admixture of the
highly dispersive first excited band to the rather nar-
row lowest band is the formation of a double-well struc-



4

ture within the lowest band for sufficiently large driv-
ing strengths α [4, 6, 44]. As a result, the condensate
reforms at the new minima of the dispersion at finite
quasimomenta, see insets in Fig. 1 (b). We compute the
matrix elements for resonant interband excitations us-
ing degenerate perturbation theory. In leading order,
we encounter three different single-photon (ν = 1) pro-
cesses, such as the one depicted in Fig. 3 (b), involving a
single-particle single-photon interband transition and a
zero-photon two-particle scattering event. Their matrix
elements scale like ∼ h̵2asn0Erα/(h̵ωM). The leading
correction stems from two-photon (ν = 2) processes, an
example of which is shown in Fig. 3 (c), giving rise to
matrix elements that are a factor of αEr/(h̵ω) smaller
[44].

Applying Fermi’s golden rule and integrating over the
time-dependent Thomas-Fermi profile in a local density
approximation, we derive the rates Γν of atoms scattered
out of the condensate via ν-photon processes [44] and find

that they are proportional to (asN0)
7/5. We note that,

for the lower driving frequency ωl, the scattered particles
will not have enough energy to leave the trap and will
dissipate their entire energy into the system via ordinary
(zero-photon) collisions. They thereby excite additional
atoms out of the condensate, leading to a decay rate for
condensed atoms Ṅ0 = −fβh̵ω∑ν νΓν/2 with a numerical
factor f ∼ O(1) that depends on the details of the sys-
tem and inverse temperature β [44]. Furthermore, these
newly created thermal atoms will continue to absorb en-
ergy from the drive. Due to their finite momentum, ν = 1
scattering now becomes dominant and thermal atoms will
absorb photons at an even faster rate than condensed
atoms. In a truly closed system, this form of heating
would scale linearly with the photon energy h̵ω. Due to
the finite trap depth, however, the system is effectively
open and, for the larger driving frequency ωh, scattered
particles typically have sufficient energy to quickly leave
the trap without dissipating the absorbed energy. In this
regime we expect Ṅ0 = −∑ν Γν .

Comparison between theory and experiment.—
Due to the thermalization of the absorbed photon en-
ergies described above, the measured loss rates of con-
densed atoms at low driving frequency ωl will be larger
than the total scattering rate ∑ν Γν (Fig. 2 (a-c)). We
observe a factor of fβh̵ω ≈ 10, which provides a lower
bound for the temperature of the condensate. Assuming
for simplicity an ideal homogeneous gas results in a real-
istic lower bound of 15 nK. While typical temperatures
of the BEC will likely be higher [44], the differences are
most likely due to resonant scattering of thermal atoms,
which is not included in the theory. In contrast, for a
driving frequency of ωh, shown in Fig. 2 (d-f), the loss
rate of condensed atoms coincides with the total scat-
tering rate since the absorbed photon energy is carried
away with the scattered particles leaving the trap. This
highlights the advantage of working at larger driving fre-
quencies.

Both Fig. 2 (c) and (f) show that we observe the ex-
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FIG. 4. Loss rates for large driving strengths and small
frequencies (a) When scanning the driving strength α at a
frequency of ωl, we observe peaks in the effective loss rate
whenever the effective tunneling Jeff = J0 ⋅ J0(α) goes to zero
(dashed lines). The insets sketch the lowest band for positive
and negative tunneling. Error bars indicate fit errors. (b)
We observe a peak in the atom number loss rate for a fixed
driving strength α = 1.1 when the driving frequency is close
to the bandwidth of the lowest band. The solid line shows
the theory scaled by fβh̵ω with a temperature of 15 nK (see
text). The dashed line indicates the calculated bandwidth of
the lattice.

pected scaling with scattering length of Ṅ0 ∝ a
7/5
s ,

demonstrating that the dominant loss mechanisms are
indeed interaction driven and that the Thomas-Fermi
local-density approximation is consistent with our data.

While the data at large driving frequency ωh follows
the theory rather well for moderate driving strengths
α and scattering lengths, we observe an increasing dis-
crepancy to the expected loss rates for larger scatter-
ing lengths, when the mean free path of excited atoms
(∝ 1/a2

s) becomes on the order of the size of the BEC.
This is most clearly visible when plotting the data vs
scattering length, see Fig. 2 (f), where a discrepancy to

the a
7/5
s scaling can be observed for scattering lengths

larger than ≃ 100a0. In this regime, excited atoms
will undergo additional collisions while leaving the atom
cloud, giving rise to an additional loss of condensate
atoms similarly to the low frequency case [44]. We note
that two degenerate minima appear in the lowest band for
α > 0.7, giving rise to the small kinks in the expected loss
rates in Fig. 2 (e). For higher driving strengths we fur-
thermore expect the onset of additional scattering chan-
nels with ν > 2, which are not included in the theory for
ωh [44].

Finally, we also measured the loss rates for large driv-
ing amplitudes and low frequency ωl, see Fig. 4 (a). We
can observe clear maxima in the loss rate whenever the
effective tunneling matrix element Jeff is close to zero and
attribute them to zero-photon scattering in the effectively
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flat band. Interestingly, the loss rate decreases again
once the sign of the effective tunneling matrix element
Jeff changes. Fig. 4 (b) shows the loss rate for various fre-
quencies close to the bandwidth. Since there are fewer
modes available for frequencies below the bandwidth of
the lowest band, a clear decrease in the loss rates can be
observed [44].

Conclusion and Outlook.— We have measured
the loss rates of an interacting BEC in a driven one-
dimensional optical lattice. We focused on two frequency
regimes away from single-particle resonances, which are
most relevant for Floquet engineering: Driving frequen-
cies well below the band gap allow for an effective control
of tunneling matrix elements and driving frequencies that
are blue detuned from the first excited band enable effec-
tive bands with two degenerate minima. In both regimes
the loss rates approximately scale with the interaction as

a
7/5
s , in agreement with a theoretical description based on

a Thomas-Fermi approximation and Fermi’s golden rule.
We find that for large driving frequencies, scattered par-
ticles can leave the trap and carry away the absorbed en-
ergy quanta h̵ωh. This mechanism of continuous Floquet
evaporative cooling can act as a powerful general strategy
to reduce heating rates in Floquet engineered quantum
gases. Furthermore, the two-particle scattering processes
considered here rely on exciting transverse motion and
might therefore be absent in a three-dimensional lattice.
Another intriguing possibility is the use of non-ergodic or
many-body localized systems, where the dynamics can be
immune to these heating processes.
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Appendix S.I: Experimental methods

A. Preparation of the system

In order to cool 39K down to quantum degeneracy
we first cool it sympathetically with 87Rb. In the first
cooling stage after laser cooling, we perform microwave
evaporation in a plugged quadrupole trap, where both
Rb and K are trapped in the ∣F = 2,mF = 2⟩ hyperfine
state. We exploit the different hyperfine splittings of
K and Rb to selectively remove only Rb atoms from
the trap by driving the microwave transition between
the trapped state ∣F = 2,mF = 2⟩ and the anti-trapped
state ∣F = 1,mF = 1⟩ of Rb. Due to the small inter-
species scattering length between Rb and K microwave
evaporation becomes inefficient when reaching the low
µK regime [46]. We therefore transfer both species
into a crossed beam dipole trap where we can tune
the interspecies interaction with a Feshbach resonance
[47]. After loading both species into the dipole trap
we transfer them into their absolute ground states
∣F = 1,mF = 1⟩ and set the interspecies scattering length
to aK,Rb ≈ 100a0. By lowering the intensity of the
dipole beams, the selective evaporation of Rb continues
due to the larger gravitational sag and hence weaker
vertical trapping potential for Rb. After loosing all Rb
atoms we continue the evaporation with K alone. In
this last stage of the evaporation we set the scattering
length to aK,K ≈ 150a0 and cool the atoms down to an
almost pure BEC. After the evaporation we ramp the
Feshbach field to its desired value in 50 ms. Finally, we
load the atoms into the lattice by linearly ramping up
the lattice beams in 100 ms to their final lattice depth of
11Er. By performing Bloch oscillations with subsequent
bandmapping we determine the momentum spread of
the condensate to be approximately ∆q = 0.2π/a.

B. Atom number calibration

As the atom number directly enters the fit function
used to determine the decay rates it is crucial to cali-
brate the atom number as well as possible. Since the
initial BEC in the dipole trap can be described accu-
rately within the Thomas-Fermi approximation, we can
employ it to calibrate the atom number. According to the
Thomas-Fermi model in a harmonic trap the condensate
radius RiTF with i = x, y, z is given by

RiTF = (
15N0ash̵

2ωxωyωz

M2ω5
i

)
1/5

. (S.1)

As we can measure the harmonic trapping frequencies
and the insitu Thomas-Fermi radius of our system very
precise and can, in addition, tune the scattering length
using a Feshbach resonance, we are able to calibrate the
atom number by fitting Eq. (S.1) to our data. From this

measurement we extract the scaling factor between the
measured optical densities in our time-of-flight (TOF)
images and the real atom number. Fig. S1 shows the fit
to the measured insitu radii of the BEC. Each point is
an average over 6 individual shots leading to an atom
number of 4.0(2) × 105 atoms.
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FIG. S1. Atom number calibration Measured insitu
Thomas-Fermi radii along the x− and y−axis. By fitting
Eq. (S.1) to the data we can calibrate the atom number of
our system. Error bars indicate the standard deviation of the
mean from six individual measurements per data point.

C. Fitfunction

Starting from the Thomas-Fermi ansatz, the atom
number loss from the BEC due to the shaking is described

by the differential equation Ṅ0 = −κN
7/5
0 (for derivation

see S.II C b). This differential equation has the solution:

N0(t) = N0(0)
1

(1 + 2
5
κtN0(0)2/5)5/2

. (S.2)

However, this decay function only describes atom number
losses due to the shaking of the lattice. In addition we
also have technical heating and losses due to collisions
with the hot background gas that need to be taken into
account. These losses are described by the differential
equation Ṅ0 = −κbgN . As a good approximation we can
assume that these two loss channels are independent of

each other leading to Ṅ0 = −κbgN0 − κN
7/5
0 . The total

atom number loss is then given by

N0(t) = N0(0)
e−t/τ

(1 +N0(0)2/5κτ (1 − e−2t/(5τ)))
5/2
, (S.3)

where τ = 1/κbg is the measured lifetime in the static lat-
tice. Since τ becomes shorter for larger scattering lengths
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we measure the lifetime in the static lattice for each scat-
tering length. An exemplary measurement from which we
infer the decay rate κ is shown in Fig. S2.
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FIG. S2. Atom number decay versus shaking dura-
tion An example of a decay rate measurement. The driving
strength was α = 1 at a shaking frequency of ω = ωh and
a scattering length of as = 80a0. The inset shows the ratio
between mean free path and condensate radius lf /Rx

TF . For
large scattering lengths the mean free path becomes on the
order of the size of the BEC resulting in a finite probability
of collateral scattering events.

D. Validity of Thomas-Fermi approach

The fit function Eq. (S.3), from which we infer the loss
rates κ of condensed atoms, assumes that the system
stays in a global thermal equilibrium while the lattice is
being shaken. This implies that the BEC is being de-
scribed by a Thomas-Fermi model during most parts of
the shaking process. According to Eq. (S.1) this means

that the ratio Ri = RiTF /N0(t)
1/5, with i = x, y, stays

constant. In order to verify this, we measure the insitu
Thomas-Fermi radius for various shaking durations and
directly afterwards repeat the same measurement but
this time determine the remaining atom number in the
BEC from TOF images. Fig. S3 shows exemplary mea-
surements of Ri for two different shaking parameters. In
Fig. S3 (a) the shaking frequency is set to ω = ωl with
a driving strength α = 0.44 and a scattering length of
as = 140a0. For these shaking parameters the lifetime is
fairly long and the system is expected to stay in a global
thermal equilibrium. This is confirmed by the measure-
ment as Ri stays constant during the whole loss process.
In Fig. S3 (b) we show a more extreme example where the
scattering length is set to as = 40a0 and thus thermal-
ization processes due to collisions take more time. We
shake the system at a frequency of ω = ωh with a driving
strength of α = 1.3 which leads to a large loss rate of con-

densed atoms. Even in this more extreme case Ri stays
constant during the shaking process.
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FIG. S3. Check on thermal equilibrium (a) The ratio

Ri
TF /N0(t)1/5 at ω = ωl, α = 0.44 and as = 140a0 is plotted

versus the shaking duration. (b) Ri for ω = ωh, α = 1.3 and
as = 40a0. Solid lines are a guide to the eye.

E. Harmonic trapping frequencies

We determine the harmonic trapping frequencies
in the dipole trap by giving the atoms a kick and
observing the resulting oscillating motion in the trap.
We measure trapping frequencies of ωx = 2π×24.2(1)Hz,
ωy = 2π × 27.6(4)Hz and ωz = 2π × 204(3)Hz. To
be able to compare the measured decay rates with
theory (section S.II), we however require the trapping
frequencies in the presence of the lattice. A direct mea-
surement is hampered by the fact that the lattice damps
dipole oscillations rather quickly. We can therefore only
measure the trapping frequency ωz along the vertical
direction, giving ωz = 2π × 186(3)Hz. The trapping
frequency along the y-direction is calculated by modeling
the anticonfinement due to lattice beams for the 11Er
lattice. Combining this with the measured trapping
frequency in the dipole trap results in ωy = 2π × 25.2 Hz.
The ratio of the trapping frequencies ωx/ωy is equal to
the ratio of the Thomas-Fermi radii RxTF /RyTF . From
the measured in situ cloud shape the harmonic trapping
frequency along the lattice direction can be estimated
to be ωx = 2π × 18.6 Hz. From the beam parameters of
the dipole and lattice beams we can estimate the trap
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depth along the vertical direction as Vver ≈ h × 20 kHz
and Vhor ≈ h × 18 kHz along the horizontal direction.

F. Temperature estimation

For the smaller driving frequency ωl, scattered atoms
will typically not have enough energy to leave the trap
and hence will redistribute their acquired energy over
the system via rapid zero-photon collisions. This redis-
tribution leads to an additional loss of condensate atoms,
such that the total rate becomes Ṅ0 = −fβh̵ω∑ν νΓν/2.
We empirically found fβh̵ωl ≈ 10. For an ideal homo-
geneous three dimensional Bose gas the numerical factor
f is given by f ≈ 0.78, see S.II C c. In the spirit of the
local density approximation we refrain from using the
factor f of a trapped ideal Bose gas. Ignoring the en-
hanced scattering rate of thermal atoms, the above em-
pirical factor provides a lower bound of the temperature
of T ≈ 15 nK. When taking bandmapped TOF pictures
of the condensate we cannot detect any thermal back-
ground, from which we can conservatively infer that the
condensate fraction will be above 90%. For the homoge-
neous ideal Bose gas the condensate fraction is described
by N0/N = 1 − (T /Tc)

3/2 [48], where Tc is the critical
temperature. Inserting a condensate fraction of > 90% in
this formula yields an upper bound for the temperature
of T < 60 nK, which corresponds to fβh̵ω > 2, compatible
with the measured factor of ≈ 10. Note that the measured
loss of condensate atoms tends to overestimate fβh̵ω,
since in the course of time also thermal (non-condensed)
atoms will start to absorb photons in resonant collisions.
Due to their finite momentum, single-photon processes
are not suppressed anymore. These collisions are even
faster than the two-photon processes giving the main
contribution to the resonant scattering of two conden-
sate atoms, leading to an even faster energy absorption
from the drive.

G. Mean free path

For the high shaking frequency ωh scattered particles
have enough energy to leave the trap and hence the pre-
dicted theoretical scattering rate should coincide with
the measured loss rate. This is, however, only true if
scattered particles can leave the trap before additional
collisions with condensed atoms occur. In order to esti-
mate the probability of such additional collisions, which
increase the measured loss rates, we estimate the mean
free path lf = 1/n̄σ of excited atoms. Here σ = 8πa2

s is the
scattering cross section and n̄ = N0/V denotes the mean
density of the BEC. Since we can describe the density
distribution of the BEC by a Thomas-Fermi model, the
condensate volume is given by V = 4π/3RxTFR

y
TFR

z
TF .

The inset of Fig. S2 shows the ratio of the mean free
path to the Thomas-Fermi radius along the x−direction.

For large scattering lengths the mean free path becomes
on the order of the size of the BEC, leading to a finite
probability of scattering events between excited and con-
densed atoms. Due to the high energy of the excited
atoms, potentially a large number of condensed atoms
can be excited, leading to a significantly higher loss rate.

H. Detection and analysis

After shaking the atoms for a variable duration in
the lattice, we suddenly stop the shaking after an in-
teger number of periods and perform bandmapping in
the static lattice by ramping down the lattice beams in
100µs. To count the remaining number of atoms in the
BEC, we perform absorption imaging of the cloud after
15 ms TOF. Especially for the lower shaking frequency
ωl , where the scattered atoms do not leave the trap but
dissipate the absorbed photon energy into the system, a
large thermal background is formed. After 15 ms TOF
this thermal background is already strongly diluted and
hence can be assumed to be almost homogeneous in the
vicinity of the condensate. In order to only count con-
densed atoms, we choose a second region of interest (ROI)
that is close to but separated from the condensate peak
and subtract the mean density within this background
ROI from every pixel of the main ROI.

Appendix S.II: Theoretical estimation of condensate
depletion

A. The system

We describe the system of bosonic atoms in a shaken
one-dimensional lattice in the reference frame comoving
with the lattice. The Hamiltonian reads

Ĥ(t) = ∫ dr[ψ̂†
(r)h(r, t)ψ̂(r)+

g

2
ψ̂†

(r)ψ̂†
(r)ψ̂(r)ψ̂(r)].

(S.4)
with single-particle Hamiltonian

h(r, t) = −
h̵2

2M
∇

2
+ VL(r) −F (t) ⋅ r + Vtrap(r). (S.5)

Here M denotes the atomic mass, VL(r) = V0 sin2
(kLx)

a one-dimensional (1D) optical lattice potential, F (t) =
−K
a

cos(ωt)ex the shaking-induced homogeneous inertial

force, and Vtrap(r) =
1
2
m(ω2

xx
2+ω2

yy
2+ω2

zz
2) the trapping

potential. The field operators ψ̂(r) and ψ̂†(r) describe
the annihilation and creation of a boson at position r,
respectively. The interactions are described by the cou-
pling constant g = 4πh̵2as/m, where the s-wave scatter-
ing length as can be tuned using a Feshbach resonance.
In the following we will consider parameter values corre-
sponding to the experiment: V0/Er = 11 as well as two
driving frequencies, the lower one h̵ω/Er = 0.5 and the
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larger one h̵ω/Er = 7.5. Both the dimensionless driving
amplitude α = K/(h̵ω) and the dimensionless scattering
length as/a are varied.

For our analysis we will first neglect the impact of the
trap and consider a translational invariant system with
linear extent L in all three directions and periodic bound-
ary conditions. The role of the spatial confinement will
then be estimated in a subsequent step using a local-
density approximation based on the Thomas-Fermi wave
function for the condensate. The single-particle problem
separates with respect to the three spatial directions. In
the transverse directions r⊥ = (y, z), the stationary states
∣k⊥⟩ are characterized by sharp momentum wave numbers
k⊥ = (ky, kz), which take discrete values ki = 2πνi/M
with integers νi. Their wave functions and energies read

⟨r⊥∣k⊥⟩ =
1

L
exp(ik⊥ ⋅ r⊥) and E⊥(k⊥) =

h̵2k2
⊥

2M
. (S.6)

Along the lattice direction the undriven system is de-

scribed by the single-particle h
(0)
x = −(h̵2/2M)∂2

x +

(V0/2) cos(2πx/a). In the absence of driving the eigen-
states ∣bkx⟩ are Bloch waves characterized by both a band
index b = 0,1,2, . . . and a quasimomentum wave number
kx, taking discrete values kx = 2πνxa/L, with integers νx,
so that −π < akx ≤ π. Their energies Eb(kx) define the
band structure and their wave functions read

⟨x∣bkx⟩ = ubkx(x)e
ikxx, ubkx(x) = ubkx(x + a). (S.7)

The Bloch states ∣bkx⟩ are superposition of mo-
mentum eigenstates ∣βkx⟩ with momenta kx + β2π/a,
which differ from the quasimomentum by an integer
β times of reciprocal lattice constants 2π/a, ∣bkx⟩ =

∑β ubβ(kx)∣βkx⟩. In terms of the momentum eigenstates,

which are plane waves, ⟨x∣βkx⟩ = exp (ix(kx + β
2π
a
)/

√
L,

the undriven single-particle Hamiltonian takes the form

⟨β′k′x∣h
(0)
x ∣βkx⟩ = δk′xkxh

(0)
β′β(kx), with

h
(0)
β′β(kx) =

h̵2

2M
(kx +

2π

a
β)δβ′β +

V0

4
(δβ′,β+1 + ββ′,β−1).

(S.8)
The Bloch waves can also be expressed in terms of

Wannier states ∣b`⟩, ∣bkx⟩ =
√

a
L ∑

L/a
`=1 e

ikx`a∣b`⟩, whose

wave functions ⟨x∣b`⟩ = wb(x − `a) are real, exponen-
tially localized at the lattice minima x = `a, and obey
wb(−x) = (−)bwb(x). The lowest band, and to lesser
extent also the first excited band, can be approximately
described in a tight-binding description, where the kinet-
ics is dominated by tunneling between (Wannier states
of) neighboring lattice sites. Denoting the corresponding
tunneling matrix elements of the lowest two bands by −Jb
the dispersion relation takes the form

Eb(kx) ≃ εb − 2Jb cos(akx), (S.9)

where εb denotes the band-center energy, corresponding
to the orbital energy of the localized Wannier state. One
finds that Jb is positive (negative) for b being even (odd).

The kinetics of the higher excited bands, with b ≥ 3 and to
lesser extent with b = 2, resembles rather that of free par-
ticles with sharp momentum, except for quasimomenta
close to 0 or π/a, where Bragg reflection hybridizes states
of opposite momenta. These bands are not captured by
Eq. (S.9).

In terms of the Bloch states, the interactions read

Ĥint =
g

2L3 ∑
{bk}

ζ{bk}â
†
b4k4

â†
b3k3

âb2k2
âb1k1

(S.10)

with dimensionless coefficients ζ{bk} ≡ ζb4k4,b3k3,b2k2,b1k1 ,

ζ{bk}= ∑
{β}

u∗b4β4
(kx4)u

∗

b3β3
(kx3)ub2β2(kx2)ub1β1(kx1)

× δkx1+kx2+(β1+β2)
2π
a ,kx3+kx4+(β3+β4)

2π
a

×δk⊥1+k⊥2,k⊥3+k⊥4 . (S.11)

Below, we will consider scattering matrix elements for
scattering of two particles having zero quasimomentum,
k = q, into states with quasimomenta q ± k. These shall
be denoted by ζb4b3b2b1(k,q) = ζb4q+k,b3q−k,b2q,b1q as well
as by ζb4b3b2b1(k) ≡ ζb4b3b2b1(k,0). If we can neglect the
interactions between particles occupying Wannier states
at different lattice sites, which is a good approximation
for the lowest band(s), the coefficients ζ{bk} become in-
dependent of quasimomentum, ζ{bk} ≃ ζ{b}, and read
ζb4b3b2b1 = a ∫ dxwb4(x)wb3(x)wb2(x)wb1(x). Thanks to
on-site parity conservation, within this approximation
ζb4b3b2b1 vanishes when b1 + b2 − b3 − b4 is odd. For con-
venience, we also define ζ ≡ ζ0000.

B. The driven single-particle problem

For non-zero driving strength K, the system possesses
generalized stationary states called Floquet states. The
scalar potential −xF (t) that incorporates the homoge-
neous driving force apparently breaks the lattice symme-
try. However, this symmetry can be restored by apply-
ing a gauge transformation, so that the Floquet states
are Bloch waves characterized by sharp quasimomenta
(Floquet-Bloch states). We will consider different gauge
transformations that restore the lattice symmetry, de-
pending on the driving frequency.

a. Driving frequencies well below the band gap

In the regime, where the driving amplitude K and fre-
quency h̵ω are smaller than the separation ∆10 of the
lowest two bands the most dominant effect of the forc-
ing on the states of the lowest band will be a periodic
translation in quasimomentum by

q(t) =
1

h̵
∫

t

0
dt′F (t′) = −

α

a
sin(ωt) (S.12)

that conserves the band index b.
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Such a translation is described by the time-periodic
unitary operator

U1(t) = ∑
bkx

∣bkx + q(t)⟩⟨bkx∣ = exp(iaq(t)∑
b`

`∣b`⟩⟨b`∣).,

(S.13)
It defines a gauge transformation giving rise to the trans-

formed Hamiltonian, h′x = U
†
1hxU1 − ih̵U

†
1 U̇1. It reads

h′x(t) = ∑
kx

[∑
b

Eb(kx + q(t))∣bkx⟩⟨bkx∣

+K cos(ωt)∑
b′b
ηb′b(kx, t)∣b

′kx⟩⟨bkx∣]. (S.14)

where we have introduced the dimensionless interband
coupling parameter

ηb′b(kx, t) = ∑
∆`

e−i∆`[kx+q(t)]η
(∆`)
b′b (S.15)

with η
(∆`)
b′b = ∫ dxwb′(x −∆`a)x

a
wb(x). For the coupling

between the two lowest bands, for which the Wannier
functions are well localized, we might approximate the

sum by the ∆` = 0 term, η10(kx, t) = η01(kx, t) ≃ η
(0)
10 .

In a first approximation, we can neglect the coupling
to excited bands and so that the states of the lowest band
form a band of Floquet-Bloch states whose quasienergies
ε0(kx) are given by the time-averaged dispersion

ε0(kx) =
1

T
∫

T

0
dtE0(kx + q(t)) ≃ ε0 − 2Jeff

0 cos(akx)

(S.16)
[as well as copies of that band shifted by integer mul-
tiplies of the energy h̵ω, ε0m(kx) = ε0(kx) +mh̵ω]. On
the right side of Eq. (S.16), we have introduced the effec-
tive tunneling matrix element Jeff

0 = J0J0(α). This re-
sult is obtained by employing Eq. (S.9) and the identity
exp (ia sin(b)) = ∑k Jk(a) exp(ikb), with Bessel function
of the first kind Jk(a). Transforming back to the original
frame of reference (co-moving with the lattice) by em-
ploying U1(t), the so-approximated Floquet-Bloch state
is described by an accelerated Bloch state ∣bkx + q(t)⟩.

In Fig. S4 we plot one Brillouin-zone (i.e. an interval of
width h̵ω) of the quasienergy spectrum of the driven lat-
tice with h̵ω/Er = 0.5 for two different driving strengths,
α = 1 (left panel) and α = 3 (right panel). For these values
the tunneling matrix element is effectively modified by a
factor of J0(1) ≈ 0.77 and J0(1) ≈ −0.26, respectively.
At the bottom of both Figure panels, we can clearly rec-
ognize a quasienergy band originating from the lowest
band of the undriven system. In the right panel one can,
moreover, clearly see the effective inversion of this band,
as it is expected for Jeff

0 < 0. This confirms the reasoning
underlying the approximation (S.16).

b. Driving frequencies above the band gap

For driving frequencies and amplitudes that are large
compared to the first band gap the driving will strongly

-1 0 1
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0

0.1
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-1 0 1
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E
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FIG. S4. One Brillouin zone of the quasienergy band struc-
ture of the driven cosine lattice with V0/Er = 11, h̵ω/Er = 0.5,
and α = 1 (left panel) as well as α = 3 (right panel).

FIG. S5. One Brillouin zone of the quasienergy band struc-
ture of the driven cosine lattice with V0/Er = 11, h̵ω/Er = 7.5,
and α = 1 (left panel) as well as α = 3 (right panel).

mix the undriven bands. The system rather follows
momentum eigenstates than quasimomentum eigenstates
(i.e. Bloch states). In this regime it is convenient to per-
form a gauge transformation with the unitary operator

U2(t) = exp (iq(t)x) (S.17)

describing a translation by q(t) in momentum. The

transformed Hamiltonian h′′x = U
†
2hxU2 − ih̵U

†
2 U̇2 reads

h′′x(t) =
h̵2

2m
[ − i∂x + q(t)]

2
+ V0 sin2

(kLx)

= h(0)
x +

h̵2

2m
[2q(t)(−i∂x) + q

2
(t)]. (S.18)

Neglecting the coupling terms involving q(t) in the
Hamiltonian (S.18), the eigenstates of the system are sim-
ply given by the undriven Bloch states, so that we expect
quasienergy bands described by the dispersion relation

εb(kx) ≃ Eb(kx) (S.19)
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(as well as copies of them shifted by integer multiplies of
the energy h̵ω, εbm(kx) = εb(kx) +mh̵ω]. This approxi-
mation is not only valid for the lowest band(s), but for
all bands. In fact it accurately describes the physics of
highly excited bands with energies well above the lattice
depth V0, which are separated from each other by tiny
band gaps only. Transforming back to the original frame
of reference (co-moving with the lattice) by employing
U2(t), the Floquet-Bloch state is described by momen-

tum shifted Bloch states eixq(t)∣bkx⟩.
In Fig. S5 we plot one Brillouin-zone of the quasienergy

spectrum of the driven lattice with h̵ω/Er = 7.5 for two
different driving strengths, α = 1 and α = 3. In the left
panel, we can clearly identify copies of the lowest, as well
as of the first and second excited bands. Even higher ex-
cited bands are also present, but harder to identify due
to their steeper dispersion. In the right panel we can see
that these bands can still be identified for the stronger
driving amplitude (even though the lowest band now un-
dergoes large avoided crossings with excited bands).

c. Multi-photon interband excitations

The interband-coupling terms appearing in the Hamil-
tonians (S.14) and (S.18) can induce transitions between
different Bloch bands. This can happen even when the
driving frequency h̵ω is small compared to the band gap,
h̵ω < ∆10. Such single-particle processes conserve quasi-
momentum. Assuming a particle in the kx = 0 state of
the lowest band, the excitation to the first excited band
is, thus, connected to the resonance condition

νh̵ω ≈ ε1(0) − ε0(0) (S.20)

for an ν-photon transition, where ε0ν(0) = ε0(0) + νh̵ω
and ε10(0) = ε1(0) are (nearly) degenerate. Such multi-
photon interband heating processes have been investi-
gated theoretically and experimentally in Refs. [37, 40]).
For driving amplitudes below a threshold value, they are
suppressed exponentially for large n. These resonances
are clearly visible also in the data presented in Fig. 1 (b)
of the main text. The theoretical curves in this plot were
obtained by integrating the single-particle time evolution
starting from undriven Bloch states of the lowest band.
The plotted line corresponds to the minimal probability
for remaining in this state encountered during the time
evolution, averaged over a group of momenta k represent-
ing the measured momentum distribution.

C. Heating rates from two-particle scattering

Driving induced heating occurs, when the system ab-
sorbs energy quanta h̵ω. One source of heating are the
single-particle processes mentioned at the end of the pre-
vious section, which occur at driving frequencies close

to sharp resonance conditions. We find them to be sup-
pressed in two regimes: for sufficiently small driving fre-
quencies h̵ω ≪ ∆10, i.e. for large photon numbers n, as
well as for driving frequencies h̵ω > ∆10 lying in the sec-
ond band gap. In these two regimes, the main heat-
ing channels are given by different types of interaction-
induced resonant scattering processes out of the conden-
sate. In the following we will estimate the correspond-
ing loss rates of condensed atoms. Resonant scattering
between Floquet-Bloch states, has recently also been de-
scribed in Refs. [30, 31, 34, 35, 49]. (For a discussion of
heating processes in the strongly coupled Mott insulator
regime, see Refs. [28, 33]).

a. General form of the scattering rates

In the following we will assume that the system of N
particles is prepared in a low-entropy state with a Bose
condensate of N0 ≈ N atoms in the single-particle ground
state. When the driving is switched on, experimental
data shows that the condensate is transferred to the Flo-
quet Bloch state ∣b = 0,k = q⟩ at the minimum of that
Floquet-Bloch band originating from the lowest undriven
band. Starting from this state, we compute the matrix

elements C
(ν)
bb′ (k,q) for the (dominant) ν-photon scat-

tering processes into the target state where two conden-
sate atoms have been transferred into the Floquet-Bloch
states ∣b,q + k⟩ and ∣b,q − k]⟩ with k = (kx,k⊥). For the

given contact interactions the matrix element C
(ν)
bb′ (k,q)

will not depend on the transverse momentum k⊥ and it
will be proportional to gN0/L

3, so that

C
(ν)
bb′ (k,q) ≡ C

(ν)
bb′ (kx, q) ≡

N0g

L3
c
(ν)
b′b (kx, q), (S.21)

with dimensionless intensive factor c
(ν)
b′b (kx).

The accessible states are defined via the condition
εb(q+kx)+εb′(q−kx)+2E⊥(k⊥)−2ε0(q)−νh̵ω = 0. Thanks
to the continuum of transverse modes k⊥ the transverse
energy 2E⊥(k⊥) can take any non-negative value, so that
it translates to

εb(q + kx) + εb′(q − kx) − 2ε0(q) − νh̵ω < 0. (S.22)

For convenience, we define that c
(ν)
bb′ (kx, q) = 0 whenever

the resonance condition (S.22) is not fulfilled. For the
sake of a light notation, below we will suppress the argu-
ments q and q in the following, unless we are explicitly
considering the case q ≠ 0, which becomes relevant when
discussing the case of larger driving frequencies.

The rate for ν-photon scattering out of the condensate
can then be estimated by employing the golden rule

Γν = 2
1

2
∑
bb′
∑
kx

2π

h̵
∣C

(ν)
b′b (kx)∣

2ρ⊥ = 32N0(n2Da
2
s)
Er
h̵
γν

(S.23)
Here the prefactor of 2 accounts for the fact that atoms
are scattered pairwise, the factor of 1/2 takes into account
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that (b, kx) ↔ (b′,−kx) does not lead to a new target
state, and ρ⊥ =ML2/(2πh̵2) denotes the density of states
with respect to the two-dimensional space given by the
transverse directions. In the second step we introduced
the condensate density n2D = aN0/L

3 in the 2D plane
defined by every lattice minimum and the dimensionless
scattering parameter

γν = ∑
b′b

a

2π
∫

π
a

−
π
a

dkx∣c
(ν)
b′b (kx)∣

2, (S.24)

by replacing ∑kx →
L
2π ∫ dkx.

b. Taking into account the trap

In order to take into account the effect of the trap-
ping potential, we will employ two approximations, the
Thomas-Fermi approximation and the local-density ap-
proximation. Within the Thomas-Fermi approximation
one computes the condensate wave function by neglecting
both the depletion and the kinetic energy. In our lattice
system, the starting point is a description of the system
in terms of the Wannier states of the lowest band. In
this approximation the order parameter of the conden-

sate takes the form ψ`(y, z) =
√
n`(y, z), where n`(y, z)

is the 2D condensate density in the `th lattice minimum,
i.e. in the Wannier states ∣0`⟩. The potential energy of
the system is given by

E = ∑
`
∫ dydz[

g̃

2a
n`(y, z) + Vtrap(`a, y, z) − µ]n`(y, z),

(S.25)
where µ is the chemical potential and g̃ = gζ the coupling
constant. It is convenient to approximate the site index
` by the continuous position x = a`, so that ∑`

1
a
→ ∫ dx,

and to define the three-dimensional condensate density
n(r) = nx/a(y, z)/a. In this description the energy be-
comes minimal for the density profile

n(r) =

⎧⎪⎪
⎨
⎪⎪⎩

µ−Vtrap(r)

g̃
where Vtrap(r) < µ

0 elsewhere.
(S.26)

Here the chemical potential µ is determined by the to-
tal number of particles in the condensate, from N0 =

∫ drn(r) we obtain

µ = [
15π

8
ζ
as
a

(
h̵ω̄

Er
)

3

N0]

2/5

Er, (S.27)

where ω̄ = (ωxωyωz)
1/3.

Within a local-density approximation the total scatter-
ing rate is now given by integrating over the scattering
rate per volume, Γν/L

3,

ΓLDA
ν = 32γνaa

2
s

Er
h̵
∫ dr n2

(r) (S.28)

=
128

105
ζ−3/5

(
15π

8

as
a
N0)

7/5

(
h̵ω̄

Er
)

6/5
Er
h̵
γν .

c. Multiplication effect via thermalization

At least as long as the driving frequency is small
compared to the trap depth, the scattered condensate
atoms will dissipate the absorbed photon energy νh̵ω en-
ergy into the system by undergoing rapid ordinary zero-
photon scattering processes with other atoms, leading to
a multiplication effect. We can estimate this effect by
assuming that the system equilibrates immediately. For
an ideal Bose gas with density of states g(E) ≡ bEγ and
inverse temperature β, the depletion of the condensate,
N ′ = N −N0, is given by

N ′
= ∫

∞

0
dE g(E)

1

eβE − 1
=
bΓ(γ + 1)ζ(γ + 1)

βγ+1
(S.29)

where Γ(x) and ζ(x) denote the Gamma and the Zeta
function, respectively. The energy is given by

E = ∫

∞

0
dE g(E)

E

eβE − 1
=
bΓ(γ + 2)ζ(γ + 2)

βγ+2
. (S.30)

Thus,

N ′
=

Γ(γ + 1)

Γ(γ + 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(γ+1)−1

ζ(γ + 1)

ζ(γ + 2)
βE ∝ E

γ+1
γ+2 (S.31)

and, with that,

dN ′

dE
=

1

γ + 2

ζ(γ + 1)

ζ(γ + 2)
β ≡ fβ. (S.32)

For the homogeneous three dimensional Bose gas, one has
γ = 1/2, giving f ≈ 0.78 and for the three-dimensional
harmonic oscillator one finds γ = 2 and f ≈ 0.28. For
the interacting system in the trap, the depletion sees a
potential given by a combination of the trap and a repul-
sive central bump given by the condensate, so that γ = 2
should not be a very good approximation for low-energy
states. Nevertheless one can expect a factor f of the order
of one. Noting that a pair of atoms that is scattered out
of the condensate via an ν-photon process receives an en-
ergy of νh̵ω to be dissipated in the system, the depletion
increases by about (ν/2)fβh̵ω for each scattered atom.
Thus, we can estimate the loss of condensate atoms to
be given by

Ṅ0 = − ∑
ν>0

νf

2
βh̵ωΓν (S.33)

The factor βh̵ω can be explained intuitively, by noting
that the mean energy of an excited atom is ∼ β−1.

In our system, we find that for the higher driving fre-
quency the scattered condensate atoms have gained suf-
ficient energy to leave the trap and to carry away the
photon energy νh̵ω. In this regime we can estimate the
loss of condensate atoms by the scattering rate

Ṅ0 = − ∑
ν>0

Γν . (S.34)
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This form of Floquet evaporative cooling leads to a dra-
matic reduction of heating.

Within the local density approximation (S.28), the loss
rate of condensate atoms, given either by (S.33) or by

(S.34), scales like N
7/5
0 with the number of condensate

atoms N0. This allows us to introduce the particle-

number independent loss rate κ defined by Ṅ0 = −κN
7/5
0 .

D. Resonant scattering in the Floquet picture

a. Heating processes in the Floquet picture

A periodically driven system with Hamiltonian Ĥ(t) =

Ĥ(t+T ) = ∑m Ĥ
(m)eimωt possesses quasistationary solu-

tions of the time-dependent Schrödinger equation called
Floquet states,

∣ψn(t)⟩ = e
−iεnt/h̵∣un(t)⟩ = e

−iεnmt/h̵∣unm(t)⟩. (S.35)

where εnm = εn + mh̵ω and ∣unm(t)⟩ = ∣unm(t + T ) =

eimωt∣unm(t)⟩ denote the quasienergies and the Floquet
modes. The integers m describe the fact that quasiener-
gies are defined modulo h̵ω only. From the time-
dependent Schrödinger equation, we obtain the equation

[Ĥ(t) − ih̵∂t]∣unm(t)⟩ = εnm∣unm(t)⟩, (S.36)

which defines an eigenvalue problem in the extended Flo-
quet Hilbert space [50]. A complete basis of this space is
given by the states ∣α,m⟩⟩, representing a time-periodic
state ∣α⟩eimωt in the (standard) state space of the system.
Here the states ∣α⟩ form a complete basis of the lattice
system and the Fourier index m can assume any inte-
ger. The scalar product between two states ∣u⟩⟩ and ∣v⟩⟩,
which represent time periodic states ∣u(t)⟩ = ∣u(t + T )⟩

and ∣v(t)⟩ = ∣v(t + T )⟩, is defined as

⟨⟨u∣v⟩⟩ =
1

T
∫

T

0
dt ⟨u(t)∣v(t)⟩. (S.37)

Marking operators by an overbar when acting in Flo-
quet space, the quasienergy operator Q̂(t) = Ĥ(t) − ih̵∂t,
which plays the role of a time-independent Hamiltonian,
possesses the matrix elements

⟨⟨α′,m′
∣Q̄∣α,m⟩⟩ =

1

T
∫

T

0
dt e−i(m

′
−m)ωt

⟨α′∣[Ĥ(t)−ih̵∂t]∣α⟩

(S.38)
so that

⟨⟨α′,m′
∣Q̄∣α,m⟩⟩ = ⟨α′∣Ĥ(m′

−m)
∣α⟩ + δm′mmh̵ω. (S.39)

This structure guarantees the h̵ω-periodic quasienergy
spectrum (S.36). It resembles the problem of a quantum

system described by the Hamiltonian Ĥ(0) coupled to a
photon-like mode, with m playing the role of the photon
number relative to a large background occupation.

By finding a unitary operator ŪF that block diagonal-
izes the quasienergy operator with respect to m,

⟨⟨α′,m′
∣Ū †
F Q̄ŪF ∣α,m⟩⟩ = δm′m[⟨α′∣ĤF ∣α⟩+mh̵ω], (S.40)

the problem of the driven system can be reduced to that
of the time-independent effective Hamiltonian ĤF . This
procedure is equivalent to performing a gauge transfor-
mation with a time-periodic unitary operator ÛF (t) =

Û(t + T ) in the original state space that leads to a time-
independent Hamltonian.

The basic idea of Floquet engineering is to design a
driving protocol Ĥ(t) so that the effective Hamiltonian

ĤF acquires desired properties. For a driven many-
body system, however, it is typically not possible to
compute the effective Hamiltonian exactly. Moreover,
from the point of view of quantum simulation, we rather
wish to effectively realize simple models with well-defined
properties, whereas the exact Floquet Hamiltonian will
typically be very complex object. For these reasons,
one usually computes the effective Hamiltonian approxi-
mately. A common strategy is to employ a gauge trans-
formation described by a time-periodic unitary operator
Û(t) = Û(t+T ), so that in the rotating frame the Hamil-

tonian Ĥ ′(t) = ∑m Ĥ
′(m)eimωt can be approximated by

its time average Ĥ ′(t) ≈ Ĥ ′(0). In Floquet space, such
a rotating-wave approximation corresponds to neglect-
ing the off-diagonal blocks (m′ ≠ m) of the quasienergy
operator.

Taking into account these off-diagonal terms gives rise
to two different types of corrections: (i) The first type of
correction comprises transitions and dephasing between
unperturbed states of the same subspace m, result from
the perturbative admixture of states from different sub-
spaces. This effect can be captured by computing correc-
tions to the unperturbed effective Hamiltonian (e.g. us-
ing a high-frequency expansion [33, 51]) and shall not be
considered as heating. (ii) The second type of corrections
are transitions between two (almost) degenerate unper-
turbed states of different subspaces m and m′ ≠m. These
processes correspond to resonant transitions, where the
energy of the Floquet engineered system changes by in-
teger multiples (m′ − m)h̵ω of the photon energy h̵ω.
They cannot be captured by adding time-independent
corrections to the unperturbed time-independent effec-
tive Hamiltonian Ĥ ′(0) and must be considered as heat-
ing (if they increase the energy). These are the processes
to be investigated here. For that purpose, we will employ
perturbation theory in Floquet space.

b. Estimating heating from perturbation theory

Let ∣n⟩ be the eigenstates of Ĥ ′(0) with energy εn,

Ĥ ′(0)
∣n⟩ = εn∣n⟩, (S.41)

and ∣n,m⟩⟩ the corresponding basis states in Flo-
quet space. Within the rotating-wave approximation
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∣n,m⟩⟩ is an eigenstate of the quasienergy operator with
quasienergy εnm = εn +mh̵ω. Let us, moreover, assume
that initially the system is prepared in the ground state
∣0⟩ of Ĥ ′(0). Then heating requires that there are ex-
cited states n that, modulo h̵ω, are near degenerate to
the ground state,

εn = ε0 + νh̵ω + δ (S.42)

with ν > 0. The detuning ∣δ∣ has to be small compared

to the matrix matrix element C
(ν)
n that couples the state

∣0,m⟩⟩ to the state ∣n,m − ν⟩⟩.
Such a coupling matrix element can either be given

directly by a matrix element of the quasienergy operator

C(ν)1st
n = ⟨⟨n,m∣Q̄∣0,0⟩⟩ = ⟨n∣Ĥ ′(m)

∣0⟩ with m = −ν.
(S.43)

It can, however, also result from indirect coupling pro-
cesses via virtual intermediate states. In this case it can
be obtained using degenerate perturbation theory. In pth
order it describes processes via p − 1 intermediate states
∣ni,mi⟩⟩. A second-order coupling matrix element takes
the form

C(ν)2nd
n = ∑

n1m1

′ ⟨n∣Ĥ ′(m−m1)∣n1⟩⟨n1∣Ĥ
′(m1)∣0⟩

ε0 − (εn1 +m1h̵ω)
, (S.44)

where we have assumed that δ can be neglected relative
to the energy in the denominator. The prime at the sum
shall indicate that we are only summing over states that
are energetically well separated from the group of almost
degenerate states to which ∣0,0⟩⟩ couples resonantly.

Generally, a pth-order process is described by a matrix
element of the order of

C(ν)pth
n ∼ (S.45)

∑
{nimi}

′ ⟨n∣Ĥ ′(m−mp−1)∣np−1⟩⋯⟨n1∣Ĥ
′(m1)∣0⟩

(ε0 − εnp−1 −mp−1h̵ω)⋯(ε0 − εn1 −m1h̵ω)
.

c. General form of the Hamiltonian

In the following, we will introduce two different rotat-
ing frames, depending on whether we are considering the
lower or the larger driving frequency. For each of them
the Hamiltonian Ĥ ′(t) can be decomposed like

Ĥ ′
(t) = Ĥbs +∑

m

[Ĥ(m)

sp + Ĥ
(m)

tp ]eimωt. (S.46)

Here Ĥbs is time-independent and describes the single-
particle band structure

Ĥbs = ∑
bk

ε′b(k)â
†
bkâbk, (S.47)

where âbk is the bosonic annihilation operator for a boson
in the single-particle state ∣bk⟩′ characterized by the band

index b and the (quasi)momentum k. The corresponding
energy reads

ε′b(k) = ε
′

b(kx) +E⊥(k⊥). (S.48)

All other single-particle terms are collected in the terms

Ĥ(m)

sp = ∑
k

∑
b′b
A

(m)

b′b,kâ
†
b′kâbk. (S.49)

The interactions are contained in the terms

Ĥ
(m)

tp = ∑
{bk}

B
(m)

{bk}
â†
b4k4

â†
b3k3

âb2k2
âb1k1

, (S.50)

having matrix elements B
(m)

{bk}
that vanish unless

(quasi)momentum is conserved.
For our analysis of heating channels, we will neglect the

impact of the ordinary zero-photon interactions Ĥ
(0)
tp on

the eigenstates of Ĥ ′(0). (However, we do take these in-
teractions into account, in order to compute the conden-
sate’s density distribution in the trap, as described in sec-
tionS.II C b above). The effect of interactions is to induce
quantum fluctuations that cause a slight depletion of the
condensate and make the dispersion relation phonon-like
for small k, as it is described by Bogoliubov theory. How-
ever, for weak interactions both have no major impact on
the heating rates. Within this approximation the eigen-
states of Ĥ ′(0) are given by Fock states ∣n⟩ characterized
by the vector n of occupation numbers nbk. The energy
of this state is given by εn = ∑bk nbkε

′

b(k). The corre-
sponding Floquet-Fock states are denoted ∣n,m⟩⟩; their
unperturbed quasienergies read εnm(k) = εn +mh̵ω.

The ground state ∣0⟩ is given by the condensate state
with all particles occupying the condensate mode ∣b =

0,k = q⟩′. For our analysis, we moreover, consider Fock
states with a single particle occupying the excited state
∣b,k⟩′ and with two particles occupying the excited states
∣b1,k1⟩

′ and ∣b2,k2⟩
′, while all other particles remain in

the condensate. These states shall be denoted by ∣1(b,k)⟩
and ∣2(b1,k1; b2,k2)⟩, respectively. The matrix element

for resonant ν-photon scattering C
(ν)
b′b (k,q) describes the

coupling of the Floquet-Fock state ∣0,0⟩⟩, denoting the
m = 0 ground state, with the Floquet-Fock state ∣2(b,q +
k; b′,0 − k),−ν⟩⟩, denoting a state with two additional
excited particles, but ν photons less.

E. Heating rates for driving frequencies below the
band gap

a. The rotating frame

In the regime where the driving frequency is well below
the gap separating the lowest from the first excited band
discussed in section S.II B a, it is convenient to describe
the system in a reference frame that is translated with re-
spect to quasimomentum by q(t) = q(t)ex, as defined in
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Eq. (S.12), while the band index is conserved. This is ac-
complished by the transformation (S.13) and leads to the
single-particle Hamiltonian reads (S.14). As long as in-
teractions are happen on site, which is a good approxima-
tion for the lowest band(s), the interaction Hamiltonian
(S.10) is not altered by the shift q(t) in quasimomen-
tum. The time-dependence of the energies Eb(k + q(t))
appearing in Eq. (S.14) is contained in the band energies
Eb(kx + q(t)) that we Fourier-decompose like

Eb(kx + q(t)) =
∞

∑
m=−∞

E
(m)

b (kx)e
imωt. (S.51)

Assuming that for the lowest band(s) the kinetics of the
system is governed by nearest-neighbor tunneling only
so that the dispersion relation is given by Eq. (S.9), we
obtain

E
(m)

b (kx) =
1

T
∫

T

0
dt e−imωt[εb − 2Jb cos(akx − α sin (ωt))]

= εbδm,0 − JbJm(α)[(−)meiakx + e−iakx]. (S.52)

In order to get rid of the time-dependence of the di-
agonal terms in Eq. (S.14), let us perform a second
gauge transformation, where we integrate out the time-

periodic part ∑m≠0E
(m)

b (kx)e
imωt of the band energies

Eb(k + q(t)). For that purpose we employ the unitary
operator

Û ′

1(t) = exp [i∑
bk

∑
m≠0

χ
(m)

bk eimωtâ†
bkâbk] (S.53)

with

iχ
(m)

bk = −
E

(m)

b (kx)

mh̵ω
=
Jm(α)

m
D

(m)

bk , (S.54)

and

D
(m)

bk =
2Jb
h̵ω

{
cos(akx), even ∣m∣
1
i

sin(akx), odd ∣m∣ .
(S.55)

The transformed Hamiltonian can be evaluated using
exp(−iχâ†â )â exp(iχâ†â ) = exp(iχ)â. It is of the form
(S.46). The first term describes a renormalized band
structure,

Ĥbs = ∑
kb

εb(k)â
†
bkâbk (S.56)

with dispersion relation

εb(k) = εb − 2JbJ0(α) cos(akx) +E⊥(k⊥). (S.57)

The second term describes single-particle interband tran-
sitions,

Ĥsp(t) =K∑
k

∑
b′b
ηb′b cos(ωt)e−i[χb′k(t)−χbk(t)]â†

b′kâbk.

(S.58)

Finally, the third term comprises two-particle scattering
processes,

Ĥtp(t) =
g

2L3 ∑
{bk}

′

ζ{b}e
−i[χb4k4

(t)+χb3k3
(t)−χb2k2

(t)−χb1k1
(t)]

×â†
b4k4

â†
b3k3

âb2k2
âb1k1

. (S.59)

Let us now Fourier-decompose these terms and, thus,
determine the coefficients appearing in Eqs. (S.49) and
(S.50). In order to obtain clear and simple expressions,
we will write down only the most dominant contribution
to each Fourier component only. When expanding the
exponential functions appearing in Eqs. (S.58) and (S.59)
with respect to their argument and comparing the result
to their Fourier decomposition,

exp(iχbk(t)) =
∞

∑
ν=0

1

ν!
(i ∑
m≠0

χ
(m)

bk eimωt)
ν

=
∞

∑
µ=−∞

e
(µ)
bk e

iµωt,

(S.60)
we can identify the leading contributions to each Fourier

component e
(µ)
bk to be given by

e
(0)
bk ≃ 1, e

(µ)
bk ≃ iχ

(µ)
bk for µ ≠ 0. (S.61)

Namely, products of several χ
(µ)
bk , as they appear for ν ≥

2, are not relevant, since each χ
(µ)
bk contributes a factor

Jb/(h̵ω) ≪ 1. Note, moreover, that with respect to its
argument the Bessel function appearing in Eq. (S.54) for

iχ
(µ)
bk behaves like

Jm(α) ≃
[sgn(m)]∣m∣

∣m∣!
(
α

2
)
∣m∣

≃
1

√
2π∣m∣

(
eα

2∣m∣
)

∣m∣

(S.62)
for small α (second expression) and large ∣m∣ (third ex-

pression). Thus, χ
(m)

bk is exponentially suppressed for
large ∣m∣ with ∣m∣ > (e/2)α ≈ 1.36α.

We can now write down the leading contribution to

the Fourier components Ĥ
(m)

sp and Ĥ
(m)

tp . Taking into

account also the factor cos(ωt) = 1
2
[eiωt+e−iωt] appearing

in Ĥsp(t), for the former we find the coefficients

A
(0)
b′b,k ≃ ηb′bJ1(α)αh̵ω[D

(1)
bk −D

(1)
b′k], (S.63)

and

A
(±1)
b′b,k ≃

1

2
αh̵ωηb′b, (S.64)

as well as

A
(±∣m∣)

b′b,k ≃ ηb′b
(±)∣m∣J∣m∣−1(α)αh̵ω

2(∣m∣ − 1)
[D

(∣m∣−1)
b′k −D

(∣m∣−1)
bk ]

(S.65)

for ∣m∣ ≥ 2. Thus, while we have the scaling A
(±∣m∣)

b′b,k ∝

(Jb′ − Jb)ηb′bα
∣m∣/∣m∣! for ∣m∣ ≥ 2, the m = ±1 coefficients

(S.64) are a factor of h̵ω/(Jb′ − Jb) ≫ 1 larger.
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For the two-particle processes the coefficients read

B
(0)

{bk}
≃
gζ{b}

L3
, (S.66)

so that Ĥ
(0)
tp ≃ Ĥint, as well as

B
(m)

{bk}
≃
gζ{b}

2L3

Jm(α)

m
[D

(m)

b1k1
+D

(m)

b2k2
−D

(m)

b3k3
−D

(m)

b4k4
]

(S.67)
for ∣m∣ ≥ 1. Therefore, zero-photon scattering is much
faster than resonant m-photon scattering with m ≠ 0.

b. Heating rate

According to the resonance condition (S.22), for driv-
ing frequencies well below the band gap, scattering pro-
cesses into the first (or even a higher) excited band, cor-
respond to ν photon processes with large ν, which are
strongly suppressed with respect to resonant scattering
processes within the lowest band. Thus, the dominant
channel for interaction-induced heating is resonant intra-
band scattering, where a pair of condensate atoms scat-
ters from the condensate mode ∣00⟩ into the excited Bloch
states ∣0k⟩ and ∣0−k⟩, so that (quasi)momentum is con-
served. The dominant processes would be single-photon
scattering. However, the corresponding coupling matrix
element, which is of the form (S.43), vanishes by sym-
metry for odd photon numbers ν as long as the conden-
sate possesses quasimomentum q = 0. Thus, the leading
process will be given by two-photon resonant scattering

generated by Ĥ
(−2)
int . The matrix element for resonant

scattering with even ν is of the form (S.43) and reads

C
(ν)
00 (k) = ⟨2(0k,0 − k)∣Ĥ

(−ν)
tp ∣0⟩ = NB

(−ν)
0k,0−k,00,00

≃ −
Ng

L3

ζJ0

h̵ω

Jν(α)

ν/2
[1 − cos(akx)] for even ν.

(S.68)

In order to compute the heating rate, let us first eval-
uate the dimensionless scattering rate (S.24). As long as
νh̵ω is larger than twice the width of the dressed lowest
band, 8J0J0(α), all modes kx contribute to the integral
and we find

γν = (
2ζJ0Jν(α)

νh̵ω
)

2
a

2π
∫

π/a

−π/a
dkx [1 − cos(akx)]

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3/2

(S.69)

For lower driving frequencies, when sν ≡

νh̵ω/[8J0J0(α)] < 1, the resonance condition
(S.22) is fulfilled only for modes ∣kx∣ < kmax with
[1− cos(akmax)] = 2sν . Integrating over the contributing

modes, we define

g(sν) =
2

3

a

2π
∫

kmax

−kmax

dkx [1 − cos(akx)]
2

= [
1

2
−

1

π
arcsin(1 − 2sν)] −

2sν + 6

3π

√
sν(1 − sν).

(S.70)

With that and the convention g(sν) = 1 for sν ≥ 1, the
dimensionless scattering rate is given by

γν = 6vνg(sν)(
ζJ0Jν(α)

νh̵ω
)

2

, (S.71)

where vν = 1 (vν = 0) for even (odd) ν.
The experimental measurements show that the con-

densate possesses a finite width in momentum space. As
a result of this finite width also scattering processes cor-
responding to an odd photon number, and in particular
single-photon processes, acquire finite matrix elements.
Assuming the condensate to be formed in a coherent su-
perposition over several quasimomenta kx of width ∆kx
around kx = 0, we find scattering rates are still of the
form (S.71), but now vν takes two different values vo and
ve for odd and even ν, respectively. We have computed
these factors for the experimentally measured width ∆kx
and took them into account in the data presented in the
main text.

F. Heating rates for driving frequencies above the
band gap

a. The rotating frame

Let us now consider the regime where the driving fre-
quency is larger than the gap separating the lowest from
the first excited band. As has been pointed out in sec-
tion S.II B b, it is convenient to describe the system in
a reference frame that is translated with respect to mo-
mentum by q(t) = q(t)ex. This is accomplished by the
transformation (S.17) and gives rise to the single-particle
Hamiltonian (S.18), which we write in second quantiza-
tion as

Ĥ ′′

0 (t) = ∑
kb

Eb(k)â
†
bkâbk + ∑

kb′b
Vb′b(kx, t)â

†
b′kâbk. (S.72)

Here â†
bk creates a particle in the undriven single-particle

Bloch state ∣bk⟩ with undriven energy Eb(k). The driv-
ing is captured by the matrix elements

Vb′b(kx, t) =
h̵2

2m
[2q(t)pb′b(kx) + q

2
(t)δb′b], (S.73)

where

pb′b(kx) = ⟨b′kx∣ − i∂x∣bkx⟩ = kxδb′b +
2π

a
βb′b(kx) (S.74)
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denote the matrix elements of the momentum (wave num-
ber) with respect to the Bloch states ∣bk⟩. Here we intro-
duced βb′b(kx) = ∑β u

∗

b′β(kx)βubβ(kx), with ubβ(kx) =

⟨βkx∣bkx⟩. The interaction Hamiltonian (S.10) is not al-
tered by the gauge transformation.

It is convenient to decompose the Hamiltonian (S.72)
into diagonal and band-coupling terms. The time-
dependent diagonal energies

Eb(k, t) = Eb(k) +
h̵2

2m
[2q(t)pbb(kx) + q

2
(t)]

=
2

∑
m=−2

E
(m)

b (k)eimωt, (S.75)

possess Fourier components

E
(0)
b (k) = Eb(kx) +E⊥(k⊥) +

α2

2π2
Er (S.76)

E
(±1)
b (k) = ±

2α

iπ
Er[

akx
2π

+ βbb(kx)] (S.77)

E
(±2)
b (k) = −

α2

4π2
Er. (S.78)

In order to get rid of the time-dependence of the diag-

onal terms ∝ â†
bkâbk in Eq. (S.72), let us again perform

a second gauge transformation, where we integrate out

the time-periodic part ∑m≠0 ε
(m)

b (kx)e
imωt of the band

energies Eb(k+q(t)). For that purpose we again employ
a unitary operator of the form (S.53) and (S.54). The
transformed Hamiltonian can be decomposed into three
terms. The first term of the transformed Hamiltonian
describes the unperturbed band structure,

Ĥbs = ∑
kb

εb(k)â
†
bkâbk. (S.79)

The second term describes single-particle interband tran-
sitions,

Ĥsp(t) = −
4α

π
Er sin(ωt)∑

k

∑
b′b
βb′b(kx)e

iθb′b(kx,t)â†
b′kâbk,

(S.80)
with time-dependent phases

θb′b(kx, t) = χbk(t) − χb′k(t)

=
4α

π

Er
h̵ω

[βbb(kx) − βb′b′(kx)] cos(ωt)

≡ 2θ
(1)
b′b (kx) cos(ωt). (S.81)

Finally, the interaction term transforms into

Ĥtp(t) =
g

2L3 ∑
{bk}

′

ζ{bk}e
iθ{bk}(t)â†

b4k4
â†
b3k3

âb2k2
âb1k1

,

(S.82)
with time-dependent phases

θ{bk}(t) = χb1k1(t) + χb2k2(t) − χb3k3(t) − χb4k4(t)

=
4α

π

Er
h̵ω

cos(ωt)[kx1 + kx2 − kx3 − kx4

+βb1b1(kx) + βb2b2(kx) − βb3b3(kx) − βb4b4(kx)]

≡ 2θ
(1)

{bk}
cos(ωt). (S.83)

By Fourier-decomposing the Ĥsp(t) and Ĥtp(t) we ob-
tain the coefficients defined in Eqs. (S.65) and (S.67),

A
(m)

b′b (k) = −(i)m
2α

π
βb′b(kx)Er

×[Jm−1(2θ
(1)
b′b (kx)) + Jm+1(2θ

(1)
b′b (kx))]

(S.84)

and

B
(m)

{bk}
= (i)m

g

2L3
ζ{bk}Jm(2θ

(1)

{bkx}
). (S.85)

The phases θ(1) appearing in the arguments of the
Bessel functions are small, since they scale like αEr/h̵ω
with respect to driving frequency and strength. We will
therefore, in a first approximation, consider only the lead-
ing terms. These involve the Bessel functions of order
zero, which behave like J0(2θ

(1)) ≃ (2θ(1))0 = 1 for small

θ(1). In this order, the only relevant matrix elements are
given by

A
(±1)
b′b (k) ≃ −Er

2α

π
βb′b(kx), (S.86)

describing single-photon single-particle interband transi-
tions as well as by

B
(0)

{bk}
≃

g

2L3
ζ{bk}, (S.87)

describing zero-photon intra- and inter-band scattering
processes.

The leading corrections involve terms that scale lin-
early with respect to θ(1). The corresponding coefficients
read

A
(±2)
b′b (k) ≃ ±

E2
r

h̵ω
(

2α

π
)

2

βb′b(kx)[βb′b′(kx) − βbb(kx)],

(S.88)

while A
(0)
b′b (k) = 0, and

B
(±1)

{bk}
≃ ±i

g

2L3

Er
h̵ω

2α

π
ζ{bk}[kx1 + kx2 − kx3 − kx4

+βb1b1(kx1) + βb2b2(kx2) − βb3b3(kx3) − βb4b4(kx4)].

(S.89)

b. Heating rate

We will compute the matrix elements for an ν pho-
ton process using degenerate perturbation theory. As-
suming a driving frequency of h̵ω/Er = 7.5 which lies
in the second band gap (so that neither the first nor
the second band are directly coupled to the lowest band
via momentum-conserving single-photon processes), we
will take into account the most dominant processes only.
These are determined according to the following three
principles:
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a

b

c

π/a-π/a 0 q

є

FIG. S6. (a,b) Dominant single-photon second-order pro-

cesses contributing to the matrix element C
(1)
10 (kx). From top

to bottom, the three depicted bands correspond to the unper-
turbed Floquet Bloch bands with energies ε00(kx) = ε0(kx),
ε1−1(kx) = ε1(kx) − h̵ω, and ε2−2(kx) = ε2(kx) − 2h̵ω. The
Bose-Einstein condensate (BEC) is occupying the state with
b = 0, k = 0, and m = 0 (the center of the uppermost band that
shown). The solid blue arrow symbolizes the single-particle

single-photon process with matrix element A
(−1)
b′b,k. The pair

of curved red arrows symbolizes a two-particle zero-photon

scattering processes with matrix element B
(0)
b4k,b3−k,b20,b10. (c)

Subdominant process [violating the selection principle (iii)].
While it gives rise to a matrix element that is small compared
to those associated with the individual processes depicted in
(a) and (b), it still matters since the contributions from (a)
and (b) interfere destructively.

(i) We will consider only terms involving the domi-
nant matrix elements (S.86) and (S.87), describ-
ing single-photon interband transitions and zero-
photon scattering, respectively.

(ii) Assuming that scattering processes are slow com-
pared to single- particle interband transitions,
gN/L3 ≪ Erα, in nth order perturbation theory,
we will take into account a single scattering pro-
cess and n − 1 single-particle inter-band processes.

(iii) We will take into account only perturbative contri-
butions involving virtual intermediate states that
are separated in quasienergy by a distance much
smaller than h̵ω.

Following these rules, the leading heating processes
appearing in second-order perturbation theory are de-
picted in Fig. S6(a) and (b). Here, from top to bot-
tom, the three bands depicted in both panels corre-
spond to the unperturbed Floquet-Bloch bands with en-
ergies ε00(kx) = ε0(kx), ε1−1(kx) = ε1(kx) − h̵ω, and
ε2−2(kx) = ε2(kx) − 2h̵ω. The blue arrow symbolizes the
single-particle single-photon process with matrix element

FIG. S7. Quasienergy band structure of the driven cosine
lattice with V0/Er = 11, h̵ω/Er = 7.5, and α = 0.5 (left panel)
as well as α = 1 (right panel).

A
(−1)
b′b,k. The pair of curved red arrows stands for a two-

particle zero-photon scattering processes with matrix el-

ement B
(0)
b4q+k,b3q−k,b2q,b1q

. (In the figure, the condensate

is assumed be formed in the q = 0 mode). These terms

contribute to the matrix element C
(1)
10 (k,q). The reso-

nance condition (S.22) determines how much energy has
to be transferred into the transverse degree of freedom
and with that the transverse momentum k⊥,

2E⊥(k⊥) = h̵ω − ε1(q + kx) − ε0(q − kx) + 2ε0(q). (S.90)

Note that the fact that E⊥(k⊥) ≥ 0 excludes processes

involving the matrix elements A
(1)
b′b,k that raise the photon

number.

The reason why we consider also the situation where
the condensate is formed in a state with finite quasimo-
mentum q is related to the fact that for V0/Er = 11 and
h̵ω/Er = 7.5 the quasienergy band emerging from the un-
driven ground band develops a double well structure for
sufficiently strong driving amplitudes above α ≈ 0.75 with
two new minima at the quasimomenta kx = ±q. This ef-
fect is a result of the perturbative admixture of the much
more dispersive b = 1 band with one photon less (i.e.
shifted by −h̵ω) to the ground band via single-particle
coupling. This can be seen in the quasienergy spectra
shown in Fig. S7. In this situation time-of-flight mea-
surements reveal that the condensate is displaced to one
or both of the new minima of the ground band. With
respect to the repulsive interactions it is favorable to oc-
cupy one of the minima only, so that the interpretation
is that domains are formed where the condensate sits ei-
ther in the state q or −q. This behavior has also been
measured in a recent experiment [4].

For the processes depicted in subfigure Fig. S6(a) and
(b), the virtual intermediate quasienergies relative to the



S14

a b

π/a-π/a 0 q

є

c d

FIG. S8. Dominant single-photon second-order processes

contributing to the matrix element C
(2)
11 (kx). Like Fig. S6.

condensate energy E0(0) read

ε(a)v = ∆10(q) − h̵ω (S.91)

ε(b)v = ε0(q + kx) + ε0(q − kx) − 2ε0(q) + 2E⊥

= h̵ω −∆10(q + kx), (S.92)

with ∆b′b(kx) ≡ εb′(kx) − εb(kx). The matrix elements
of the two elementary processes involved in both terms
multiply to the factors

M (a)
=
√
N

2
A

(−1)
10 (q)[B

(0)
1q+k,0q−k,1q,0q +B

(0)
1q+k,0q−k,0q,1q

+B
(0)
0q−k,1q+k,1q,0q +B

(0)
0q−k,1q+k,0q,1q]

(S.93)

and

M (b)
=
√
N

2
A

(−1)
10 (q + kx)

× [B
(0)
0q+k,0q−k,0q,0q +B

(0)
0q−k,0q+k,0q,0q],

(S.94)

so that the effective scattering matrix element, which is
of the form (S.44), reads

C
(1)
10 (kx, q) =

M (a)

ε
(a)
v

+
M (b)

ε
(b)
v

=
gn

2

2α

π
[ −

4Erβ10(q)ζ1010(kx, q)

h̵ω −∆10(q)

+
2Erβ10(q + kx)ζ0000(kx, q)

h̵ω −∆10(q + kx)
]. (S.95)

where n = N/L3. Moreover, one has

C
(1)
01 (kx, q) = C

(1)
10 (−kx, q). (S.96)

When computing the effective single-photon scattering
matrix element (S.95), the contributions from process (a)

a b
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є

c d

FIG. S9. Dominant single-photon second-order processes

contributing to the matrix element C
(2)
20 (kx). Like Fig. S6.

and (b) have opposite sign. Accidentally both contribu-
tions have almost the same absolute value, so that the
whole matrix element is much smaller than the ones for
the individual processes (a) and (b). As a result, subdom-
inant processes that involve virtual intermediate states
of large energy separation [i.e. that violate the selection
principle (iii)] become relevant. There is one such pro-
cess, which is depicted in Fig. S6(c). It can be computed
in a similar fashion as the processes (a) and (b) and gives
rise to a significant correction

to C
(1)
10 (kx, q), which reads

gn

2

2α

π

2Erβ01(q − kx)ζ1100(kx, q)

h̵ω +∆10(q − kx)
. (S.97)

When computing the numerical values for the resulting
scattering rates, we will see that the third term matters
indeed. There is also another subleading term appear-

ing in first order contributing to C
(1)
10 (kx, q), the single-

photon scattering process described by the matrix ele-

ment B
(−1)
1q+k,0q−k,0q,0qN . This matrix element is rather

small, since ζ1000(kx, q) is nonzero only due to interaction
processes that do not happen on-site. We have verified
that its impact is negligible.

In the next order of perturbation theory, the processes
sketched in Fig. S8 contribute to the matrix elements
C11(kx), whereas those depicted in Fig. S9 contribute to
the matrix elements C20(kx). We have computed these
two-photon matrix elements, which are proportional to
α2, and took them into account in Fig. 2(e) of the main
text.
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