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Abstract

We evaluate the performance of state-of-the-

art algorithms for automatic cognate detec-

tion by comparing how useful automatically

inferred cognates are for the task of phyloge-

netic inference compared to classical manually

annotated cognate sets. Our findings suggest

that phylogenies inferred from automated cog-

nate sets come close to phylogenies inferred

from expert-annotated ones, although on av-

erage, the latter are still superior. We con-

clude that future work on phylogenetic recon-

struction can profit much from automatic cog-

nate detection. Especially where scholars are

merely interested in exploring the bigger pic-

ture of a language family’s phylogeny, algo-

rithms for automatic cognate detection are a

useful complement for current research on lan-

guage phylogenies.

1 Introduction

The task of cognate detection, i.e., the search for

genetically related words in different languages,

has traditionally been regarded as a task that is

barely automatable. During the last decades,

however, automatic cognate detection approaches

since Covington (1996) have been constantly im-

proved following the work of Kondrak (2002),

both regarding the quality of the inferences

(List et al., 2017b; Jäger et al., 2017), and the so-

phistication of the methods (Hauer and Kondrak,

2011; Rama, 2016; Jäger et al., 2017), which

have been expanded to account for the detection

of partial cognates (List et al., 2016b), language

specific sound-transition weights (List, 2012) or

the search of cognates in whole dictionaries

(St Arnaud et al., 2017).

Despite the progress, none of the auto-

mated cognate detection methods have been used

for the purpose of inferring phylogenetic trees

using modern Bayesian phylogenetic methods

(Yang and Rannala, 1997) from computational bi-

ology. Phylogenetic trees are hypotheses of how

sets of related languages evolved in time. They

can in turn be used for testing additional hy-

potheses of language evolution, such as the age

of language families (Gray and Atkinson, 2003;

Chang et al., 2015), their spread (Bouckaert et al.,

2012; Gray et al., 2009), the rates of lexical

change (Greenhill et al., 2017), or as a proxy for

tasks like cognate detection and linguistic recon-

struction (Bouchard-Côté et al., 2013). By plot-

ting shared traits on a tree and testing how they

could have evolved, trees can even be used to

test hypotheses independent from language evolu-

tion, such as the universality of typological state-

ments (Dunn et al., 2011), or the ancestry of cul-

tural traits (Jordan et al., 2009).

In the majority of these approaches, schol-

ars infer phylogenetic trees with help of expert-

annotated cognate sets which serve as input to

the phylogenetic software which usually follows

a Bayesian likelihood framework. Unfortunately,

expert cognate judgments are only available for

a small number of language families which look

back on a long tradition of classical comparative

linguistic research (Campbell and Poser, 2008).

Despite the claims that automatic cognate detec-

tion is useful for linguists working on less well

studied language families, none of the papers ac-

tually tested, if automated cognates can be used

instead as well for the important downstream task

of Bayesian phylogenetic inference. So far, schol-

ars have only tested distance-based approaches

to phylogenetic reconstruction (Wichmann et al.,

2010; Rama and Borin, 2015; Jäger, 2013), which

employ aggregated linguistic distances computed

from string similarity algorithms to infer phyloge-

netic trees.

In order to test whether automatic cognate de-

tection is useful for phylogenetic inference, we
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collected multilingual wordlists for five differ-

ent language families (230 languages, cf. sec-

tion 2.1) and then applied different cognate de-

tection methods (cf. section 2.2) to infer cog-

nate sets. We then applied the Bayesian phylo-

genetic inference procedure (cf. section 3) to the

automated and the expert-annotated cognate sets

in order to infer phylogenetic trees. These trees

were then evaluated against the family gold stan-

dard trees, based on external linguistic knowledge

(Hammarström et al., 2017), using the General-

ized Quartet Distance (cf. section 4.1). The results

are provided in table 3 and the paper is concluded

in section 5.

To the best of our knowledge, this is the first

study in which the performance of several auto-

matic cognate detection methods on the down-

stream task of phylogenetic inference is com-

pared. While we find that on average the trees

inferred from the expert-annotated cognate sets

come closer to the gold standard trees, the trees in-

ferred from automated cognate sets come surpris-

ingly close to the trees inferred from the expert-

annotated ones.

Dataset Mngs. Lngs. AMC

Austronesian 210 45 0.79

Austro-Asiatic 200 58 0.90

Indo-European 208 42 0.95

Pama-Nyungan 183 67 0.89

Sino-Tibetan 110 64 0.91

Table 1: Datasets used in our study. The second, third,

and fourth columns show the number of number of

meanings, languages and average mutual coverage for

each language family respectively.

2 Materials and Methods

2.1 Datasets

Our wordlists were extracted from publicly avail-

able datasets from five different language fami-

lies: Austronesian (Greenhill et al., 2008), Austro-

Asiatic (Sidwell, 2015), Indo-European (Dunn,

2012), Pama-Nyungan (Bowern and Atkinson,

2012), and Sino-Tibetan (Peiros, 2004). In order

to make sure that the datasets were amenable for

automatic cognate detection, we had to make sure

that the transcriptions employed are readily rec-

ognized, and that the data is sufficient for those

methods which rely on the identification of regu-

lar sound correspondences. The problem of tran-

scriptions was solved by applying intensive semi-

automatic cleaning. In order to guarantee an op-

timal data size, we selected a subset of languages

from each dataset, which would guarantee a high

average mutual coverage (AMC). AMC is calcu-

lated as the average proportion of words shared by

all language pairs in a given dataset. All analy-

ses were carried out with version 2.6.2 of LingPy

(List et al., 2017a). Table 1 gives an overview on

the number of languages, concepts, and the AMC

score for all datasets.1

2.2 Automatic Cognate Detection

The basic workflow for automatic cognate de-

tection methods applied to multilingual wordlists

has been extensively described in the literature

(Hauer and Kondrak, 2011; List, 2014). The

workflow can be divided into two major steps: (a)

word similarity calculation, and (b) cognate set

partitioning. In the first step, similarity or dis-

tance scores for all word pairs in the same concept

slot in the data are computed. In the second step,

these scores are used to partition the words into

sets of presumably related words. Since the sec-

ond step is a mere clustering task for which many

solutions exist, the most crucial differences among

algorithms can be noted for step (a).

For our analysis, we tested six different meth-

ods for cognate detection: The Consonant-

Class-Matching (CCM) Method (Turchin et al.,

2010), the Normalized Edit Distance (NED) ap-

proach (Levenshtein, 1965), the Sound-Class-

Based Aligmnent (SCA) method (List, 2014), the

LexStat-Infomap method (List et al., 2017b), the

SVM method (Jäger et al., 2017), and the Online

PMI approach (Rama et al., 2017).

The CCM approach first reduces the size of the

alphabets in the phonetic transcriptions by map-

ping consonants to consonant classes and discard-

ing vowels. Assuming that different sounds which

share the same sound class are likely to go back to

the same ancestral sound, words which share the

1In order to allow for an easy re-use of our
datasets, we linked all language varieties to Glottolog
(Hammarström et al., 2017) and all concepts to Concepticon
(List et al., 2016a). In addition to the tabular data formats
required to run the analyses with our software tools, we
also provide the data in form of the format specifications
suggested by the Cross-Linguistic Data Formats initiative
(Forkel et al., 2017). Data and source code are provided
along with the supplementary material accompanying this
paper.



first two consonant classes are judged to be cog-

nate, while words which differ regarding their first

two classes are regarded as non-cognate.

The NED approach first computes the nor-

malized edit distance (Nerbonne and Heeringa,

1997) for all word pairs in given semantic slot

and then clusters the words into cognate sets

using a flat version of the UPGMA algorithm

(Sokal and Michener, 1958) and a user-defined

threshold of maximal distance among the words.

We follow List et al. (2017b) in setting this thresh-

old to 0.75.

The SCA approach is very similar to NED, but

the pairwise distances are computed with help of

the Sound-Class-Based Phonetic Alignment algo-

rithm (List, 2014) which employs an extended

sound-class model and a linguistically informed

scoring function. Following List et al. (2017b), we

set the threshold for this approach to 0.45.

The LexStat-Infomap method builds on the

SCA method by employing the same sound-

class model, but individual scoring functions

are inferred from the data for each language

pair by applying a permutation method and

computing the log-odds scores (Eddy, 2004)

from the expected and the attested distribution

of sound matches (List, 2014). While SCA

and NED employ flat UGPMA clustering for

step 2 of the workflow, LexStat-Infomap fur-

ther uses the Infomap community detection algo-

rithm (Rosvall and Bergstrom, 2008) to partition

the words into cognate set. Following List et al.

(2017b), we set the threshold for LexStat-Infomap

to 0.55.

The OnlinePMI approach (Rama et al., 2017)

estimates the sound-pair PMI matrix using the

online procedure described in Liang and Klein

(2009). The approach starts with an empty PMI

matrix and a list of synonymous word pairs from

all the language pairs. The approach proceeds by

calculating the PMI matrix from alignments cal-

culated for each minibatch of word pairs using the

current PMI matrix. Then the calculated PMI ma-

trix for the latest minibatch is combined with the

current PMI matrix. This procedure is repeated

for a fixed number of iterations. We employ the

final PMI matrix to calculate pairwise word sim-

ilarity matrix for each meaning. In an additional

step, the similarity score was transformed into a

distance score using the sigmoid transformation:

1.0−(1+exp(−x))−1 The word distance matrix is

then supplied as an input to the Label Propagation

algorithm (Raghavan et al., 2007) to infer cognate

clusters. We set the threshold for the algorithm to

be 0.5.

For the SVM approach (Jäger et al., 2017) a lin-

ear SVM classifier was trained with PMI simi-

larity (Jäger, 2013), LexStat distance, mean word

length, distance between the languages as features

on cognate and non-cognate pairs extracted from

word lists from Wichmann and Holman (2013)

and List (2014). The details of the training dataset

are given in table 1 in Jäger et al. (2017). We used

the same training settings as reported in the paper

to train our SVM model. The trained SVM model

is then employed to compute the probability that a

word pair is cognate or not. The word pair proba-

bility matrix is then given as input to InfoMap al-

gorithm for inferring word clusters. The threshold

for InfoMap algorithm is set to 0.57 after cross-

validation experiments on the training data.

We evaluate the quality of the inferred cog-

nate sets using the above described meth-

ods using B-cubed F-score (Amigó et al., 2009)

which is widely used in evaluating the qual-

ity of automatically inferred cognate clusters

(Hauer and Kondrak, 2011). We present the cog-

nate evaluation results in table 2. The SVM system

is the best in the case of Austro-Asiatic and Pama-

Nyungan whereas LexStat algorithm performs the

best in the case of rest of the datasets. This is sur-

prising since LexStat scores are used as features

for SVM and we expect the SVM system to per-

form better than LexStat in all the language fami-

lies. On the other hand, both OnlinePMI and SCA

systems perform better than the algorithmically

simpler systems such as CCM and NED. Given

these F-scores, we hypothesize that the cognate

sets output from the best cognate identification

systems would also yield the high quality phylo-

genetic trees. However, we find the opposite in

our phylogenetic experiments.

3 Bayesian Phylogenetic Inference

The objective of Bayesian phylogenetic inference

is based on the Bayes rule in 1.

f(τ, v, θ|X) =
f(X|τ, v, θ)f(τ, v, θ)

f(X)
(1)

where X is the data matrix, τ is the topology of

the tree, v is the vector of branch lengths, and θ is

the substitution model parameters. The data ma-

trix X is a binary matrix of dimensions N × C



Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

CCM 0.71 0.7 0.75 0.74 0.48
NED 0.73 0.77 0.69 0.53 0.49
SCA 0.76 0.78 0.81 0.71 0.56
LexStat 0.76 0.84 0.83 0.84 0.6
OnlinePMI 0.76 0.81 0.82 0.72 0.56
SVM 0.82 0.81 0.79 0.86 0.5

Table 2: B-cubed F-scores for different cognate detection methods across the language families.

where N is the number of languages and C is the

number of cognate clusters in a language family.

The posterior distribution f(τ, v, θ|X) is difficult

to calculate analytically since one has to sum over

all the possible topologies (
(2N−3)!

2N−2(N−2)!
) to com-

pute the marginal in the denominator. However,

posterior probability of all the parameters of inter-

est (here, Ψ = {τ, v, θ}) can be computed from

samples drawn using a Markov chain Monte Carlo

(MCMC) method. Typically, Metropolis-Hastings

(MH) algorithm is the MCMC algorithm used to

sample phylogenies from the posterior distribution

(Huelsenbeck et al., 2001).

The MH algorithm constructs a Markov chain

of the parameters’ states by proposing change to

a single parameter or a block of parameters in Ψ.

The current state Ψ in the Markov chain has a pa-

rameter θ and a new value θ∗ is proposed from

a distribution q(θ∗|θ), then θ∗ is accepted with a

probability

r =
f(X|τ, v, θ∗)

f(X|τ, v, θ)

f(θ∗)

f(θ)

q(θ|θ∗)

q(θ∗|θ)
(2)

The likelihood of the data f(X|Ψ) is com-

puted using the Felsenstein’s pruning algorithm

(Felsenstein, 1981) also known as sum-product

algorithm (Jordan et al., 2004). We assume that

τ, θ, v are independent of each other.

4 Experiments

In this section, we report the experimental settings,

the evaluation measure, and the results of our ex-

periments.

All our Bayesian analyses use binary datasets

with states 0 and 1. We employ the Generalized

Time Reversible Model (Yang, 2014, chapter 1)

for computing the transition probabilities between

individual states. The rate variation across sites

is modeled using a four category discrete Γ distri-

bution (Yang, 1994). We follow Lewis (2001) and

Felsenstein (1992) in correcting the likelihood cal-

culation for ascertainment bias resulting from un-

observed 0 patterns. We used a uniform tree prior

(Ronquist et al., 2012) in all our analyses which

constructs a rooted tree and draws internal node

heights from uniform distribution. In our analysis,

we assumes a Independent Gamma Rates relaxed

clock model (Lepage et al., 2007) where the rate

for a branch j of length bj in the tree is drawn

from a Gamma distribution with mean 1 and vari-

ance σ2
IG/bj where σ2

IG is a parameter sampled in

the MCMC analysis.

We infer τ, v, θ from two independent random

starting points and sample every 1000th state in

the chain until the phylogenies from the two inde-

pendent runs do not differ beyond 0.01. For each

dataset, we ran the chains for 15 million genera-

tions and threw away the initial 50% of the chain’s

states as part of burnin. After that we computed

the generalized quartet distance from each of the

posterior trees to the gold standard tree described

in subsection 4.1. All our experiments are per-

formed using MrBayes 3.2.6 (Zhang et al., 2015).

4.1 GQD

Pompei et al. (2011) introduced Generalized

Quartet Distance (GQD) as an extension to Quar-

tet Distance (QD) in order to compare binary trees

with a polytomous tree, since gold standard trees

can have non-binary internal nodes. It was widely

used for comparing inferred language phylogenies

with gold standard phylogenies (Greenhill et al.,

2010; Wichmann et al., 2011; Jäger, 2013).

QD measures the distance between two trees

in terms of the number of different quartets

(Estabrook et al., 1985). A quartet is defined as

a set of four leaves selected from a set of leaves

without replacement. A tree with n leaves has
(n
4

)

quartets in total. A quartet defined on four

leaves a, b, c, d can have four different topologies:

ab|cd, ac|bd, ad|bc, and ab × cd. The first three

topologies have an internal edge separating two

pairs of leaves. Such quartets are called as but-

terflies. The fourth quartet has no internal edge

and as such is known as star quartet. Given a



Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

Expert cognate sets 0.0081 ± 0.001 0.1056 ± 0.0118 0.0249 ± 0.0079 0.1384 ± 0.0225 0.0561 ± 0.0123

CCM 0.0243 ± 0.018 0.0854 ± 0.0176 0.0369 ± 0.0148 0.1617 ± 0.0162 0.1424 ± 0.027
NED 0.0265 ± 0.007 0.0458 ± 0.0152 0.046 ± 0.0132 0.196 ± 0.0166 0.1614 ± 0.0282
SCA 0.0152 ± 0.0035 0.0514 ± 0.013 0.0256 ± 0.009 0.166 ± 0.0153 0.0704 ± 0.0206
LexStat 0.0267 ± 0.0085 0.0848 ± 0.0226 0.0314 ± 0.0091 0.1507 ± 0.0143 0.0786 ± 0.0209
OnlinePMI 0.0158 ± 0.0048 0.1056 ± 0.0198 0.0457 ± 0.0135 0.1717 ± 0.0185 0.1184 ± 0.031
SVM 0.0146 ± 0.0039 0.0989 ± 0.0224 0.0452 ± 0.011 0.1827 ± 0.0237 0.1199 ± 0.0269

Table 3: The mean and standard deviation for each method and family is computed from 7500 posterior trees. The

automatic methods which comes closest to the gold standard phylogeny is shaded in gray, and where the expert

cognate sets perform best, this is indicated with a bold font.

tree τ with n leaves, the quartets can be parti-

tioned into sets of butterflies, B(τ), and sets of

stars, S(τ). Then, the QD between τ and τg is

defined as 1 − |S(τ)∩S(τg)|+|B(τ)∩B(τg )|

(n
4
)

. The QD

formulation counts the butterflies in an inferred

tree τ as errors. The tree τ should not be penal-

ized if an internal node in the gold standard tree

τg is m-ary. To this end, Pompei et al. (2011) de-

fined a new measure known as GQD to discount

the presence of star quartets in τg. GQD is defined

as DB(τ, τg)/B(τg) where DB(.) is the number

of butterflies between τ, τg.

We extracted gold standard trees from Glot-

tolog (Hammarström et al., 2017) for the purpose

of evaluating the inferred posterior trees from each

automated cognate identification system. We note

that the Bayesian inference procedure produces

rooted trees with branch lengths whereas the gold

standard trees do not have any branch lengths. Al-

though there are other linguistic phylogenetic in-

ference algorithms such as those of Ringe et al.

(2002) we do not test the algorithms due to the

non-availability and scalability of the software to

datasets with more than twenty languages.

4.2 Results

The results of our experiments are given in table

3. A average lower GQD score implies that the

inferred trees are closer to the gold standard phy-

logeny than a higher average GQD score. Except

for Austronesian, Bayesian inference based on ex-

pert cognate sets yields trees that are very close

to the gold standard tree. Surprisingly, algorith-

mically simple systems such as NED and CCM

show better performance than the machine-learned

SVM model except from Sino-Tibetan. SCA is

a subsystem of LexStat but emerges as the win-

ner in two language families (Indo-European and

Sino-Tibetan). Given that SCA is outperformed

by SVM and LexStat in automatic cognate detec-

tion, this is very surprising, and further research

is needed to find out, why the simpler models

perform well on phylogenetic reconstruction. Al-

though our results indicate that expert-coded cog-

nate sets are generally more suitable for phyloge-

netic reconstruction, we can also see that the dif-

ference to trees inferred from automated cognate

sets is not very large.

5 Conclusion

In this paper, we carried out a preliminary evalu-

ation of the usefulness of automated cognate de-

tection methods for phylogenetic inference. Al-

though the cognate sets predicted by automated

cognate detection methods yield phylogenetic

trees that come close to expert trees, there is

still room for improvement, and future research is

needed to further enhance automatic cognate de-

tection methods. However, as our experiments

show, expert-annotated cognate sets are also not

free from errors, and it seems likewise useful to

investigate, how the consistency of cognate cod-

ing by experts could be further improved.

As future work, we intend to create a cognate

identification system that combines the output of

different algorithms in a more systematic way. We

intend to infer cognate sets from the combined

system and use them to infer phylogenies and eval-

uate the inferred phylogenies against the gold stan-

dard trees.
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A Supplemental Material

The code and data used in this paper are

uploaded as a zip file. In addition, they

are available for download via Zenodo at

https://doi.org/10.5281/zenodo.1218060.
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