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Savadori, and Girotto (2016)
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Abstract

Patients and doctors often need to make decisions based on the results of medical tests. When these results are pre-
sented in the form of conditional probabilities, even doctors find it difficult to interpret them correctly. There is over
20 y of research supporting the finding that people are better able to calculate the correct positive predictive value of
a test when given information in natural frequencies, as opposed to conditional probabilities. Natural frequencies are
one of a few psychological tools that have made it into evidence-based medicine. Recently, Pighin and others (Med
Decis Making 2016;36:686-91) argued that natural frequencies could hinder informed decision making, a critique
based on a single task and a crude scoring criterion we refer to as the 50%-Split. Our commentary addresses these cri-
ticisms based on three analyses. First, we show how the 50%-Split scoring used by Pighin and others misclassifies
known errors, such as solely attending to the hit rate (true-positive rate) of the test, as strategies that support under-
standing. Second, we reanalyze data from 21 additional problems completed by various participant groups to show
that their scoring criterion does not support their results in 19 out of 21 cases. Third, we apply the mean deviation
scoring method and show that, when given information in natural frequency formats, participants provide estimates
that are closer to the correct Bayesian solution than for conditional probability formats. In each analysis, natural fre-
quencies lead to more correct judgements and therefore promote informed decision making relative to conditional
probabilities. We welcome further discussions of performance metrics that can provide insight into how the public
and therefore patients understand the implications of medical test results.
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Natural frequencies are one of a few psychological tools
that have made it into evidence-based medicine.'
Natural frequencies have been recommended for com-
municating the results of diagnostic tests or screenings to
patients and the public, as they have been repeatedly
shown to facilitate calculations associated with inferring
outcomes from jointly occurring events.>* Take, for
example, the problem of inferring the probability that a
baby has Down syndrome given that the mother tested
positive on the prenatal chorionic villus sampling (CVS)
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test, known in medicine as the positive predictive value
of the test, illustrated in Figure 1.! Both Figure 1A and
1B present information about the base rate of Down syn-
drome (prevalence), the hit rate (true-positive rate or sen-
sitivity) and the false-positive rate (1-specificity) of the
CVS test. Yet, in Figure 1A, the information is presented
in natural frequencies and 1B as conditional probabil-
ities. Natural frequencies present the joint frequencies
that result from a process of natural sampling: a sequen-
tial process where information about events and their
classes are acquired naturally from experience.>® When
compared to conditional probability formats that normalize
information (compare Figure 1A and 1B), natural frequen-
cies facilitate computations and thereby improve the num-
ber of people who can calculate the correct solution.
Medical professionals, medical students, adults from the
general population, and even fourth-graders are better able
to provide a correct estimate on such problems when pre-
sented as natural frequencies as opposed to conditional
probabilities.” '® These studies have informed guidelines
about how to present information about medical test results
to improve patient understanding.**

Pighin and others'' question the recommendation
that natural frequencies should be used to communicate
the results of medical tests to patients. They argue that
they have “replicated the only study reporting that natu-
ral frequencies foster public understanding of medical
test results” (p 690), and claim that the criterion for clas-
sifying estimates as correct Bayesian solutions in this
cited study (Galesic and others’) was too lenient. Pighin
and others'' claim that this scoring criterion allowed
participants who erroneously estimated the base rate as
the positive predictive value, or gave another erroneous
estimate, to be classified as correct, errors that they claim
were more common in natural frequency formats. In
their second study, Pighin and others'' provide test sta-
tistics for the CVS test for Down syndrome, shown in
Figure 1, with a positive predictive value of 60% (the
probability that a baby has Down syndrome given that
the mother tested positive on the CVS diagnostic test) to
participants from the general public, and propose to clas-
sify participant’s estimates according to a new scoring
criterion that we term the “50%-Split.” The 50%-Split
classifies participant’s estimates as supporting the Down
syndrome hypothesis (that the baby has Down syn-
drome) if their estimate was above 50% and not support-
ing the Down syndrome hypothesis if their estimate was
below 50%. As more participants gave higher estimates
of the positive predictive value for conditional probabil-
ity formats and were thus classified as supporting the
Down syndrome hypothesis, Pighin and others'!

concluded that natural frequencies therefore did not fos-
ter understanding of medical test results.

The present commentary addresses the critique by
Pighin and others.!" First, we show that numerous stud-
ies have reported that natural frequencies foster under-
standing of medical test results, correcting their claim
that they have replicated “the only study.” We document
over 20 y of research that consistently demonstrates that
natural frequencies facilitate understanding, using stan-
dard and more stringent scoring procedures, in both lay
and expert samples. Second, Pighin and others'' based
their critique on their new scoring approach, the 50%-
Split, on a single study with a single problem (CVS test),
and on a problem with an unusual feature: a 100% hit
rate (the probability that a woman pregnant with a child
with Down syndrome will test positive on the CVS test).
We reanalyze a set of 19 problems studied by Hafenbradl
and Hoffrage'? with university students or executive
managers, 17 of which do not have a 100% hit rate and 2
that do, and find that, even with the 50%-Split, natural
frequencies lead to more correct judgements than do
conditional probabilities, and also produce estimates
that are closer to the correct Bayesian solution in
almost all cases. We show the same for the 2 problems
from Galesic and others,” who tested older and younger
adults from the general public, and argue that the 50%-
Split therefore systematically misclassifies known
errors, such as erroneously providing the hit rate, as
strategies that facilitate understanding. Third, we high-
light research showing that conditional probability for-
mats are more affected by variations in the specific
numerical values used across problems (e.g., a higher or
lower hit rate) than are natural frequency formats. On
this basis, we emphasize the need to focus not only on
outcomes to infer understanding but also on process
using write-aloud protocols,’ for example, to determine
where errors in understanding lie.

We conclude that the arguments by Pighin and others,
based on a single problem with an unusual hit rate of
100% and a 50%-Split, do not stand up when many
problems are analyzed. Further, a reanalysis of their own
data shows that when the crude 50%-Split is replaced by
an analysis of actual estimates, natural frequencies were
in fact better than conditional probabilities. To their
credit, the authors put their fingers on the general prob-
lem of how to classify judgements as Bayesian or non-
Bayesian, which deserves more analysis. Yet the various
scoring criteria used in our present study—proportion of
Bayesian responses, absolute deviation, and the 50%-
Split—consistently lead to the conclusion that natural
frequencies foster understanding of medical test results.
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What is the chance a baby has Down syndrome given a positive
diagnostic test?

To determine whether an unborn child has Down syndrome, doctors sometimes use the Chorionic Villus
Sampling (CVS) test. The CVS test involves the removal and testing of a small sample of cells from the
placenta during the early stages of pregnancy. Here is some information about that test.

A: Natural frequency format

» 15 out of every 10,000 pregnant women are
pregnant with a child who has Down syndrome.

» When a woman is pregnant with a child that
has Down syndrome, it is sure that she will
have a positive result on the CVS test. Specif-
ically, all 15 such women will have a positive
result on the CVS test.

» When a woman is pregnant with a child that
does not have Down syndrome, it is still
possible that she will get a positive result on
the CVS test. Specifically, 10 out of every
9,985 such women will have a positive result
on the CVS test.

Here is a new representative sample of pregnant
women who got a positive result on the CVS test.

Please estimate how many of these women do
you expect to have a child with Down syndrome.

B: Conditional probability format

« The probability that a woman is pregnant with
a child who has Down syndrome is 0.15%.

« When a woman is pregnant with a child that
has Down syndrome, it is sure that she will
have a positive result on the CVS test. Specif-
ically, the probability that she will have a posi-
tive result on the CVS test is 100%.

When a woman is pregnant with a child that
does not have Down syndrome, it is still
possible that she will get a positive result on
the CVS test. Specifically, the probability that
she will have a positive result on the CVS test
is 0.1%.

A pregnant woman has a positive result on the
CVS test.

Please estimate the probability that the positive
test result means that her child has Down syn-

drome.
out of
%
reference 10,000 1 reference
class babies baby class
base rate as 0.0015 0.99 base rate
absolute freq. Down syndrome no Dcwn syndrome Down syndrome no Down syndrome probability

------------- normalization --------------
no Down syndrome

L T3

natural 9,975 0.001 0.9985 conditional

frequencies posmve negatlve posmve negative posmve negatlve positive negative probabilities
n(D&H) p(D|H) p(H)
H|D) = ——— "l H|D) = — P2
PHID) = DR + n(DE&~H) PUHI) = DT () + (DI~ H) ()
posterior _ 15 0.60 _ 0.0015 x 1.00 — 060 posterior
probability T 15+10 ~ 0.0015 x 1.00 +0.9985 x 0.001 probability

Figure 1 Natural frequencies and conditional probabilities: Two formats for presenting the information necessary for estimating
the positive predictive value (Bayesian posterior probability) that a baby has Down syndrome given a positive chronic villus
sampling (CVS) test result, as well as the respective computations to calculate the answer. Figure 1A presents natural frequencies
where n(D&H) refers to the joint frequency of women who receive a positive test result (D for Data) and have a Down syndrome
baby (H for Hypothesis) and n(D&—H) refers to the joint frequency of women who receive a positive test result but do not have
a Down syndrome baby. Figure 1B presents conditional probabilities where p(H) refers to the hypothesis that a child has Down
syndrome (prevalence or base rate) and p(D) refers to a positive test result from the data (with p(—H) and p(—=D) representing
their negations). Conditional probabilities (1B) fix the marginal probabilities a priori; that is, the information is normalized,
meaning that the base rates need to be reintroduced into the calculation of p(H|D), as shown in the equation at the bottom right
of the figure. Natural frequencies do not normalize the information, meaning that information about the naturally occurring
base rates are retained in the joint frequencies and base rates can therefore be ignored, thus facilitating computation (see
equation on bottom left). The numerical values in Figure 1 are taken from Pighin and others.'! Note: Natural frequencies are an
alternative to “conditional probabilities,” not to “single-event statements in terms of percentages” (p 686) as stated by Pighin and
others. The numbers in 1B could represent a single-event, as shown here (the probability that a baby has Down syndrome) or a
relative frequency among multiple events (a percentage of babies) and could be displayed numerically in percentages, relative
frequencies, or probabilities. The crucial difference is that the information in 1B is normalized.



McDowell et al.

393

Table 1 Percentage of Bayesian Responses Across Studies Where At Least One Medical Problem Was Used

Natural Frequencies Conditional Probabilities”

Study Sample n % n %
Hoffrage and Gigerenzer'® Physicians 24 46.0 24 10.0
Krauss and others?’ College students 41 53.7 41 12.2
Mellers and McGraw*® College students 46 28.0 42 7.0
Evans and others® College students 28 29.0 26 21.0
Lindsey and others®* Law students 127 40.0 127 1.0
Professional jurists 27 74.0 27 10.5
Bramwell and others™® Pregnant women 21 14.0 22 5.0
Companions 20 15.0 20 15.0
Midwives 20 0.0 22 0.0
Obstetricians 20 65.0 21 5.0
Chapman and Liu®'
Low numeracy College students 65 7.7 87 0.0
High numeracy College students 92 28.3 92 1.1
Misuraca and others™? College students 120 22.8 30 0.0
Siegrist and Keller’ General population 132 11.4 134 0.7
General population 77 11.7 71 1.4
Tsai and others 33 College students 12 54.0 12 31.0
Ferguson and Starmer™ College students 35 31.0 34 3.0
Medical students 12 50.0 12 8.0
Lesage and others™> College students 41 43.0 42 0.0
College students 43 40.0 43 4.0
Secondary school students 44 42.0 44 12.0
Friederichs and others® Medical students 29 37.9 34 14.7
Sirota and others® College students 151 57.0 151 19.9

#Studies may have used conditional probability or other normalized formats (see Figure 1 caption). For simplicity, we use the term conditional

probabilities to refer to normalized formats.

A Survey of the Evidence that Natural
Frequencies Foster Understanding of Medical
Test Results

First, we address the conclusion by Pighin and others'!
that natural frequencies do not foster an understanding
of medical test results, a claim that contradicts an exten-
sive literature in support of the opposite conclusion.'!?
Natural frequencies have been recommended for commu-
nicating information about medical test results because
they offer improvement on the conditional probability
formats that have previously been used. That is, natural
frequencies foster understanding relative to conditional
or normalized formats. In their initial study on natural
frequencies, Gigerenzer and Hoffrage® found across 15
different problems, of which 6 were medical problems,
that more participants could solve problems presented
using natural frequencies than when using conditional
probabilities. As shown in Table 1, numerous studies
have replicated this general facilitative effect using
health-related problems with physicians and patients, lay
samples, and even high school students. Natural

frequencies facilitate understanding not only of hypothe-
tical but also real world medical test results, such as the
Down syndrome, HIV or mammography screening tests,
a finding that has direct implications for informed deci-
sion making in health, as natural frequency formats are
recommended for communicating test results to
patients.® Studies on natural frequencies have also been
conducted across various problems in other domains
(e.g., management, law, social problems) and have even
been studied with children.'” In each study, medical or
not, natural frequency formats were better than condi-
tional probability formats (Table 1).'*'> Even though
effect sizes vary, a recent meta-analysis has documented
the robustness of the effect across studies and in light of
several different individual, methodological, and problem
representation moderators.'?

Natural frequencies not only improve the percentage
of people who can calculate a correct estimate of a posi-
tive predictive value (or posterior probability in Bayesian
inference terminology), but the representation can also
be trained to even further bolster performance. In ses-
sions that lasted less than 2 h, Sedlmeier and
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Gigerenzer'® demonstrated that participants trained to
convert conditional probabilities into natural frequencies
improved from a median performance of around 10% to
over 80%, an effect that was maintained over periods of
5 wk and 3 mo. Participants who received rule-based
training (e.g., learning to apply Bayes theorem, see equa-
tion in Figure 1B) improved to a smaller degree post-
training (e.g., around 60% correct solutions) but perfor-
mance declined substantially over the longer-term
(down to 43% at the 5-wk follow-up). Similar effects
have been demonstrated with medical students and
health professionals.'”'® This review of the evidence
shows that: 1) contrary to the statement made by
Pighin and others'', the study by Galesic and others’ is
not the only one to have studied the effect of natural
frequencies on the understanding of medical test
results, and 2) in each study, using medical or other
topics, natural frequencies improve the number of par-
ticipants who can provide a correct solution, relative to
conditional probabilities.

The 50%-Split

Natural frequencies facilitate performance on Bayesian
inference problems, such as the Down syndrome diagno-
sis problem illustrated in Figure 1, because the computa-
tions required to calculate an estimate are reduced
compared to conditional probability formats. The repre-
sentation does part of the computation: the equation in
Figure 1A with natural frequencies requires fewer com-
putations than in 1B given conditional probabilities.’
Most studies have measured performance by the percent-
age of correct positive predictive value estimates.>!'%>
We agree with the suggestion by Pighin and others'!
that alternative scoring metrics should be explored to
evaluate people’s understanding of medical test results,
yet disagree with the metric used in their study. The
authors proposed a scoring metric we refer to as the
50%-Split: if the correct positive predictive value is above
50%, they classified any estimate above 50% as correct
(“in line with the correct hypothesis”) and vice versa." In
their study, they used the problem described in Figure 1
where the task was to infer the probability that a baby
had Down syndrome given that the mother tested posi-
tive on the chorionic villus sampling (CVS) test. The base
rate of Down syndrome was 0.15% (15 in 10,000 babies
have Down syndrome), the hit rate was 100% (15 out of
15 babies with Down syndrome test positive), and the
false-positive rate was 0.1% (10 out 9,985 babies without
Down syndrome test positive). The correct positive pre-
dictive value estimate was 60% (or 15 out of 25),

meaning that the hypothesis that the baby did have
Down syndrome was slightly more probable.

We evaluate the scoring approach of Pighin and oth-
ers'! using three analyses. First, we examine the results
from Pighin and others and show that the 50%-Split
misclassifies known errors in Bayesian reasoning as
Bayesian. Second, we reanalyze 21 additional Bayesian
inference problems using the 50%-Split and show that
the conclusions from the single study by Pighin and oth-
ers do not hold across most problems. Third, we employ a
common scoring metric to evaluate how far participants’
estimates deviated from the correct solution.™ In each
case, we find that natural frequency formats improve per-
formance relative to conditional probabilities.

In our first analysis, we show how the use of 50%-
Split scoring misclassifies common errors as supporting
Bayesian reasoning. There are 4 common errors found in
Bayesian reasoning tasks, 2 of which account for the
high percentage of participants in the conditional prob-
ability condition who were classified as supporting the
correct hypothesis in the study by Pighin and others'":
38% of participants gave estimates of 99.9%, which is
consistent with the likelihood subtraction error (sub-
tracting the false-positive rate from the hit rate; p(D/H)—
p(D|—=H)=99.9%). Another 6% gave estimates of 100%,
which is consistent with the hit rate error (p(D|/H)=
100%). Altogether, 55% of participants gave an estimate
between 99% and 100%. None of the participants who
received natural frequencies committed these errors.
Using the 50%-Split, Pighin et al. classified 71% of parti-
cipants who received conditional probabilities as showing
understanding of the correct Bayesian hypothesis, of
which all but 16% (71% to 55%) clearly show no under-
standing of the positive predictive value. Thus, this reana-
lysis shows that the 50%-Split misclassifies non-Bayesian
estimates as supporting Bayesian reasoning.

The real and interesting result of their study is that, in
the conditional probability condition, more than half of
the participants thought the test result was almost cer-
tain, or certain. In the natural frequency condition, not a
single participant thought so. This illusory certainty has
been documented with other medical test results. Many
HIV counsellors believe that a positive HIV test result in
a low-risk client means that the client definitely has HIV,
despite the fact that around 1 in 25 HIV test results are
false positives, even in the best tests.*>*

Second, we reanalyzed the 2 problems from Galesic
and others’ along with 19 problems from Hafenbridl
and Hoffrage'” to determine how well the 50%-Split clas-
sifies estimates in a larger set of problems. In contrast to
the single-problem results for Pighin and others,'' Table
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Table 2 Numerical Values for Problems, and Proportion of Participants Who Provided the Correct Bayesian Solution, Gave an
Estimate in line with a 50%-Split, and the Absolute Deviation of Responses from the Correct Solution®

Percentage Mean Absolute
Bayes’ 50%-Split Deviation

Problem Base Rate Hit Rate False Alarm Bayes NF  Prob NF Prob NF Prob
Hafenbrédl and Hoffirage™
Pimp 0.005 80 0.05 7.41 333 179 89.7  82.1 12.2 18.5
HIV infection 0.01 100 0.10 9.09 414 103 89.7 241 11.7 67.7
Heroin addict 0.01 100 0.19 5 66.7 179 933 29.1 8.6 61.3
Committing suicide 0.024 15 12 0.03 13.8 7.1 96.6  96.4 6.3 7.8
Prenatal damage in child 0.21 47.6 0.50 16.7 27.6 103 100.0  88.9 12.3 20.3
Car accident 1 55 5.10 991 333 16.7 89.7  76.7 9.5 19.8
Breast cancer 1 80 9.60 777 379 172 69.0 414 239 43.2
Pregnant® 2 95 0.51 79.71 455 34 91.0 793 11.9 26.8
Accident on way to school 3 90 40 6.51 40.0 17.2 96.7 93.1 6.4 8.4
Active feminist 5 0.4 2.11 0.99 433 172 100.0 100.0 3.1 3.7
Bad posture in child 5 40 20 9.52 333 16.7 86.2 86.7 16.6 17.4
Blue cab 15 80 20 4138 233 138 66.7 393 23.8 25.1
Incorrect tax return 20 30 10 4286 455 119 89.1 84.8 16.7 24.7
Supplier A 30 15 10 39.13 519 365 92.6  90.2 11.4 15.0
Choosing economics course 30 70 50 37.5 40.0 179 58.6 55.6 11.9 16.5
Admission to school 36 75 20 67.8 433 138 76.7  89.3 153 10.4
Produced in Ohio 60 5 10 4286 441 275 95.0  91.0 18.4 20.5
Get contract 60 70 50 67.74 255 9.3 69.0 61.7 14.2 17.0
Red ball 80 75 25 9231 62.1 24.1 96.6 769 10.6 29.5
Total 39.6 16.1 86.6 73.0 12.9 23.9
Galesic and others’
Diabetes 0.5 95 50 095 313 11.0 71.6 266 250 59.7
Trisomy 21 0.15 80 8 1.47 16.0 3.6 60.6  28.6 39.8 56.4
Pighin and others"!
Trisomy 21 — CVS test 0.15 100 0.10 60.0 16.7 6.4 18.5 74.5  47.6 40.0

NF, natural frequency format; Prob, conditional probability format.

#50%-Split refers to the proportion of participants whose positive predictive value estimates supported or did not support the most likely
hypothesis (e.g., if the positive predictive value was 5%, participants who gave an estimate of <50% were deemed as supporting the correct
hypothesis). Mean absolute deviation refers to the mean absolute difference between a participant’s estimate and the Bayesian solution (i.e., the
absolute distance irrespective of the direction of the error). Participants who did not provide an answer were excluded (fewer than 5% across
problems) and those who gave an estimate of exactly 50% were excluded from the calculation of the 50%-Split (35 instances in Hafenbridl &
Hoffrage; 43 instances in Galesic et al.; and 1 instance in Pighin et al). Problems varied according to the size of the probability/reference class

(e.g., the reference class ranged from 100 to 1,000,000 in NF problems).

®One participant was excluded from analysis as their problem data was missing.

2 (column 50%-Split) shows that the percentage of parti-
cipants classified as Bayesian according to this criterion
was higher for natural frequencies than for conditional
probability formats in 19 out of 21 cases, even in cases
where the positive predictive value was over 50% as in
the study by Pighin and others (e.g., see problems: preg-
nant, get contract, and red ball; see also the results of
Hafenbridl and Hoffrage,'® who found that partici-
pant’s response strategies were not influenced by the
numerical value of the Bayesian estimate.) Contrary to
their claims, the alternative scoring criterion used by
Pighin and others'', despite its limits shown before,
actually supports natural frequency formats across a

variety of different problem scenarios with different
numerical values (e.g., base rate, hit rate statistical
values).

In a third analysis, we used a common measure of fit,
the mean absolute deviation of estimates from the
Bayesian positive predictive value (i.e., the absolute dis-
tance irrespective of the direction of the error, see Fiedler
and others®"). We applied this metric to the 21 problems
plus Pighin and others'' Down syndrome problem.
Using this metric, the last 2 columns of Table 2, show
that participant estimates were closer to the correct solu-
tion for natural frequencies than conditional probabil-
ities across all but 2 of the 22 problems we reanalyzed.
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(One of these 2 problems was the Down syndrome prob-
lem used in Pighin and others.)

A final point regarding Pighin and others'' approach
is that a more direct metric for evaluating understanding
would be to measure inference or choice, not as categor-
ized by the authors based on the participant’s estimates
but by asking the participant to make the inference or
choice him or herself. In a study examining how jurors
and law students understood the implications of a posi-
tive DNA test result on the probability that an individual
had committed a crime, Lindsey and others** examined
understanding in terms of a correct estimate and also in
terms of a verdict. Natural frequencies improved perfor-
mance (from 1% with conditional probabilities to 40%
with natural frequencies), as determined by a higher pro-
portion of correct estimates (the correct probability esti-
mate was 9.1%), and reduced the number of guilty
verdicts from 54.5% to 32.5% for the law student sample
and from 44.5% to 32.0% for the juror sample for con-
ditional probability and natural frequency formats,
respectively. The advantage of asking the participant to
make the choice or inference rather than determining the
inference based on their estimates is that one can tease
apart calculation errors from errors in understanding.
We briefly discuss this point below.

Understanding Errors and Non-Bayesian
Strategies

Table 3 provides a detailed analysis of how frequently
the 50%-Split misclassifies the 4 common errors as con-
sistent with Bayesian responses: base rate, hit rate, joint
occurrence, or the likelihood subtraction error. The first
2 columns show the percentage of Bayesian answers
from Table 2, for natural frequencies and conditional
probabilities, respectively. The next 2 columns show the
percentage of responses that are identical to the base
rate, for each format, and the following columns for the
other 3 common non-Bayesian strategies. The shaded
areas show the cases where the errors would be classified
as correct given the 50%-Split scoring method, again
showing that this scoring procedure misclassifies known
errors as Bayesian (see also the final column in Table 3).
Contrary to the claim by Pighin and others, certain error
types are not necessarily more common in one format
compared to another. For example, in some problems,
more participants commit the hit rate error in natural
frequency formats compared to conditional probabilities
(e.g., see heroin addict, supplier A, produced in Ohio,
and Trisomy 21). It is also evident that many of the esti-
mates participants gave across problems could not be

categorized as Bayesian or as one of these 4 errors, and
that more work is needed to understand the types of
errors people make.

A key argument underlying Pighin and others'' study
2 is that numerical values (e.g., numerical value of the hit
rate) can influence numerical estimates, and this can
account for errors across formats. This is correct.
Hafenbridl and Hoffrage'? found that numerical values
did influence numerical estimates. Higher base rates and
hit rates were associated with more participants finding
the correct Bayesian solution and also resulted in higher
numerical estimates from participants, whereas higher
false-positive rates were associated with lower Bayesian
solution rates. Higher base rates were also associated
with more participants finding the Bayesian solution
and, for those that did not, this led to greater absolute
deviations from the correct solution. We conducted simi-
lar analyses of Hafenbrddl and Hoffrage’s data for the
50%-Split scoring and found similar results. Higher base
rates and hit rates increased the odds that a participants’
estimate was classified as correct according to the 50%-
Split, whereas higher false-positive rates decreased the
odds. Further, some of these effects were stronger when
problems were presented in conditional probabilities.
Participants who received problems in conditional prob-
abilities were more strongly affected by the different
numerical values (e.g., higher base rates and hit rates
were associated with greater absolute deviations from
the correct Bayesian estimate and higher hit rates were
associated with higher numerical estimates) than when
participants received problems presented in natural
frequencies.'?

Exploring the relationship between numerical values
and errors in numerical estimates can help identify poten-
tial misunderstandings; however, this approach is limited
by its focus on inferring strategies from outcomes. Thus,
it does not allow us to determine where potential errors
in participant’s estimates lie. Gigerenzer and Hoffrage,
along with others,?>**® have studied the written protocols
of participants to disentangle calculation errors (e.g.,
basic arithmetic errors) from errors in understanding.
Rather than making inferences about errors in relation to
specific numerical estimates, the inclusion of written pro-
tocols allows for an assessment of both outcome and pro-
cess. Written protocols also allowed Gigerenzer and
Hoffrage to explore pictorial analogs (e.g., the partici-
pant draws a pictorial “beam” to represent the class of
alternative outcomes) and non-Bayesian strategies parti-
cipants used that approximated Bayesian solutions given
different numerical values. The aim of this analysis was
ecological: to examine whether different cognitive
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Table 3 Percentage of Participants Using Different Solution Strategies for Each Problem in Haffenbridl and Hoffrage,'? Galesic

and Others,” and Pighin and Others'

Base Rate  Joint Occurrence  Hit Rate  Likelihood Subtraction
p(H) p(H)p(D[H) or p(D/H) p(DH) - p(D|-H)
Percentage Bayes’ IBR] p(H&D) [JO] [HR] [LS]
Problem NF Prob NF Prob NF Prob NF Prob NF Prob Error Favors 50%-Split
Hafenbridl and Hoffrage'’
Pimp 333 17.9 33 7.1 - - 6.7 7.1 - 7.1 BR, JO
HIV infection 414 10.3 5.2% - 5.2% - 34 34 - 44.8 BR, JO
Heroin addict 66.7 17.9 3.4 - 3.4% - 6.7 - - 39.3 BR, JO
Committing suicide 13.8 7.1 - 3.6 - - 10.3 25.0 - 3.6 BR, JO, HR, LS
Prenatal damage in child 27.6 10.3 6.9 - 3.4 20.7 - - - - BR, JO, HR, LS
Car accident 33.3 16.7 - 33 - 6.7 10.0 16.7 - - BR,JO, LS
Breast cancer 37.9 17.2 6.9 - - 3.4 10.3 10.3 - - BR, JO
Pregnant 45.5 3.4 - - - - 13.6 17.2 - - HR, LS
Accident on way to school 40.0 17.2 - 34 10.0 34.5 3.3 - - - BR, JO
Active feminist 433 17.2 3.3 34 3.3 34 10.0 20.7 - - BR, JO, HR
Bad posture in child 33.3 16.7 - - 33 10.0 10.0 16.7 - - BR, JO, HR, LS
Blue cab 23.3 13.8 - 6.9 30.0 13.8 16.7 34.5 - 13.8 BR, JO
Incorrect tax return 45.5 11.9 10> 50° 79 12.9 59 3.0 1.0° 50°  BR,JO,HR,LS
Supplier A 51.9 36.5 - 10.6 9.3 11.5 157 338 - 2.9 BR, JO, HR, LS
Choosing economics course  40.0 17.9 - 3.6 - 7.1 33 143 - - BR,JO, LS
Admission to school 43.3 13.8 - - - 34 6.7 24.1 - 3.4 HR, LS
Produced in Ohio 44.1 27.5 - 2.9 6.9 14.7 23.5 10.8 - - JO, HR
Get contract 25.5 9.3 6.7 26.8 5.6 15.5 122 5.2 1.1 1.0 BR, HR
Red ball 62.1 24.1 - - 10.3 6.9 20.7 24.1 - 10.3 BR, JO, HR
Galesic and others”
Diabetes 31.3 11.0 1.3 24 - - - 1.2 - 1.2 BR, JO
Trisomy 21 16.0 3.6 - - - - 5.0 3.7 - 2.5 BR, JO
Pighin and others"
Trisomy 21 — CVS test 16.7 6.4 22.2% 53 222% 5.3% - 6.4 - 38.3 HR, LS

NF, natural frequency format; Prob, conditional probability format. Shaded cells indicate the error would favor the 50%-Split scoring criteria.
“The joint occurrence and base rate strategies are equivalent given the problem characteristics and proportions were halved between the 2 errors.
®The base rate and likelihood subtraction strategies are equivalent given the problem characteristics and proportions were halved between the 2
errors. Errors that would result in an estimate of 50% are considered as not favoring the 50%-Split as they cannot be classified for this strategy.
Participants who did not provide an answer were excluded (less than 5% across problems).

strategies could lead to approximate estimates for prob-
ability and natural frequency formats and under which
conditions these were appropriate. Gigerenzer and
Hoffrage found that, depending on the numerical values
of the problem, non-Bayesian strategies could approxi-
mate correct solutions. For example, when the base rate
is very small, one can take a cognitive short-cut by repla-
cing p(D|-H)p(—H) by p(D|—=H) in the calculation for
conditional probabilities (see Equation Figure 1B).

If we are to make strong conclusions about how peo-
ple understand medical test statistics, a more comprehen-
sive analysis of the errors is necessary. By understanding
the errors, we can potentially target such errors in future
representations; for example, by providing visual aids
that illustrate the relationship between the hypothesis
(e.g., Down syndrome) and the outcomes of the test (e.g.,
positive or negative result) to overcome errors where a

perfect hit rate is provided. To our knowledge, few stud-
ies have sought to design representations to address spe-
cific or common errors, and we welcome further work in
this direction.

Conclusions

Over 20 y of research has supported the finding that nat-
ural frequencies foster understanding relative to condi-
tional or normalized formats. Pighin and others'' argue
against the use of natural frequency formats based on a
single reasoning task, with a perfect hit rate, and a crude
scoring criterion of a 50%-Split. We have responded to
the study by Pighin and others using 3 analyses. First, we
emphasize how the 50%-Split systematically misclassifies
known errors in Bayesian reasoning as supporting an
understanding of medical test results. Second, in a
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reanalysis of numerous Bayesian inference tasks, we
show how their crude criterion does not support their
results in 19 out of 21 cases. Third, we apply a scoring
metric, the mean deviation score, to show that estimates
from natural frequency formats are closer to the correct
estimate than those from conditional probability for-
mats. In each analysis, natural frequencies improve per-
formance relative to conditional probabilities, in medical
problems as well as in others. Nevertheless, we welcome
the discussion of alternative performance metrics that
can provide additional insights into understanding, such
as deviation from the correct estimate, and methodolo-
gies, such as write-aloud protocols, that can identify
non-Bayesian strategies and their unknown causes.
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Notes

i. In the Bayesian reasoning literature this is called the posterior
probability.

ii. A more direct metric would be to measure inference by ask-
ing the participant to select the hypothesis him or herself.

iii. As yet, the scoring metric is not frequently applied to score
Bayesian inference problems; for an exception, see Fiedler et al.>")
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