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 1 

SUMMARY 

Posttranslational modifications by ubiquitin and ubiquitin-like proteins (UBLs) are of 

fundamental relevance for cellular function, regulation and development. Besides 

ubiquitin itself, the small ubiquitin-like modifier (SUMO) is one of the best-

characterized UBLs. Protein modification by SUMO affects hundreds of cellular 

substrates and is crucial for the regulation of diverse physiological processes, 

including transcription, replication, chromosome segregation and DNA repair. 

Interestingly, SUMOylation has emerged as a predominantly nuclear modification but 

a number of cytosolic substrates have also been identified. By contrast, in the 

compartmentalized environment of the cell, not all proteins are accessible to SUMO 

enzymes. For instance, many organellar proteins such as luminal ER and 

intramitochondrial proteins are hidden from SUMOylation upon sorting. Particularly 

mitochondrial proteins are, however, often imported in a posttranslational manner. It 

is therefore conceivable that such proteins become SUMOylated at cytosolic stages 

of biogenesis. Nevertheless, the question, whether proteins transported into 

mitochondria are indeed SUMO substrates in vivo has not been experimentally 

elucidated so far. 

 Using a mass spectrometry-based approach, our laboratory identified multiple 

potential SUMO substrates annotated as mitochondrial proteins. Following up on 

these initial discoveries, I provide here a first in-depth characterization of 

mitochondria-targeted proteins as SUMO substrates. By analyzing the SUMOylation 

of individual proteins in direct assays, I could confirm that multiple mitochondrial 

matrix proteins are indeed modified by SUMO in vivo. The modification of these 

substrates is mediated by the SUMO E3 ligases Siz1 and Siz2 and targets both 

consensus and non-consensus SUMOylation sites. Consistent with the current 

understanding of the SUMO system, SUMOylation of mitochondria-targeted proteins 

is independent of their mitochondrial targeting sequences, strongly suggesting that 

the modification occurs prior to import. SUMO conjugation to mitochondria-targeted 

substrates is regulated by cytosolic HSP70 chaperones of the SSA subfamily, which, 

remarkably, not only influence the levels of SUMOylated substrates but also alter 

their modification in terms of site selectivity. Moreover, SUMOylated mitochondrial 

precursor proteins strongly accumulate in proteasome mutants and substrates 

conjugated by an isopeptidase-resistant SUMO variant are efficiently degraded in a 

proteasome-dependent manner. Thus, this study not only identifies mitochondria-

targeted proteins as a novel and unprecedented group of SUMO substrates but also 

reveals an intriguing function of SUMO in cellular protein quality control. 
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1 INTRODUCTION 

1.1 Protein modification by ubiquitin family proteins 
Posttranslational modifications (PTMs) regulate protein function, stability and 

localization and thus greatly expand the functional diversity of the proteome. PTMs 

typically refer to the covalent attachment of small functional groups (e.g. phosphate, 

acetyl or methyl groups), fatty acids, isoprenoids or sugars to substrate proteins. A 

special class of posttranslational modifiers is the family of ubiquitin and ubiquitin-like 

proteins (UBLs) (Kerscher et al., 2006; van der Veen and Ploegh, 2012). Ubiquitin 

family proteins possess a highly conserved three-dimensional structure, the ubiquitin 

or β-grasp fold, and besides ubiquitin include the small ubiquitin-like modifier 

(SUMO), Rub1 (Nedd8), Atg8, Atg12, Urm1, Hub1, ISG15, UFM1, FAT10 and FUB1 

(Kerscher et al., 2006). Most UBLs function as covalent modifiers and are typically 

attached to lysine residues of substrate proteins. One remarkable exception is the 

lipid modifier Atg8, which is covalently conjugated to the phospholipid 

phosphatidylethanolamine (Ichimura et al., 2000). Different from canonical UBLs is 

the protein Hub1, which acts by non-covalent binding to specific interaction partners 

(Ammon et al., 2014; Luders et al., 2003; Mishra et al., 2011). 

1.1.1 Ubiquitin conjugation and deconjugation 

Ubiquitin is synthesized de novo in the form of inactive precursor proteins. These 

ubiquitin precursors include linear polymers, in which ubiquitin units are arranged in a 

head-to-tail orientation (product of the UBI4 gene in S. cerevisiae) (Ozkaynak et al., 

1987) and single ubiquitin molecules fused to the N-terminus of ribosomal proteins 

(products of the UBI1-3 genes in S. cerevisiae) (Finley et al., 1989). Consequently, 

the generation of free ubiquitin requires dedicated C-terminal hydrolases that 

catalyze the proteolytic processing of ubiquitin precursors. Notably, this type of 

maturation not only produces single ubiquitin molecules but also exposes the 

C-terminal double-glycine motif required for conjugation. 

 Ubiquitin conjugation to substrate proteins (referred to as ubiquitylation) 

involves a series of three enzymatic reactions (Hershko and Ciechanover, 1998) 

(Figure 1). First, an ATP-driven ubiquitin-activating enzyme (E1) forms a high-energy 

thioester bond between its active-site cysteine residue and the C-terminal carboxy 

group of ubiquitin. Second, ubiquitin is transferred to the catalytic cysteine of a 

ubiquitin-conjugating enzyme (E2) by a transesterification reaction. Third, ubiquitin is 

covalently attached to substrate proteins. Ubiquitylation typically involves the 

formation of an isopeptide bond between the C-terminal carboxy group of ubiquitin 
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and the ε-amino group of a lysine residue in the substrate protein. However, it has 

been reported that in some cases ubiquitin is conjugated to the N-terminus or 

alternative amino acid residues of substrate proteins (cysteine, serine and threonine) 

(Breitschopf et al., 1998; Shimizu et al., 2010). 

 Ubiquitin transfer to substrate proteins is catalyzed by ubiquitin ligases (E3), 

which are categorized into two classes (Figure 1). HECT ubiquitin E3 ligases contain 

a catalytic cysteine residue and form an E3-ubiquitin thioester intermediate before 

ubiquitin is attached to the substrate (Scheffner et al., 1995). RING and RING-like E3 

ligases rather function as adaptor or scaffold proteins that bridge the ubiquitin-

charged E2 and the substrate protein, thereby promoting the direct transfer of 

ubiquitin from the E2 to the substrate (Deshaies and Joazeiro, 2009). 

 

 
 
Figure 1. Ubiquitin conjugation and deconjugation. Ubiquitin (Ub) conjugation to substrate proteins 
involves a cascade of multiple enzymatic reactions. First, ubiquitin is translated in form of inactive 
precursor proteins, which comprise linear ubiquitin polymers and single ubiquitin molecules fused to 
ribosomal proteins of the large (Rpl) and small (Rps) ribosomal subunits. Ubiquitin precursors are 
processed by dedicated ubiquitin C-terminal hydrolases (UCH), which generate free ubiquitin moieties 
exposing the crucial double-glycine (GG) motif at their C-termini (1). Ubiquitin is then activated by a 
ubiquitin-activating enzyme (E1), which utilizes the chemical energy of ATP to form a high-energy 
thioester bond between its catalytic cysteine (C) residue and the C-terminus of ubiquitin (2). Next, 
ubiquitin is transferred to the catalytic cysteine residue of a ubiquitin-conjugating enzyme (E2) (3). 
Ultimately, ubiquitin ligases (E3) catalyze the covalent attachment of ubiquitin to lysine (K) residues of 
substrate proteins (4). Ubiquitin E3 ligases are categorized according to their reaction mechanisms used 
for ubiquitin transfer. HECT E3 ligases contain an active-site cysteine and form a thioester intermediate 
with ubiquitin prior to substrate ubiquitylation. RING and RING-like E3 ligases rather function as adaptor 
proteins that bridge the substrate protein and the ubiquitin-charged E2 in a suited orientation. Ubiquitin 
E3 ligases can catalyze the modification of substrate proteins with single ubiquitin moieties or 
polyubiquitin chains. Ubiquitylation is reversible and diverse deubiquitylating enzymes (DUBs) mediate 
the deconjugation of ubiquitin from substrate proteins (5). 
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 Besides the modification with a single ubiquitin moiety (monoubiquitylation), 

substrate proteins can be simultaneously modified at multiple attachment sites 

(multiubiquitylation). Moreover, in many cases, substrate proteins are modified by 

polyubiquitin chains (polyubiquitylation) (Kerscher et al., 2006). Polyubiquitin chains 

are assembled by sequential steps of ubiquitin conjugation to an internal lysine 

residue (K6, K11, K27, K29, K33, K48 or K63) of a previously attached ubiquitin 

molecule. This results in the formation of polyubiquitin chains with specific linkage 

types, topologies and functions (Komander and Rape, 2012; Yau and Rape, 2016). 

 Similar to other PTMs, ubiquitin conjugation to substrate proteins is a 

reversible process and can be counteracted by various deubiquitylating enzymes 

(DUBs) (Komander et al., 2009). 

1.1.2 Ubiquitin-dependent protein degradation 

Since its discovery in the mid-1970s (Goldstein et al., 1975), ubiquitin has been 

implicated in the regulation of virtually all physiological processes. A major function of 

ubiquitylation is, however, to mark proteins for degradation by the 26S proteasome. 

Selective protein degradation by this multi-subunit self-compartmentalizing protease 

(Baumeister et al., 1998) is essential in all eukaryotes and plays critical roles in 

multiple cellular pathways including cell cycle regulation, signal transduction, protein 

quality control, endocytosis and antigen presentation (Varshavsky, 1997). 

 Canonical marks that label proteins for degradation by the proteasome are 

K48-linked polyubiquitin chains (Chau et al., 1989). Consistent with this crucial 

function, K48-linkages are the most abundant linkage type in vivo and strongly 

accumulate upon proteasome inhibition (Kaiser et al., 2011; Kim et al., 2011; Peng et 

al., 2003; Xu et al., 2009). However, other linkage types, for instance in form of K11- 

(Jin et al., 2008; Matsumoto et al., 2010; Williamson et al., 2009) and K29-linked 

polyubiquitin chains (Johnson et al., 1995; Koegl et al., 1999), can also trigger 

proteasomal degradation. Moreover, although predominantly implicated in non-

proteolytic pathways, K63-linked polyubiquitin chains have been reported to mediate 

protein degradation in some cases (Saeki et al., 2009). 

 Protein degradation by the 26S proteasome requires the specific recognition 

of ubiquitylated substrates by ubiquitin receptors. This can occur via two different 

mechanisms. First, ubiquitin modifications are recognized by receptor proteins that 

are stably associated with the proteasome. Examples are the ubiquitin-binding 

proteins Rpn10 (Deveraux et al., 1994; Elsasser et al., 2004; van Nocker et al., 1996) 

and Rpn13 (Husnjak et al., 2008), which act as canonical subunits of the 

26S proteasome. Both Rpn10 and Rpn13 directly bind ubiquitylated proteins via a 
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ubiquitin-binding domain (UBD). Second, ubiquitin-modified proteins are delivered to 

the proteasome by so-called shuttling ubiquitin receptors. These receptors bind 

ubiquitylated substrates via a ubiquitin-associated (UBA) domain and reversibly 

interact with the proteasome via a ubiquitin-like (UBL) domain. Canonical members 

of the group of shuttling ubiquitin receptors include Rad23 (hHR23a/b in humans) 

(Elsasser et al., 2004; Rao and Sastry, 2002), Dsk2 (Ubiquilin 1/2 in humans) 

(Funakoshi et al., 2002; Rao and Sastry, 2002) and Ddi1 (Elsasser and Finley, 2005; 

Kaplun et al., 2005). 

After delivery to the proteasome, ubiquitin-modified substrates are 

deubiquitylated by proteasome-associated DUBs (Leggett et al., 2002; Verma et al., 

2002), unfolded and guided into the proteolytic cavity for degradation into smaller 

peptides (Elsasser and Finley, 2005). 

Apart from the proteasome, clearance of ubiquitylated proteins is also 

mediated by autophagy, a cellular degradation system that delivers cytoplasmic 

material to the lysosome (in mammals) or the vacuole (in yeast) (Khaminets et al., 

2016; Mizushima et al., 2011). Importantly, ubiquitin-selective autophagy requires 

specific adaptor proteins that link the ubiquitin system to the autophagy pathway 

(Khaminets et al., 2016; Kraft et al., 2010; Rogov et al., 2014). These adaptors bind 

ubiquitylated cargo via specific UBDs and known examples include the proteins p62 

(SQSTM1) (Pankiv et al., 2007), NBR1 (Kirkin et al., 2009a; Kirkin et al., 2009b) and 

Tollip (Lu et al., 2014) in humans as well as Cue5 in yeast (Lu et al., 2014). 

Interestingly, although p62 and NBR1 preferentially interact with K63-linked 

polyubiquitin chains, all adaptors bind K48-linked polyubiquitin chains as well (Kirkin 

et al., 2009b; Lu et al., 2014). Thus, pathway choice between autophagic and 

proteasomal degradation might not solely rely on the topology of the polyubiquitin 

chains attached to a substrate. 

 A further common feature of autophagy adaptors is their ability to bind the 

autophagy factor Atg8 (LC3 and GABARAP in humans) on the autophagosomal 

membrane via so-called Atg8-interacting motifs (AIMs), which are also referred to as 

LC3-interacting regions (LIRs) (Kirkin et al., 2009a; Lu et al., 2014; Pankiv et al., 

2007). Atg8 is generally required for autophagosome formation but also serves as 

docking module for adaptors during selective autophagy. Thus, by direct recognition 

of substrates via ubiquitin-binding domains and interacting with Atg8 via AIMs, 

ubiquitin-Atg8 adaptors specifically mediate the delivery of ubiquitylated cargo for 

autophagic degradation. Remarkably, substrates of ubiquitin-selective autophagy are 

diverse and include ubiquitylated aggregates, midbody rings, organelles and even 

bacteria (Khaminets et al., 2016). 
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1.1.3 SUMO conjugation and deconjugation 

One of the best-studied UBLs besides ubiquitin is the small ubiquitin-like modifier 

(SUMO). Unicellular organisms and lower eukaryotes often express a single SUMO 

isoform (e.g. Smt3 in S. cerevisiae), whereas vertebrates and plants typically 

possess multiple genes encoding different SUMO isoforms (e.g. SUMO1-4 in H. 

sapiens) (Flotho and Melchior, 2013). All SUMO isoforms are synthesized as inactive 

precursors, which carry C-terminal peptide extensions of variable length (2-11 amino 

acid residues). Proteolytic maturation of these SUMO precursors is carried out by 

SUMO-specific enzymes that remove the amino acid residues C-terminal to the 

characteristic double-glycine motif of SUMO (Gareau and Lima, 2010). 

 Similar to ubiquitin, SUMO is usually attached to the ε-amino group of lysine 

residues in substrate proteins (referred to as SUMOylation) (Figure 2). Biochemically, 

SUMOylation highly resembles the activation and conjugation of ubiquitin. However, 

it requires a set of unique, SUMO-specific enzymes including a heterodimeric E1 

(Aos1/Uba2 in S. cerevisiae and SAE1/SAE2 in H. sapiens) and the single E2 Ubc9 

(Johnson, 2004). In many cases, SUMO-modified lysines are embedded within the 

core consensus motif ΨKX(D/E) in which Ψ is a hydrophobic amino acid (usually I, L 

or V) and X is any amino acid (Gareau and Lima, 2010). This motif can be directly 

bound by Ubc9 and does not essentially require an E3 enzyme for modification 

(Bernier-Villamor et al., 2002). However, in most cases, efficient SUMOylation is 

strongly dependent on E3 ligases in vivo. Many SUMO E3 ligases are members of 

the Siz/PIAS protein family and harbor a characteristic Siz-PIAS-RING (SP-RING) 

domain related to the RING domain of the corresponding class of ubiquitin E3 ligases 

(Gareau and Lima, 2010). The SP-RING family of SUMO E3 ligases comprises four 

proteins in S. cerevisiae (Siz1, Siz2, Mms21 and the meiosis-specific Zip3) and six 

proteins in H. sapiens (PIAS1, -2, -3, -4, ZMIZ1 and NSE2). Moreover, several other 

proteins with SUMO E3 ligase activity (RanBP2, Pc2, MUL1, TOPORS, HDAC4, -7, 

TRAF7, FUS, RSUME, MAPL) have been described in higher eukaryotes (Jentsch 

and Psakhye, 2013). 

 In many cases, SUMO substrates are modified by single SUMO moieties 

attached to one or multiple lysine residues (monoSUMOylation and 

multiSUMOylation). However, particular SUMO isoforms such as Smt3 in yeast 

(Bencsath et al., 2002) or SUMO2/3 in human cells (Tatham et al., 2001) can also 

form polySUMO chains (polySUMOylation). Formation of such polySUMO chains 

requires internal SUMOylation consensus sites, which are mainly localized within the 

N-terminus of SUMO (e.g. K11, K15 and K19 of Smt3). Other SUMO isoforms like 

human SUMO1 do not harbor N-terminal SUMOylation consensus sites and form 



INTRODUCTION 

 7 

polySUMO chains with much lower efficiency in vitro (Tatham et al., 2001). However, 

hybrid chains of SUMO1 and SUMO2/3 have been reported to form via non-

consensus sites (Cooper et al., 2005; Matic et al., 2008; Pedrioli et al., 2006). 

 Protein modification by SUMO is reversible and can be regulated by SUMO-

specific isopeptidases (Figure 2). Notably, some of these enzymes not only act as 

isopeptidases but also possess a C-terminal hydrolase activity, which is required for 

the initial proteolytic maturation of SUMO precursors. All bona fide SUMO 

isopeptidases described to date are cysteine proteases and include the proteins Ulp1 

and Ulp2 in yeast and six Ulp orthologs in H. sapiens (sentrin-specific proteases 

SENP1-3 and 5-7) (Hickey et al., 2012). Moreover, recent studies have reported the 

identification of three further SUMO isopeptidases in human cells, deSUMOylating 

isopeptidase 1 (DeSI-1), DeSI-2 (Shin et al., 2012) and ubiquitin-specific protease-

like 1 (USPL1) (Schulz et al., 2012). 

 

 
 
Figure 2. The SUMO conjugation and deconjugation system of S. cerevisiae. SUMO (Smt3 in 
S. cerevisiae) is translated as inactive precursor protein in which the C-terminal double glycine motif is 
followed by a peptide extension of several amino acids (ATY in S. cerevisiae). SUMO maturation and 
exposure of the C-terminal double glycine (GG) motif is mediated by SUMO-specific isopeptidases that 
possess a C-terminal hydrolase activity (Ulp1 in S. cerevisiae) (1). Mature SUMO is then activated by a 
dimeric SUMO-activating enzyme (E1) (Aos1/Uba2 in S. cerevisiae), which utilizes the chemical energy 
of ATP to form high-energy thioester bond between the active-site cysteine (C) of one subunit (Uba2) 
and the C-terminus of SUMO (2). Subsequently, SUMO is transferred to the catalytic cysteine (C) of the 
SUMO conjugating enzyme Ubc9 (3). Eventually, SUMO E3 ligases catalyze the covalent attachment of 
SUMO to the lysine (K) residue of a substrate protein (4). Protein modification by SUMO is reversible 
and the isopeptide bond between SUMO and a substrate protein can be hydrolyzed by SUMO-specific 
isopeptidases (Ulp1 and Ulp2 in S. cerevisiae) (5). 
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1.1.4 Molecular consequences of SUMOylation 

Protein modification by SUMO affects a multitude of cellular substrates and regulates 

a large variety of physiological processes. Interestingly, SUMO substrates are 

typically modified to only a small percentage at steady state and only a very limited 

number of proteins appear to be quantitatively SUMOylated (Geiss-Friedlander and 

Melchior, 2007). However, low-level SUMOylation can sometimes entail strong 

effects, and, for instance, alter the localization, activity or stability of a modified 

protein. 

 Although the functions of protein SUMOylation are diverse and in many cases 

substrate-specific, the direct mechanistic consequences of SUMO modifications are 

mostly based on a few common molecular principles. First, SUMOylation can affect 

protein properties by competing with other lysine-directed PTMs for the same 

acceptor site. Competition between SUMOylation and ubiquitylation for the same 

amino acid residue has been reported for the protein IκB-α (Desterro et al., 1998). 

SUMO modification of IκB-α at Lys 21 blocks the ubiquitylation of this particular 

lysine residue and thereby interferes with the ubiquitin-dependent proteasomal 

degradation of the protein. A further example is a SUMO switch regulating the 

transcriptional activator myocyte-specific enhancer factor 2A (MEF2A). SUMOylation 

blocks the acetylation of MEF2A and thereby interferes with the transcriptional 

activation of the protein (Shalizi et al., 2006). 

 Second, SUMOylation can interfere with protein-protein interactions by 

shielding interaction surfaces present on a substrate protein. A well-studied example 

is the yeast DNA sliding clamp proliferating cell nuclear antigen (PCNA). PCNA is 

SUMOylated at Lys 127, which is located in close proximity to a surface area of 

PCNA that is recognized by PCNA-interacting proteins (PIP) via so-called PIP boxes 

(Moldovan et al., 2006). Accordingly, SUMO modification of PCNA at this particular 

lysine residue inhibits the binding of the PIP box-containing acetyltransferase Eco1 

and thereby negatively regulates cohesion establishment during S phase. 

 Third, SUMOylation can recruit interaction partners to a modified substrate by 

providing an additional binding interface. Non-covalent binding of proteins to SUMO 

is typically mediated by short hydrophobic peptide stretches referred to as SUMO-

interacting motifs (SIMs). SIMs harbor the core consensus sequence [V/I]-X-[V/I]-[V/I] 

and are sometimes flanked by acidic amino acid residues or phosphoacceptor sites 

(Hecker et al., 2006; Song et al., 2004; Stehmeier and Muller, 2009). Because SIM-

containing proteins bind a specific surface patch on SUMO (e.g. comprising amino 

acid 35-55 in S. cerevisiae Smt3) with typically moderate affinities (Kerscher, 2007), 

SUMOylation often fosters interactions between proteins that already possess low 
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affinities for each other. A prominent example for the SUMO-dependent recruitment 

of a specific binding partner is once more PCNA. In addition to the modification at 

Lys 127, PCNA becomes SUMOylated at Lys 164 during S phase of the cell cycle 

(Hoege et al., 2002). The modification at this particular lysine residue facilitates 

recruitment of the SIM-containing helicase Srs2 to the replication fork, where Srs2 

inhibits unwanted recombination events by disassembling Rad51 nucleoprotein 

filaments (Papouli et al., 2005; Pfander et al., 2005). 

 Notably, SUMO-SIM interactions can also occur in an intramolecular fashion. 

One example is the DNA repair protein thymine DNA glycosylase (TDG) (Steinacher 

and Schar, 2005). SUMOylation of TDG at Lys 330 leads to a conformational 

change, which is caused by an interaction of the attached SUMO moiety and a SIM 

of TDG itself. This structural rearrangement alters the DNA-binding properties of 

TDG and thereby releases this protein from chromatin. 

 A particularly interesting class of SIM-containing proteins are the so-called 

SUMO-targeted ubiquitin ligases (STUbLs), which represent a link between the 

SUMO and the ubiquitin system (Praefcke et al., 2012). STUbLs are specialized 

RING-type ubiquitin E3 ligases that harbor multiple SIMs and thereby are specifically 

recruited to polySUMOylated proteins. Prototypical members of this class of 

enzymes are Ris1 and the Slx5/Slx8 heterodimer in yeast (Uzunova et al., 2007) as 

well as RNF4 in vertebrates (Tatham et al., 2008). Moreover, by catalyzing substrate 

modifications with polyubiquitin chains, STUbLs regulate the proteasomal turnover of 

SUMO conjugates (Tatham et al., 2008; Uzunova et al., 2007). 

 An example for a non-proteolytic function of a STUbL is the ubiquitin E3 

ligase Rad18 in S. cerevisiae. Rad18 binds SUMOylated PCNA in a SIM-dependent 

manner and mediates the non-proteolytic monoubiquitylation of different PCNA 

subunits (Parker and Ulrich, 2012). Similarly, RNF4 appears to possess non-

proteolytic activities, which are involved in the DNA damage response in human cells 

(Yin et al., 2012). 

1.1.5 Distinctive features of the ubiquitin and SUMO systems 

Although protein modification by ubiquitin and SUMO is similar at multiple levels, 

both conjugation systems possess unique features. Characteristic for the ubiquitin 

system is its hierarchically organized and highly diversified enzymatic machinery. For 

instance, in the yeast S. cerevisiae, eleven E2s, 60-100 E3s and 20 DUBs have 

been discovered (Finley et al., 2012). By contrast, SUMOylation is controlled by a 

remarkably small number of enzymes, comprising a single E2 (Ubc9), four E3 ligases 
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(Siz1, Siz2, Mms21 and Zip3) and two SUMO-specific isopeptidases (Ulp1 and Ulp2) 

in S. cerevisiae. 

 PTMs often target individual proteins with high selectivity and enzyme 

diversification is of fundamental importance for substrate specificity in the ubiquitin 

pathway (Kerscher et al., 2006). Similar to ubiquitylation and despite the remarkable 

simplicity of its enzymatic apparatus, the SUMO system targets a plethora of cellular 

substrates as well. Thus, the question has been raised how substrate specificity in 

the SUMO system is achieved (Psakhye and Jentsch, 2012). 

 Among the mechanisms that ensure substrate specificity in the SUMO 

pathway, the targeting of SUMO E3 ligases to distinct cellular localizations and 

compartments is of particular relevance (Jentsch and Psakhye, 2013). Additionally, a 

recent study on the SUMOylation of proteins involved in homologous recombination 

revealed that the SUMO system frequently targets entire protein complexes rather 

than single substrates (protein group SUMOylation) (Psakhye and Jentsch, 2012). 

Thus, substrate selectivity can be achieved by the specific recruitment of SUMO 

enzymes to the vicinity of preassembled protein complexes. Moreover, it has been 

proposed that multiple SUMO modifications act synergistically to foster the stability of 

protein complexes by SUMO-SIM interactions. Hence, the intriguing concept of 

protein group SUMOylation also provides an explanation for the observation that 

removal of SUMO acceptor sites in single substrates often barely causes 

phenotypes. Accordingly, only the wholesale elimination of SUMOylation of an entire 

protein group has strong consequences and in case of the homologous 

recombination pathway significantly delays DNA repair (Psakhye and Jentsch, 2012). 

1.1.6 The SUMO system in the context of cellular compartments 

In contrast to other PTM pathways like phosphorylation, acetylation and 

ubiquitylation, which generally act throughout the cell, SUMOylation has emerged as 

a primarily nuclear modification (Kamitani et al., 1997). In fact, certain SUMO 

substrates require an intact nuclear localization signal (NLS) for efficient 

SUMOylation in vivo (Sternsdorf et al., 1999). Moreover, studies on an artificially 

designed reporter protein indicated that in some cases the combination of a 

ΨKX(D/E)-type consensus motif and an NLS is sufficient to trigger SUMOylation 

(Rodriguez et al., 2001). 

 The predominantly nuclear activities of the SUMO system have been further 

substantiated by several large-scale studies, which have identified hundreds of 

potential SUMO substrates in yeast and more than 1000 in human cells. The majority 

of these substrates indeed appears to be nuclear (Wohlschlegel et al., 2004) and a 
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recent evaluation of human SUMO proteomics studies has reported that in fact 

~96 % of the top 200, ~93 % of the top 500 and ~86 % of the top 1000 most-

frequently identified SUMO substrates are annotated as nuclear proteins (Hendriks 

and Vertegaal, 2016). 

 A prerequisite for the SUMOylation of substrate proteins in a given cellular 

compartment is the local presence of SUMO enzymes. Indeed, many components of 

the SUMO system predominantly reside in the nucleus (Johnson, 2004; Melchior et 

al., 2003; Seeler and Dejean, 2003) and dedicated nuclear import pathways have 

been reported for the SUMO E1 (Moutty et al., 2011) and E2 enzymes (Grunwald 

and Bono, 2011; Mingot et al., 2001). Moreover, distinct nuclear localizations have 

been described for several SUMO E3 ligases such as Pc2 (Kagey et al., 2003; 

Roscic et al., 2006), Mms21 (NSE2) (Potts and Yu, 2005; Zhao and Blobel, 2005) 

and members of the human PIAS protein family (Kotaja et al., 2002; Miyauchi et al., 

2002; Sachdev et al., 2001). Likewise, in yeast, Siz2 is a predominantly nuclear 

protein and Siz1 is enriched in the nucleus during most phases of the cell cycle 

(Makhnevych et al., 2007; Takahashi and Kikuchi, 2005). Lastly, multiple SUMO 

isopeptidases primarily localize to the nucleus in both yeast and human cells (Hickey 

et al., 2012). 

 Despite its prevalence in the nucleus, the SUMO system is not entirely 

restricted to this compartment and a number of cytosolic SUMO substrates have 

been described (Figure 3). Consistently, enzymes of the SUMO conjugation system 

have been detected in the cytosol, albeit mostly in much smaller fractions than in 

nucleus (Bossis and Melchior, 2006; Donaghue et al., 2001; Lee et al., 1998; 

Makhnevych et al., 2007; Pichler et al., 2002; Takahashi et al., 2008; Takahashi and 

Kikuchi, 2005; Zhang et al., 2002). Well-studied examples of cytosolic SUMO 

substrates are the mammalian Ran GTPase-activating protein 1 (RanGAP1) at the 

cytoplasmic face of the nuclear pore complex (NPC) and the septins located at the 

bud neck in yeast cells. Septin SUMOylation requires a cytosolic pool of the SUMO 

E3 ligase Siz1, which is exported from the nucleus by the karyopherin Kap142/Msn5 

prior to anaphase (Makhnevych et al., 2007). Notably, septins are deSUMOylated 

during cytokinesis by the SUMO protease Ulp1 (Makhnevych et al., 2007; Takahashi 

et al., 2000), demonstrating that SUMO isopeptidases exert distinct functions in the 

cytosol as well. 

 Apart from substrates with restricted localization, several soluble SUMO 

substrates have been identified in the cytosol. Examples range from yeast glycolytic 

enzymes such as Pgk1 (Psakhye and Jentsch, 2012) to intermediate filament 

proteins in C. elegans (Kaminsky et al., 2009). A particularly interesting case is the 
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mammalian proto-oncogene c-Myb, which is SUMOylated in the cytosol by the E3 

ligase TRAF7. Compartment-specific SUMOylation of c-Myb inhibits its nuclear 

import and thereby causes the cytosolic sequestration of this protein (Morita et al., 

2005). 

 Intriguingly, cytosolic SUMOylation also affects proteins at the cytosolic 

interfaces of the endoplasmic reticulum (ER), the mitochondrial outer membrane and 

the plasma membrane (Figure 3). First evidence for an implication of the SUMO 

system in the regulation of plasma membrane proteins came from studies on the 

glucose transporters GLUT1 and GLUT4 (Giorgino et al., 2000). Both GLUT1 and 

GLUT4 interact with the SUMO E2 enzyme Ubc9 via their cytosolic C-termini and it 

has been proposed that both transporters are modified by SUMO. Moreover, 

overexpression of Ubc9 severely altered the expression levels of the glucose 

transporters, leading to decreased abundance of GLUT1 and strongly increased 

abundance of GLUT4. 

 

 
 
Figure 3. SUMO substrates in the context of cellular compartments. Protein modification by SUMO 
affects a multitude of cellular substrates. The majority of SUMO substrates localizes to the nucleus, 
where SUMOylation regulates essential processes such as replication, transcription and DNA repair. 
Apart from the nucleus, SUMO targets are also found in the cytosol and the cytosolic interfaces of the 
plasma membrane, the nuclear pore complex (NPC), the endoplasmic reticulum (ER) and mitochondria 
(see main text for details). A further group of cytosolic SUMO substrates are the septin proteins in yeast, 
which assemble at the bud neck during cytokinesis. 
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 Following this initial discovery, later studies provided detailed insights into the 

SUMO regulation of plasma membrane proteins. The first SUMO substrate to be 

described was the K+ leak channel K2P1. It has been reported that K2P1 is 

SUMOylated at Lys 274, resulting in the inactivation of the channel (Rajan et al., 

2005). However, a subsequent study questioned whether K2P1 is indeed regulated 

by SUMOylation (Feliciangeli et al., 2007), indicating that this issue requires further 

clarification. Nevertheless, SUMO-mediated regulation of channel activity has been 

confirmed for other substrates, for instance the voltage-gated potassium channel 

Kv1.5 (Benson et al., 2007). Kv1.5 is SUMOylated at two lysine residues located 

within cytosolic domains of the channel and the modification is involved in channel 

inactivation. Additional SUMO substrates at the plasma membrane include 

metabotropic and ionotropic glutamate receptors (Martin et al., 2007a; Tang et al., 

2005; Wilkinson et al., 2008). Notably, it has been reported that SUMOylation of the 

ionotropic kainate receptor subunit GluR6 is crucial for the endocytosis of the 

receptor, thereby providing a link between the SUMO system and receptor-mediated 

endocytosis (Martin et al., 2007a). 

 SUMOylation also targets proteins at the cytosolic interface of cellular 

organelles. Such substrates include the ER-associated protein-tyrosine 

phosphatase-1B (Dadke et al., 2007) and the dynamin-related GTPase Drp1, which 

translocates from the cytosol to the outer mitochondrial membrane to regulate 

mitochondrial fission (Harder et al., 2004). Notably, Drp1 SUMOylation is dependent 

on the mitochondria-anchored protein ligase (MAPL), the first SUMO E3 ligase that 

has been reported to be associated with mitochondria (Braschi et al., 2009). 

Moreover, SUMOylation of Drp1 is negatively regulated by SENP5 (Zunino et al., 

2007), thus highlighting a further example for the function of a SUMO-specific 

isopeptidase in the cytosol. 

 Taken together, current knowledge about the SUMO system indicates that 

SUMO modification targets diverse substrates, which are accessible to nuclear and 

cytosolic SUMO enzymes. However, SUMOylation appears to be absent within 

particular organelles such as the ER and mitochondria and the question whether 

proteins transported into these organelles are SUMO substrates in vivo has not been 

elucidated so far. 
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1.2 Biogenesis of mitochondrial proteins 
Mitochondria are double-membrane organelles involved in multiple cellular pathways. 

Besides their prominent role in ATP production, mitochondria are crucial for the 

biosynthesis of lipids, amino acids and heme and at least one mitochondrial function, 

the formation of iron-sulfur clusters, is strictly essential for cell viability in all 

organisms (Lill and Muhlenhoff, 2008; Neupert and Herrmann, 2007). Moreover, in 

vertebrates, mitochondria have been implicated in the regulation of innate and 

adaptive immunity and are of fundamental importance for the execution of apoptosis 

(Wang and Youle, 2009; Weinberg et al., 2015). 

 Proteomic studies have suggested that mitochondria contain about 1000 

proteins in yeast and 1500 proteins in human cells (Pagliarini et al., 2008; Perocchi 

et al., 2006; Sickmann et al., 2003). However, only a small number of these proteins 

are encoded in the mitochondrial genome and translated by mitochondrial 

ribosomes. The vast majority of mitochondrial proteins are encoded in the nuclear 

genome and synthesized as precursor proteins on cytosolic ribosomes. Subsequent 

sorting of these proteins into their functional environment often involves proteolytic 

processing, equipment with cofactors and assembly into larger functional protein 

complexes. Moreover, since mitochondria are made up of two membranes, proteins 

can be targeted to one out of four submitochondrial destinations: the outer 

membrane (OM), the intermembrane space (IMS), the inner membrane (IM) or the 

matrix. 

1.2.1 Mitochondrial targeting signals 

Protein import into mitochondria requires targeting sequences that harbor the 

information to which membrane or subcompartment a particular protein is sorted. 

Prototypical mitochondrial targeting signals are cleavable presequences, which are 

characteristically located at the N-termini of precursor proteins (Neupert, 1997; 

Neupert and Herrmann, 2007). They usually direct proteins to the mitochondrial 

matrix in an N to C direction and therefore are referred to as matrix targeting signals 

(MTS). MTSs typically comprise 10-80 amino acid residues and form amphipathic α-

helices with one hydrophobic and one positively charged surface. After import into 

the mitochondrial matrix, most N-terminal targeting signals are proteolytically 

removed by the dimeric mitochondrial processing peptidase (MPP). Notably, the N-

terminal localization of the MTS appears to be critical for its function and 

transplantation of a MTS to internal regions of proteins does not facilitate 

mitochondrial targeting. However, artificial fusion of an MTS to the C-terminus of a 

protein can mediate mitochondrial targeting but leads to a C- to N-terminal 
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translocation direction (Folsch et al., 1998). Remarkably, it has been reported that in 

one case, the yeast DNA helicase Hmi1, the MTS is naturally located at the C-

terminus of the protein (Lee et al., 1999). 

 In addition to an MTS, a number of mitochondrial IM and IMS proteins contain 

further hydrophobic sorting signals C-terminal to the MTS, which are often followed 

by a cluster of charged amino acid residues (Rojo et al., 1998). For IM proteins, 

these hydrophobic sorting signals serve as transmembrane domains, which arrest 

translocation within the inner mitochondrial membrane and facilitate lateral sorting 

into the lipid phase (stop-transfer pathway) (Gartner et al., 1995; Glaser et al., 1990; 

Glick et al., 1992; Miller and Cumsky, 1993). Moreover, various IMS proteins contain 

so-called bipartite presequences, which are proteolytically processed after 

embedment into the inner membrane. Thereby the mature proteins are released into 

the intermembrane space (Gakh et al., 2002; Glick et al., 1992). 

 Besides the classical N-terminal presequences, a variety of less-defined 

internal mitochondrial targeting and sorting signals have been described. Such 

targeting signals are found in diverse mitochondrial proteins, including all proteins of 

the outer mitochondrial membrane, many intermembrane space and inner membrane 

proteins as well as a small number of matrix proteins (Chacinska et al., 2009). 

1.2.2 Mitochondrial protein sorting 

The majority of mitochondrial proteins are imported via the translocase of the outer 

membrane (TOM complex). Central component of this complex is the general import 

pore formed by the β-barrel protein Tom40 (Ahting et al., 2001; Model et al., 2008). 

Additional subunits are the receptor proteins Tom20, Tom70 and Tom22. Whereas 

Tom20 serves as major recognition site for preproteins with N-terminal targeting 

signals (Abe et al., 2000; Ramage et al., 1993; Saitoh et al., 2007; Sollner et al., 

1989), Tom70 mainly binds proteins with multiple internal targeting signals such as 

carrier proteins (Chan et al., 2006; Sollner et al., 1990; Wu and Sha, 2006). A central 

receptor subunit, Tom22, promotes the general integrity of the TOM complex and 

transfers incoming proteins from Tom20 and Tom70 to the translocation pore (van 

Wilpe et al., 1999). 

 After passage through the TOM complex, mitochondrial proteins can follow 

different routes to reach their submitochondrial destination (Figure 4). The 

embedment of proteins into the outer mitochondrial membrane often requires the 

sorting and assembly machinery (SAM), which mediates the maturation of β-barrel 

(Paschen et al., 2003; Wiedemann et al., 2003) and a subset of α-helical proteins 

(Stojanovski et al., 2007). 
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Figure 4. Mitochondrial protein sorting pathways. The vast majority of mitochondrial proteins are 
encoded in the nucleus and synthesized as precursor proteins on cytosolic ribosomes. In the cytosol, 
mitochondrial precursor proteins associate with molecular chaperones such as heat shock proteins 
(HSP), which maintain their import-competence and facilitate import into the organelle. Many precursor 
proteins harbor cleavable N-terminal targeting sequences (presequences), however, proteins with 
internal targeting signals have also been described. Almost all mitochondrial proteins are imported via a 
general entry gate formed by the translocase of the outer membrane (TOM complex). Specific 
components of the TOM complex also serve as receptors that bind mitochondrial preproteins at the 
cytosolic interface of the outer membrane. Following entry through the TOM complex, mitochondrial 
proteins follow different sorting pathways to one of the mitochondrial membranes or subcompartments. 
These include the outer mitochondrial membrane, the intermembrane space, the inner mitochondrial 
membrane and the mitochondrial matrix. Roughly 1 % of the mitochondrial proteome is encoded by the 
endogenous genome and synthesized as mitochondrial translation products. Depicted are various 
protein complexes involved in mitochondrial protein sorting: MIA, mitochondrial intermembrane space 
assembly; OXA, insertase/export machinery of the inner membrane; SAM, sorting and assembly 
machinery; TIM9/10, small TIM proteins that function as intermembrane space chaperones; TIM22 
complex, carrier translocase of the inner membrane; TIM23 complex, presequence translocase of the 
inner membrane; TIM44, membrane anchor for mitochondrial HSP70 (mtHSP70); TIM44 and mtHSP70 
are components of the presequence translocase-associated motor (PAM) complex. 

 

 Proteins solely carrying N-terminal signal sequences are usually transported 

into the mitochondrial matrix. This sorting pathway involves the translocase of the 

inner membrane (TIM23 complex) and the presequence translocase-associated 

motor (PAM) complex (Chacinska et al., 2009; Neupert and Herrmann, 2007). In the 

matrix, N-terminal targeting sequences are typically removed by the mitochondrial 

processing peptidase (MPP). Moreover, emerging proteins are bound by 

mitochondrial HSP70 (mtHSP70), which is recruited to the inner mitochondrial 



INTRODUCTION 

 17 

membrane by the protein Tim44. Both proteins are components of the PAM complex, 

which utilizes the energy of ATP to stimulate protein translocation into the matrix. 

 In addition to its role in the biogenesis of matrix proteins, the TIM23 complex 

is involved in the import of IM proteins via the stop-transfer pathway and also 

mediates the sorting of IMS proteins that contain bipartite presequences (see section 

1.2.1). A special group of IMS proteins is sorted via the mitochondrial intermembrane 

space assembly (MIA) machinery. Central component of this pathway is the receptor 

protein Mia40 (Chacinska et al., 2004; Mesecke et al., 2005; Naoe et al., 2004), 

which binds cysteine-containing substrates emerging from the TOM complex via a 

hydrophobic interface and its redox-active cysteine-proline-cysteine (CPC) motif 

(Grumbt et al., 2007; Milenkovic et al., 2007; Milenkovic et al., 2009). Subsequently, 

Mia40 catalyzes the formation of disulfide bridges within precursor proteins and 

releases the oxidized and mature proteins into the intermembrane space (Muller et 

al., 2008; Terziyska et al., 2009). 

 Besides the TIM23-dependent pathway, an alternative route to the inner 

mitochondrial membrane is the so-called carrier pathway (Chacinska et al., 2009). 

Metabolite carrier proteins contain several internal targeting signals and in most 

cases are translated on cytosolic ribosomes. In the cytosol, carrier precursors are 

usually bound by molecular chaperones that protect them from aggregation and 

guide them to the Tom70 receptor at the outer mitochondrial membrane (see section 

1.2.4). After translocation through the TOM complex, carrier proteins are recognized 

by a chaperone-like hexameric complex composed of the small TIM proteins Tim9 

and Tim10 (Curran et al., 2002; Vasiljev et al., 2004). These factors facilitate the 

further transfer to the TOM22 complex, which eventually mediates the assembly of 

carrier proteins in the inner mitochondrial membrane. 

 Notably, the inner mitochondrial membrane also contains proteins encoded in 

the mitochondrial genome and synthesized on mitochondrial ribosomes. These 

proteins function as subunits of mitochondrial respiratory chain complexes and reach 

their mature state via the insertase/export machinery of the inner membrane (OXA 

complex). For some substrates, the OXA complex also participates in the so-called 

conservative sorting pathway (Hell et al., 1997; Hell et al., 1998). This pathway 

directs nucleus-encoded proteins from the cytosol into the matrix and from there into 

the inner membrane (Neupert and Herrmann, 2007). 

1.2.3 Cotranslational and posttranslational protein import 

A multitude of studies indicate that most mitochondrial proteins are translated on 

cytosolic ribosomes and posttranslationally imported into the organelle (Neupert, 
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1997; Neupert and Herrmann, 2007). First observations of posttranslational protein 

import into mitochondria were made by in vivo pulse and pulse-chase experiments 

using intact cells. It has been reported that fully translated precursors of 

mitochondrial proteins appear first in the cytosol and subsequently are converted into 

mature mitochondrial forms (Hallermayer et al., 1977). Importantly, the import 

kinetics vary for different precursor proteins and protein translocation into 

mitochondria continues even after the inhibition of translation by cycloheximide 

(Hallermayer et al., 1977). This strongly suggests that protein translocation into 

mitochondria is indeed not coupled to translation. 

 The findings that mitochondrial protein import can occur efficiently in a 

posttranslational manner in vivo were further substantiated by in vitro studies 

analyzing the import of proteins into isolated mitochondria. Using cell-free translation 

systems, protein synthesis and translocation into mitochondria can be entirely 

separated (Hartl et al., 1986). When precursor proteins are first translated and 

released into the postribosomal supernatant, mitochondrial import can be observed 

after the addition of isolated mitochondria to the supernatant. 

 Despite various observations that support a model of predominantly 

posttranslational protein import into mitochondria, cotranslational and 

posttranslational sorting modes are not mutually exclusive and appear to occur in 

parallel. In fact, it has been reported that cytoplasmic 80S ribosomes are associated 

with mitochondria (Kellems et al., 1974, 1975; Kellems and Butow, 1972, 1974) and 

that mitochondrial proteins are translated from both mitochondria-bound as well as 

free cytosolic polysomes (Suissa and Schatz, 1982). Moreover, distinct mRNAs 

encoding mitochondrial proteins appear to be selectively translated at the surface of 

the outer mitochondrial membrane. Targeting of mRNAs to mitochondria is mediated 

by diverse mechanisms (Fox, 2012) and for some proteins increases import 

efficiency (Margeot et al., 2002). 

 In general, since most mitochondrial proteins contain N-terminal targeting 

signals, it is conceivable that import initiates as soon as the N-terminus of a nascent 

polypeptide binds the import receptors at the outer mitochondrial membrane. 

Consistently, it has been reported that the enrichment of certain mRNAs at the 

mitochondrial surface requires translation and is dependent on the presequence-

binding receptor Tom20 (Eliyahu et al., 2010). 

 In summary, compelling evidence indicates that mitochondrial protein import 

is not generally coupled to translation and occurs posttranslationally as well as 

cotranslationally in vivo. However, in any case, it appears to be a fast and efficient 
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process and cytosolic pools of probably most mitochondrial precursor proteins are 

barely detectable in vivo (Ades and Butow, 1980b). 

1.2.4 A role for cytosolic factors in mitochondrial protein import 

Protein transport into mitochondria requires the translocation of polypeptides through 

narrow import pores (Ahting et al., 2001; Schwartz and Matouschek, 1999; Truscott 

et al., 2001). Thus, preproteins adopt a largely unfolded state during import and 

usually traverse the mitochondrial import channels as linear chains (Rassow et al., 

1990; Schwartz et al., 1999). In fact, it has been reported that the import of 

mitochondrial preproteins is impaired when their three-dimensional structure is 

stabilized (Eilers and Schatz, 1986; Rassow et al., 1989; Wienhues et al., 1991). 

Empowered by an electrochemical proton gradient and an ATP-driven import motor, 

mitochondria can actively unfold preproteins (Matouschek et al., 2000). However, to 

facilitate import, cytosolic mitochondrial precursor proteins are thought to generally 

adopt a more loosely folded state than their mature forms (Neupert, 1997). 

Remarkably, this might be partially attributed to the presence of N-terminal 

presequences, which can interfere with the folding of precursor proteins prior to 

import (Hoogenraad et al., 2002; Lain et al., 1995). Nevertheless, the import 

competence of mitochondrial preproteins is in many cases maintained by cytosolic 

factors, which stabilize unfolded conformations and prevent their aggregation in the 

cytosol. The existence of such factors was in fact suggested early on by the 

observation that rabbit reticulocyte lysates (Argan et al., 1983; Miura et al., 1983; 

Ohta and Schatz, 1984; Pfanner and Neupert, 1987; Randall and Shore, 1989; 

Sheffield et al., 1986) as well as yeast cytosolic extracts (Murakami et al., 1988; Ohta 

and Schatz, 1984) stimulate the uptake of polypeptides into isolated mitochondria 

in vitro. 

1.2.4.1 HSP70 and HSP90 

First evidence for a function of molecular chaperones in mitochondrial protein import 

came from studies on the SSA subfamily of HSP70s in yeast. Conditional depletion 

of this family of chaperones results in the accumulation of mitochondrial precursor 

proteins in vivo (Deshaies et al., 1988). In agreement with these findings, it has been 

reported that SSA family HSP70s also stimulate protein translocation into isolated 

mitochondria in vitro (Murakami et al., 1988). 

 Similar to yeast cells, cytosolic chaperones are also involved in mitochondrial 

protein import in mammals. In vitro import assays have revealed that the HSP70 

isoform HSC70 delays the folding and inhibits the aggregation of purified 
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mitochondrial precursor proteins (Sheffield et al., 1990). Moreover, HSC70 stimulates 

the translocation of proteins into isolated rat liver mitochondria (Terada et al., 1995). 

 The activity of HSP70 proteins is regulated by a variety of co-chaperones that 

stimulate the ATPase activity of HSP70 or function as nucleotide exchange factors 

(NEFs). To date, no evidence for an involvement of NEFs in mitochondrial protein 

import has been provided. However, the yeast HSP40 protein Ydj1 (Atencio and 

Yaffe, 1992; Caplan et al., 1992) as well as its orthologs Dj2 and Dj3 in human cells 

(Kanazawa et al., 1997; Terada and Mori, 2000) have been linked to the biogenesis 

of mitochondrial proteins and are required for the import of at least a subset of 

proteins in cell-free assays. 

 Besides HSP70, mammalian cells employ the HSP90 chaperone system to 

stimulate protein import into mitochondria. Remarkably, HSP70 and HSP90 

chaperones not only maintain the import competence of precursor proteins but also 

actively deliver preproteins to the Tom70 import receptor at the outer mitochondrial 

membrane (Young et al., 2003). 

1.2.4.2 Mitochondrial import stimulation factor (MSF) 

The mitochondrial import machinery of mammalian cells appears generally more 

complex than the corresponding system in yeast. Consistently, further cytosolic 

factors with active targeting functions have been identified. Best-characterized 

among these proteins is the mitochondrial import stimulation factor (MSF), which was 

purified from rat liver cytosol using a presequence peptide coupled to an affinity 

matrix (Hachiya et al., 1993). MSF belongs to the family of 14-3-3 proteins (Alam et 

al., 1994) and facilitates the import of multiple preproteins with different types of 

targeting signals (Hachiya et al., 1993). Thus, it has been suggested that MSF might 

generally bind mitochondrial precursor proteins independently of N-terminal 

presequences (Hachiya et al., 1993). 

 Import stimulation by MSF seems to be based on two different activities. First, 

MSF binds mitochondrial preproteins and maintains their import competence in a 

chaperone-like manner. Additionally, the chaperone-like functions of MSF comprise 

an ATP-dependent disaggregation activity, which enables it to resolubilize 

aggregated mitochondrial precursor proteins (Hachiya et al., 1993; Hachiya et al., 

1994; Komiya et al., 1994). Second, MSF fulfills an active targeting function and 

guides proteins to the mitochondrial surface. MSF-dependent mitochondrial protein 

import seems to act in parallel to HSP70-dependent pathways and delivers client 

proteins to the mitochondrial import receptor Tom70. At the TOM complex, MSF is 

released in an ATP-dependent manner and the preproteins are transferred to the 
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import receptors Tom20 and Tom22. Subsequently, translocation through the outer 

mitochondrial membrane is initiated (Hachiya et al., 1995; Komiya et al., 1997; 

Komiya et al., 1996). 

1.2.4.3 Targeting factor and presequence binding factor (PBF) 

Apart from MSF, a number of cytosolic factors specifically implicated in protein 

transport into mitochondria have been identified. One example is a 28 kDa protein 

termed targeting factor, which stimulates mitochondrial import of several preproteins 

in vitro. Interestingly, targeting factor also increases the amount of preproteins bound 

to the mitochondrial outer membrane, suggesting that it actively delivers polypeptides 

to the TOM complex (Ono and Tuboi, 1988, 1990a, b). 

 A further import-stimulating protein termed presequence binding factor (PBF) 

has been isolated by its binding specificity towards the precursor of rat ornithine 

carbamoyltransferase (Murakami and Mori, 1990). PBF has been shown to maintain 

the import competence of certain mitochondrial precursor proteins in cell-free import 

assays and to stimulate the import of several polypeptides into isolated mitochondria 

(Murakami and Mori, 1990; Murakami et al., 1992). 
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1.3 Cellular mechanisms of protein quality control 
Accurate folding into a distinct three-dimensional structure is a crucial prerequisite for 

the functions of cellular proteins. However, proteins are structurally dynamic 

macromolecules and misfolded proteins can arise from different sources such as 

errors during folding of de novo synthesized polypeptides or stress-induced unfolding 

of native proteins. In many cases, non-native proteins expose stretches of 

hydrophobic amino acids, which are normally buried inside the structure of an 

appropriately folded protein. Therefore, protein misfolding not only interferes with the 

functions of proteins but also causes the formation of insoluble and potentially 

cytotoxic aggregates. Consequently, cells have evolved a sophisticated network of 

surveillance mechanisms that monitor accurate protein folding and maintain the 

integrity of the proteome (proteostasis). 

1.3.1 Recognition of non-native proteins by molecular chaperones 

Central component of cellular protein quality control is a system of molecular 

chaperones, which recognize and bind non-native proteins. Many molecular 

chaperones were originally discovered as heat shock-induced proteins and the major 

families of these heat shock proteins (HSPs) are classified according to their 

molecular weight (HSP100, HSP90, HSP70, HSP60, HSP40 and small HSPs) (Hartl 

et al., 2011). Each class of molecular chaperones utilizes a distinct mode of client 

binding and usually possesses a specific set of substrate proteins. However, in many 

cases, non-native protein conformations are recognized by the interaction of HSPs 

with hydrophobic peptide segments, which are exposed by unfolded or misfolded 

proteins. 

 HSP70 proteins are part of a major ATP-dependent chaperone system that 

functions ubiquitously throughout the cell and interacts with a multitude of substrate 

proteins. HSP70 proteins are involved in a wide range of cellular processes including 

de novo folding of nascent polypeptides, refolding of misfolded or aggregated 

proteins, targeting of mitochondrial (see section 1.2.4) and secretory proteins and 

regulation of protein activity (Mayer and Bukau, 2005). On the molecular level, the 

functions of HSP70s rely on three different but related activities: promoting the 

solubility of unfolded proteins, assisting the folding process into the native state and 

resolubilization of aggregated protein species. All of these activities appear to be 

based on the property of HSP70 to bind short linear peptide segments, which are 

enriched in hydrophobic and basic amino acids (Rudiger et al., 1997; Zhu et al., 

1996). Reversible binding to these hydrophobic stretches accounts for the solubility-

promoting activity of HSP70 and might also provide time for the folding of substrate 
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proteins to proceed. Moreover, HSP70 has been implicated in active disaggregation 

processes (Diamant et al., 2000; Nillegoda et al., 2015; Rampelt et al., 2012), where 

it often cooperates with disaggregases of the HSP100 family (Glover and Lindquist, 

1998; Goloubinoff et al., 1999). 

 Substrate interactions of HSP70s are regulated by repeated cycles of ATP 

binding, hydrolysis and ADP release during which HSP70 switches between a high-

affinity ATP-bound state and a low-affinity ADP-bound state. Factors that stimulate 

the ATPase activity of HSP70 belong to the diverse class of J domain-containing co-

chaperones (HSP40s). HSP40 proteins also interact directly with substrate proteins 

and recruit HSP70 to binding sites in close proximity, thereby contributing to the 

substrate specificity and functional diversity of the HSP70 chaperone system 

(Kampinga and Craig, 2010). Besides HSP40, the ATPase cycle of HSP70 is 

regulated by nucleotide exchange factors (NEFs) (Bracher and Verghese, 2015a, b). 

NEFs stimulate the release of ADP + Pi from HSP70 and allow a new round of ATP 

binding, which in turn triggers substrate release. 

In addition to the HSP70 system, HSP90 and HSP60 represent further 

families of ATP-dependent chaperones, which function in protein folding and protein 

quality control (Kim et al., 2013; Taipale et al., 2010). Moreover, a number of ATP-

independent small heat shock proteins (sHSPs) possess chaperone-like activities 

and participate in the HSP-dependent protective systems, which counteract the 

aggregation of cellular proteins (Garrido et al., 2012). 

1.3.2 Functions of the ubiquitin-proteasome system in protein quality control 

The maintenance of proteostasis by cellular protein quality control systems is 

critically balanced by the triage decision whether non-native proteins are refolded or 

degraded. Remarkably, for the clearance of proteins, which are refractory to 

refolding, cellular chaperone systems closely collaborate with the ubiquitin-

proteasome system (UPS). This functional interconnection of HSPs, ubiquitin E3 

ligases and the 26S proteasome ultimately mediates the degradation of the majority 

of soluble misfolded proteins in a cell (Figure 5). 

 A prototypical example for the collaboration of chaperones with the UPS is 

the mammalian ubiquitin E3 ligase carboxy terminus of HSC70-interacting protein 

(CHIP). CHIP interacts with HSP70 and HSP90 via its tetratricopeptide domain and 

catalyzes the ubiquitylation of HSP70 and HSP90 substrates via its U-box domain 

(Ballinger et al., 1999; Connell et al., 2001; Demand et al., 2001; Jiang et al., 2001; 

Murata et al., 2001). CHIP thereby mediates the chaperone-dependent proteasomal 

degradation of various proteins including the glucocorticoid receptor (Connell et al., 
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2001), the receptor tyrosine kinase ErbB2 (Xu et al., 2002) and generally 

aggregation-prone chaperone substrates (Meacham et al., 2001; Petrucelli et al., 

2004). 

 Interestingly, while CHIP appears to be a central factor of protein quality 

control in higher eukaryotes, links between chaperones and UPS-mediated protein 

degradation have also been identified in organisms, which lack a functional homolog 

of CHIP. For instance, in yeast, cytosolic misfolded proteins are degraded by a 

unique pathway that involves the parallel activities of the cytosolic ubiquitin E3 ligase 

Ubr1 and the nuclear E3 ligase San1 (Eisele and Wolf, 2008; Heck et al., 2010; 

Nillegoda et al., 2010; Prasad et al., 2010). It has been reported that substrates of 

this pathway are degraded in an HSP70-dependent manner (Park et al., 2007) and 

Ubr1-mediated ubiquitylation is indeed stimulated by HSP70 (Heck et al., 2010; 

Nillegoda et al., 2010). 

 

 
 
Figure 5. Pathways mediating the degradation of misfolded proteins by the ubiquitin-proteasome 
system. Various quality control components mediate the recognition, ubiquitylation and degradation of 
misfolded proteins. Particularly, molecular chaperones of the HSP70 and HSP40 families are involved in 
the recognition of non-native protein conformers. In concert with molecular chaperones, dedicated 
ubiquitin E3 ligases catalyze the ubiquitin (Ub) modification of misfolded proteins. Examples for ubiquitin 
E3 ligases involved in protein quality control are depicted (Ubr1/2, San1, Rsp5, Hul5 and Doa10 in 
S. cerevisiae; CHIP in vertebrates). Nuclear import of misfolded proteins for San1-mediated degradation 
requires specific HSP40 proteins (Sis1 in S. cerevisiae). The degradation of ubiquitylated substrates is 
ultimately mediated by the 26S proteasome. 
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Moreover, delivery of cytosolic substrates to the nuclear ubiquitin E3 ligase San1 

requires HSP70 (Prasad et al., 2010) and the HSP40 protein Sis1 (Park et al., 2013), 

suggesting a dual role of chaperone factors in the degradation of misfolded cytosolic 

proteins. Remarkably, the transport of non-native proteins into the nucleus for 

degradation appears to be conserved among species and requires the Sis1 homolog 

DnaJB1 in mammalian cells (Park et al., 2013). 

 Protein misfolding can occur spontaneously in cells but is strongly induced by 

stress conditions such as heat shock. Under these circumstances, a variety of 

proteins are targeted for degradation by the proteasome. In yeast, heat shock-

induced ubiquitylation exquisitely involves two ubiquitin E3 ligases, Hul5 (Fang et al., 

2011) and Rsp5 (Nedd4 in humans) (Fang et al., 2014). Notably, heat shock-induced 

Rsp5-dependent ubiquitylation also requires the HSP40 protein Ydj1 (Fang et al., 

2014), thus providing a further link between chaperones and the UPS in protein 

quality control. 

 Additional components of the ubiquitin system that have been implicated in 

protein quality control in yeast are the Ubr1 homolog Ubr2 (Nillegoda et al., 2010) 

and the ER-bound E3 ligase Doa10, which mediates the clearance of a number of 

soluble cytosolic and nuclear proteins (Metzger et al., 2008; Ravid et al., 2006; 

Swanson et al., 2001). 

1.3.3 A role for SUMO in protein quality control 

Despite the discovery of hundreds of potential SUMO substrates in yeast and 

mammalian cells, the molecular consequences and functions of SUMOylation have 

been revealed for only a subset of SUMO substrates. However, SUMO has been 

widely implicated as a “stress protein”. Similar to ubiquitylation, SUMOylation is 

strongly induced by diverse types of stress (Saitoh and Hinchey, 2000; Zhou et al., 

2004), particularly by those that cause widespread protein misfolding such as heat 

shock (HS) (Golebiowski et al., 2009; Hendriks et al., 2014; Seifert et al., 2015) or 

proteasome inhibition (Castoralova et al., 2012; Hendriks et al., 2014; Tatham et al., 

2011). Remarkably, although the exact function of HS-induced SUMOylation is still a 

matter of debate (Liebelt and Vertegaal, 2016; Niskanen et al., 2015; Seifert et al., 

2015), it has been suggested that SUMO might exhibit chaperone-like activities that 

modulate the homeostasis of protein complexes at chromatin (Seifert et al., 2015). 

 Intriguing links between the SUMO system and proteostasis have also been 

revealed by the observation that SUMOylation targets multiple aggregation-prone 

proteins involved in neurodegenerative diseases (Krumova and Weishaupt, 2013; 

Liebelt and Vertegaal, 2016). It has been reported that SUMOylation modulates the 
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aggregation and stability of several disease-associated polyQ proteins including 

mutant Huntingtin (O'Rourke et al., 2013; Steffan et al., 2004), Ataxin-1 (Guo et al., 

2014), Ataxin-7 (Janer et al., 2010) and the androgen receptor (Mukherjee et al., 

2009). Moreover, SUMO has been shown to modify proteins such as Amyloid-β (Li et 

al., 2003; Zhang and Sarge, 2008) and α-Synuclein (Abeywardana and Pratt, 2015; 

Krumova et al., 2011), which are involved in Alzheimer’s and Parkinson’s disease. 

Remarkably, in many cases SUMOylation appears to increase the solubility of 

aggregation-prone proteins, thus reducing the extent of aggregate formation 

(Abeywardana and Pratt, 2015; Guo et al., 2014; Janer et al., 2010; Krumova et al., 

2011; Mukherjee et al., 2009; Steffan et al., 2004; Zhang and Sarge, 2008). It has 

therefore been proposed that SUMO might function as a “protein solubility enhancer” 

(Krumova and Weishaupt, 2013). Additionally, it has been reported that SUMOylation 

promotes the clearance of multiple aggregation-prone substrates by the ubiquitin-

proteasome system (Guo et al., 2014), indicating a functional cooperation of the 

SUMO and ubiquitin systems in protein quality control. 

 Taken together, SUMOylation appears to play a widespread role in the 

maintenance of proteostasis and might be an integral part of the cellular stress 

response interconnected to other protein quality control systems. However, the 

molecular mechanisms responsible for the functions of SUMO as a chaperone-like 

factor remain largely undefined. 
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2 AIM OF THIS STUDY 

Since its discovery in the late 1990s (Mahajan et al., 1997; Matunis et al., 1996), 

substrates of the small ubiquitin-like modifier (SUMO) have been subject of extensive 

research. It has become evident that protein modification by SUMO affects a 

substantial part of the proteome and a multitude of nuclear and cytosolic proteins 

have been identified as SUMO substrates. However, current knowledge about the 

SUMO system strongly indicates that organellar proteins, for instance proteins 

residing inside mitochondria, are hidden from SUMO enzymes upon import (Flotho 

and Melchior, 2013). Accordingly, although a small number of mitochondrial proteins 

have been suggested as potential SUMO substrates in large-scale studies (Denison 

et al., 2005; Hannich et al., 2005; Panse et al., 2004; Wohlschlegel et al., 2004; 

Wykoff and O'Shea, 2005; Zhou et al., 2004), the question whether protein 

SUMOylation targets substrates prior to import into mitochondria has not been 

elucidated so far. 

 At the onset of this study, our laboratory had established a sensitive, mass 

spectrometry-based approach to study SUMOylated proteins in yeast (Psakhye and 

Jentsch, 2012, 2016). This experimental approach identified several potential SUMO 

substrates that were annotated as mitochondrial proteins. Struck by this remarkable 

finding, mitochondria-targeted proteins seemed to be an exceptionally fascinating 

group of novel SUMO substrates to study. Thus, the first objective of this study was 

to elucidate whether these proteins are indeed modified by SUMO in vivo. To this 

end, the SUMOylation of individual candidate proteins was analyzed in direct assays, 

thereby additionally allowing the identification of SUMO attachment sites and to study 

the involvement of SUMO E3 ligases. Based on this initial biochemical analysis, a 

second major aim of this study was to investigate the SUMOylation of mitochondria-

targeted proteins in terms of regulation and function. 

 In the context of proteins transported into an organelle, it seemed particularly 

interesting to evaluate whether their SUMOylation was dependent on import. To this 

end, import-deficient mutant variants of mitochondria-targeted proteins were 

generated and subsequently analyzed in SUMOylation assays. A further objective 

was to screen for conditions and yeast mutants in which the SUMOylation of 

mitochondria-targeted substrates is increased. This analysis aimed to identify factors, 

which regulate the modification and to eventually reveal the molecular functions of 

mitochondria-targeted protein SUMOylation. 
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3 RESULTS 

3.1 Discovery of mitochondria-targeted proteins as SUMO substrates 
Systematic analyses of SUMO substrates have established an involvement of 

SUMOylation in multiple nuclear and cytosolic pathways (Geiss-Friedlander and 

Melchior, 2007). Notably, SUMOylation might also be involved in mitochondrial 

organization in yeast (Makhnevych et al., 2009) and has been implicated in the 

regulation of mitochondrial fission in mammalian cells (Braschi et al., 2009; Harder et 

al., 2004). However, convincing evidence for SUMOylation within inner mitochondrial 

compartments has not been provided to date and the question whether SUMOylation 

targets proteins “en route” to mitochondria has not been investigated so far. 

3.1.1 A subset of mitochondrial matrix proteins are modified by SUMO in vivo 

To gain deeper insights into the SUMO-modified proteome in yeast, our laboratory 

established a SILAC-based proteomics approach, which involves the purification of 
HisSUMO conjugates from yeast cells followed by mass spectrometric (MS) analysis 

(Psakhye and Jentsch, 2012, 2016) (Figure 6A). This method relies on the usage of 

an N-terminal heptahistidine tag, which is compatible with the Ni-NTA-based 

purification of HisSUMO-modified proteins under fully denaturing conditions. Thus 

transient SUMO modifications are preserved and the co-purification of interacting 

proteins is strongly reduced. 

 Intriguingly, among a number of more than 1000 potential SUMO substrates 

(Ivan Psakhye, Fabian den Brave and Stefan Jentsch; unpublished data), this 

approach revealed a set of 86 proteins that were annotated as proteins of inner 

mitochondrial subcompartments (Figure 6B). This group of potential SUMO 

substrates included a small number of intermembrane space proteins, whereas 

proteins of the inner mitochondrial membrane and the mitochondrial matrix were 

overrepresented. Importantly, only a minor fraction (less than 10 %) of potential 

SUMO substrates were annotated as proteins with dual localization (mitochondrial 

and cytosolic), suggesting the intriguing possibility that proteins targeted exclusively 

to mitochondria are indeed SUMOylated in vivo. 

 To confirm the SUMOylation of individual proteins in direct assays, several 

candidate proteins were fused to C-terminal 3HA epitopes and expressed from their 

endogenous and the ADH1 promoter, respectively. Notably, the HA epitope tag was 

selected because it lacks lysine residues and therefore avoids the introduction of 

potential SUMO acceptor sites into a corresponding fusion protein. 
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Figure 6. A mass spectrometry-based approach identifies mitochondria-targeted proteins as 
potential SUMO substrates. (A) Schematic representation of the experimental setup used to identify 
novel SUMO conjugates in the yeast S. cerevisiae. Yeast cells expressing N-terminally His-tagged 
SUMO from the ADH1 promoter were employed to purify HisSUMO conjugates by denaturing Ni-NTA 
pull-downs. The enriched SUMO substrates were then analyzed by tryptic digestion and liquid 
chromatography-tandem mass spectrometry (LC-MS/MS). (B) Localization and relative 
submitochondrial distribution of 86 mitochondrial proteins identified as potential SUMO substrates. 
Abbreviations indicate dual localization (dual loc.), mitochondrial intermembrane space (IMS) and 
mitochondrial inner membrane (IM). 

 

 To subsequently detect SUMOylated species of HA-tagged candidate 

proteins, SUMO conjugates were isolated from yeast cells co-expressing HisSUMO 

from the ADH1 promoter (Figure 7A). As controls, wild type yeast and cells solely 

expressing HisSUMO or the HA-tagged candidate protein were included to ensure 

specificity of the approach. Moreover, to control for pull-down efficiency in these 

assays, the SUMOylation of endogenous 3-phosphoglycerate kinase (Pgk1) was 

analyzed. 

 Strikingly, western blot analysis of the enriched SUMO conjugates confirmed 

several substrates identified by MS analysis and demonstrated that a subset of 

structurally and functionally distinct mitochondrial matrix proteins are indeed modified 

by SUMO in vivo. These proteins include Ilv6 (Figure 7B), the regulatory subunit of 

acetolactate synthase involved in branched-chain amino acid biosynthesis (Cullin et 

al., 1996; Pang and Duggleby, 1999), Adh3 (Figure 7C), a mitochondrial alcohol 

dehydrogenase isoform (Lutstorf and Megnet, 1968; Sugar et al., 1970) and Mrpl23 

(Figure 7D), a mitochondrial ribosomal protein (Kitakawa et al., 1997). Moreover, all 

confirmed substrates are nuclear-encoded proteins and contain N-terminal MTSs, 

which enable their import into the mitochondrial matrix. 

 SUMOylation of each of these substrates gave rise to a single slower-

migrating protein form, which could be specifically detected in samples from cells 

expressing the respective HA-tagged protein in combination with HisSUMO (Figure 

7B-D). The apparent molecular weights of these slower-migrating species were 
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increased by roughly 20 kDa compared to the unmodified proteins, which is 

characteristic for the modification of substrate proteins with a single HisSUMO moiety 

(Hoege et al., 2002; Psakhye and Jentsch, 2012). Notably, only a small fraction of 

each SUMO substrate was modified at steady state and SUMOylated protein species 

could not be detected in total cell extracts. 

 

 
 
Figure 7. A number of mitochondrial matrix proteins are modified by SUMO in vivo. (A) Schematic 
depiction of the experimental design used to analyze the SUMOylation of individual proteins. Total cell 
extracts (Inputs) were prepared by TCA precipitation. SUMO conjugates were purified by denaturing 
Ni-NTA pull-downs (Ni-NTA PD) from cells expressing HisSUMO from the ADH1 promoter. Proteins were 
separated by SDS-PAGE on 12 % Bis-Tris gels and analyzed by western blotting using specific 
antibodies. (B) Identification of Ilv6 as SUMO substrate. Denaturing Ni-NTA pull-downs (Ni-NTA PD) 
were performed to isolate HisSUMO conjugates from different yeast strains. Cells expressing HisSUMO 
from the ADH1 promoter or/and Ilv6 fused to a C-terminal 3HA epitope from the endogenous promoter 
are indicated. HisSUMO conjugates and proteins from total cell extracts (Inputs) (prepared by TCA 
precipitation) were separated on 12 % Bis-Tris gels and analyzed by western blotting using HA epitope- 
and Pgk1-specific antibodies. Pgk1 SUMOylation was analyzed to control for pull-down efficiency. 
Levels of unmodified Pgk1 served as loading control. (C) Identification of Adh3 as SUMO substrate. 
Similar to (B) but with cells expressing C-terminally 3HA-tagged Adh3 from the endogenous promoter. 
(D) Identification of Mrpl23 as SUMO substrate. Similar to (B) but with cells harboring a plasmid that 
expresses C-terminally 3HA-tagged Mrpl23 from the ADH1 promoter. 

 

3.1.2 SUMOylation of mitochondria-targeted proteins is mediated by specific 

SUMO E3 ligases 

In most cases, the SUMOylation of substrate proteins in vivo is strongly dependent 

on SUMO E3 ligases. To test whether the SUMOylation of mitochondria-targeted 

proteins is stimulated by distinct SUMO E3 ligases, the levels of SUMO-modified HA-

tagged Ilv6 were analyzed in cells lacking one of the known SUMO E3 ligases Siz1 
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(Δsiz1), Siz2 (Δsiz2), Zip3 (Δzip3) or expressing a ligase-defective mutant variant of 

the essential SUMO E3 enzyme Mms21 (mms21-11). Western blot analysis of 

SUMO conjugates isolated by HisSUMO Ni-NTA pull-downs indicated that the 

SUMOylation of Ilv6 is mediated by Siz1 and to a minor extend by Siz2 (Figure 8A). 

By contrast, Ilv6 SUMOylation was unaltered upon deletion of Zip3, which is 

consistent with its meiosis-specific functions (Agarwal and Roeder, 2000; Cheng et 

al., 2006; Eichinger and Jentsch, 2010). Different from the other E3 ligase mutants, 

mms21-11 cells displayed lower Ilv6 protein levels in total cells extracts. Moreover, 

SUMOylation of both Ilv6 and Pgk1 was impaired in samples from these cells. Since 

it appears unlikely that the cytosolic enzyme Pgk1 is SUMOylated by the strictly 

nuclear E3 ligase Mms21, this suggested an indirect effect that was probably related 

to the slow growth phenotype of this particular mutant (Figure 8B). 

 

 
 
Figure 8. Ilv6 SUMOylation is catalyzed by the SUMO E3 ligases Siz1 and Siz2. (A) Ilv6 
SUMOylation is specifically reduced in cells lacking Siz1 or Siz2. Denaturing HisSUMO Ni-NTA pull-
downs (Ni-NTA PD) from wild type cells, mutants lacking one of the known SUMO E3 ligases Siz1 
(Δsiz1), Siz2 (Δsiz2), Zip3 (Δzip3) or expressing a mutant variant of the SUMO E3 ligase Mms21 that 
lacks E3 ligase activity (mms21-11). All cells used in (A) express C-terminally 3HA-tagged Ilv6 from the 
endogenous promoter. Cells expressing HisSUMO from the ADH1 promoter are indicated. (B) Growth 
phenotypes of yeast strains used in (A). Five-fold serial dilutions of cells were spotted on YPD plates 
and incubated at 30°C for 2 days. 

 

Indeed, Ilv6 SUMOylation was virtually absent in double deletion mutants lacking 

both Siz1 and Siz2 (Δsiz1 Δsiz2) (Figure 9A), demonstrating that these two SUMO 

E3 ligases of the conserved Siz/PIAS protein family mediate the modification of Ilv6. 

Strikingly, with highly similar contributions, Siz1 and Siz2 also catalyzed the 

SUMOylation of Adh3 (Figure 9B) and Mrpl23 (Figure 9C), demonstrating that all 

mitochondria-targeted SUMO substrates identified in this study require an identical 

combination of SUMO E3 ligases for modification. 
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Figure 9. SUMOylation of mitochondria-targeted proteins requires the combined activity of the 
SUMO E3 ligases Siz1 and Siz2. (A) Ilv6 SUMOylation is virtually absent in cells lacking the SUMO E3 
ligases Siz1 and Siz2. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from wild type cells, 
mutants lacking Siz1 (Δsiz1), Siz2 (Δsiz2) and the double deletion mutant (Δsiz1 Δsiz2). (B) 
SUMOylation of Adh3 is almost undetectable in cells lacking the SUMO E3 ligases Siz1 and Siz2. 
Similar to (A) but with cells expressing C-terminally 3HA-tagged Adh3 from the endogenous promoter. 
(C) SUMOylation of Mrpl23 almost undetectable in cells lacking the SUMO E3 ligases Siz1 and Siz2. 
Similar to (A) but with cells harboring a plasmid that expresses C-terminally 3HA-tagged Mrpl23 from 
the ADH1 promoter. 

 

3.1.3 Identification of SUMO acceptor sites of mitochondria-targeted proteins 

SUMO substrates are often modified at one or multiple specific lysine residues. To 

identify the SUMO acceptor sites of Ilv6, all lysine residues of the protein were 

individually replaced by arginine. The corresponding KR mutant variants were tagged 

with C-terminal 3HA epitopes and expressed from the endogenous promoter in 

yeast. Among these variants, a mutant at Lys 260 (K260R) strongly reduced the 

levels of Ilv63HA-SUMO conjugates (Figure 10A), indicating that this particular lysine 

residue is the major SUMO attachment site of Ilv6. Sequential replacement of three 

additional lysine residues by arginine (K218R, K284R and K296R) further decreased 

the SUMOylation of Ilv6 in a stepwise manner. Accordingly, a mutant variant lacking 
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all four lysine residues (ilv63HA-K218R, K260R, K284R, K296R termed ilv63HA-4KR) 

was almost completely refractory to SUMOylation (Figure 10A and B). 

 Interestingly, analysis of Ilv6 SUMOylation using different KR mutant variants 

also revealed that modification of individual lysine residues of Ilv6 gives rise to 

differentially migrating protein species (Figure 10A). This suggests that the relative 

electrophoretic mobility of Ilv6-SUMO conjugates is dependent on the position of the 

modified lysine residues. Similar findings have been made for the SUMO substrates 

PCNA (Hoege et al., 2002) and Rad52 (Sacher et al., 2006), further confirming that 

the gel migration behavior of SUMO-protein conjugates not only depends on their 

size but also on the positions of the branched peptides. 

 Ilv6 contains two lysine residues (K158 and K218) embedded within a 

ΨKX(D/E)-type SUMOylation consensus motif. However, only one of these lysine 

residues (K218) was detectably SUMOylated in wild type cells and the modification 

of Lys 218 occurred with much lower efficiency than the SUMOylation of the non-

consensus Lys 260. Thus, the SUMOylation of Ilv6 is not restricted to SUMOylation 

consensus sites and occurs with even stronger preference at alternative lysine 

residues. 

 In case of Adh3, computational analysis using the GPS-SUMO software 

(Zhao et al., 2014) identified two potential SUMO attachment sites at Lys 305 and 

Lys 375. Individual and simultaneous replacement of these two lysine residues by 

arginine revealed a prominent modification of Adh3 at Lys 305, which is embedded 

within a SUMOylation consensus motif (Figure 10C and D). 

 Remarkably, all SUMO attachment sites identified in Ilv6 and Adh3 appeared 

to exclusively localize to C-terminal segments of these proteins (Figure 10B and D). 

Similarly, SUMOylation of C-terminal acceptor sites could be observed for Mrpl23, 

where the simultaneous mutation of the two most C-terminal lysine residues (K155 

and K163) to arginine reduced the levels of Mrpl233HA-SUMO conjugates by around 

50 % (Figure 10E and F). Additionally, SUMO conjugates of the resulting mutant 

variant (mrpl233HA-K155R, K163R) showed an altered and more dispersed 

electrophoretic mobility compared to conjugates of the wild type protein. This 

suggests that Lys 155 and Lys 163 indeed serve as primary SUMO attachment sites 

of Mrpl23 and that alternative lysine residues are modified when Lys 155 and 

Lys 163 have been experimentally removed. Notably, neither of these two lysine 

residues is embedded within a ΨKX(D/E)-type sequence motif, confirming that 

mitochondria-targeted SUMO substrates are modified at both consensus and non-

consensus SUMOylation sites. 
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Figure 10. The SUMO acceptor lysines of mitochondria-targeted proteins. (A) Ilv6 SUMOylation 
occurs at multiple lysine residues. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from cells 
harboring plasmids that express C-terminally 3HA-tagged Ilv6 or various KR mutant variants as 
indicated from the endogenous promoter. (B) Schematic representation of the Ilv6 protein indicating the 
positions of four SUMO acceptor lysines (grey triangles). The mitochondrial targeting sequence (MTS) is 
depicted in green, the ACT (aspartate kinase, chorismate mutase and TyrA) domain in blue and the 
ALS_ss_C (acetolactate synthase small subunit C-terminus) domain in black. (C) Adh3 is SUMOylated 
at Lys 305 (K305). Similar to (A) but with cells harboring plasmids expressing C-terminally 3HA-tagged 
Adh3 or the indicated KR mutant variants from the GAL1 promoter. (continued on next page) 
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(legend to Figure 10 continued) (D) Schematic representation of the Adh3 protein and the position of 
the SUMO acceptor site at Lys 305. The mitochondrial targeting sequence (MTS) is depicted in green, 
the GroES-like domain in grey and the zinc-binding domain in blue. (E) Identification of two SUMO 
acceptor lysines in Mrpl23. Similar to (A) but with cells harboring plasmids expressing C-terminally 3HA-
tagged Mrpl23 or the indicated KR mutant variants from the ADH1 promoter. (F) Schematic 
representation of the Mrpl23 protein and the localization of two SUMO acceptor sites (Lys 155 and 
Lys 163). The mitochondrial targeting sequence is depicted in green and the ribosomal L13 domain in 
grey. 

 

3.1.4 SUMOylation of mitochondria-targeted proteins is import-independent 

All proteins identified as novel SUMO substrates in this study are nuclear-encoded 

proteins. These proteins are synthesized on cytosolic ribosomes and subsequently 

imported into mitochondria. Hence, the important questions arose, at which 

biogenesis stage the SUMOylation of mitochondria-targeted proteins occurs and 

whether the modification is linked to their import into the mitochondrial matrix. 

 To clarify theses question, a series of import-deficient mutant Ilv6 variants 

lacking the N-terminal MTS were generated (Figure 11A). The design of these 

variants was based on database annotations (UniProt) and computational MTS 

prediction, which suggested two potential processing sites of the Ilv6 prepeptide after 

Cys 24 (UniProt and TargetP) and Val 94 (MitoProt II), respectively. Moreover, as an 

“intermediate” between the two predictions, an Ilv6 variant lacking amino acid 2-55 

was generated. 

 Microscopic analysis of different Ilv6 constructs fused to GFP confirmed the 

mitochondrial localization of full-length Ilv6 and demonstrated that removal of an N-

terminal 24-amino-acid peptide (Δmts-ilv6GFP variant I) was sufficient to prevent 

mitochondrial import (Figure 11B). The presumably cytosolic localization of the 

resulting deletion mutant is in line with a previous study on the catalytic subunit of 

yeast acetolactate synthase (Ilv2), which reported that MTS deletion causes a similar 

mislocalization of Ilv2 to the cytosol (Dasari and Kolling, 2011). 

 To subsequently analyze the SUMOylation of the import-deficient Ilv6 

variants, all truncation mutants were fused to C-terminal 3HA epitopes and 

expressed from the inducible GAL1 promoter. In the corresponding western blot 

assays, expression of full-length Ilv6 gave rise to a prominent double band 

representing the Ilv6 precursor and a faster-migrating mature form of Ilv6 (Figure 

12A). As expected, all N-terminally truncated Ilv6 mutants yielded single bands when 

detected with an HA-specific antibody (Figure 12A). Notably, the Ilv6 variant lacking 

amino acid 2-24 displayed a similar electrophoretic mobility as the mature form, 

suggesting that proteolytic processing of Ilv6 by MPP indeed occurs after or in close 

proximity to Cys 24. 
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Figure 11. Generation of import-incompetent mutant variants of a mitochondria-targeted protein. 
(A) Schematic representation of the Ilv6 protein and three different N-terminally truncated mutant 
variants lacking the MTS (Δmts-ilv6 variant I-III). The N-terminal prepeptide (according to UniProt 
annotation) is depicted in green, the ACT domain in blue and the ALS_ss_C domain in black. (B) 
Deletion of the N-terminal 24-amino-acid prepeptide of Ilv6 is sufficient to prevent mitochondrial import. 
Microscopic analysis of GFP fusion proteins of full-length Ilv6 and a mutant variant lacking the N-
terminal MTS (Δmts-ilv6 variant I). Yeast cell walls were visualized by calcofluor white staining. Scale 
bars represent 20 µm. 

 

Moreover, strikingly, western blot analysis of subsequently isolated HisSUMO 

conjugates demonstrated that all import-deficient variants of Ilv6 were efficiently 

SUMOylated, even at higher levels than the full-length protein (Figure 12A). Thus, 

the SUMO modification of Ilv6 is in fact independent of mitochondrial import and 

does not require the presence of an MTS. 

 Notably, Ilv63HA-SUMO conjugates isolated from strains expressing full-length 

Ilv6 exhibited a similar electrophoretic mobility compared to SUMOylated species of 

the Δmts-ilv63HA variant I. Assuming that SUMOylated Ilv6 precursors migrate slower 
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during gel electrophoresis, this suggests that Ilv6-SUMO conjugates possess a 

proteolytically processed N-terminus also in strains expressing the full-length 

substrate. Therefore, it is conceivable that C-terminally SUMOylated Ilv6 can initiate 

import normally, leading to removal of the N-terminal presequence by MPP in the 

matrix. 

 

 
 
Figure 12. SUMOylation of Ilv6 is independent of mitochondrial import. (A) Import-incompetent Ilv6 
mutant variants are efficiently SUMOylated. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from 
cells harboring plasmids that express C-terminally 3HA-tagged full-length Ilv6 or one of three N-
terminally truncated mutant variants as indicated. All protein variants are expressed from the GAL1 
promoter. To achieve similar protein levels, expression was induced for 30 min (full-length Ilv6) and 
60 min (variant I-III), respectively. Cells expressing HisSUMO from the ADH1 promoter are indicated. 
Ratios of the levels of SUMOylated vs. unmodified proteins were determined by western blot 
quantification using ImageJ (B and C) SUMOylation of import-deficient Ilv6 is stimulated by the SUMO 
E3 ligases Siz1 and Siz2. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from wild type cells, 
mutants lacking Siz1 (Δsiz1), Siz2 (Δsiz2) and the double deletion mutant (Δsiz1 Δsiz2). Cells are 
complemented with plasmids expressing the import-deficient Ilv6 mutant variant I (B) and variant III (C), 
respectively from the GAL1 promoter. Protein expression was induced for 60 min. (D) Identification of 
SUMO modification sites of import-incompetent Ilv6. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA 
PD) from cells harboring plasmids that express import-incompetent Ilv6 (variant I) or a mutant variant, in 
which four lysine residues are replaced by arginine (corresponding to the positions K218, K260, K284 
and K294 of full-length Ilv6). 
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However, a bulky modification like SUMO might be too large to allow threading 

through the narrow mitochondrial import pores and therefore could block the 

completion of mitochondrial import for steric reasons (see section 4.3). 

 Interestingly, when studied in further detail, the SUMOylation of import-

incompetent Ilv6 variants displayed similar characteristics as the modification of the 

full-length protein. In particular, the modification was also dependent on the E3 

ligases Siz1 and Siz2 (Figure 12B and C) and evidently targeted a largely 

overlapping set of SUMO acceptor sites (Figure 12D). 

 To further corroborate that the SUMOylation of mitochondria-targeted 

proteins is independent of mitochondrial import, Adh3 was analyzed as a second 

SUMO substrate. To this end, a C-terminally HA-tagged Adh3 variant lacking the N-

terminal MTS (amino acid 1-27) was generated (Δmts-adh33HA) (Figure 13A) and 

expressed from the GAL1 promoter in yeast. Both, full-length (Adh33HA) and N-

terminally truncated Adh3 (Δmts-adh33HA) gave rise to a single band in western blot 

assays. This indicates that also in this experimental system the vast majority of full-

length Adh3 species are imported into mitochondria and proteolytically processed by 

MPP in the matrix (Figure 13B). 

 Strikingly, Adh3 lacking the MTS was strongly SUMOylated, also at higher 

levels than the full-length protein (Figure 13B). This further confirmed that 

SUMOylation efficiently targets import-incompetent mutant variants of mitochondrial 

proteins. SUMOylation of Δmts-adh33HA yielded two species with distinctive 

electrophoretic mobility, suggesting the modification of this mutant variant occurs at 

two alternative lysine residues. Nevertheless, SUMOylation of both species was 

dependent on the combined activity of Siz1 and Siz2 (Figure 13C), thus exhibiting 

the same SUMO E3 ligase requirement as the modification of the full-length protein. 

Moreover, import-deficient Adh3 was preferentially modified at the same SUMO 

attachment site as the wild type protein and replacement of this particular lysine 

residue by arginine caused the loss of the more prominent, faster-migrating 

Δmts-adh33HA-SUMO conjugate (Figure 13D). 

 Taken together, several lines of evidence indicate that the SUMOylation of 

mitochondria-targeted substrates is generally import-independent. Mutant variants of 

mitochondrial proteins lacking a functional MTS are strongly SUMOylated and 

truncation of the MTS in fact enhances their modification. Moreover, in terms of E3 

ligase requirement and SUMO attachment sites, the SUMOylation of import-

incompetent substrate variants exhibits striking similarities to the modification of the 

full-length proteins. In conclusion, these findings could have important implications 
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for the SUMOylation of import-competent mitochondrial proteins and suggest that 

their modification probably occurs prior to import into the organelle. 

 

 
 
Figure 13. SUMOylation of Adh3 is independent of mitochondrial import. (A) Schematic 
representation of the Adh3 protein and an N-terminally truncated mutant variant lacking the MTS (Δmts-
adh33HA). The N-terminal prepeptide is depicted in green, the GroES-like domain in dark grey, the zinc-
binding domain in blue and the 3HA epitope in light grey. (B) Import-incompetent Adh3 is efficiently 
SUMOylated. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from cells harboring plasmids that 
express C-terminally 3HA-tagged full-length Adh3 (Adh33HA) or a mutant variant lacking the N-terminal 
MTS (Δmts-adh33HA). Cells were grown in galactose-containing medium, allowing the constitutive 
expression of all protein variants from the GAL1 promoter. Cells expressing HisSUMO from the ADH1 
promoter are indicated. Ratios of the levels of SUMOylated vs. unmodified proteins were determined by 
western blot quantification using ImageJ (C) SUMOylation of import-deficient Adh3 is stimulated by the 
SUMO E3 ligases Siz1 and Siz2. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from wild type 
cells, mutants lacking Siz1 (Δsiz1), Siz2 (Δsiz2) and the double deletion mutant (Δsiz1 Δsiz2). Cells 
were complemented with plasmids expressing the import-deficient Adh3 mutant variant under control of 
the GAL1 promoter and grown in galactose-containing medium. (D) Import-incompetent Adh3 is 
predominantly SUMOylated on Lys 305 (K305). Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) 
from cells harboring plasmids that express import-incompetent Adh3 (Δmts-adh33HA WT) or a lysine 
mutant resulting from the replacement of one lysine residue by arginine (corresponding to position K305 
of full-length Adh3) (Δmts-adh33HA-K305R). 
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3.2 SUMOylation of mitochondria-targeted proteins is regulated by 
cytosolic factors 

Posttranslational import of mitochondrial proteins often involves molecular 

chaperones or similar factors that maintain the import-competence of precursor 

proteins after their synthesis in the cytosol. Thus, the idea that the SUMOylation of 

mitochondria-targeted proteins occurs prior to import at a cytosolic biogenesis stage 

prompted the question whether the modification is regulated by cytosolic factors as 

well. 

3.2.1 SUMOylation of mitochondria-targeted proteins is linked to the HSP70 

system 

In yeast, strong evidence indicates an implication of SSA family chaperones in 

protein translocation into mitochondria (Deshaies et al., 1988; Murakami et al., 1988). 

SSA chaperones comprise four homologous proteins, Ssa1-4, and represent a major 

group of cytosolic HSP70s in S. cerevisiae. Although the deletion of all four Ssa 

proteins is lethal, expression of any single member of this family of chaperones is 

sufficient to maintain cell viability. Consistently, strains deleted for three out of four 

SSA genes (Δssa2 Δssa3 Δssa4) and harboring either wild type SSA1 or a 

temperature-sensitive allele (ssa1-45) (Becker et al., 1996) have been widely used to 

study HSP70 functions in yeast. 

 To test whether mitochondria-targeted protein SUMOylation is affected in 

SSA mutants, HisSUMO together with 3HA-tagged Ilv6 or Adh3 were expressed in 

wild type (DF5 yeast cells containing the same set of auxotrophic markers but 

expressing Ssa1-4), SSA1 and ssa1-45 cells. Consistent with results described in the 

previous sections of this study, HA-tagged Ilv6 gave rise to a double band in western 

blot assays, representing the unprocessed Ilv6 precursor and a faster-migrating 

mature form (Figure 14A). Notably, particularly ssa1-45 mutants displayed increased 

levels of the Ilv6 and Adh3 precursors (Figure 14A and B), indicating that Ssa 

proteins are required for efficient mitochondrial import of these proteins. This finding 

is consistent with previous studies, which reported an accumulation of mitochondrial 

precursor proteins in SSA mutant yeast strains (Becker et al., 1996; Deshaies et al., 

1988). 

 Strikingly, the SUMOylation patterns of both Ilv6 and Adh3 were also affected 

in ssa1-45 cells, which showed a strong accumulation of the SUMOylated Ilv6 and 

Adh3 precursor, respectively (Figure 14A and B). In both cases SUMOylation 

produced multiple slower-migrating species, suggesting that the proteins are perhaps 

modified at multiple sites. 
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Figure 14. SUMOylation of mitochondria-targeted proteins is increased in mutants of the SSA 
family of HSP70 chaperones. (A) SUMOylated Ilv6 precursor species strongly accumulate in ssa1-45 
chaperone mutant cells. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from wild type (SSA1 
SSA2 SSA3 SSA4 in DF5 background), SSA1 (SSA1 Δssa2 Δssa3 Δssa4) and ssa1-45 (ssa1-45 Δssa2 
Δssa3 Δssa4) cells. C-terminally 3HA-tagged Ilv6 is expressed from the endogenous promoter and 
HisSUMO from the ADH1 promoter. Bands corresponding to (monoSUMOylated) precursor protein (p) 
and the (monoSUMOylated) mature (m) form are labeled. (B) Singly and perhaps multiply SUMOylated 
Adh3 precursor protein species strongly accumulate in ssa1-45 mutant cells. Similar to (A) but with cells 
expressing C-terminally 3HA-tagged Adh3 from the endogenous promoter. 

 

In comparison to the entirely cytosolic Δmts-adh3 mutant (Figure 13), the apparent 

multi-site modification of Adh3 was much more pronounced in ssa1-45 cells. Thus, 

the increased levels of SUMOylated mitochondria-targeted substrates were probably 

not a mere result of the elevated levels of cytosolic precursor proteins. Consistently, 

in relation to the total Ilv6 precursor levels, the corresponding SUMOylated form also 

specifically accumulated in the ssa1-45 background. 

 To further corroborate that the SUMOylation of mitochondrial substrates is 

specifically induced in SSA mutants, Ilv6 SUMOylation was analyzed in SSA1 and 

ssa1-45 cells reconstituted with a plasmid-borne copy of wild type Ssa1 expressed 

under control of the ADH1 promoter. Importantly, expression of Ssa1 rescued the 

slow-growth phenotype of ssa1-45 cells at 25°C and largely restored viability at 37°C 

(Figure 15A). Consistently, Ssa1 expression efficiently reduced Ilv6 precursor 

SUMOylation in both SSA1 and ssa1-45 cells (Figure 15B). By contrast, under the 

same conditions, total SUMO conjugate levels were largely unaffected, confirming 

that the SUMOylation of Ilv6 is selectively altered in cells lacking functional SSA 

HSP70s. 

 In summary, these data indicate that the SUMOylation of mitochondria-

targeted proteins is indeed regulated by SSA family chaperones, specifically linking 

this cytosolic HSP70 system to the regulation of protein SUMOylation in yeast. 
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Figure 15. The SUMOylation of Ilv6 is specifically affected by Ssa1. (A) Ectopic expression of Ssa1 
rescues the lethality of ssa1-45 mutant cells at the restrictive temperature (37°C). SSA1 (SSA1 Δssa2 
Δssa3 Δssa4) and ssa1-45 (ssa1-45 Δssa2 Δssa3 Δssa4) cells were complemented with plasmids 
expressing wild type Ssa1 from the ADH1 promoter. Five-fold serial dilutions of cultures grown over 
night at 25°C (adjusted to OD600 = 1) were spotted on SC-HIS agar plates and incubated at 25°C for 2 
days and 37°C for 3 days. (B) Expression of wild type Ssa1 reduces Ilv6 precursor SUMOylation in 
SSA1 and ssa1-45 cells. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from SSA1 and ssa1-45 
cells complemented with plasmids that express wild type Ssa1 from the ADH1 promoter. C-terminally 
3HA-tagged Ilv6 was expressed from the endogenous promoter and HisSUMO was expressed from the 
ADH1 promoter. Total SUMO conjugate levels were analyzed by probing total cell extracts (Inputs) with 
Smt3-specific polyclonal antibodies. Levels of wild type Ssa1 were analyzed using an HSC70/HSP70-
specific monoclonal antibody (BB70) that fails to detect the ssa1-45 mutant protein. Bands 
corresponding to the (monoSUMOylated) precursor protein (p) and the (monoSUMOylated) mature (m) 
form are labeled. 

 

3.2.2 Increased range of SUMO acceptor sites in SSA mutant cells 

The detection of probably multiSUMOylated Ilv6 and Adh3 species in ssa1-45 cells 

prompted the question whether these substrates are modified on an extended set of 
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SUMO acceptor sites. To test this hypothesis, an Ilv6 lysine mutant, which lacks the 

four major SUMO attachment sites mapped under unperturbed conditions (ilv63HA-

4KR) (Figure 10A), was expressed in chaperone mutant cells. Strikingly, the 

precursor form of this Ilv6 variant was indeed considerably SUMOylated in SSA 

mutants, particularly in the ssa1-45 background (Figure 16A). Moreover, a similar 

effect could be observed by analysis of Adh3 SUMOylation using a mutant variant 

lacking Lys 305 (adh33HA-K305R) (Figure 16B). 

 

 
 
Figure 16. Functional impairment of the SSA HSP70 chaperone system increases the range of 
the SUMO acceptor sites in mitochondria-targeted proteins. (A) The ilv63HA-4KR lysine mutant 
(K218R, K260R, K284R, K294R) is substantially SUMOylated at alternative lysine residues in ssa1-45 
cells. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from SSA1 and ssa1-45 mutants. Cells 
were complemented with plasmids that express C-terminally 3HA-tagged wild type Ilv6 or a 
corresponding lysine mutant (4KR) from the ADH1 promoter. Expression of HisSUMO under control of 
the ADH1 promoter is indicated. Bands corresponding to the (monoSUMOylated) precursor protein (p) 
and the (monoSUMOylated) mature (m) form are labeled. (B) An Adh3 lysine mutant at Lys 305 is 
SUMOylated at alternative SUMO attachment sites in ssa1-45 cells. Similar to (A) but with cells 
harboring plasmids that express C-terminally 3HA-tagged wild type Adh3 or a corresponding lysine 
mutant at Lys 305 from the TDH3 promoter. 

 

 To gain deeper insights into the positions of Ilv6 SUMO acceptor sites in 

ssa1-45 cells, the 4KR mutant variant was subjected to additional rounds of 

mutagenesis, thereby further replacing several lysine residues by arginine in a 

stepwise manner. This approach indeed facilitated the identification of further Ilv6 

lysine residues (K116, K158 and K202), which are specifically SUMOylated in the 

SSA1 mutant background (Figure 17A and B). Moreover, the electrophoretic mobility 

of the corresponding SUMO conjugates indicated that exclusively Ilv6 precursors but 

not the mature form are modified at these sites. Thus, functional impairment of the 

SSA HSP70 system not only causes an increased SUMOylation of mitochondria-

targeted substrate precursors but - compared to wild type cells - also leads to 

modification of an extended set of SUMO attachment sites. 
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Figure 17. Identification of SUMO attachment sites of Ilv6 modified in chaperone mutant cells. (A) 
Schematic representation of Ilv6 and the positions of lysine residues within the protein (indicated by red 
triangles). (B) SUMOylation of Ilv6 occurs at multiple and widely distributed lysine residues in ssa1-45 
cells. Denaturing HisSUMO Ni-NTA pull-downs (Ni-NTA PD) from SSA1 and ssa1-45 mutants. Cells 
were complemented with plasmids that express C-terminally 3HA-tagged wild type Ilv6 or one of several 
corresponding lysine mutants as indicated from the ADH1 promoter. Bands corresponding to the 
(monoSUMOylated) precursor protein (p) and the (monoSUMOylated) mature (m) form are labeled. 

 

3.2.3 Mitochondrial precursor proteins harbor N-terminal HSP70 binding sites 

The finding that SUMOylation of mitochondria-targeted proteins is linked to the SSA 

subfamily of HSP70s raised the questions how functional impairment of this 

chaperone system leads to an increased and apparently less selective modification 

of multiple lysine residues. Interestingly, it has been reported recently that the 

phenotypes of the ssa1-45 allele are caused by an impaired substrate binding activity 

of the corresponding ssa1-45 mutant protein (Needham et al., 2015). It is therefore 

conceivable that association of mitochondrial preproteins with chaperones not only 
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confers import competence but could also shield them from SUMO conjugation. 

Notably, a further potentially relevant finding in this context was the detection of 

exclusively C-terminal SUMO attachment sites in wild type cells (Figure 10). These 

observations gave rise to the hypothesis that chaperones may bind to N-terminal 

protein segments of mitochondrial preproteins and thereby particularly prevent the 

SUMOylation of N-terminal lysine residues. Hence, it seemed plausible that 

mitochondrial precursor proteins harbor N-terminal Ssa1 binding sites. 

 To further address this idea, peptides derived from the primary structure of 

Ilv6 were screened for Ssa1 binding. To this end, a cellulose membrane-bound 

peptide array covering the entire Ilv6 sequence was synthesized using SPOT 

synthesis. Based on a protocol originally used to determine the substrate specificity 

of bacterial DnaK (Rudiger et al., 1997), the array was composed of 13mer peptides 

overlapping by 10 amino acid residues. 

 To identify peptides harboring Ssa1 binding sites, the peptide scan was then 

incubated with recombinant GST-Ssa1 under ATP-free conditions followed by the 

detection of membrane-bound Ssa1 using a GST-specific antibody. This approach 

indeed revealed Ssa1 binding to multiple Ilv6 peptides, several of them located within 

N-terminal segments of the protein (Figure 18). 

 

 
 
Figure 18. Ilv6 harbors Ssa1 binding sites within its N-terminus. A peptide scan covering the entire 
Ilv6 amino acid sequence was screened for Ssa1 binding. The peptide array was incubated with 
recombinant GST-Ssa1 and Ssa1 binding was detected with GST-specific antibodies coupled to HRP. 
N-terminal residues of the peptides on the first spots of each row (left) are indicated. Two peptides 
reported to bind the bacterial HSP70 DnaK served as reference peptides (positive control A: 
AKTLILSHLRFVV and positive control B: VVHIARNYA) (McCarty et al., 1996). A peptide representing 
the 13 N-terminal amino acids of firefly luciferase served as negative control (Rudiger et al., 1997). 
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Moreover, remarkably, Ssa1 binding sites were also located at the extreme N-

terminus of Ilv6, suggesting that its MTS might directly interact with HSP70s in vivo. 

 Taken together, compelling evidence indicates an involvement of the SSA 

chaperone system in the regulation of mitochondria-targeted protein SUMOylation. 

Moreover, the data presented in this study support a model in which binding of Ssa 

proteins to mitochondrial precursors in the cytosol not only restricts their 

SUMOylation but also affects their modification in terms of site selectivity. 
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3.3 Degradation of SUMOylated mitochondria-targeted proteins by a 

proteasome-dependent pathway 

3.3.1 SUMO-modified species of mitochondria-targeted proteins accumulate 

in proteasome mutants 

Several results obtained during this study indicate that in cells with impaired SSA 

chaperone activity, SUMOylation particularly targets cytosolic precursors of 

mitochondrial proteins. Such precursor proteins are generally considered as 

aggregation-prone (Endo et al., 1995a) and prone to degradation by cellular 

proteases (Mihara and Omura, 1996a; Neupert, 1997; Pfanner and Neupert, 1990; 

Schatz and Dobberstein, 1996). Thus, since SUMO has been implicated in 

aggregate handling and the degradation of aggregation-prone proteins in the past 

(see section 1.3.3), it seemed conceivable that the SUMOylation of mitochondria-

targeted proteins plays a role in protein quality control as well. In particular, the 

question arose whether SUMOylation targets aggregation-prone pools of 

mitochondrial precursor proteins and whether the levels of the corresponding SUMO 

conjugates are regulated by proteasomal degradation. 

 In a first attempt to evaluate this hypothesis, the SUMOylation of Ilv6 and 

Adh3 was analyzed in proteasome mutant cells expressing a hypomorphic variant of 

Rpt6 (cim3-1), one of six ATPase subunits within the 19S regulatory particle of the 

26S proteasome (Ghislain et al., 1993). Interestingly, cim3-1 cells showed mildly 

increased levels of the Ilv6 and Adh3 precursors (Figure 19A and B), suggesting that 

mitochondrial protein import might be less efficient in proteasome mutants. 

Alternatively, this could be indicative of a continuous turnover of small pools of 

mistargeted mitochondrial proteins in vivo, which would be blocked upon proteasome 

inhibition. 

 Strikingly, proteasome impairment also affected the SUMOylation of 

mitochondria-targeted proteins and SUMO-modified precursors of Ilv6 and Adh3 

strongly accumulated in cim3-1 cells (Figure 19A and B). SUMOylation of either 

substrate gave rise to multiple species, highly resembling the SUMO conjugate 

patterns observed in the SSA mutant backgrounds (Figure 14). This suggests that 

upon proteasome impairment both Ilv6 and Adh3 are perhaps modified at multiple 

sites. Likewise, the pattern of Mrpl233HA-SUMO conjugates was noticeably altered in 

cim3-1 cells, indicating a strong accumulation of singly and multiply SUMOylated 

species (Figure 19C). However, since the N-terminal prepeptide of Mrpl23 comprises 

only four amino acid residues (Figure 10F), a discrimination between the precursor 

and the processed form could not be made for this particular substrate. 
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Figure 19. Proteasome impairment causes a strong accumulation of SUMOylated species of 
mitochondria-targeted proteins. (A) Multiple SUMOylated Ilv6 species, particularly SUMOylated 
precursor species, accumulate in proteasome mutants (cim3-1). Denaturing HisSUMO Ni-NTA pull-
downs (Ni-NTA PD) from wild type and cim3-1 cells expressing C-terminally 3HA-tagged Ilv6 from the 
endogenous promoter. Expression of HisSUMO from the ADH1 promoter is indicated. Bands 
corresponding to the (monoSUMOylated) precursor protein (p) and the (monoSUMOylated) mature (m) 
form are labeled. (B-C) Increased SUMOylation of Adh3 (B) and Mrpl23 (C) in cim3-1 cells. Similar to 
(A) but with cells expressing C-terminally 3HA-tagged Adh3 from the endogenous promoter (B) or cells 
harboring plasmids that express C-terminally 3HA-tagged Mrpl23 from the ADH1 promoter (C). 

 

In any case, decreased proteasome activity appears to generally result in increased 

levels of SUMOylated mitochondria-targeted substrates and also leads to the 

detection of species simultaneously modified at multiple lysine residues. 

 Several findings described in this study demonstrate that the SUMOylation of 

mitochondria-targeted substrates is independent of mitochondrial import. Thus, the 

question arose whether proteasome impairment causes an increased SUMOylation 

also of import-defective variants of mitochondrial proteins. To this end, an Adh3 

mutant variant lacking its MTS (Δmts-adh33HA) was expressed from the GAL1 

promoter in cim3-1 cells. Importantly, protein levels of this Adh3 variant were largely 
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similar in total cell extracts of wild type and proteasome mutant cells (Figure 20A). By 

contrast, the corresponding SUMO conjugates strongly accumulated upon 

proteasome impairment (Figure 20A). Similar to the full-length substrate (Figure 

19B), SUMOylation produced numerous slower-migrating species, suggesting that 

the modification occurs simultaneously at multiple sites. 

 To further investigate site selectivity in this context, the SUMOylation of wild 

type Δmts-adh33HA was compared to a lysine mutant, in which Lys 305 (K305) was 

replaced by arginine. Notably, all substrate variants were again expressed at largely 

identical levels in wild type and cim3-1 cells (Figure 20B). Western blot analysis of 
HisSUMO conjugates isolated from wild type cells confirmed that SUMOylation of 

Δmts-adh33HA yields at least two slower-migrating species under unperturbed 

conditions (Figure 20B, lane 2). One of these species resulted from the modification 

of Lys 305, which was again accompanied by the SUMOylation of additional lysine 

residues (Figure 20B, compare lane 2 and lane 3). In proteasome mutant cells 

(cim3-1), SUMOylation at Lys 305 gave rise to two distinct slower-migrating species 

and contributed to the formation of further high molecular weight species (Figure 

20B, compare lane 4 and 5). Moreover, SUMOylation at probably multiple alternative 

attachment sites was clearly detectable in cim3-1 cells, even when Lys 305 had been 

experimentally removed (Figure 20B, lane 5). 

 

 
 
Figure 20. Multiply SUMOylated species of import-incompetent Adh3 accumulate in proteasome 
mutants. (A-B) The SUMOylation of import-incompetent Adh3 (Δmts-adh33HA) is strongly affected in 
proteasome mutant cells, which display a strong accumulation of various SUMOylated species probably 
modified at multiple sites. Denaturing Ni-NTA pull-downs (Ni-NTA PD) from wild type and cim3-1 cells 
harboring plasmids that express Δmts-adh33HA or a lysine mutant (K305R; corresponding to K305 of full-
length Adh3) from the GAL1 promoter. Cells additionally expressing HisSUMO from the ADH1 promoter 
are indicated. 
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Thus, in summary, proteasome impairment affects the SUMOylation of mitochondria-

targeted proteins and their import-defective derivatives in two ways: (1) it causes a 

strong accumulation of SUMO-modified species and (2) results in the robust 

SUMOylation of sites, which are not noticeably modified in wild type cells. 

3.3.2 SUMOylation targets aggregation-prone species of mitochondria-

targeted proteins 

Mitochondrial preproteins are thought to adopt a rather loosely folded state in the 

cytosol to maintain import competence (Neupert, 1997). However, protein unfolding 

often leads to the exposure of hydrophobic peptide stretches, which are usually 

buried in the native structure of a protein. These structural changes not only provide 

a basis for the recognition of unfolded substrates by molecular chaperones but also 

favor non-native protein-protein interactions that cause protein aggregation. 

 To gain insights into the features of processed and unprocessed 

mitochondrial proteins in terms of solubility, cellular fractionation assays were 

performed. To this end, endogenous Ilv6 fused to a C-terminal 3HA-epitope was 

chosen as a model substrate since low but noticeable levels of the corresponding 

precursor protein were reproducibly detected in total cell extracts. In brief (see 

Materials and Methods for details), exponentially growing yeast cells were lysed in 

buffer containing 1 % of the non-ionic detergent Triton X-100. The lysates were 

precleared by centrifugation and the resulting total cell extracts (T) were fractionated 

to separate soluble (S) and insoluble pellet (P) fractions. Interestingly, when 

compared to the mature mitochondrial form, the Ilv6 precursor showed a 

substantially increased aggregation propensity (Figure 21) and the levels of insoluble 

precursor species were further increased when HSP70 (SSA1 and ssa1-45 cells) 

(Figure 21) or proteasome activity (cim3-1 cells) (Figure 22) was impaired. 

 

 
 
Figure 21. Increased aggregation propensity of a mitochondrial precursor protein. Ilv6 precursors 
are pronouncedly more aggregation-prone than the mature mitochondrial form. Total cell extracts (T) 
from wild type (DF5 background), SSA1 and ssa1-45 cells were fractionated by centrifugation to obtain 
soluble (S) and insoluble pellet (P) fractions. All strains used in the fractionation assay express C-
terminally 3HA-tagged Ilv6 from the endogenous and HisSUMO from the ADH1 promoter. Proteins were 
separated on 12 % Bis-Tris gels and analyzed by western blotting using HA epitope-specific, Smt3-
specific and Dpm1-specific antibodies. Bands corresponding to the precursor protein (p) and the mature 
(m) form are labeled. 
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 Remarkably, after a longer exposure, western blot analysis also indicated the 

presence of a single distinct, slower-migrating form of Ilv6 in the pellet fractions of 

cim3-1 cells (Figure 22A, black triangle). As judged from its electrophoretic mobility, 

the molecular weight of this species exactly matched the modification of HA-tagged 

Ilv6 with a single HisSUMO moiety. Indeed, expression of a GFPSUMO fusion protein 

as the only source of SUMO increased its apparent molecular weight by about 

30 kDa (Figure 22B), suggesting that substantial levels of SUMOylated Ilv6 

accumulate in the insoluble protein pool in cim3-1 cells. Thus, SUMO might act on 

aggregation-prone species of mitochondria-targeted proteins, which accumulate in 

insoluble cellular protein fractions when proteasomal clearance mechanisms are 

defective. 

 

 
 
Figure 22. Accumulation of SUMOylated Ilv6 in insoluble protein fractions of proteasome mutant 
cells. (A-B) Ilv6-SUMO conjugates (indicated by black triangles) are detectable in the insoluble pellet 
fractions of proteasome mutant cells (cim3-1). Total cell extracts (T) from wild type and cim3-1 cells 
were fractioned into soluble (S) and insoluble pellet (P) fractions. The strains used in (A) express 
HisSUMO from the ADH1 promoter and are derived from the original CMY826 (WT) and CMY763 
(cim3-1) backgrounds (Ghislain et al., 1993). Strains used in (B) were obtained by backcrossing the 
cim3-1 allele into the DF5 background and either express HisSUMO or GFPSUMO from the ADH1 
promoter. All strains carry a genomic allele encoding C-terminally 3HA-tagged Ilv6 under control of the 
endogenous promoter. Proteins were separated on 12 % Bis-Tris gels and analyzed by western blotting 
using HA epitope-specific and Dpm1-specific antibodies. Bands corresponding to the precursor protein 
(p) and the mature (m) form are labeled. 

 

3.3.3 Proteasome impairment affects the turnover of Ilv6-SUMO conjugates 

Recently, SUMO has been proposed to function as a modulator of protein 

aggregation, which facilitates the proteasomal degradation of insoluble proteins (Guo 

et al., 2014). To assess a potential turnover of Ilv6-SUMO conjugates in vivo, 

expression shut-off assays were combined with denaturing Ni-NTA pull-downs to 

directly monitor the levels of SUMOylated Ilv6 over time. In brief, exponentially 
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growing yeast cells expressing HisSUMO and epitope-tagged Ilv6 were treated with 

the translational inhibitor cycloheximide and HisSUMO conjugates were isolated from 

cells sampled after different times. In wild type cells, SUMOylated Ilv6 was indeed 

instable, showing a time-dependent turnover after the block of protein synthesis by 

cycloheximide (Figure 23A). By contrast, strikingly, Ilv63HA-SUMO conjugates were 

almost completely stabilized in cells defective in proteasomal degradation (cim3-1) 

(Figure 23B). Thus, proteasome activity is a crucial determinant for the SUMOylation 

dynamics of mitochondria-targeted proteins, suggesting the possibility that the 

corresponding SUMO-protein conjugates are directly targeted for proteasomal 

degradation. 

 

 
 
Figure 23. Dynamic, proteasome-dependent turnover of Ilv6-SUMO conjugates upon translation 
shut-off. (A) Time-dependent decrease of Ilv6-SUMO conjugate levels in wild type (WT) cells analyzed 
by expression shut-off assays. Cells were grown at 25°C and shifted to 37°C for 60 min prior to the 
addition of cycloheximide (CHX). Subsequently, samples for the isolation of HisSUMO conjugates by 
denaturing Ni-NTA pull-downs (Ni-NTA PD) and the preparation of total cells extracts (Inputs) were 
taken at the indicated time points. Pull-down efficiency was controlled by monitoring the levels of 
unconjugated HisSUMO using Smt3-specific antibodies. Bands corresponding to the (monoSUMOylated) 
precursor protein (p) and the (monoSUMOylated) mature (m) form are labeled. (B) Stabilization of Ilv6-
SUMO conjugate levels in proteasome mutants. Similar as in (A) but including proteasome mutant cells 
(cim3-1). All strains used in (A) and (B) express C-terminally 3HA-tagged Ilv6 from the endogenous and 
HisSUMO from the ADH1 promoter. 

 

3.3.4 Isopeptidase-resistant Ilv6-SUMO conjugates are degraded by a 

proteasome-dependent pathway 

Protein modification by SUMO is dynamic and in many cases regulated by SUMO-

specific isopeptidases. Additional layers of control are provided by proteasomal 

degradation pathways, which sometimes involve the action of SUMO-targeted 

ubiquitin ligases (STUbLs) (Tatham et al., 2008; Uzunova et al., 2007). Hence, the 

levels of SUMO-protein conjugates can be dynamically regulated by the balance of 

SUMO conjugation, deconjugation and proteasomal degradation. 
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 In the further course of this study, the question arose how SUMO 

deconjugation and proteasomal degradation each contribute to the SUMOylation 

dynamics of mitochondria-targeted proteins. Analysis of SUMO conjugates in yeast 

cells defective in SUMO deconjugation is, however, complicated by the fact that 

deletion of SUMO-specific isopeptidases is lethal (Δulp1) (Li and Hochstrasser, 

1999) or confers strong pleiotropic phenotypes (Δulp2) (Li and Hochstrasser, 2000). 

Thus, it seemed reasonable to interfere with SUMO deconjugation by an alternative 

experimental strategy. 

 

 
 
Figure 24. Generation and expression of an isopeptidase-resistant yeast SUMO variant. (A) 
Multiple sequence alignment of human SUMO1-4 and yeast Smt3. The position in which human 
SUMO4 displays a Q-to-P replacement compared to other SUMO isoforms is indicated (red letters 
marked by a red triangle). Multiple sequence alignment assembly was carried out using the EBI Clustal 
Omega web tool. (B) Expression of a mature SUMO-Q95P variant leads to an accumulation of multiple 
SUMO conjugates in yeast. Plasmid constructs expressing His-tagged yeast Smt3 with C-terminal 
double glycine motif (HisSUMOGG) from the GAL1 promoter are genomically integrated at the URA3 
locus. The amino acids corresponding to Gln 95 of wild type Smt3 are either Gln (WT) or Pro (Q95P). 
Cells were grown in raffinose-containing medium and expression of SUMO variants was induced by 
addition of galactose for the indicated periods of time. Total cell extracts were prepared and analyzed by 
western blotting using Smt3-specific antibodies. (C) Isopeptidase-resistant Ilv6-SUMO conjugates are 
highly unstable. Similar to (B) but including the western blot analysis of HisSUMO conjugates isolated by 
denaturing Ni-NTA pull-downs (Ni-NTA PD). C-terminally 3HA-tagged Ilv6 expressed from the 
endogenous promoter was detected with an HA epitope-specific antibody. 
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 Interestingly, it has been reported that human SUMO4 is refractory to the 

processing by SUMO isopeptidases due to the presence of a critical proline residue 

at position 90 (Owerbach et al., 2005) (Figure 24A). Likewise, introduction of 

homologous amino acid changes allows the transfer of isopeptidase resistance to 

other SUMO isoforms (Mukherjee et al., 2009; Owerbach et al., 2005). Expression of 

such SUMO variants with a mature C-terminus bypasses the requirement for SUMO 

proteases for the initial SUMO maturation and leads to the formation of 

“isopeptidase-resistant” SUMO-protein conjugates in (Mukherjee et al., 2009). 

 

 
 
Figure 25. SUMOylation mediates the degradation of mitochondria-targeted substrates by a 
proteasome-dependent pathway. (A) Ilv6-SUMO-Q95P conjugates are highly unstable in cells lacking 
known STUbLs. Wild type (WT) or isopeptidase-resistant (Q95P) HisSUMOGG variants (as described in 
Fig. 24) were expressed from the GAL1 promoter for the indicated periods of time in wild type (WT) cells 
and cells lacking Slx5/Slx8 (Δslx5 Δslx8) or Ris1 (Δris1). Cells were grown in raffinose-containing 
medium and protein expression was induced by the addition of galactose. Total cell extracts were 
prepared by TCA precipitation (Inputs) and HisSUMO conjugates were isolated by denaturing Ni-NTA 
pull-downs (Ni-NTA PD). (B) Pronounced stabilization of isopeptidase-resistant Ilv6-SUMO conjugates 
in proteasome mutant cells. Similar to (A) but including wild type (WT) and proteasome mutant cells 
(cim3-1). Expression of HisSUMOGG variants from the GAL1 promoter was induced for the indicated 
periods of time. Bands corresponding to the (monoSUMOylated) precursor protein (p) and the 
(monoSUMOylated) mature (m) form are labeled. 
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 Indeed, expression of an analogous mutant variant of mature yeast SUMO 

(HisSUMOGG-Q95P) from the galactose-inducible GAL1 promoter led to a remarkable 

increase in SUMO conjugate levels, including Pgk1-SUMO (Figure 24B and C). By 

contrast, strikingly, SUMOylated Ilv6 species did not accumulate under these 

conditions but were hardly detectable (Figure 24C), indicating that the modification of 

mitochondria-targeted proteins by isopeptidase-resistant SUMO could trigger their 

degradation. Since the proteasomal degradation of SUMO conjugates often involves 

SUMO-targeted ubiquitin ligases (STUbLs), it seemed plausible that this could be the 

case for mitochondria-targeted proteins as well. However, levels of SUMO-modified 

Ilv6 were not altered in yeast cells lacking known STUbLs (Δslx5 Δslx8 and Δris1) 

(Figure 25A), suggesting that the degradation of mitochondria-targeted SUMO 

substrates is based on an alternative mechanism. Indeed, Ilv6-SUMO-Q95P 

conjugates were substantially stabilized in proteasome mutant cells (cim3-1) (Figure 

25B), indicating that SUMOylated Ilv6 is degraded by a STUbL-independent 

proteasomal pathway. 

 In summary, the SUMOylation of Ilv6 and perhaps mitochondria-targeted 

proteins in general appears to be a dynamic PTM that ultimately leads to the 

degradation of the modified substrate pool by the proteasome. The underlying 

degradation mechanism does not require known STUbLs, suggesting the existence 

of a novel proteasomal pathway that mediates the clearance of specific SUMO 

conjugates in a STUbL-independent manner. 
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4 DISCUSSION 

This study identifies mitochondrial-targeted proteins as a novel group of SUMO 

substrates and provides a first in-depth analysis of the modification and its functional 

consequences. The SUMOylation of mitochondria-targeted proteins is enhanced in 

response to certain proteotoxic stresses and appears to ultimately serve as a trigger 

for proteasomal degradation. Hence, the present study not only provides unique 

insights into the SUMO-modified proteome but also reveals novel links of the SUMO 

system to cellular protein quality control. 

4.1 An unexpected group of novel SUMO substrates 
Posttranslational modification by SUMO has been extensively studied in the past. 

Generally, the detection of SUMOylated proteins is complicated by the fact that the 

modification frequently affects only a small percentage of a given target. However, 

mass spectrometry-based technologies have strongly boosted the field of SUMO 

proteomics and facilitated the identification a plethora of SUMO substrates in yeast 

and human cells (Hendriks and Vertegaal, 2016; Makhnevych et al., 2009). 

Consistent with early studies on the predominantly nuclear activities of the SUMO 

system (Rodriguez et al., 2001; Sternsdorf et al., 1999), the majority of SUMO 

targets appears to be nuclear proteins (Hendriks and Vertegaal, 2016; Wohlschlegel 

et al., 2004). Additionally, multiple lines of evidence indicate a function of SUMO 

enzymes in the cytosol and several cytosolic SUMO substrates have been reported 

(Geiss-Friedlander and Melchior, 2007; Martin et al., 2007b). By contrast, only a 

minute number of potential mitochondrial SUMO substrates have been suggested by 

previous studies (Denison et al., 2005; Hannich et al., 2005; Panse et al., 2004; 

Wohlschlegel et al., 2004; Wykoff and O'Shea, 2005; Zhou et al., 2004). In fact, at 

the onset of this study, the modification of mitochondrial proteins, particularly proteins 

of inner subcompartments, seemed unexpected for two major reasons: First, current 

knowledge about the SUMO system strongly indicates that intramitochondrial 

proteins are inaccessible to SUMO enzymes upon sorting (Flotho and Melchior, 

2013). Second, import of mitochondrial proteins occurs promptly and efficiently after 

their synthesis (Ungermann et al., 1996). Hence, hardly any pools of non-imported 

mitochondrial preproteins are detected in the cytosol in vivo (Ades and Butow, 

1980b; Fujiki and Verner, 1993; Hallermayer et al., 1977; Reid and Schatz, 1982). 

 Despite these apparent restrictions, this study provides striking evidence that 

several mitochondria-targeted proteins are modified by SUMO in vivo (Figure 7). 

Interestingly, these proteins differ substantially in terms of structure and function, 
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suggesting that SUMOylation does not specifically target a single, functionally distinct 

group of mitochondrial proteins. Notably, mitochondria-targeted substrates are 

modified at both ΨKX(D/E)-type consensus and non-consensus SUMOylation sites. 

The SUMOylation of non-consensus attachment sites has been reported previously 

for several yeast proteins (Hoege et al., 2002; Psakhye and Jentsch, 2012; Sacher et 

al., 2006), indicating that it might be a widespread phenomenon. At any rate, the 

discovery of mitochondria-targeted protein SUMOylation reveals unique new aspects 

of the SUMO system and its substrates. 

4.2 SUMOylation of mitochondria-targeted proteins occurs prior to 

import 
Consistent with SUMO’s known activities in the cytosol, it can be envisioned that a 

small pool of mitochondrial preproteins is accessible to SUMO enzymes prior to 

import. As a consequence, SUMOylation would be restricted to proteins that are 

posttranslationally sorted into mitochondria. Indeed, although evidence for 

cotranslational import has been provided for some proteins (Ades and Butow, 1980a; 

Fox, 2012; Fujiki and Verner, 1993), protein transport into mitochondria is thought to 

occur in a predominantly posttranslational manner (Chen and Douglas, 1987; Eilers 

and Schatz, 1986; Rassow et al., 1989; Wienhues et al., 1991). This concept is 

largely confirmed by a recent study, which globally assessed mitochondrial protein 

import by proximity-specific ribosome profiling (Williams et al., 2014). Although 

cotranslational translocation might be of particular relevance for inner membrane 

proteins, it has been reported that the majority of mitochondrial proteins, including 

Ilv6, Adh3 and Mrpl23, follows a predominantly posttranslational import route. Thus, 

it is generally conceivable that small pools of mitochondrial precursor proteins are 

targets of SUMO modifications in the cytosol. 

 Strong support for a model in which the SUMOylation of mitochondria-

targeted proteins occurs prior to import is also provided by data presented in this 

study, which demonstrate that their modification is independent of N-terminal MTSs. 

MTSs are known to form amphipathic alpha helices capable of interacting with the 

Tom20 import receptor at the outer mitochondrial membrane (Abe et al., 2000). 

Hence, MTS removal allows for the generation of import-incompetent mutant variants 

of mitochondrial proteins (Dasari and Kolling, 2011). Remarkably, compared to the 

full-length proteins, such variants (derived from Ilv6 and Adh3) are SUMOylated with 

strikingly similar characteristics in terms of E3 ligase requirement and SUMO 

attachment sites (Figure 12 and Figure 13). Thus, it is conceivable that, regarding 

their SUMOylation, MTS-lacking mutant proteins mimic an early biogenesis stage of 
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mitochondrial proteins and undergo a similar recognition by SUMO enzymes as their 

full-length counterparts. Moreover, for all substrates and substrate variants, 

SUMOylation is strongly dependent on the SUMO E3 ligase Siz1 (Figure 9, Figure 12 

and Figure 13). Since nuclear export of Siz1 into the cytosol is well-characterized in 

the context of septin SUMOylation (Makhnevych et al., 2007; Takahashi et al., 2008), 

it appears plausible that a cytosolic pool of Siz1 is responsible for the SUMOylation 

of mitochondria-targeted substrates as well. However, the modification of 

mitochondria-targeted substrates additionally involves the E3 ligase Siz2, suggesting 

a cytosolic function also for this particular enzyme. Consistently, small cytosolic pools 

of Siz2 have been reported by a study, which globally analyzed the localization of 

GFP fusion proteins in budding yeast (Huh et al., 2003). 

 Taken together, several lines of evidence indicate that SUMOylation of 

mitochondria-targeted proteins occurs prior to import, where the E3 ligases Siz1 and 

Siz2 modify small pool of substrates “en route” to mitochondria. Accordingly, the 

present study not only identifies an unanticipated group of SUMO substrates but also 

provides novel insights into the functions of SUMO E3 ligases in the cytosol. 

4.3 SUMOylation as a potential mechanism to regulate mitochondrial 

protein import 
Protein import into mitochondria involves the translocation of polypeptides through 

narrow proteinaceous channels. Virtually all types of preproteins enter mitochondria 

via a general entry gate, the TOM complex. The hydrophilic pores of this complex are 

formed by Tom40 subunits and have been determined to span a diameter of 2.0-2.5 

nm (Kunkele et al., 1998; Model et al., 2002; Schwartz and Matouschek, 1999). This 

is in line with the finding that mitochondrial proteins are imported in an unfolded and 

extended conformation (Rassow et al., 1990). Notably, proteins destined for the 

mitochondrial matrix have to additionally pass through the Tim23 channel in the inner 

mitochondrial membrane. With a diameter of 1.3-2.4 nm (Schwartz and Matouschek, 

1999; Truscott et al., 2001), this channel represents a further barrier restricting the 

mitochondrial import of folded proteins. Indeed, even small proteins such as model 

substrates containing dihydrofolate reductase fused to a mitochondrial targeting 

sequence are unable to complete import when their three-dimensional structure is 

stabilized (Eilers and Schatz, 1986; Rassow et al., 1989; Wienhues et al., 1991). 

 Given the fact that the SUMOylation of mitochondria-targeted proteins occurs 

most likely at a cytosolic biogenesis stage, the modification might have striking 

consequences for protein import. Ubiquitin family proteins are spherical molecules 

with diameters of approximately 2.5 nm (Renatus et al., 2006). Thus, it can be 
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envisioned that a modifier such as SUMO, which is tightly folded and covalently 

conjugated via a branched peptide, could stall the translocation of a modified 

substrate protein for steric reasons. Remarkably, a similar scenario has been 

reported for a model substrate obtained by crosslinking a folded 6 kDa protein moiety 

to the C-terminus of a mitochondrial precursor protein (Vestweber and Schatz, 1988). 

Moreover, importantly, this hypothesis is not contradictory to the observation that 

SUMO-modified species of substrates such as Ilv6 and Adh3 display mature N-

termini, which result from proteolytic processing by MPP in the mitochondrial matrix. 

Because these species are exclusively modified at C-terminal lysine residues (Figure 

10), it is possible that their N-termini reach the matrix-resident MPP while the 

SUMOylated C-termini of the proteins remain exposed to the cytosol (Figure 26). 

Notably, such partly imported translocation intermediates spanning both 

mitochondrial membranes have been described previously by several independent 

studies (Chen and Douglas, 1987; Cyr et al., 1995; Eilers and Schatz, 1986; Endo et 

al., 1995b; Kubrich et al., 1995; Rassow et al., 1989; Schleyer and Neupert, 1985; 

Schwaiger et al., 1987; Vestweber and Schatz, 1988). Moreover, it has been 

reported that a polypeptide segment comprising roughly 50 amino acid residues is 

sufficient to span both mitochondrial membranes (Rassow et al., 1990). 

 

 
 
Figure 26. Potential scenario explaining the N-terminal processing of C-terminally SUMOylated 
mitochondrial proteins. Due to the size of a folded SUMO moiety, it is conceivable that SUMOylation 
interferes with the complete import of mitochondria-targeted proteins. Nevertheless, SUMOylated 
species of mitochondria-targeted proteins display processed N-termini. This finding might be explained 
by the formation of translocation intermediates, for which the N-terminus reaches the mitochondrial 
processing peptidase (MPP) in the matrix while the SUMOylated C-terminus remains in the cytosol. 
TOM complex, translocase of the outer membrane; TIM23 complex, presequence translocase of the 
inner membrane; TIM44, membrane anchor for mitochondrial HSP70 (HSP); TIM44 and mtHSP70 are 
components of the PAM complex, the presequence translocase-associated motor. 
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Thus, a distance of more than 100 amino acid residues between the presequence 

cleavage site and the SUMO-modified lysine residues would allow the initiation of 

protein translocation into the matrix. Such a positioning of SUMO acceptor sites is 

indeed the case for all substrates described in this study (Figure 10) and 

SUMOylated lysine residues in closer proximity to the N-terminus were exclusively 

detected on precursor proteins (Figure 17). 

 Assuming that C-terminal SUMOylation arrests the translocation of a modified 

protein, two fates are conceivable for the stalled translocation intermediate: (1) the 

completion of import after the removal of the SUMO moiety by an isopeptidase or (2) 

the retrograde translocation into the cytosol after cleavage of the N-terminal 

presequence by MPP. Remarkably, such a retrotranslocation mechanism indeed 

exists and is involved in the biogenesis of certain enzymes such as fumarase in 

yeast. Fumarase is synthesized as a single translation product harboring an N-

terminal 24-amino-acid presequence. However, it is dually distributed between the 

mitochondrial matrix and the cytosol in vivo (Stein et al., 1994). Importantly, the 

cytosolic and mitochondrial enzyme populations display identical N-termini, which 

result from processing by MPP (Sass et al., 2001). Thus, initially all polypeptides are 

targeted to mitochondria, leading to the proteolytic removal of the N-terminal MTS. 

However, not all fumarase molecules are completely imported into the matrix. 

Following translation termination, rapid folding of fumarase’s C-terminus impedes 

import and induces the retrograde translocation of a fraction of polypeptides into the 

cytosol (Karniely and Pines, 2005; Knox et al., 1998; Stein et al., 1994). 

 Taken together, it appears conceivable that SUMOylation of mitochondria-

targeted proteins arrests their translocation at the import pore and that such 

intermediates have to be cleared by SUMO removal followed by the completion of 

import or by retrograde translocation into the cytosol. However, further experimental 

evidence is required to clarify whether one of these scenarios indeed arises in vivo. 

4.4 A partially hypothetical model for the regulation of mitochondria-
targeted protein SUMOylation by HSP70 chaperones 

Cytosolic factors, particularly chaperones of the HSP70 system, have been widely 

implicated in mitochondrial protein import (Hoogenraad et al., 2002; Mihara and 

Omura, 1996b; Mori and Terada, 1998). In yeast, HSP70s of the SSA family together 

with HSP40 co-chaperones are of particular importance for this process (see section 

1.2.4). In addition to their role in protein translocation, this study describes a novel 

function of SSA family chaperones in regulating the SUMOylation of mitochondria-

targeted proteins. In SSA mutant cells, SUMOylation of mitochondria-targeted 
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proteins is affected in two ways: (1) The levels of SUMOylated species, particularly of 

precursor proteins, are strongly increased and (2) the modification occurs at multiple 

attachment sites, including lysine residues, which are not detectably SUMOylated in 

wild type cells. Importantly, these alterations could be observed for different 

substrates, suggesting a general effect. 

 In combination, the analysis of SUMO attachment sites and Ssa1 binding 

sites within the amino acid sequence of one substrate (Ilv6) allows to propose a 

partially hypothetical model of how SUMOylation of mitochondria-targeted proteins is 

regulated by molecular chaperones. In particular, the detection of potential 

chaperone binding sites within the N-terminal presequence of Ilv6 suggests that MTS 

peptides may directly interact with HSP70s in vivo. The resulting formation of 

precursor-chaperone complexes might not only maintain the import competence of 

mitochondria-targeted proteins but perhaps also reduces their accessibility to SUMO 

enzymes. Moreover, a direct association of HSP70 proteins with the N-terminus of 

preproteins could additionally account for the preferential SUMOylation of C-terminal 

lysine residues under unperturbed conditions. 

 Notably, it has been shown recently that the ssa1-45 mutant protein, which 

has been used in the course of this study, is deficient in substrate binding (Needham 

et al., 2015). It is therefore conceivable that in ssa1-45 cells, SUMO enzymes target 

a pool of “free” mitochondrial precursor proteins, which are not incorporated into 

precursor-chaperone complexes. For these substrates, SUMOylation is not restricted 

by chaperone binding to N-terminal protein segments, thus potentially allowing the 

modification of a more extended set of lysine residues. 

 HSP70 chaperones are generally thought to preferentially interact with short 

hydrophobic peptide segments, which are usually buried in the native structure of a 

protein (Flynn et al., 1991; Rudiger et al., 1997; Zhu et al., 1996). Hence, at a first 

glance, HSP70 binding to N-terminal, positively charged signal peptides might 

appear unexpected. However, remarkably, it has been reported that the yeast 

HSP70 Ssa1 indeed binds mitochondrial presequences and that the interaction 

depends on the amphiphilicity of the presequence (Endo et al., 1996). Moreover, 

enrichment of basic amino acid residues has been shown for peptides interacting 

with multiple HSP70 proteins (Fourie et al., 1994; Rudiger et al., 1997). Accordingly, 

binding to HSP70 chaperones might be a general feature of mitochondrial 

presequences, which thereby not only mediate protein targeting but perhaps also 

contribute to the formation of precursor-chaperone complexes. 

 In summary, this study reveals novels aspects of HSP70 chaperones as 

central regulators of the early biogenesis of mitochondrial proteins. Besides their role 
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in the maintenance of import competence, data presented here also indicate a 

function of HSP70s in the regulation of mitochondria-targeted protein SUMOylation. 

4.5 Proteasomal degradation of SUMO conjugates by a STUbL-

independent mechanism 
It has become evident that SUMO and ubiquitin not always act independently of each 

other but that a complex interplay between the two conjugation systems exists 

(Liebelt and Vertegaal, 2016; Schimmel et al., 2008; Tatham et al., 2011). Crosstalk 

between the two pathways has been particularly revealed by the identification of 

SUMO-targeted ubiquitin ligases (STUbLs), which specifically mediate the 

ubiquitylation and proteasomal degradation of SUMO conjugates (Tatham et al., 

2008; Uzunova et al., 2007). Moreover, further levels of interdependent control may 

exist, for instance the regulation of ubiquitin conjugating enzymes (E2) (Pichler et al., 

2005) and ubiquitin E3 ligases (Novoselova et al., 2013) by SUMOylation. 

 In line with the discovery of proteasome-dependent pathways mediating the 

proteolytic turnover of SUMO conjugates, this study identifies mitochondrial proteins 

as a novel group of SUMO substrates regulated by proteasomal degradation. 

Notably, proteasomal protein degradation might be generally involved in the 

clearance of mislocalized or retrotranslocated mitochondrial proteins in the cytosol 

(Bragoszewski et al., 2013; Habelhah et al., 2004; Pearce and Sherman, 1997; 

Wrobel et al., 2015). However, SUMO appears to confer additional specificity for the 

recognition of a small pool of mitochondria-targeted proteins by the proteasome 

system. Experimental evidence supporting this notion is given by the finding that 

upon proteasome impairment, particularly SUMOylated mitochondrial precursor 

proteins strongly accumulate (Figure 19). Even more strikingly affected is the 

SUMOylation of import-incompetent Adh3. Overall protein levels of this substrate are 

largely similar in total cell lysates of wild type and proteasome mutant cells (Figure 

20). However, the corresponding SUMO conjugates strongly and specifically 

accumulate upon proteasome impairment (Figure 20). 

 Further evidence for the proteasomal degradation of SUMOylated pools of 

mitochondria-targeted proteins is demonstrated by the finding that SUMO-modified 

species become highly unstable when SUMO deconjugation is blocked (Figure 24). 

This is in stark contrast to multiple other SUMO conjugates including Pgk1, which 

strongly accumulate in cells expressing the isopeptidase-resistant SUMO-Q95P 

variant (Figure 24). Interestingly, these data also suggest that the SUMO conjugate 

levels of mitochondrial substrates observed in wild type cells are a result of dynamic 

SUMOylation and deSUMOylation. Additionally, it seems plausible that irreversible 
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SUMO attachment to mitochondria-targeted proteins leads to the rapid degradation 

of the corresponding SUMO conjugates. The underlying mechanism requires 

proteasome function, however, is evidently independent of known yeast STUbLs 

(Figure 25). At first glance, the degradation of SUMO conjugates independent of 

SUMO-specific STUbLs might appear unexpected. However, even in proteasome 

mutant cells, predominantly mono- and only to a minor degree diSUMOylated 

species of mitochondria-targeted proteins are detectable (Figure 19), suggesting that 

the degradation of these SUMO-protein conjugates does not involve SUMO chains. 

By contrast, most STUbLs harbor multiple SIMs that mediate cooperative binding of 

multiple SUMO units, thereby facilitating the preferential recognition of polySUMO 

chains (Rojas-Fernandez et al., 2014; Tatham et al., 2008; Uzunova et al., 2007). 

 In a model in which SUMO conjugates are degraded by a STUbL-

independent pathway, it remains unclear by which mechanism SUMO-modified 

substrates are recognized. One potential explanation is the existence of a novel, yet 

to be identified, ubiquitin E3 ligase, which possesses specificity for SUMOylated 

substrates. Alternatively, an intriguing possibility is the proteasomal clearance of 

SUMO conjugates independent of ubiquitylation. Notably, ubiquitin-independent 

proteasomal degradation has indeed been described for some substrates (Erales 

and Coffino, 2014). A further, potentially relevant, fact might be that mitochondrial 

precursor proteins are known to adopt a loosely folded state in the cytosol (Neupert, 

1997). It is therefore conceivable that mitochondria-targeted substrates become 

SUMOylated in an unfolded state and that the resulting branched peptide impairs 

further folding for steric reasons. The presence of SUMO attachment sites within 

functional domains (Figure 10) might indeed support this hypothesis. Thus, 

SUMOylation of mitochondria-targeted proteins could promote the exposure of 

degrons, which are recognized by ubiquitin E3 ligases generally involved in protein 

quality control, for instance Ubr1/2 (Eisele and Wolf, 2008; Nillegoda et al., 2010), 

San1 (Heck et al., 2010; Prasad et al., 2010), Rsp5 (Fang et al., 2014), Hul5 (Fang et 

al., 2011) or Doa10 (Metzger et al., 2008). 

4.6 SUMOylation of mitochondria-targeted proteins as example for 

SUMO-mediated protein quality control 
Data presented in this study support a model of a novel stress-induced SUMO 

pathway involved in the quality control of mitochondria-targeted proteins (Figure 27). 

In a first step, substrates of this pathway are recognized by the SUMO E3 ligases 

Siz1 and Siz2. Substrate selection occurs most probably prior to import and targets a 

small pool of proteins “en route” to mitochondria. As for many SUMO substrates, the 
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SUMOylation of mitochondria-targeted proteins appears to be dynamic, allowing the 

reversal of the modification and potentially the return to the usual import route into 

the organelle. In fact, under unperturbed conditions, the major pool of detectable 

SUMO-modified species appears to remain targeting-competent, leading to the 

initiation of import and cleavage of the N-terminal mitochondrial targeting signal. By 

contrast, upon stress, particularly impairment of the cytosolic HSP70 chaperone or 

the proteasome system, the SUMOylation of mitochondrial precursor proteins is 

strongly increased. Remarkably, under these conditions, the modification appears 

less stringent in terms of site-selectivity (Figure 16 and Figure 20). Interestingly, 

similar findings have been reported previously for the SUMOylation of c-Myc upon 

proteasome inhibition (Gonzalez-Prieto et al., 2015). Accordingly, it has been 

suggested that SUMOylation might generally act more promiscuously during stress 

(Hendriks and Vertegaal, 2016). 

 Altogether, these findings indicate a role for SUMO in general cytosolic 

protein quality control, which targets import-incompetent mitochondrial preproteins 

accumulating in response to specific stress conditions. Notably, mitochondrial 

precursor proteins are generally thought to be prone to aggregation and degradation 

(Neupert, 1997) and experimental evidence indeed indicates a pronounced presence 

of SUMO-modified precursor species in insoluble cell fractions of proteasome mutant 

cells (Figure 22). It is therefore conceivable that SUMOylation might chiefly target 

unfolded and potentially aggregation-prone mitochondrial preproteins. Finally, 

biochemical data presented in this study support a model in which SUMO attachment 

to mitochondria-targeted proteins ultimately serves as a degradative mark, which 

mediates the proteasomal clearance of the modified substrate pool. 

 Stepwise proteasome-dependent degradation mechanisms involving initial 

substrate SUMOylation have been reported by several previous studies (Guo et al., 

2014; Her et al., 2015; Kohler et al., 2015; Wang and Prelich, 2009). However, a 

largely unanswered question concerning these pathways is why SUMO is required in 

addition to ubiquitin. Intriguingly, a potential answer to this issue, at least in the 

context of protein quality control, might be provided by the finding that SUMO 

specifically promotes the proteasomal degradation of insoluble fractions of 

aggregation-prone proteins (Guo et al., 2014). It has been proposed that the SUMO 

system acts by a sequential mechanism based on the specific recognition of 

misfolded proteins by a SUMO E3 ligase and SUMO’s ability to increase the solubility 

of strongly aggregating proteins (Abeywardana and Pratt, 2015; Janer et al., 2010; 

Krumova et al., 2011; Mukherjee et al., 2009; Steffan et al., 2004; Zhang and Sarge, 

2008). 
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Figure 27. Model of a SUMO-mediated protein quality control pathway acting on mitochondria-
targeted substrates. Mitochondria-targeted SUMO substrates are nuclear-encoded proteins, which are 
synthesized on cytosolic ribosomes and subsequently imported into mitochondria. Under unperturbed 
conditions, mitochondrial protein import is efficient and the major pools of SUMO substrates with N-
terminal MTSs (depicted in red) are targeted to the organelle. In the cytosol, such proteins are probably 
bound by molecular chaperones (HSPs), which may directly interact with N-terminal MTSs. 
Consequently, only minor protein fractions are recognized by the SUMO E3 ligases Siz1 and Siz2 and 
SUMOylation occurs predominantly in the form of single SUMO moieties attached to C-terminal lysine 
residues. In response to certain proteotoxic stresses, the SUMOylation of mitochondria-targeted 
substrates is strongly increased. Under these conditions, SUMOylated precursor species of 
mitochondria-targeted proteins accumulate and the modification occurs at multiple sites, including lysine 
residues located in closer proximity to the N-termini of the substrates. Ultimately, the SUMOylation of 
mitochondria-targeted proteins mediates their degradation by a proteasome-dependent pathway. 

 

Thereby, SUMO could facilitate the clearance of insoluble protein aggregates, which 

are otherwise not efficiently degraded by the proteasome (Verhoef et al., 2002). 

Notably, the function as a solubility-promoting modification might be unique for 

SUMO and different from ubiquitin, which typically targets insoluble protein 

aggregates for degradation via autophagy (Kirkin et al., 2009a; Kirkin et al., 2009b; 

Lu et al., 2014; Pankiv et al., 2007). Moreover, the reversibility of SUMOylation could 

be the basis of the triage decision whether a misfolded substrate is selected for 

deSUMOylation and subsequent refolding or for degradation. In this regard, SUMO 



DISCUSSION 
 

 66 

appears to display striking parallels to the function of molecular chaperones. In fact, 

remarkably, it has been speculated that SUMO acts as a chaperone-like factor under 

certain circumstances (Seifert et al., 2015). 

 In conclusion, a role for SUMO as a solubility-promoting or chaperone-like 

factor is an intriguing new concept with strong implications for cellular protein quality 

control. Moreover, particular relevance is given for neurodegenerative diseases, 

which are widely associated with protein aggregation. Thus, future research will not 

only shed further light on SUMO’s role in proteostasis but might also provide 

possibilities for therapeutic intervention. 
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5 MATERIALS AND METHODS 

Common chemicals and reagents were purchased from BD Biosciences (San Jose, 

USA), Bio-Rad Laboratories (Hercules, USA), Cayman Chemical Company (Ann 

Arbor, USA), Merck Millipore (Darmstadt, Germany), MP Biomedicals (Santa Ana, 

USA), Roth (Karlsruhe, Germany), Serva (Heidelberg, Germany), Seikagaku 

Corporation (Tokyo, Japan), Sigma-Aldrich (St. Louis, USA), Thermo Fisher 

Scientific (Waltham, USA) and VWR (Radnor, USA). Restriction endonucleases and 

deoxynucleotide triphosphates (dNTPs) were from New England Biolabs (Ipswitch, 

USA). DNA polymerases were obtained from Agilent Technologies (Santa Clara, 

USA), New England Biolabs and Thermo Fisher Scientific and alkaline phosphatases 

were from Roche Life Science (Penzberg, Germany) and Thermo Fisher Scientific. 

Custom-made DNA oligonucleotides for PCR applications were from Eurofins 

Genomics (Ebersberg, Germany). 

 

5.1 Microbiological methods 

5.1.1 Escherichia coli (E. coli) techniques 

 

E. coli strains 
Name Genotype Source 
XL1-blue 

 
Rosetta 

recA1 andA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F´ proAB lacIqZΔM15 Tn10 (Tetr)] 

F- ompT hsdSB(rB
- mB

-) gal dcm pRARE (CamR) 

Agilent 

 
Merck Millipore 

 

E. coli plasmids 

Plasmid constructs encoding GST fusion proteins were based on the vector pGEX-

4T-1 (GE Healthcare, Chicago, USA). For the expression of GST-Ssa1, the full-

length SSA1 open reading frame was amplified by PCR using yeast genomic DNA 

(DF5 background) as template and cloned into pGEX-4T-1. 

 

Media, buffers and solutions 

 

LB medium (plates)  1 % tryptone 
    0.5 % yeast extract 
    1 % NaCl 
    (1.5 % agar) 
    sterilized by autoclaving 
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TFB-I    30 mM KOAc 
    50 mM MnCl2 

    100 mM KCl 
    15 % glycerol 
    pH 5.8 (adjusted with HOAc) 

 

TFB-II    10 mM MOPS 
    7.5 mM CaCl2 
    10 mM KCl 
    pH 7 (adjusted with NaOH) 

 

Cultivation and storage of E. coli cells 

E. coli cells harboring plasmids were grown overnight at 37°C on LB agar plates 

containing appropriate antibiotics (100 µg/ml ampicillin or 30 µg/ml kanamycin). 

Plates were sealed with parafilm and stored at 4°C for up to one week. For long-term 

storage, stationary cultures were frozen as glycerol stocks containing 15 % (v/v) 

glycerol and stored at -80°C. Liquid cultures containing appropriate antibiotics 

(100 µg/ml ampicillin or 30 µg/ml kanamycin) were usually inoculated from single 

colonies and grown at 37°C with constant shaking. For protein expression, liquid 

cultures were shifted to 25°C. 

Preparation of competent E. coli cells 

For the preparation of competent E. coli cells, 200 ml LB medium were inoculated 

with 1 ml of a fresh overnight culture grown at 37°C. The main culture was grown at 

37°C until an OD600 of 0.45-0.55 was reached. The flasks were then chilled on ice for 

10 min and the cells were harvested by centrifugation (5000 g, 10 min, 4°C). 

Subsequently, the supernatant was removed and the cell pellet was resuspended in 

30 ml TFB-I solution. After further incubation on ice for 10 min, the bacteria were 

pelleted by centrifugation and resuspended in 6 ml TFB-II solution. Competent E. coli 

cells were frozen as 100 µl aliquots on dry ice and stored at -80°C. 

Transformation of E. coli cells 

Chemically competent E. coli cells were thawed on ice and 50 µl cells were mixed 

with an appropriate amount of plasmid DNA or 2 µl of a ligation sample. After 

incubation on ice for 20-30 min, the cells were heat-shocked at 42°C for 45 s. The 

reaction tubes were then cooled on ice for 2 min and 300 µl LB medium were added 

followed by recovery at 37°C for 20 min. Subsequently, the cells were plated on LB 

agar plates containing an appropriate antibiotic and transformants were grown 

overnight at 37°C. 
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Recombinant protein expression 

Expression of recombinant GST fusion proteins was performed using Rosetta E. coli 

cells. Chemically competent cells were transformed with pGEX-4T-1-based 

expression vectors carrying the gene of interest and transformants were selected for 

on LB agar plates containing ampicillin following overnight growth. To start growth in 

liquid cultures, 25 ml LB medium were inoculated with a single colony and grown 

overnight at 37°C. The next day, precultures were diluted 1:100 with fresh LB 

medium and the cells were grown at 37°C until an OD600 of 0.5 was reached. The 

cultures were then cooled down to 25°C and protein expression was induced by 

addition of 1 mM IPTG. The cultures were further incubated over night with shaking 

and cells were harvested by centrifugation (10 min, 5000 g, 4°C). If required, cell 

pellets were frozen in liquid N2 and stored at -80°C. 

 

5.1.2 Saccharomyces cerevisiae (S. cerevisiae) techniques 

 

S. cerevisiae strains 
Name Genotype Source 
DF5 

W303 
 

Y0002 

Y2725 

JN516 

ssa1-45 

CMY826 
 

CMY763 

YFP162 

YFP140 

YFP141 

YFP167 
 

YFP154 
 

YFP155 
 

YFP171 
 

YFP156 
 

YFP157 

his3-Δ200, leu2-3, 2-112, lys2-801, trp1-1, ura3-52 

leu2-3,112, ade2-1, can1-100, his3-11,15, ura3-1, 
trp1-1, RAD5 

DF5, Matα 

W303, Matα 

Matα, SSA1 Δssa2::LEU2 Δssa3::TRP1 Δssa4::LYS2 

Matα, ssa1-45 Δssa2::LEU2 Δssa3::TRP1 Δssa4::LYS2 

Mata, ura3-52, leu2Δ1, his3Δ-200, trp1Δ63, lys2-801, ade2-101, 
Δbar1::HIS3 

Matα, cim3-1, ura3-52, leu2Δ1 

CMY826, Mata, YIplac211-pADH-HisSMT3::URA3 

CMY763, Matα, YIplac211-pADH-HisSMT3::URA3 (cl.1) 

CMY763, Matα, YIplac211-pADH-HisSMT3::URA3 (cl. 2) 

CMY826, Mata, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 

CMY763, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 (cl. 1) 

CMY763, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 (cl. 2) 

CMY826, Mata, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 

CMY763, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 (cl. 1) 

CMY763, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 (cl. 2) 

D. Finley 

X.Zhao 
 

D. Finley 

X. Zhao 

E. Craig 

E. Craig 

C. Mann 
 

C. Mann 

this study 

this study 

this study 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 

(continued on next page) 
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Name Genotype Source 
YFP516 

YFP519 

YFP602 
 

YFP606 
 

YFP612 
 

YFP616 
 

YFP594 
 

YFPX4-3A 

YFPX244-5C 
 

YFPX245-7C 
 

YFPX248-2C 
 

YFPX10-5C 

YFPX103-3D 

YFPX12-9B 

YFPX112-16D 

YFPX14-1C 
 

YFPX115-11A 
 

YFPX149-12D 
 

YFPX147-4B 
 

YFPX153-2D 
 

YFPX16-6C 
 

YFPX16-2D 
 

YFPX116-3B 
 

YFPX150-7C 
 

YFPX164-3C 
 

YFPX165-14B 
 

YFPX71-2A 
 

YFPX246-12A 

JN516, Matα, YIplac211-pADH-HisSMT3::URA3 

ssa1-45, Matα, YIplac211-pADH-HisSMT3::URA3 

JN516, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 

JN516, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 

ssa1-45, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 

ssa1-45, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 Δzip3::hphNT1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
Δsiz1::hphNT1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
Δsiz2::natNT2 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
Δsiz1::hphNT1 Δsiz2::natNT2 

DF5, Matα, ADH33HA::kanMX4 

DF5, Matα, ADH33HA::TRP1 

DF5, Matα, ILV63HA::kanMX4 

DF5, Matα, ILV63HA::TRP1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::TRP1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 Δsiz1::hphNT1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 Δsiz2::HIS3MX6 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ADH33HA::kanMX4 Δsiz1::hphNT1 Δsiz2::HIS3MX6 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 

DF5, Mata, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::TRP1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 Δsiz1::hphNT1 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 Δsiz2::natNT2 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 Δsiz1::hphNT1 Δsiz2::natNT2 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 mms21-11::natNT2 

DF5, Matα, YIplac211-pADH-HisSMT3::URA3 
ILV63HA::kanMX4 cim3-1 

this study 

this study 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 

this study 
 

this study 
 

this study 
 

this study 

this study 

this study 

this study 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 

(continued on next page) 
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Name Genotype Source 
YFPX266-20C 
 

YFP339 

YFPX212-7D 
 

YFPX213-7D 
 

YFP627 

YFP630 

YFPX251-15C 
 

YFPX256-9C 
 

YFPX255-3B 
 

YFPX254-6D 
 

YFPX255-7D 
 

YFPX259-2D 
 

YFPX260-7C 
 

YFPX205-3B 
 

YFPX206-13B 
 

YFPX283-4A 
 

YFPX284-3D 
 

YFPX288-3D 
 

YFPX292-7C 

DF5, Matα, pADH-GFPSMT3::natNT2 
ILV63HA::kanMX4 cim3-1 

W303, Matα, YIplac211-pADH-HisSMT3::URA3 

W303, Matα, YIplac211-pADH-HisSMT3::URA3 
Δsiz1::hphNT1 

W303, Matα, YIplac211-pADH-HisSMT3::URA3 
Δsiz2::natNT2 

W303, Matα, pRS306-pGAL-ADH33HA-tCYC1::URA3 

W303, Matα, pRS306-pGAL-adh328-375
3HA-tCYC1::URA3 

W303, Matα, YIplac128-pADH-HisSMT3::LEU2 
pRS306-pGAL-ADH33HA-tCYC1::URA3 

W303, Matα, YIplac128-pADH-HisSMT3::LEU2 
pRS306-pGAL-adh328-375

3HA-tCYC1::URA3 

W303, Matα, YIplac128-pADH-HisSMT3::LEU2 
pRS306-pGAL-adh328-375

3HA-K305R-tCYC1::URA3 

W303, Matα, YIplac128-pADH-HisSMT3::LEU2 
pRS306-pGAL-adh328-375

3HA-tCYC1::URA3 cim3-1 

W303, Matα, YIplac128-pADH-HisSMT3::LEU2 
pRS306-pGAL-adh328-375

3HA-K305R-tCYC1::URA3 cim3-1 

W303, Matα, YIplac211-pGAL-HisSMT3GG::URA3 
ILV63HA::TRP1 

W303, Matα, YIplac211-pGAL-HisSMT3GG-Q95P::URA3 
ILV63HA::TRP1 

W303, Matα, YIplac211-pGAL-HisSMT3GG::URA3 
ILV63HA::TRP1 cim3-1 

W303, Matα, YIplac211-pGAL-HisSMT3GG-Q95P::URA3 
ILV63HA::TRP1 cim3-1 

W303, Matα, YIplac211-pGAL-HisSMT3GG::URA3 
ILV63HA::TRP1 Δslx5::natNT2 Δslx8::HIS3MX6 

W303, Matα, YIplac211-pGAL-HisSMT3GG-Q95P::URA3 
ILV63HA::TRP1 Δslx5::natNT2 Δslx8::HIS3MX6 

W303, Matα, YIplac211-pGAL-HisSMT3GG::URA3 
ILV63HA::TRP1 Δris1::natNT2 

W303, Matα, YIplac211-pGAL-HisSMT3GG-Q95P::URA3 
ILV63HA::TRP1 Δris1::natNT2 

this study 
 

this study 

this study 
 

this study 
 

this study 

this study 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 
 

this study 

 

S. cerevisiae vectors 
Name Plasmid type Source 
YIplac128 
YIplac211 integrative Gietz and Sugino, 1988 

pRS306 integrative Sikorski and Hieter, 1989 

YCplac22 centromeric Gietz and Sugino, 1988 

p413ADH 
p415ADH 
p415GAL 

 
centromeric 

 
Mumberg et al., 1994, 1995 

pRS306-pGAL integrative this study 

p413TDH3 centromeric this study 
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S. cerevisiae plasmids 

Plasmids for the expression of HisSUMO under control of the ADH1 promoter were 

based on the integrative vectors YIplac211 and YIplac128 (Gietz and Sugino, 1988), 

respectively and have been described previously (Hoege et al., 2002; Psakhye and 

Jentsch, 2012; Sacher et al., 2006). ORFs encoding mature HisSUMO variants (wild 

type and Q95P) were cloned into YIplac211 under control of the GAL1 promoter. 

 For subsequent cloning into different types of expression vectors, ORFs 

encoding C-terminally 3HA-tagged proteins (and N-terminally truncated mutant 

variants) were amplified by PCR using specific primer pairs. The respective template 

DNA was isolated from yeast cells, in which individual genes were chromosomally 

fused to cassettes encoding C-terminal 3HA epitopes. These ORFs were then cloned 

into vectors of the p41XADH or p41XGAL series (Mumberg et al., 1994, 1995) for 

expression under control of the ADH1 and GAL1 promoter, respectively. For the 

expression of wild type Ilv63HA and various KR mutant variants under control of the 

endogenous promoter, the ILV6 promoter, the ILV63HA ORF and the ILV6 terminator 

were cloned into YCplac22 (Gietz and Sugino, 1988). 

 For expression of wild type Adh33HA and Δmts-adh33HA from the GAL1 or the 

TDH3 promoter, the respective ORFs were cloned into p415GAL, pRS306-pGAL or 

p413TDH3. pRS306-pGAL was generated by subcloning a DNA fragment comprising 

the GAL1 promoter, the multiple cloning site and the CYC1 terminator from p415GAL 

into pRS306 (Sikorski and Hieter, 1989). For the generation of p413TDH3, the GAL1 

promoter of p413GAL was replaced by the TDH3 promoter. 

 In all constructs, KR mutations were introduced by site-directed mutagenesis 

using specific primer pairs. 

 

Media, buffers and solutions 

 

YPD/YPGal (plates)  1 % yeast extract 
    2 % bacto peptone 
    2 % D-glucose/D-galactose 
    (2 % agar) 
    sterilized by autoclaving 

 

YPD selection plates  YPD agar was autoclaved, cooled down to 50°C and
    the respective antibiotic was added: 

geneticin (G418 sulfate, Thermo Fisher Scientific) 
    to 200 mg/l 
    nourseothricin (NAT, HKI, Jena) to 100 mg/l 
    hygromycin (Hygro, Cayman Chemical) to 500 mg/l 
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SC-media (plates)  0.67 % yeast nitrogen base 
    0.2 % amino acid drop-out mix (lacking one or multiple 
    compounds if required) 
    2 % carbon source (D-glucose, D-raffinose or 
    D-galactose) 

 

Amino acid drop-out mix 4.0 g Leu 
    2.0 g Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, 
     Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val 
    2.0 g myo-inositol 
    2.0 g uracil 
    0.5 g adenine 
    0.2 g p-aminobenzoic acid 

 

SORB solution  100 mM LiOAc 
    10 mM Tris-HCl pH 8.0 
    1 mM EDTA pH 8.0 
    1 M sorbitol 
    sterilized by filtration 

 

PEG solution   100 mM LiOAc 
    10 mM Tris-HCl pH 8.0 
    1 mM EDTA pH 8.0 
    40 % (w/v) PEG-3350 
    sterilized by filtration 
    stored at 4°C 

 

Sporulation medium  2 % (w/v) KOAc 
    sterilized by autoclaving 

 

Sporulation plates  0.25 % yeast extract 
    0.1 % D-glucose 
    2 % KOAc 
    0.168 % CSM powder 
    2 % agar 
    adjusted to pH 7 with KOH/HOAc 

 

Zymolyase solution  0.9 M sorbitol 
    0.1 M Tris-HCl pH 8.0 
    0.2 M EDTA pH 8.0 
    50 mM DTT 
    0.5 mg/ml Zymolyase-100T (Seikagaku Corporation) 
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Cultivation and storage of S. cerevisiae cells 

S. cerevisiae cells were grown on agar plates and in liquid cultures, respectively. For 

growth on plates, yeast cells were streaked from glycerol stocks using a sterile 2 ml 

glass pipette and incubated at 30°C for 2-3 days. Plates with temperature-sensitive 

strains were kept at the permissive temperature (typically 25°C) for 3-4 days. 

 Liquid cultures were inoculated with cells from freshly streaked agar plates 

and grown overnight at 25°C or 30°C on a shaking platform. Main cultures were 

obtained by diluting fresh overnight cultures to an OD600 of 0.1-0.2. These cultures 

were incubated in baffle-flasks (flask volume ≥ 5x liquid culture volume) with constant 

shaking at 110-150 rpm until the mid log growth phase was reached (OD600 = 0.6-

1.0). Notably, all hypomorphic mutants (cim3-1 and ssa1-45) used in this study were 

grown at 25°C. A temperature shift to 37°C is not required for these strains. Culture 

densities (OD600) were determined photometrically and yeast cells were harvested by 

centrifugation. Yeast cultures on agar plates were sealed with parafilm and stored at 

4°C for 1-4 weeks. For long-term storage, stationary cultures were frozen as glycerol 

stocks containing 15 % (v/v) glycerol and stored at -80°C. 

Preparation of competent S. cerevisiae cells 

Yeast cells from a fresh overnight culture were inoculated in 50 ml medium (usually 

YPD) to an OD600 of 0.1-0.2 and grown until an OD600 of 0.5-0.7 was reached. The 

cells were harvested by centrifugation (500 g, 5 min, room temperature), washed first 

with 25 ml sterile dH2O and subsequently with 5 ml sterile SORB solution. The cell 

pellet was then resuspended in 360 µl SORB solution, mixed with 40 µl carrier DNA 

(10 mg/ml salmon or herring sperm DNA, Thermo Fisher Scientific) and stored 

at -80°C. 

Transformation of S. cerevisiae cells 

For transformation, 200 ng of circular plasmid DNA and 2 µg of linear DNA 

(linearized plasmid DNA or PCR products) were added to 10 µl and 50 µl of 

competent yeast cells, respectively. The cells were mixed with 6 volumes of PEG 

solution and incubated at room temperature for 30 min. After addition of 10 % sterile 

DMSO the cells were heat-shocked at 42°C for 8-15 min and pelleted by 

centrifugation (500 g, 3 min, room temperature). For the selection of transformants 

containing auxotrophic markers, cells were resuspended in 100 µl sterile dH2O and 

directly plated on the respective SC agar plates. For the selection of transformants 

on plates containing antibiotics, cells were resuspended 700 µl YPD and incubated at 

30°C (25°C for temperature-sensitive strains) for 3-4 h prior to plating. Stable 

transformants were grown at 30°C (25°C for temperature-sensitive strains) for 2-4 
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days. If required, replica plating using sterile velvet was performed to remove 

background. 

Genetic manipulation of S. cerevisiae 

S. cerevisiae is a highly recombination-proficient organism and therefore ideally 

suited for genetic manipulation. Gene deletion mutants and chromosomally tagged 

strains were constructed using a PCR-based strategy (Janke et al., 2004; Knop et 

al., 1999). In brief, targeting cassettes containing selection markers (and optionally 

sequences encoding epitope tags) were generated by PCR and transformed into 

competent yeast cells. Upon integration of the cassettes into the yeast genome, 

stable transformants were selected on appropriate agar plates. Subsequently, 

integration of deletion constructs at the correct genomic locations was verified by 

yeast colony PCR using specific primer pairs. In case of epitope taggings, expression 

of the respective fusion proteins was additionally confirmed by western blot analysis 

using epitope-specific antibodies. 

 Integrative yeast plasmids (based on the vectors YIplac128, YIplac211 and 

pRS306) were linearized by treatment with restriction endonucleases. Selected cut 

sites were located within inserts (BglII for the YIplac211-pADH-HisSMT3 construct) 

and marker genes (EcoRV for LEU2 in the YIplac128-pADH-HisSMT3 construct and 

NcoI for URA3 in pRS306-based constructs), respectively. Linearized plasmids were 

then transformed into competent yeast cells and stable transformants were selected 

on appropriate agar plates. Plasmid integration at the correct chromosomal loci was 

verified by yeast colony PCR and expression of encoded proteins was confirmed by 

western blot analysis. 

Mating of haploid S. cerevisiae strains 

For mating of haploid yeast strains, freshly streaked cells of opposite mating type 

(Mat a and Mat α) were mixed on a YPD plate using sterile toothpicks. The plate was 

then incubated over night at 30°C (25°C for temperature-sensitive strains) and diploid 

cells were identified by growth on double selection plates. In cases, for which the use 

of double selection plates was not applicable, diploid cells were identified by 

consecutive streaking on different selection plates. 

Sporulation and tetrad analysis of diploid S. cerevisiae strains 

For sporulation in liquid medium, diploid yeast cells from 500 µl of a saturated 

overnight culture (typically grown in YPD at 30°C) were harvested by centrifugation 

(500 g, 3 min, room temperature). The cells were washed three times with 1 ml 

sterile dH2O and once with sporulation medium. Subsequently, the cells were 
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resuspended in 4 ml sporulation medium and incubated at room temperature on a 

shaker for 3-6 days. Prior to tetrad dissection, 10 µl of a sporulated culture were 

mixed with 10 µl zymolyase solution and incubated at room temperature for 5 min. 

The cells were then transferred to a YPD agar plate, dried and tetrad dissection was 

performed using a MSM400 micromanipulator (Singer Instruments, Roadwater, UK). 

 For sporulation on plate, diploid cells were streaked on a sporulation plate 

and incubated at 30°C (25°C for temperature-sensitive strains) for 3-4 days. A patch 

of cells from a sporulation plate was resuspended in 1 ml sterile dH2O and 10 µl of 

the suspension was mixed with 10 µl zymolyase solution. After incubation for 5 min 

at room temperature the cells were transferred to a YPD agar plate and tetrad 

dissection was performed as described above. 

 Tetrads were grown at 30°C (25°C for temperature-sensitive strains) for 2-3 

days and genotypic analysis was performed by replica plating on selection plates. 

Temperature-sensitive spores were identified by replica plating on YPD plates and 

incubation at the non-permissive temperature (typically 37°C). 

Mating type analysis 

Mating types of haploid yeast cells were analyzed using the tester strains RC634a 

and RC75-7α (Dietzel and Kurjan, 1987). These strains display a strong sensitivity 

towards mating pheromones secreted by cells of the opposite mating type. To 

generate tester plates for mating type analysis, patches of freshly streaked tester 

cells were resuspended in 1 % agar (cooled to max. 40°C) and poured onto YPD 

plates. Tetrads were replica plated onto tester plates and incubated at 30°C (25°C for 

temperature-sensitive strains) for 1-2 days. Growth inhibition of the tester strain in 

the top layer agar in close proximity to cells of the opposite mating type leads to 

formation of a so called “halo” and thereby allows the determination of the 

corresponding mating type. Diploid cells do not secrete mating type pheromones and 

can be identified by the absence of a ‘halo’ on both types of tester plates. 

Spotting assays 

Spotting assays were used to analyze the growth phenotypes of yeast strains at 

different temperatures. Cells grown in liquid cultures were diluted to an OD600 of 1 

and six 5-fold serial dilutions in sterile dH2O were prepared. These dilutions were 

spotted on agar plates using a custom-made stamping device followed by incubation 

at different temperatures for 2-5 days. 
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5.2 Methods in molecular biology 
 

General buffers and solutions 

 

TBE buffer   90 mM Tris 
    90 mM boric acid 
    2.5 mM EDTA 

 

10x DNA sample buffer 0.25 % bromophenol blue 
    0.25 % xylene cyanol FF 
    50 % glycerol 

 

5.2.1 Nucleic acid purification and analysis 

Isolation of plasmid DNA from E. coli cells 

Isolation of plasmid DNA from E. coli cells was performed with the AccuPrep Plasmid 

Mini Extraction Kit (Bioneer Corporation, Daejeon, South Korea) and the QIAGEN 

Plasmid Mini Kit (Qiagen, Hilden, Germany), respectively. 5 ml LB medium 

containing 100 µg/ml ampicillin or 30 µg/ml kanamycin were inoculated with a single 

E. coli colony and grown over night at 37°C. Cells were pelleted by centrifugation and 

plasmid isolation was performed according to the manufacturers’ instructions. 

Purification of genomic DNA from S. cerevisiae cells 

Purification of genomic DNA from yeast cells was performed using the MasterPure 

Yeast DNA Purification Kit (Epicentre, Madison, USA) according to the 

manufacturer’s instructions. Typically, cells from 500 µl of a fresh overnight culture 

were used. 

Purification of PCR products 

Linear DNA fragments generated by PCR were purified using the QIAquick PCR 

Purification Kit (Qiagen) and the AccuPrep PCR Purification Kit (Bioneer 

Corporation), respectively. Both kits were used according to the manufacturers’ 

instructions. 

Agarose gel electrophoresis of DNA molecules 

DNA fragments generated by PCR or by digestion of plasmid DNA using restriction 

endonucleases were resolved using agarose gel electrophoresis. Gels were 

prepared by dissolving 1-2 % agarose in TBE buffer in a microwave. 

Ethidiumbromide was added to a final concentration of 0.5 µg/ml and the solution 
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was poured into a gel casting form. Before loading, DNA samples were mixed with 

an appropriate volume of 10x DNA sample buffer. Electrophoretic separation was 

carried out in TBE buffer at a constant voltage of 80-120 V. DNA bands were 

visualized by UV illumination. 

Extraction of DNA fragments from agarose gels 

For the isolation of DNA from agarose gels, the required fragment was visualized by 

ethidium bromide staining and excised from the gel on a UV transilluminator using a 

clean razor blade. The gel block was transferred to a sterile 1.5 ml reaction tube and 

the DNA was purified using the QIAquick Gel Extraction Kit (Qiagen) according to the 

manufacturer’s instructions. 

Determination of DNA concentrations 

Concentrations of DNA in aqueous solutions were determined photometrically using 

a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific). Measurements 

were based on the following calculation: 

 

1 A260 unit of dsDNA ≈ 50 µg/ml in dH2O 

 

The purity of DNA solutions was estimated by the following value: 

 

A260 / A280 ≥ 1.8 

DNA sequence analysis 

DNA sequencing was performed by at the MPIB microchemistry core facility using an 

ABI 3730 DNA analyzer (Applied Biosystems/Thermo Fisher Scientific) and the ABI 

Big Dye 3.1 sequencing system. Alternatively, DNA samples were sent to Eurofins 

Genomics for custom DNA sequencing. 

 

5.2.2 DNA amplification by polymerase chain reaction (PCR) 

Amplification of DNA fragments for molecular cloning 

For molecular cloning, DNA fragments were amplified using Phusion high fidelity 

DNA polymerase (Thermo Fisher Scientific). Primers with restriction sites within the 

5’-overhangs were designed to consist of 20-23 nucleotides complementary to the 

DNA sequence of interest. PCR reactions were set up on ice in a total volume of 

50 µl. 
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PCR reaction mix: 5.0 µl 5x Phusion HF buffer 
   1.0 µl genomic DNA 
   2.5 µl primer 1 (10 µM) 
   2.5 µl primer 2 (10 µM) 
   1.0 µl dNTP mix (10 mM each) 
   0.5 µl Phusion High-Fidelity DNA polymerase 
   31.5 µl dH2O 
 

Thermocycler program (34 amplification cycles): 
 

PCR step T [°C] Time 
Initial denaturation 98 30 s 
Denaturation 98 10 s 
Annealing 50-55 30 s 
Elongation 72 15-30 s/kb 
Final elongation 72 10 min 
Cooling 4 ∞ 

 

Amplification of yeast targeting cassettes 

Targeting cassettes for gene deletions and chromosomal epitope taggings in yeast 

were amplified using a mixture of Taq (purified by U. Cramer, Department of 

Molecular Cell Biology, MPIB) and Vent DNA polymerases (Thermo Fisher 

Scientific). The PCR cycling parameters have been described previously (Janke et 

al., 2004). Primers were designed in a way that the resulting PCR products 

containing the selection marker (and optionally a sequence encoding the epitope tag) 

were flanked by 55 bp-long targeting arms on both sides. The sequences of these 

targeting arms were homologous to the genomic loci of interest. PCR reactions were 

set up on ice in a total volume of 50 µl. 

 

PCR reaction mix: 5.0 µl 10x ThermoPol reaction buffer 
   2.0 µl plasmid DNA (app. 50 ng/µl) 
   3.2 µl primer 1 (10 µM) 
   3.2 µl primer 2 (10 µM) 
   1.75 µl dNTP mix (10 mM each) 
   0.4 µl Taq DNA polymerase 
   0.2 µl Vent DNA polymerase 
   34.25 µl dH2O 
 

Verification of genomic recombination events (yeast colony PCR) 

The integration of plasmids or targeting cassettes at the correct genomic loci was 

confirmed by yeast colony PCR using the Whole Cell Yeast PCR Kit (MP 

Biomedicals) according to the manufacturer’s instructions. In brief, a small portion of 
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a single yeast colony was resuspended in 2.5 µl lysis solution using a sterile pipette 

and lysed by incubation for 1h at 37°C. Subsequently, the lysate was mixed with 

22.5 µl PCR master mix and the reaction tubes were transferred into a PCR thermo 

cycler. 

 

PCR reaction mix: 5.0 µl 10x ThermoPol reaction buffer 
   2.5 µl genomic DNA (cell extract) 
   5.0 µl primer 1 (10 µM) 
   5.0 µl primer 2 (10 µM) 
   1.75 µl dNTP mix (10 mM each) 
   1.25 µl Taq DNA polymerase 
   29.5 µl dH2O 
 

Thermocycler program (40 amplification cycles): 
 

PCR step T [°C] Time 
Initial denaturation 94 3 min 
Denaturation 94 30 s 
Annealing 50 30 s 
Elongation 72  2 min 
Final elongation 72 10 min 
Cooling 4 ∞ 

 

Site-directed mutagenesis 

PCR-based site-directed mutagenesis related to the QuickChange method 

(Stratagene/Agilent Technologies) was used to introduce specific mutations, 

insertions or deletions into plasmid DNA. The approach requires two complementary 

primers, which consist of one or multiple central nucleotides harboring the desired 

mutation(s), flanked by 15 nucleotides of the correct target sequence on both sides. 

Dam-methylated circular plasmid DNA served as template for the PCR reaction and 

PCR amplification was performed using PfuTurbo DNA polymerase (Agilent 

Technologies) in a total volume of 25 µl. 

 

PCR reaction mix: 2.5 µl 10x Cloned Pfu DNA polymerase reaction buffer 
   0.5 µl template DNA (app. 500 ng/µl) 
   0.5 µl primer 1 (10 µM) 
   0.5 µl primer 2 (10 µM) 
   0.6 µl dNTP mix (10 mM each) 
   0.5 µl PfuTurbo DNA polymerase 
   19.9 µl dH2O 
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Thermocycler program (19 amplification cycles): 
 

PCR step T [°C] Time 
Initial denaturation 94 3 min 
Denaturation 94 30 s 
Annealing 49 45 s 
Elongation 68 16 min 
Final elongation 68 16 min 
Cooling 4 ∞ 

 

Subsequent to PCR, the methylated template DNA was selectively digested by DpnI 

treatment for 3-4 h at 37°C. The resulting PCR product was transformed into 

competent E. coli cells and plasmid DNA was isolated from several individual clones. 

Plasmids harboring the desired mutation(s) were identified by DNA sequencing. 

 

5.2.3 Molecular cloning 

Cleavage of DNA with restriction endonucleases 

Restriction endonucleases (New England Biolabs) were used for the sequence-

specific cleavage of DNA molecules. For analytical purposes, app. 1 µg of circular 

plasmid DNA isolated from E. coli was incubated with the respective restriction 

endonucleases for 1-3h at 37°C. For molecular cloning, vector DNA and DNA 

fragments obtained by PCR were usually digested over night at 37°C. 

Dephosphorylation of vector DNA 

To prevent the religation of vector DNA during ligation reactions, 5’ end 

dephosphorylation was performed using FastAP (Thermo Fisher Scientific) and rAPid 

Alkaline Phosphatase (Roche), respectively. 2 µl phosphatase were mixed directly 

with the restriction digest and incubated at 37°C for 2-4h. Subsequently, the 

linearized vector DNA was purified using agarose gel electrophoresis followed by gel 

extraction. 

Ligation of DNA fragments 

Ligation of DNA fragments with linearized (dephosphorylated) vector DNA was 

performed using T4 DNA ligase and the Quick DNA Ligation Kit (New England 

Biolabs), respectively. Typically, vector DNA and inserts were mixed in a 1:3 molar 

ratio. Ligation reactions using Quick T4 DNA ligase were incubated at 25°C for 5 min. 

Ligation reactions using T4 DNA ligase were incubated at 25°C for 10 min or 

overnight at 16°C. Subsequently, the reaction tubes were chilled on ice and 

transformed into competent E. coli cells. 
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5.3 Biochemical and cell biological methods 
 

General buffers and solutions 

 

HU sample buffer  8 M urea 
    5 % SDS 
    1 mM EDTA 
    1.5 % DTT 
    0.025 % bromophenolblue 
    200 mM Tris-HCl pH 6.8 

 

MOPS running buffer  50 mM MOPS 
    50 mM Tris base 
    3.5 mM SDS 
    1 mM EDTA 

 

Transfer buffer  250 mM Tris base 
    1.92 M glycine 
    0.1 % SDS 
    20 % (v/v) methanol 

 

TBST    25 mM Tris-HCl pH 7.5 
    137 mM NaCl 
    2.6 mM KCl 
    0.1 % Tween 20 

 

PBS    137 mM NaCl 
    2.7 mM KCl 
    4.3 mM Na2HPO4 
    1.47 mM KH2PO4 
    pH 7.5 

 

Blocking solution  5 % (w/v) skim milk powder in TBST 

 

5.3.1 Protein methods 

Preparation of total cell extracts by trichloroacetic acid (TCA) precipitation 

Trichloroacetic acid (TCA) precipitation was used for the preparation of small-scale 

denatured total protein extracts from yeast cells. Typically, 1 OD of cells were 

resuspended in 1 ml ice-cold dH2O and lysed by addition of 150 µl 1.85 M 

NaOH/7.5 % β-mercaptoethanol. After 15 min incubation on ice, proteins were 
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precipitated by addition of 150 µl 55 % TCA and further incubation on ice for 10 min. 

The denatured material was recovered by two sequential centrifugation steps 

(14 krpm, 10 min, 4°C) and aspiration of the supernatant. Subsequently, the pellet 

was resuspended in 100 µl HU sample buffer by vigorous agitation for 10 min at 

65°C. 

Purification of HisSUMO conjugates from denatured yeast extracts 

Purification of HisSUMO conjugates from yeast was performed by Ni-NTA pull-downs 

under denaturing conditions (Hoege et al., 2002; Sacher et al., 2006). Typically, 

200 OD of yeast cells from logarithmically growing cultures were harvested by 

centrifugation (2500 g, 5 min, 4°C), washed once with ice-cold dH2O and flash-frozen 

in liquid N2. Optionally, cell pellets were stored at -80°C. Yeast cells were then lysed 

by resuspending the pellets in 6 ml 1.85 M NaOH containing 7.5 % β-

mercaptoethanol and incubation on ice for 15 min. Subsequently, the cellular 

material was precipitated by addition of 6 ml 55 % TCA and further incubation on ice 

for 15 min. The precipitated material was pelleted by centrifugation (3000 g, 30 min, 

4°C), washed twice with 50 ml ice-cold dH2O and solubilized in 12 ml buffer A (6 M 

guanidinium hydrochloride, 100 mM NaH2PO4, 10 mM Tris-HCl, pH 8) containing 

0.05 % Tween-20. The samples were incubated on a shaking platform for 1-2h 

(220 rpm, RT) and insoluble material was removed by centrifugation (23,000 g, 

20 min, 4°C). The supernatants were transferred to 15 ml Falcon tubes, mixed with 

imidazole to a final concentration of 20 mM and 50-100 µl of magnetic Ni-NTA 

agarose beads (Qiagen) were added. After overnight incubation at 4°C on a tube 

roller, the beads were recovered by centrifugation (1000 rpm, 5 min, 4°C), 

transferred to 1.5 ml reaction tubes and washed three times with buffer A containing 

20 mM imidazole/0.05 % Tween-20 and five times with buffer C (8 M urea, 100 mM 

NaH2PO4, 10 mM Tris-HCl, pH 6.3) containing 0.05 % Tween-20. To remove 

detergents, the beads were then transferred to a fresh 1.5 ml reaction tube using 

100 µl buffer C without Tween-20. Eventually, proteins bound to the beads were 

eluted by shaking in 30 µl 1 % SDS for 10 min at 65°C. The samples were dried in a 

SpeedVac centrifuge (Eppendorf, Hamburg, Germany) at 45°C for 30 min, dissolved 

in 10 µl dH2O and 15 µl HU buffer for 10 min at 65°C and analyzed by SDS-PAGE 

and western blotting. 

Preparation of native yeast cell lysates and cellular fractionation 

For the preparation of native cell lysates from yeast, usually 100-200 OD of yeast 

cells were harvested by centrifugation (2000 g, 5 min, 4°C), washed once with ice-

cold PBS and resuspended in 700 µl ice-cold lysis buffer in a 2 ml reaction tube. 
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Zirconia/silica beads (BioSpec Inc., Bartlesville, USA) were added until a 2 mm liquid 

phase was visible on top of the beads. Cells were then lysed at 4°C in a MM301 

multi-tube bead-beater (Retsch Technology, Haan, Germany) using 6 disruption 

intervals of 1 min (frequency = 30 Hz), each followed by 5 min incubation on ice. The 

piggyback method was used to separate cellular lysates from beads and to transfer 

the lysates into fresh 15 ml Falcon tubes. 

 Cellular fractionations assessing the solubility of proteins were performed as 

described previously (Fang et al., 2011). In brief, yeast cells were lysed by bead-

beating in lysis buffer (100 mM HEPES pH 7.5, 1 % Triton X-100, 300mM NaCl, 1x 

complete EDTA-free protease inhibitor cocktail (Roche), 1 mg/ml Pefabloc SC 

(Roche)). Subsequently, the lysates were pre-cleared by centrifugation (2000 g, 

10 min, 4°C) and the resulting total cell extracts (T fraction) were fractionated by a 

second centrifugation step (16000 g, 10 min, 4°C) to yield soluble (S) and insoluble 

pellet (P) fractions. 10 µl of each, the total and soluble fractions, were mixed with 

50 µl HU sample buffer and denatured at 65°C for 10 min in a thermo shaker. The 

pellet was washed three times with 1 ml ice cold lysis buffer and resolubilized in 50 µl 

HU sample buffer at 65°C for 10 min. 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Size-dependent separation of proteins by denaturing SDS polyacrylamide gel 

electrophoresis was performed using pre-cast 12 % or 4-12 % NuPAGE Novex Bis-

Tris gels (Thermo Fisher Scientific). Protein samples were prepared in HU buffer and 

denatured by shaking for 10 min at 65°C. Electrophoretic separation was carried out 

in MOPS running buffer at a constant voltage of 110-140V. The All Blue Precision 

Plus pre-stained protein standard (Bio-Rad Laboratories) served as molecular weight 

marker. 

Western blot analysis 

Western blotting was performed using a wet tank blotting system (Hoefer Inc. 

Holliston, USA). Proteins from polyacrylamide gels were transferred to Immobilon-P 

PVDF membranes (Merck Millipore) in fresh transfer buffer at a constant voltage of 

75 V for 90 min. Subsequently, the membranes were briefly washed in TBST and 

blocked by shaking in blocking solution for 60 min. Incubation with primary antibodies 

diluted in blocking solution containing 0.05 % sodium azide was performed over night 

at 4°C. The next day, the membranes were washed four times for 5 min with TBST 

and incubated with specific horseradish peroxidase (HRP)-coupled secondary 

antibodies (Dianova, Hamburg, Germany) in blocking solution at room temperature 
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for 1-3 h. The membranes were washed four times for 10 min with TBST and protein 

detection was performed using the ECL or ECL Plus chemiluminescence systems 

(Thermo Fisher Scientific) according to the manufacturer’s instructions. 

Chemiluminescence signals were detected using a CCD-based LAS-3000 imaging 

system (Fujifilm, Tokyo, Japan). Alternatively, western blot membranes were 

exposed to Hyperfilm ECL chemiluminescence films (GE Healthcare) followed by 

automated film development. 

 

Primary antibodies 

Name Dilution Type Source 
anti-HA (F-7) 1:2000 mouse monoclonal Santa Cruz Biotechnology 

anti-HA (Y-11) 1:1000 rabbit polyclonal Santa Cruz Biotechnology 

anti-Pgk1 (22C5D8) 1:15000 mouse monoclonal Thermo Fisher Scientific 

anti-Dpm1 (5C5) 1:2000 mouse monoclonal Thermo Fisher Scientific 

anti-HSP70 (BB70) 1:10000 mouse monoclonal Enzo Life Sciences 

anti-Smt3 1:10000 rabbit polyclonal Hoege et al., 2002 

anti-GST (B-14) 1:1000 mouse monoclonal 

(HRP-coupled) 

Santa Cruz Biotechnology 

 

Secondary antibodies 

Name Dilution Type Source 
goat anti-mouse 1:5000 HRP-coupled Dianova 

goat anti-rabbit 1:5000 HRP-coupled Dianova 
 

Stripping of PVDF membranes 

For incubation with alternative primary antibodies, PVDF membranes were stripped 

using the Restore Western Blot Stripping Buffer (Thermo Fisher Scientific) according 

to the manufacturer’s protocol. The membranes were washed three times for 10 min 

with TBST, incubated in blocking solution for 60 min and probed with an alternative 

primary antibody of choice. 

Analysis of HSP70 binding sites on peptide arrays 

Peptide arrays on cellulose membranes were generated using automated SPOT 

synthesis on a MultiPep peptide synthesizer (INTAVIS Bioanalytical Instruments, 

Cologne, Germany). Peptides covering the Ilv6 primary sequence were designed to 

comprise a length of 13 amino acids overlapping by 10 amino acids. 
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 Before incubation with recombinant GST-Ssa1, the membrane was washed 

for 10 min with MeOH and three times for 15 min with TBST. Subsequently, the 

membrane was blocked for 60 min with blocking solution and washed four times for 

5-10 min with TBS containing 0.05 % Tween-20. The peptide scan was then 

incubated for 90 min with 100 nM GST-Ssa1 in TBS (containing 0.05 % Tween-20) at 

room temperature followed by four 5 min washes with TBS (containing 0.05 % 

Tween-20). For the detection of GST-Ssa1 on the peptide array, the membrane was 

incubated at room temperature for 120 min with an anti-GST-HRP conjugate (B14) 

(Santa Cruz Biotechnology, Dallas, USA) in TBS (containing 0.05 % Tween-20). 

Subsequently, the membrane was washed four times for 5 min with TBST and 

subjected to chemiluminescence detection using ECL (Thermo Fisher Scientific) and 

a CCD-based LAS-3000 imaging system (Fujifilm). 

Purification of recombinant GST fusion proteins 

GST-Ssa1 was purified from E. coli cells (Rosetta) using standard protocols. In brief, 

cells were resuspended in lysis buffer (40 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM 

DTT, 1x complete EDTA-free protease inhibitor cocktail (Roche), 1 mg/ml Pefabloc 

SC (Roche)) and lysed in an EmulsiFlex-C5 homogenizer (Avestin, Ottawa, Canada). 

Lysates were then cleared by centrifugation for 30 min at 20 krpm and 4°C. 

Glutathione Sepharose 4B beads (GE Healthcare) were washed twice with dH2O, 

three times with PBS and equilibrated in lysis buffer. Subsequently, the beads were 

added to the lysates and protein binding was performed for 4 h at 4°C on a rotating 

wheel. The beads were then washed twice with lysis buffer and four times with lysis 

buffer containing 450 mM NaCl. Finally, GST-tagged proteins were eluted in four 

steps with 0.5 ml elution buffer (40 mM Tris-HCl pH 7.5, 50 mM reduced glutathione, 

5 mM DTT) and dialyzed overnight at 4°C against 5 l PBS using Slyde-A-Lyser 

dialysis cassettes (Thermo Fisher Scientific). Protein samples were frozen in liquid 

N2 and stored at -80°C. 

 

5.3.2 Microscopy techniques 

Confocal fluorescence microscopy 

To analyze the subcellular localization of GFP fusion proteins by fluorescence 

microscopy, yeast cells were grown at 30°C to exponential phase in synthetic 

complete (SC) medium. In case of import-incompetent Ilv6 variants expressed from 

the GAL1 promoter, cells were grown in raffinose-containing medium and protein 

expression was induced by addition of 2 % galactose for 60 min. The cells were then 
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transferred to a CellCarrier-96 black polystyrene microplate (Perkin Elmer, Waltham, 

USA) and stained using calcofluor white. Subsequently, images were captured using 

an OperaPhenix HCS confocal microscope (Perkin Elmer) equipped with an 

Olympus 63x water NA 1.15 objective. 

Calcofluor white staining 

To visualize yeast cells during microscopy analysis, yeast cell walls were stained by 

calcofluor white staining using a dye solution that contains 1 g/l calcofluor white and 

0.5 g/l Evans blue (Sigma-Aldrich). The solution was directly added to yeast cultures 

to a final dilution of 1:10, incubated at room temperature for at least 1 min and 

images were captured by confocal microscopy. 
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5.4 Database searches, computational analysis and software 
Literature search was performed using the PubMed search engine of the United 

States National Library of Medicine (https://www.ncbi.nlm.nih.gov/pubmed). Nucleic 

acid and protein sequence searches as well as protein domain analysis was 

performed using electronic databases of the Saccharomyces Genome Database 

(http://www.yeastgenome.org) and the UniProt consortium (http://www.uniprot.org). 

Multiple sequence alignments were assembled using the Clustal Omega webserver 

of the European Bioinformatics Institute (https://www.ebi.ac.uk/Tools/msa/clustalo).  

 For the in silico prediction of SUMO attachment sites, the GPS-SUMO 2.0 

software of the Cuckoo workgroup was used (http://sumosp.biocuckoo.org). 

Mitochondrial targeting sequences were predicted using MitoProt II 

(https://ihg.gsf.de/ihg/mitoprot.html) (Claros and Vincens, 1996) and TargetP 

(http://www.cbs.dtu.dk/services/TargetP) (Emanuelsson et al., 2000; Nielsen et al., 

1997). 

 DNA sequence analysis and in silico cloning was carried out using the 

DNASTAR Lasergene software package (DNASTAR Inc., Madison, USA). For the 

presentation of statistical data, GraphPad Prism (GraphPad Software, La Jolla, USA) 

was used. Linear adjustment of western blot contrasts and preparation of figures, 

illustrations and cartoons was performed using Adobe Photoshop and Illustrator 

(Adobe Systems Inc., San Jose, USA). ImageJ software (https://imagej.nih.gov/ij) 

was used for western blot quantification. Text processing and generation of tables 

were carried out using Microsoft Office (Microsoft Corporation, Redmond, USA). 

EndNote X7 (Thomson Reuters, New York City, USA) was used for reference 

management. 

 

 



REFERENCES 
 

 89 

6 REFERENCES 

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and 
Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial 
protein import receptor Tom20. Cell 100, 551-560. 

Abeywardana, T., and Pratt, M.R. (2015). Extent of inhibition of alpha-synuclein 
aggregation in vitro by SUMOylation is conjugation site- and SUMO isoform-
selective. Biochemistry 54, 959-961. 

Ades, I.Z., and Butow, R.A. (1980a). The products of mitochondria-bound 
cytoplasmic polysomes in yeast. J Biol Chem 255, 9918-9924. 

Ades, I.Z., and Butow, R.A. (1980b). The transport of proteins into yeast 
mitochondria. Kinetics and pools. J Biol Chem 255, 9925-9935. 

Agarwal, S., and Roeder, G.S. (2000). Zip3 provides a link between recombination 
enzymes and synaptonemal complex proteins. Cell 102, 245-255. 

Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. 
(2001). Tom40, the pore-forming component of the protein-conducting TOM channel 
in the outer membrane of mitochondria. J Cell Biol 153, 1151-1160. 

Alam, R., Hachiya, N., Sakaguchi, M., Kawabata, S., Iwanaga, S., Kitajima, M., 
Mihara, K., and Omura, T. (1994). cDNA cloning and characterization of 
mitochondrial import stimulation factor (MSF) purified from rat liver cytosol. J 
Biochem 116, 416-425. 

Ammon, T., Mishra, S.K., Kowalska, K., Popowicz, G.M., Holak, T.A., and Jentsch, 
S. (2014). The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in 
human cells. J Mol Cell Biol 6, 312-323. 

Argan, C., Lusty, C.J., and Shore, G.C. (1983). Membrane and cytosolic components 
affecting transport of the precursor for ornithine carbamyltransferase into 
mitochondria. J Biol Chem 258, 6667-6670. 

Atencio, D.P., and Yaffe, M.P. (1992). MAS5, a yeast homolog of DnaJ involved in 
mitochondrial protein import. Mol Cell Biol 12, 283-291. 

Ballinger, C.A., Connell, P., Wu, Y., Hu, Z., Thompson, L.J., Yin, L.Y., and Patterson, 
C. (1999). Identification of CHIP, a novel tetratricopeptide repeat-containing protein 
that interacts with heat shock proteins and negatively regulates chaperone functions. 
Mol Cell Biol 19, 4535-4545. 

Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: 
paradigm of a self-compartmentalizing protease. Cell 92, 367-380. 

Becker, J., Walter, W., Yan, W., and Craig, E.A. (1996). Functional interaction of 
cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. 
Mol Cell Biol 16, 4378-4386. 

Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A., and Schulman, B.A. 
(2002). Identification of a multifunctional binding site on Ubc9p required for Smt3p 
conjugation. J Biol Chem 277, 47938-47945. 



REFERENCES 
 

 90 

Benson, M.D., Li, Q.J., Kieckhafer, K., Dudek, D., Whorton, M.R., Sunahara, R.K., 
Iniguez-Lluhi, J.A., and Martens, J.R. (2007). SUMO modification regulates 
inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci U S A 
104, 1805-1810. 

Bernier-Villamor, V., Sampson, D.A., Matunis, M.J., and Lima, C.D. (2002). Structural 
basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-
conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356. 

Bossis, G., and Melchior, F. (2006). Regulation of SUMOylation by reversible 
oxidation of SUMO conjugating enzymes. Mol Cell 21, 349-357. 

Bracher, A., and Verghese, J. (2015a). GrpE, Hsp110/Grp170, HspBP1/Sil1 and 
BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. 
Subcell Biochem 78, 1-33. 

Bracher, A., and Verghese, J. (2015b). The nucleotide exchange factors of Hsp70 
molecular chaperones. Front Mol Biosci 2, 10. 

Bragoszewski, P., Gornicka, A., Sztolsztener, M.E., and Chacinska, A. (2013). The 
ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. 
Mol Cell Biol 33, 2136-2148. 

Braschi, E., Zunino, R., and McBride, H.M. (2009). MAPL is a new mitochondrial 
SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10, 748-754. 

Breitschopf, K., Bengal, E., Ziv, T., Admon, A., and Ciechanover, A. (1998). A novel 
site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is 
essential for conjugation and degradation of the protein. EMBO J 17, 5964-5973. 

Caplan, A.J., Cyr, D.M., and Douglas, M.G. (1992). YDJ1p facilitates polypeptide 
translocation across different intracellular membranes by a conserved mechanism. 
Cell 71, 1143-1155. 

Castoralova, M., Brezinova, D., Sveda, M., Lipov, J., Ruml, T., and Knejzlik, Z. 
(2012). SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment 
result largely from new protein synthesis. Biochim Biophys Acta 1823, 911-919. 

Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., and Pfanner, N. (2009). 
Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644. 

Chacinska, A., Pfannschmidt, S., Wiedemann, N., Kozjak, V., Sanjuan Szklarz, L.K., 
Schulze-Specking, A., Truscott, K.N., Guiard, B., Meisinger, C., and Pfanner, N. 
(2004). Essential role of Mia40 in import and assembly of mitochondrial 
intermembrane space proteins. EMBO J 23, 3735-3746. 

Chan, N.C., Likic, V.A., Waller, R.F., Mulhern, T.D., and Lithgow, T. (2006). The C-
terminal TPR domain of Tom70 defines a family of mitochondrial protein import 
receptors found only in animals and fungi. J Mol Biol 358, 1010-1022. 

Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Gonda, D.K., and 
Varshavsky, A. (1989). A multiubiquitin chain is confined to specific lysine in a 
targeted short-lived protein. Science 243, 1576-1583. 



REFERENCES 
 

 91 

Chen, W.J., and Douglas, M.G. (1987). The role of protein structure in the 
mitochondrial import pathway. Unfolding of mitochondrially bound precursors is 
required for membrane translocation. J Biol Chem 262, 15605-15609. 

Cheng, C.H., Lo, Y.H., Liang, S.S., Ti, S.C., Lin, F.M., Yeh, C.H., Huang, H.Y., and 
Wang, T.F. (2006). SUMO modifications control assembly of synaptonemal complex 
and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20, 2067-
2081. 

Claros, M.G., and Vincens, P. (1996). Computational method to predict 
mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241, 
779-786. 

Connell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Hohfeld, J., and 
Patterson, C. (2001). The co-chaperone CHIP regulates protein triage decisions 
mediated by heat-shock proteins. Nat Cell Biol 3, 93-96. 

Cooper, H.J., Tatham, M.H., Jaffray, E., Heath, J.K., Lam, T.T., Marshall, A.G., and 
Hay, R.T. (2005). Fourier transform ion cyclotron resonance mass spectrometry for 
the analysis of small ubiquitin-like modifier (SUMO) modification: identification of 
lysines in RanBP2 and SUMO targeted for modification during the E3 
autoSUMOylation reaction. Anal Chem 77, 6310-6319. 

Cullin, C., Baudin-Baillieu, A., Guillemet, E., and Ozier-Kalogeropoulos, O. (1996). 
Functional analysis of YCL09C: evidence for a role as the regulatory subunit of 
acetolactate synthase. Yeast 12, 1511-1518. 

Curran, S.P., Leuenberger, D., Oppliger, W., and Koehler, C.M. (2002). The Tim9p-
Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. 
EMBO J 21, 942-953. 

Cyr, D.M., Ungermann, C., and Neupert, W. (1995). Analysis of mitochondrial protein 
import pathway in Saccharomyces cerevisiae with translocation intermediates. 
Methods Enzymol 260, 241-252. 

Dadke, S., Cotteret, S., Yip, S.C., Jaffer, Z.M., Haj, F., Ivanov, A., Rauscher, F., 3rd, 
Shuai, K., Ng, T., Neel, B.G., et al. (2007). Regulation of protein tyrosine 
phosphatase 1B by sumoylation. Nat Cell Biol 9, 80-85. 

Dasari, S., and Kolling, R. (2011). Cytosolic localization of acetohydroxyacid 
synthase Ilv2 and its impact on diacetyl formation during beer fermentation. Appl 
Environ Microbiol 77, 727-731. 

Demand, J., Alberti, S., Patterson, C., and Hohfeld, J. (2001). Cooperation of a 
ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome 
coupling. Curr Biol 11, 1569-1577. 

Denison, C., Rudner, A.D., Gerber, S.A., Bakalarski, C.E., Moazed, D., and Gygi, 
S.P. (2005). A proteomic strategy for gaining insights into protein sumoylation in 
yeast. Mol Cell Proteomics 4, 246-254. 

Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu 
Rev Biochem 78, 399-434. 



REFERENCES 
 

 92 

Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A., and Schekman, R. 
(1988). A subfamily of stress proteins facilitates translocation of secretory and 
mitochondrial precursor polypeptides. Nature 332, 800-805. 

Desterro, J.M., Rodriguez, M.S., and Hay, R.T. (1998). SUMO-1 modification of 
IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2, 233-239. 

Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994). A 26 S protease 
subunit that binds ubiquitin conjugates. J Biol Chem 269, 7059-7061. 

Diamant, S., Ben-Zvi, A.P., Bukau, B., and Goloubinoff, P. (2000). Size-dependent 
disaggregation of stable protein aggregates by the DnaK chaperone machinery. J 
Biol Chem 275, 21107-21113. 

Dietzel, C., and Kurjan, J. (1987). Pheromonal regulation and sequence of the 
Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. 
Mol Cell Biol 7, 4169-4177. 

Donaghue, C., Bates, H., and Cotterill, S. (2001). Identification and characterisation 
of the Drosophila homologue of the yeast Uba2 gene. Biochim Biophys Acta 1518, 
210-214. 

Eichinger, C.S., and Jentsch, S. (2010). Synaptonemal complex formation and 
meiotic checkpoint signaling are linked to the lateral element protein Red1. Proc Natl 
Acad Sci U S A 107, 11370-11375. 

Eilers, M., and Schatz, G. (1986). Binding of a specific ligand inhibits import of a 
purified precursor protein into mitochondria. Nature 322, 228-232. 

Eisele, F., and Wolf, D.H. (2008). Degradation of misfolded protein in the cytoplasm 
is mediated by the ubiquitin ligase Ubr1. FEBS Lett 582, 4143-4146. 

Eliyahu, E., Pnueli, L., Melamed, D., Scherrer, T., Gerber, A.P., Pines, O., Rapaport, 
D., and Arava, Y. (2010). Tom20 mediates localization of mRNAs to mitochondria in 
a translation-dependent manner. Mol Cell Biol 30, 284-294. 

Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004). 
Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol 
Chem 279, 26817-26822. 

Elsasser, S., and Finley, D. (2005). Delivery of ubiquitinated substrates to protein-
unfolding machines. Nat Cell Biol 7, 742-749. 

Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000). Predicting 
subcellular localization of proteins based on their N-terminal amino acid sequence. J 
Mol Biol 300, 1005-1016. 

Endo, T., Mitsui, S., Nakai, M., and Roise, D. (1996). Binding of mitochondrial 
presequences to yeast cytosolic heat shock protein 70 depends on the amphiphilicity 
of the presequence. J Biol Chem 271, 4161-4167. 

Endo, T., Mitsui, S., and Roise, D. (1995a). Mitochondrial presequences can induce 
aggregation of unfolded proteins. FEBS Lett 359, 93-96. 



REFERENCES 
 

 93 

Endo, T., Nakayama, Y., and Nakai, M. (1995b). Avidin fusion protein as a tool to 
generate a stable translocation intermediate spanning the mitochondrial membranes. 
J Biochem 118, 753-759. 

Erales, J., and Coffino, P. (2014). Ubiquitin-independent proteasomal degradation. 
Biochim Biophys Acta 1843, 216-221. 

Fang, N.N., Chan, G.T., Zhu, M., Comyn, S.A., Persaud, A., Deshaies, R.J., Rotin, 
D., Gsponer, J., and Mayor, T. (2014). Rsp5/Nedd4 is the main ubiquitin ligase that 
targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 16, 1227-
1237. 

Fang, N.N., Ng, A.H., Measday, V., and Mayor, T. (2011). Hul5 HECT ubiquitin ligase 
plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. 
Nat Cell Biol 13, 1344-1352. 

Feliciangeli, S., Bendahhou, S., Sandoz, G., Gounon, P., Reichold, M., Warth, R., 
Lazdunski, M., Barhanin, J., and Lesage, F. (2007). Does sumoylation control 
K2P1/TWIK1 background K+ channels? Cell 130, 563-569. 

Finley, D., Bartel, B., and Varshavsky, A. (1989). The tails of ubiquitin precursors are 
ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 
338, 394-401. 

Finley, D., Ulrich, H.D., Sommer, T., and Kaiser, P. (2012). The ubiquitin-proteasome 
system of Saccharomyces cerevisiae. Genetics 192, 319-360. 

Flotho, A., and Melchior, F. (2013). Sumoylation: a regulatory protein modification in 
health and disease. Annu Rev Biochem 82, 357-385. 

Flynn, G.C., Pohl, J., Flocco, M.T., and Rothman, J.E. (1991). Peptide-binding 
specificity of the molecular chaperone BiP. Nature 353, 726-730. 

Folsch, H., Gaume, B., Brunner, M., Neupert, W., and Stuart, R.A. (1998). C- to N-
terminal translocation of preproteins into mitochondria. EMBO J 17, 6508-6515. 

Fourie, A.M., Sambrook, J.F., and Gething, M.J. (1994). Common and divergent 
peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269, 
30470-30478. 

Fox, T.D. (2012). Mitochondrial protein synthesis, import, and assembly. Genetics 
192, 1203-1234. 

Fujiki, M., and Verner, K. (1993). Coupling of cytosolic protein synthesis and 
mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J 
Biol Chem 268, 1914-1920. 

Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002). Budding yeast 
Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc 
Natl Acad Sci U S A 99, 745-750. 

Gakh, O., Cavadini, P., and Isaya, G. (2002). Mitochondrial processing peptidases. 
Biochim Biophys Acta 1592, 63-77. 



REFERENCES 
 

 94 

Gareau, J.R., and Lima, C.D. (2010). The SUMO pathway: emerging mechanisms 
that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11, 861-
871. 

Garrido, C., Paul, C., Seigneuric, R., and Kampinga, H.H. (2012). The small heat 
shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44, 
1588-1592. 

Gartner, F., Voos, W., Querol, A., Miller, B.R., Craig, E.A., Cumsky, M.G., and 
Pfanner, N. (1995). Mitochondrial import of subunit Va of cytochrome c oxidase 
characterized with yeast mutants. J Biol Chem 270, 3788-3795. 

Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade 
on. Nat Rev Mol Cell Biol 8, 947-956. 

Ghislain, M., Udvardy, A., and Mann, C. (1993). S. cerevisiae 26S protease mutants 
arrest cell division in G2/metaphase. Nature 366, 358-362. 

Gietz, R.D., and Sugino, A. (1988). New yeast-Escherichia coli shuttle vectors 
constructed with in vitro mutagenized yeast genes lacking six-base pair restriction 
sites. Gene 74, 527-534. 

Giorgino, F., de Robertis, O., Laviola, L., Montrone, C., Perrini, S., McCowen, K.C., 
and Smith, R.J. (2000). The sentrin-conjugating enzyme mUbc9 interacts with 
GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal 
muscle cells. Proc Natl Acad Sci U S A 97, 1125-1130. 

Glaser, S.M., Miller, B.R., and Cumsky, M.G. (1990). Removal of a hydrophobic 
domain within the mature portion of a mitochondrial inner membrane protein causes 
its mislocalization to the matrix. Mol Cell Biol 10, 1873-1881. 

Glick, B.S., Brandt, A., Cunningham, K., Muller, S., Hallberg, R.L., and Schatz, G. 
(1992). Cytochromes c1 and b2 are sorted to the intermembrane space of yeast 
mitochondria by a stop-transfer mechanism. Cell 69, 809-822. 

Glover, J.R., and Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel 
chaperone system that rescues previously aggregated proteins. Cell 94, 73-82. 

Goldstein, G., Scheid, M., Hammerling, U., Schlesinger, D.H., Niall, H.D., and Boyse, 
E.A. (1975). Isolation of a polypeptide that has lymphocyte-differentiating properties 
and is probably represented universally in living cells. Proc Natl Acad Sci U S A 72, 
11-15. 

Golebiowski, F., Matic, I., Tatham, M.H., Cole, C., Yin, Y., Nakamura, A., Cox, J., 
Barton, G.J., Mann, M., and Hay, R.T. (2009). System-wide changes to SUMO 
modifications in response to heat shock. Sci Signal 2, ra24. 

Goloubinoff, P., Mogk, A., Zvi, A.P., Tomoyasu, T., and Bukau, B. (1999). Sequential 
mechanism of solubilization and refolding of stable protein aggregates by a 
bichaperone network. Proc Natl Acad Sci U S A 96, 13732-13737. 

Gonzalez-Prieto, R., Cuijpers, S.A., Kumar, R., Hendriks, I.A., and Vertegaal, A.C. 
(2015). c-Myc is targeted to the proteasome for degradation in a SUMOylation-
dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 14, 1859-
1872. 



REFERENCES 
 

 95 

Grumbt, B., Stroobant, V., Terziyska, N., Israel, L., and Hell, K. (2007). Functional 
characterization of Mia40p, the central component of the disulfide relay system of the 
mitochondrial intermembrane space. J Biol Chem 282, 37461-37470. 

Grunwald, M., and Bono, F. (2011). Structure of Importin13-Ubc9 complex: nuclear 
import and release of a key regulator of sumoylation. EMBO J 30, 427-438. 

Guo, L., Giasson, B.I., Glavis-Bloom, A., Brewer, M.D., Shorter, J., Gitler, A.D., and 
Yang, X. (2014). A cellular system that degrades misfolded proteins and protects 
against neurodegeneration. Mol Cell 55, 15-30. 

Habelhah, H., Laine, A., Erdjument-Bromage, H., Tempst, P., Gershwin, M.E., 
Bowtell, D.D., and Ronai, Z. (2004). Regulation of 2-oxoglutarate (alpha-
ketoglutarate) dehydrogenase stability by the RING finger ubiquitin ligase Siah. J Biol 
Chem 279, 53782-53788. 

Hachiya, N., Alam, R., Sakasegawa, Y., Sakaguchi, M., Mihara, K., and Omura, T. 
(1993). A mitochondrial import factor purified from rat liver cytosol is an ATP-
dependent conformational modulator for precursor proteins. EMBO J 12, 1579-1586. 

Hachiya, N., Komiya, T., Alam, R., Iwahashi, J., Sakaguchi, M., Omura, T., and 
Mihara, K. (1994). MSF, a novel cytoplasmic chaperone which functions in precursor 
targeting to mitochondria. EMBO J 13, 5146-5154. 

Hachiya, N., Mihara, K., Suda, K., Horst, M., Schatz, G., and Lithgow, T. (1995). 
Reconstitution of the initial steps of mitochondrial protein import. Nature 376, 705-
709. 

Hallermayer, G., Zimmermann, R., and Neupert, W. (1977). Kinetic studies on the 
transport of cytoplasmically synthesized proteins into the mitochondria in intact cells 
of Neurospora crassa. Eur J Biochem 81, 523-532. 

Hannich, J.T., Lewis, A., Kroetz, M.B., Li, S.J., Heide, H., Emili, A., and 
Hochstrasser, M. (2005). Defining the SUMO-modified proteome by multiple 
approaches in Saccharomyces cerevisiae. J Biol Chem 280, 4102-4110. 

Harder, Z., Zunino, R., and McBride, H. (2004). Sumo1 conjugates mitochondrial 
substrates and participates in mitochondrial fission. Curr Biol 14, 340-345. 

Hartl, F.U., Bracher, A., and Hayer-Hartl, M. (2011). Molecular chaperones in protein 
folding and proteostasis. Nature 475, 324-332. 

Hartl, F.U., Schmidt, B., Wachter, E., Weiss, H., and Neupert, W. (1986). Transport 
into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-
cytochrome c reductase. Cell 47, 939-951. 

Heck, J.W., Cheung, S.K., and Hampton, R.Y. (2010). Cytoplasmic protein quality 
control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and 
San1. Proc Natl Acad Sci U S A 107, 1106-1111. 

Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006). Specification 
of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281, 16117-16127. 



REFERENCES 
 

 96 

Hell, K., Herrmann, J., Pratje, E., Neupert, W., and Stuart, R.A. (1997). Oxa1p 
mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix 
to the intermembrane space. FEBS Lett 418, 367-370. 

Hell, K., Herrmann, J.M., Pratje, E., Neupert, W., and Stuart, R.A. (1998). Oxa1p, an 
essential component of the N-tail protein export machinery in mitochondria. Proc Natl 
Acad Sci U S A 95, 2250-2255. 

Hendriks, I.A., D'Souza, R.C., Yang, B., Verlaan-de Vries, M., Mann, M., and 
Vertegaal, A.C. (2014). Uncovering global SUMOylation signaling networks in a site-
specific manner. Nat Struct Mol Biol 21, 927-936. 

Hendriks, I.A., and Vertegaal, A.C. (2016). A comprehensive compilation of SUMO 
proteomics. Nat Rev Mol Cell Biol 17, 581-595. 

Her, J., Jeong, Y.Y., and Chung, I.K. (2015). PIAS1-mediated sumoylation promotes 
STUbL-dependent proteasomal degradation of the human telomeric protein TRF2. 
FEBS Lett 589, 3277-3286. 

Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 
67, 425-479. 

Hickey, C.M., Wilson, N.R., and Hochstrasser, M. (2012). Function and regulation of 
SUMO proteases. Nat Rev Mol Cell Biol 13, 755-766. 

Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002). 
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and 
SUMO. Nature 419, 135-141. 

Hoogenraad, N.J., Ward, L.A., and Ryan, M.T. (2002). Import and assembly of 
proteins into mitochondria of mammalian cells. Biochim Biophys Acta 1592, 97-105. 

Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., 
and O'Shea, E.K. (2003). Global analysis of protein localization in budding yeast. 
Nature 425, 686-691. 

Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., 
Walters, K.J., Finley, D., and Dikic, I. (2008). Proteasome subunit Rpn13 is a novel 
ubiquitin receptor. Nature 453, 481-488. 

Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., 
Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., et al. (2000). A ubiquitin-like 
system mediates protein lipidation. Nature 408, 488-492. 

Janer, A., Werner, A., Takahashi-Fujigasaki, J., Daret, A., Fujigasaki, H., Takada, K., 
Duyckaerts, C., Brice, A., Dejean, A., and Sittler, A. (2010). SUMOylation attenuates 
the aggregation propensity and cellular toxicity of the polyglutamine expanded 
ataxin-7. Hum Mol Genet 19, 181-195. 

Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., 
Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A 
versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, 
more markers and promoter substitution cassettes. Yeast 21, 947-962. 



REFERENCES 
 

 97 

Jentsch, S., and Psakhye, I. (2013). Control of nuclear activities by substrate-
selective and protein-group SUMOylation. Annu Rev Genet 47, 167-186. 

Jiang, J., Ballinger, C.A., Wu, Y., Dai, Q., Cyr, D.M., Hohfeld, J., and Patterson, C. 
(2001). CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a 
target for ubiquitylation. J Biol Chem 276, 42938-42944. 

Jin, L., Williamson, A., Banerjee, S., Philipp, I., and Rape, M. (2008). Mechanism of 
ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-
665. 

Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-
382. 

Johnson, E.S., Ma, P.C., Ota, I.M., and Varshavsky, A. (1995). A proteolytic pathway 
that recognizes ubiquitin as a degradation signal. J Biol Chem 270, 17442-17456. 

Kagey, M.H., Melhuish, T.A., and Wotton, D. (2003). The polycomb protein Pc2 is a 
SUMO E3. Cell 113, 127-137. 

Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., 
and Kopito, R.R. (2011). Protein standard absolute quantification (PSAQ) method for 
the measurement of cellular ubiquitin pools. Nat Methods 8, 691-696. 

Kaminsky, R., Denison, C., Bening-Abu-Shach, U., Chisholm, A.D., Gygi, S.P., and 
Broday, L. (2009). SUMO regulates the assembly and function of a cytoplasmic 
intermediate filament protein in C. elegans. Dev Cell 17, 724-735. 

Kamitani, T., Nguyen, H.P., and Yeh, E.T. (1997). Preferential modification of nuclear 
proteins by a novel ubiquitin-like molecule. J Biol Chem 272, 14001-14004. 

Kampinga, H.H., and Craig, E.A. (2010). The HSP70 chaperone machinery: J 
proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11, 579-592. 

Kanazawa, M., Terada, K., Kato, S., and Mori, M. (1997). HSDJ, a human homolog 
of DnaJ, is farnesylated and is involved in protein import into mitochondria. J 
Biochem 121, 890-895. 

Kaplun, L., Tzirkin, R., Bakhrat, A., Shabek, N., Ivantsiv, Y., and Raveh, D. (2005). 
The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated 
degradation of Ho endonuclease. Mol Cell Biol 25, 5355-5362. 

Karniely, S., and Pines, O. (2005). Single translation--dual destination: mechanisms 
of dual protein targeting in eukaryotes. EMBO Rep 6, 420-425. 

Kellems, R.E., Allison, V.F., and Butow, R.A. (1974). Cytoplasmic type 80 S 
ribosomes associated with yeast mitochondria. II. Evidence for the association of 
cytoplasmic ribosomes with the outer mitochondrial membrane in situ. J Biol Chem 
249, 3297-3303. 

Kellems, R.E., Allison, V.F., and Butow, R.A. (1975). Cytoplasmic type 80S 
ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the 
outer membrane of isolated mitochondria. J Cell Biol 65, 1-14. 



REFERENCES 
 

 98 

Kellems, R.E., and Butow, R.A. (1972). Cytoplasmic-type 80 S ribosomes associated 
with yeast mitochondria. I. Evidence for ribosome binding sites on yeast 
mitochondria. J Biol Chem 247, 8043-8050. 

Kellems, R.E., and Butow, R.A. (1974). Cytoplasmic type 80 S ribosomes associated 
with yeast mitochondria. 3. Changes in the amount of bound ribosomes in response 
to changes in metabolic state. J Biol Chem 249, 3304-3310. 

Kerscher, O. (2007). SUMO junction-what's your function? New insights through 
SUMO-interacting motifs. EMBO Rep 8, 550-555. 

Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006). Modification of proteins 
by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22, 159-180. 

Khaminets, A., Behl, C., and Dikic, I. (2016). Ubiquitin-Dependent And Independent 
Signals In Selective Autophagy. Trends Cell Biol 26, 6-16. 

Kim, W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E., Rad, 
R., Rush, J., Comb, M.J., et al. (2011). Systematic and quantitative assessment of 
the ubiquitin-modified proteome. Mol Cell 44, 325-340. 

Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M., and Hartl, F.U. (2013). Molecular 
chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82, 323-
355. 

Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., 
McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009a). A role for NBR1 in 
autophagosomal degradation of ubiquitinated substrates. Mol Cell 33, 505-516. 

Kirkin, V., McEwan, D.G., Novak, I., and Dikic, I. (2009b). A role for ubiquitin in 
selective autophagy. Mol Cell 34, 259-269. 

Kitakawa, M., Graack, H.R., Grohmann, L., Goldschmidt-Reisin, S., Herfurth, E., 
Wittmann-Liebold, B., Nishimura, T., and Isono, K. (1997). Identification and 
characterization of the genes for mitochondrial ribosomal proteins of Saccharomyces 
cerevisiae. Eur J Biochem 245, 449-456. 

Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and 
Schiebel, E. (1999). Epitope tagging of yeast genes using a PCR-based strategy: 
more tags and improved practical routines. Yeast 15, 963-972. 

Knox, C., Sass, E., Neupert, W., and Pines, O. (1998). Import into mitochondria, 
folding and retrograde movement of fumarase in yeast. J Biol Chem 273, 25587-
25593. 

Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H.D., Mayer, T.U., and Jentsch, S. 
(1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. 
Cell 96, 635-644. 

Kohler, J.B., Tammsalu, T., Jorgensen, M.M., Steen, N., Hay, R.T., and Thon, G. 
(2015). Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL 
pathway in fission yeast. Nat Commun 6, 8827. 

Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and 
function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563. 



REFERENCES 
 

 99 

Komander, D., and Rape, M. (2012). The ubiquitin code. Annu Rev Biochem 81, 203-
229. 

Komiya, T., Hachiya, N., Sakaguchi, M., Omura, T., and Mihara, K. (1994). 
Recognition of mitochondria-targeting signals by a cytosolic import stimulation factor, 
MSF. J Biol Chem 269, 30893-30897. 

Komiya, T., Rospert, S., Schatz, G., and Mihara, K. (1997). Binding of mitochondrial 
precursor proteins to the cytoplasmic domains of the import receptors Tom70 and 
Tom20 is determined by cytoplasmic chaperones. EMBO J 16, 4267-4275. 

Komiya, T., Sakaguchi, M., and Mihara, K. (1996). Cytoplasmic chaperones 
determine the targeting pathway of precursor proteins to mitochondria. EMBO J 15, 
399-407. 

Kotaja, N., Karvonen, U., Janne, O.A., and Palvimo, J.J. (2002). PIAS proteins 
modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22, 
5222-5234. 

Kraft, C., Peter, M., and Hofmann, K. (2010). Selective autophagy: ubiquitin-
mediated recognition and beyond. Nat Cell Biol 12, 836-841. 

Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H.H., Bossis, G., 
Urlaub, H., Zweckstetter, M., Kugler, S., Melchior, F., et al. (2011). Sumoylation 
inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194, 49-60. 

Krumova, P., and Weishaupt, J.H. (2013). Sumoylation in neurodegenerative 
diseases. Cell Mol Life Sci 70, 2123-2138. 

Kubrich, M., Dietmeier, K., and Pfanner, N. (1995). Genetic and biochemical 
dissection of the mitochondrial protein-import machinery. Curr Genet 27, 393-403. 

Kunkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., 
Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998). The preprotein 
translocation channel of the outer membrane of mitochondria. Cell 93, 1009-1019. 

Lain, B., Iriarte, A., Mattingly, J.R., Jr., Moreno, J.I., and Martinez-Carrion, M. (1995). 
Structural features of the precursor to mitochondrial aspartate aminotransferase 
responsible for binding to hsp70. J Biol Chem 270, 24732-24739. 

Lee, C.M., Sedman, J., Neupert, W., and Stuart, R.A. (1999). The DNA helicase, 
Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J 
Biol Chem 274, 20937-20942. 

Lee, G.W., Melchior, F., Matunis, M.J., Mahajan, R., Tian, Q., and Anderson, P. 
(1998). Modification of Ran GTPase-activating protein by the small ubiquitin-related 
modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme 
homologue. J Biol Chem 273, 6503-6507. 

Leggett, D.S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R.T., Walz, 
T., Ploegh, H., and Finley, D. (2002). Multiple associated proteins regulate 
proteasome structure and function. Mol Cell 10, 495-507. 

Li, S.J., and Hochstrasser, M. (1999). A new protease required for cell-cycle 
progression in yeast. Nature 398, 246-251. 



REFERENCES 
 

 100 

Li, S.J., and Hochstrasser, M. (2000). The yeast ULP2 (SMT4) gene encodes a novel 
protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20, 2367-2377. 

Li, Y., Wang, H., Wang, S., Quon, D., Liu, Y.W., and Cordell, B. (2003). Positive and 
negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci U S 
A 100, 259-264. 

Liebelt, F., and Vertegaal, A.C. (2016). Ubiquitin-dependent and independent roles of 
SUMO in proteostasis. Am J Physiol Cell Physiol 311, C284-296. 

Lill, R., and Muhlenhoff, U. (2008). Maturation of iron-sulfur proteins in eukaryotes: 
mechanisms, connected processes, and diseases. Annu Rev Biochem 77, 669-700. 

Lu, K., Psakhye, I., and Jentsch, S. (2014). Autophagic clearance of polyQ proteins 
mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 
549-563. 

Luders, J., Pyrowolakis, G., and Jentsch, S. (2003). The ubiquitin-like protein HUB1 
forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO 
Rep 4, 1169-1174. 

Lutstorf, U., and Megnet, R. (1968). Multiple forms of alcohol dehydrogenase in 
Saccharomyces cerevisiae. I. Physiological control of ADH-2 and properties of ADH-
2 and ADH-4. Arch Biochem Biophys 126, 933-944. 

Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small 
ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex 
protein RanBP2. Cell 88, 97-107. 

Makhnevych, T., Ptak, C., Lusk, C.P., Aitchison, J.D., and Wozniak, R.W. (2007). 
The role of karyopherins in the regulated sumoylation of septins. J Cell Biol 177, 39-
49. 

Makhnevych, T., Sydorskyy, Y., Xin, X., Srikumar, T., Vizeacoumar, F.J., Jeram, 
S.M., Li, Z., Bahr, S., Andrews, B.J., Boone, C., et al. (2009). Global map of SUMO 
function revealed by protein-protein interaction and genetic networks. Mol Cell 33, 
124-135. 

Margeot, A., Blugeon, C., Sylvestre, J., Vialette, S., Jacq, C., and Corral-Debrinski, 
M. (2002). In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of 
mitochondria is essential for respiratory function. EMBO J 21, 6893-6904. 

Martin, S., Nishimune, A., Mellor, J.R., and Henley, J.M. (2007a). SUMOylation 
regulates kainate-receptor-mediated synaptic transmission. Nature 447, 321-325. 

Martin, S., Wilkinson, K.A., Nishimune, A., and Henley, J.M. (2007b). Emerging 
extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat 
Rev Neurosci 8, 948-959. 

Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S.C., Tatham, M.H., Hay, 
R.T., Lamond, A.I., Mann, M., and Vertegaal, A.C. (2008). In vivo identification of 
human small ubiquitin-like modifier polymerization sites by high accuracy mass 
spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7, 132-144. 



REFERENCES 
 

 101 

Matouschek, A., Pfanner, N., and Voos, W. (2000). Protein unfolding by 
mitochondria. The Hsp70 import motor. EMBO Rep 1, 404-410. 

Matsumoto, M.L., Wickliffe, K.E., Dong, K.C., Yu, C., Bosanac, I., Bustos, D., Phu, L., 
Kirkpatrick, D.S., Hymowitz, S.G., Rape, M., et al. (2010). K11-linked 
polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. 
Mol Cell 39, 477-484. 

Matunis, M.J., Coutavas, E., and Blobel, G. (1996). A novel ubiquitin-like modification 
modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between 
the cytosol and the nuclear pore complex. J Cell Biol 135, 1457-1470. 

Mayer, M.P., and Bukau, B. (2005). Hsp70 chaperones: cellular functions and 
molecular mechanism. Cell Mol Life Sci 62, 670-684. 

McCarty, J.S., Rudiger, S., Schonfeld, H.J., Schneider-Mergener, J., Nakahigashi, 
K., Yura, T., and Bukau, B. (1996). Regulatory region C of the E. coli heat shock 
transcription factor, sigma32, constitutes a DnaK binding site and is conserved 
among eubacteria. J Mol Biol 256, 829-837. 

Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M., and Cyr, D.M. (2001). The 
Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat 
Cell Biol 3, 100-105. 

Melchior, F., Schergaut, M., and Pichler, A. (2003). SUMO: ligases, isopeptidases 
and nuclear pores. Trends Biochem Sci 28, 612-618. 

Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., and 
Herrmann, J.M. (2005). A disulfide relay system in the intermembrane space of 
mitochondria that mediates protein import. Cell 121, 1059-1069. 

Metzger, M.B., Maurer, M.J., Dancy, B.M., and Michaelis, S. (2008). Degradation of a 
cytosolic protein requires endoplasmic reticulum-associated degradation machinery. 
J Biol Chem 283, 32302-32316. 

Mihara, K., and Omura, T. (1996a). Cytoplasmic chaperones in precursor targeting to 
mitochondria: the role of MSF and hsp 70. Trends Cell Biol 6, 104-108. 

Mihara, K., and Omura, T. (1996b). Cytosolic factors in mitochondrial protein import. 
Experientia 52, 1063-1068. 

Milenkovic, D., Gabriel, K., Guiard, B., Schulze-Specking, A., Pfanner, N., and 
Chacinska, A. (2007). Biogenesis of the essential Tim9-Tim10 chaperone complex of 
mitochondria: site-specific recognition of cysteine residues by the intermembrane 
space receptor Mia40. J Biol Chem 282, 22472-22480. 

Milenkovic, D., Ramming, T., Muller, J.M., Wenz, L.S., Gebert, N., Schulze-Specking, 
A., Stojanovski, D., Rospert, S., and Chacinska, A. (2009). Identification of the signal 
directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol Biol 
Cell 20, 2530-2539. 

Miller, B.R., and Cumsky, M.G. (1993). Intramitochondrial sorting of the precursor to 
yeast cytochrome c oxidase subunit Va. J Cell Biol 121, 1021-1029. 



REFERENCES 
 

 102 

Mingot, J.M., Kostka, S., Kraft, R., Hartmann, E., and Gorlich, D. (2001). Importin 13: 
a novel mediator of nuclear import and export. EMBO J 20, 3685-3694. 

Mishra, S.K., Ammon, T., Popowicz, G.M., Krajewski, M., Nagel, R.J., Ares, M., Jr., 
Holak, T.A., and Jentsch, S. (2011). Role of the ubiquitin-like protein Hub1 in splice-
site usage and alternative splicing. Nature 474, 173-178. 

Miura, S., Mori, M., and Tatibana, M. (1983). Transport of ornithine 
carbamoyltransferase precursor into mitochondria. Stimulation by potassium ion, 
magnesium ion, and a reticulocyte cytosolic protein(s). J Biol Chem 258, 6671-6674. 

Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., and Yasuda, H. (2002). 
Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 
enzymes. J Biol Chem 277, 50131-50136. 

Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in 
autophagosome formation. Annu Rev Cell Dev Biol 27, 107-132. 

Model, K., Meisinger, C., and Kuhlbrandt, W. (2008). Cryo-electron microscopy 
structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383, 1049-1057. 

Model, K., Prinz, T., Ruiz, T., Radermacher, M., Krimmer, T., Kuhlbrandt, W., 
Pfanner, N., and Meisinger, C. (2002). Protein translocase of the outer mitochondrial 
membrane: role of import receptors in the structural organization of the TOM 
complex. J Mol Biol 316, 657-666. 

Moldovan, G.L., Pfander, B., and Jentsch, S. (2006). PCNA controls establishment of 
sister chromatid cohesion during S phase. Mol Cell 23, 723-732. 

Mori, M., and Terada, K. (1998). Mitochondrial protein import in animals. Biochim 
Biophys Acta 1403, 12-27. 

Morita, Y., Kanei-Ishii, C., Nomura, T., and Ishii, S. (2005). TRAF7 sequesters c-Myb 
to the cytoplasm by stimulating its sumoylation. Mol Biol Cell 16, 5433-5444. 

Moutty, M.C., Sakin, V., and Melchior, F. (2011). Importin alpha/beta mediates 
nuclear import of individual SUMO E1 subunits and of the holo-enzyme. Mol Biol Cell 
22, 652-660. 

Mukherjee, S., Thomas, M., Dadgar, N., Lieberman, A.P., and Iniguez-Lluhi, J.A. 
(2009). Small ubiquitin-like modifier (SUMO) modification of the androgen receptor 
attenuates polyglutamine-mediated aggregation. J Biol Chem 284, 21296-21306. 

Muller, J.M., Milenkovic, D., Guiard, B., Pfanner, N., and Chacinska, A. (2008). 
Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into 
the mitochondrial intermembrane space. Mol Biol Cell 19, 226-236. 

Mumberg, D., Muller, R., and Funk, M. (1994). Regulatable promoters of 
Saccharomyces cerevisiae: comparison of transcriptional activity and their use for 
heterologous expression. Nucleic Acids Res 22, 5767-5768. 

Mumberg, D., Muller, R., and Funk, M. (1995). Yeast vectors for the controlled 
expression of heterologous proteins in different genetic backgrounds. Gene 156, 
119-122. 



REFERENCES 
 

 103 

Murakami, H., Pain, D., and Blobel, G. (1988). 70-kD heat shock-related protein is 
one of at least two distinct cytosolic factors stimulating protein import into 
mitochondria. J Cell Biol 107, 2051-2057. 

Murakami, K., and Mori, M. (1990). Purified presequence binding factor (PBF) forms 
an import-competent complex with a purified mitochondrial precursor protein. EMBO 
J 9, 3201-3208. 

Murakami, K., Tanase, S., Morino, Y., and Mori, M. (1992). Presequence binding 
factor-dependent and -independent import of proteins into mitochondria. J Biol Chem 
267, 13119-13122. 

Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001). CHIP is a 
chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2, 
1133-1138. 

Naoe, M., Ohwa, Y., Ishikawa, D., Ohshima, C., Nishikawa, S., Yamamoto, H., and 
Endo, T. (2004). Identification of Tim40 that mediates protein sorting to the 
mitochondrial intermembrane space. J Biol Chem 279, 47815-47821. 

Needham, P.G., Patel, H.J., Chiosis, G., Thibodeau, P.H., and Brodsky, J.L. (2015). 
Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain 
Coupling, and Specific Chaperone Functions. J Mol Biol 427, 2948-2965. 

Neupert, W. (1997). Protein import into mitochondria. Annu Rev Biochem 66, 863-
917. 

Neupert, W., and Herrmann, J.M. (2007). Translocation of proteins into mitochondria. 
Annu Rev Biochem 76, 723-749. 

Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997). Identification of 
prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. 
Protein Eng 10, 1-6. 

Nillegoda, N.B., Kirstein, J., Szlachcic, A., Berynskyy, M., Stank, A., Stengel, F., 
Arnsburg, K., Gao, X., Scior, A., Aebersold, R., et al. (2015). Crucial HSP70 co-
chaperone complex unlocks metazoan protein disaggregation. Nature 524, 247-251. 

Nillegoda, N.B., Theodoraki, M.A., Mandal, A.K., Mayo, K.J., Ren, H.Y., Sultana, R., 
Wu, K., Johnson, J., Cyr, D.M., and Caplan, A.J. (2010). Ubr1 and Ubr2 function in a 
quality control pathway for degradation of unfolded cytosolic proteins. Mol Biol Cell 
21, 2102-2116. 

Niskanen, E.A., Malinen, M., Sutinen, P., Toropainen, S., Paakinaho, V., Vihervaara, 
A., Joutsen, J., Kaikkonen, M.U., Sistonen, L., and Palvimo, J.J. (2015). Global 
SUMOylation on active chromatin is an acute heat stress response restricting 
transcription. Genome Biol 16, 153. 

Novoselova, T.V., Rose, R.S., Marks, H.M., and Sullivan, J.A. (2013). SUMOylation 
regulates the homologous to E6-AP carboxyl terminus (HECT) ubiquitin ligase 
Rsp5p. J Biol Chem 288, 10308-10317. 

O'Rourke, J.G., Gareau, J.R., Ochaba, J., Song, W., Rasko, T., Reverter, D., Lee, J., 
Monteys, A.M., Pallos, J., Mee, L., et al. (2013). SUMO-2 and PIAS1 modulate 
insoluble mutant huntingtin protein accumulation. Cell Rep 4, 362-375. 



REFERENCES 
 

 104 

Ohta, S., and Schatz, G. (1984). A purified precursor polypeptide requires a cytosolic 
protein fraction for import into mitochondria. EMBO J 3, 651-657. 

Ono, H., and Tuboi, S. (1988). The cytosolic factor required for import of precursors 
of mitochondrial proteins into mitochondria. J Biol Chem 263, 3188-3193. 

Ono, H., and Tuboi, S. (1990a). Presence of the cytosolic factor stimulating the 
import of precursor of mitochondrial proteins in rabbit reticulocytes and rat liver cells. 
Arch Biochem Biophys 277, 368-373. 

Ono, H., and Tuboi, S. (1990b). Purification and identification of a cytosolic factor 
required for import of precursors of mitochondrial proteins into mitochondria. Arch 
Biochem Biophysics 280, 299-304. 

Owerbach, D., McKay, E.M., Yeh, E.T., Gabbay, K.H., and Bohren, K.M. (2005). A 
proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem 
Biophys Res Commun 337, 517-520. 

Ozkaynak, E., Finley, D., Solomon, M.J., and Varshavsky, A. (1987). The yeast 
ubiquitin genes: a family of natural gene fusions. EMBO J 6, 1429-1439. 

Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.E., Walford, 
G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein 
compendium elucidates complex I disease biology. Cell 134, 112-123. 

Pang, S.S., and Duggleby, R.G. (1999). Expression, purification, characterization, 
and reconstitution of the large and small subunits of yeast acetohydroxyacid 
synthase. Biochemistry 38, 5222-5231. 

Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, 
A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to 
facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 
282, 24131-24145. 

Panse, V.G., Hardeland, U., Werner, T., Kuster, B., and Hurt, E. (2004). A proteome-
wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279, 
41346-41351. 

Papouli, E., Chen, S., Davies, A.A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H.D. 
(2005). Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment 
of the helicase Srs2p. Mol Cell 19, 123-133. 

Park, S.H., Bolender, N., Eisele, F., Kostova, Z., Takeuchi, J., Coffino, P., and Wolf, 
D.H. (2007). The cytoplasmic Hsp70 chaperone machinery subjects misfolded and 
endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-
proteasome system. Mol Biol Cell 18, 153-165. 

Park, S.H., Kukushkin, Y., Gupta, R., Chen, T., Konagai, A., Hipp, M.S., Hayer-Hartl, 
M., and Hartl, F.U. (2013). PolyQ proteins interfere with nuclear degradation of 
cytosolic proteins by sequestering the Sis1p chaperone. Cell 154, 134-145. 

Parker, J.L., and Ulrich, H.D. (2012). A SUMO-interacting motif activates budding 
yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res 40, 
11380-11388. 



REFERENCES 
 

 105 

Paschen, S.A., Waizenegger, T., Stan, T., Preuss, M., Cyrklaff, M., Hell, K., 
Rapaport, D., and Neupert, W. (2003). Evolutionary conservation of biogenesis of 
beta-barrel membrane proteins. Nature 426, 862-866. 

Pearce, D.A., and Sherman, F. (1997). Differential ubiquitin-dependent degradation 
of the yeast apo-cytochrome c isozymes. J Biol Chem 272, 31829-31836. 

Pedrioli, P.G., Raught, B., Zhang, X.D., Rogers, R., Aitchison, J., Matunis, M., and 
Aebersold, R. (2006). Automated identification of SUMOylation sites using mass 
spectrometry and SUMmOn pattern recognition software. Nat Methods 3, 533-539. 

Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., 
Roelofs, J., Finley, D., and Gygi, S.P. (2003). A proteomics approach to 
understanding protein ubiquitination. Nat Biotechnol 21, 921-926. 

Perocchi, F., Jensen, L.J., Gagneur, J., Ahting, U., von Mering, C., Bork, P., 
Prokisch, H., and Steinmetz, L.M. (2006). Assessing systems properties of yeast 
mitochondria through an interaction map of the organelle. PLoS Genet 2, e170. 

Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., 
McGowan, E., Lewis, J., Prihar, G., et al. (2004). CHIP and Hsp70 regulate tau 
ubiquitination, degradation and aggregation. Hum Mol Genet 13, 703-714. 

Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. (2005). SUMO-
modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 
428-433. 

Pfanner, N., and Neupert, W. (1987). Distinct steps in the import of ADP/ATP carrier 
into mitochondria. J Biol Chem 262, 7528-7536. 

Pfanner, N., and Neupert, W. (1990). The mitochondrial protein import apparatus. 
Annu Rev Biochem 59, 331-353. 

Pichler, A., Gast, A., Seeler, J.S., Dejean, A., and Melchior, F. (2002). The 
nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120. 

Pichler, A., Knipscheer, P., Oberhofer, E., van Dijk, W.J., Korner, R., Olsen, J.V., 
Jentsch, S., Melchior, F., and Sixma, T.K. (2005). SUMO modification of the 
ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 12, 264-269. 

Potts, P.R., and Yu, H. (2005). Human MMS21/NSE2 is a SUMO ligase required for 
DNA repair. Mol Cell Biol 25, 7021-7032. 

Praefcke, G.J., Hofmann, K., and Dohmen, R.J. (2012). SUMO playing tag with 
ubiquitin. Trends Biochem Sci 37, 23-31. 

Prasad, R., Kawaguchi, S., and Ng, D.T. (2010). A nucleus-based quality control 
mechanism for cytosolic proteins. Mol Biol Cell 21, 2117-2127. 

Psakhye, I., and Jentsch, S. (2012). Protein group modification and synergy in the 
SUMO pathway as exemplified in DNA repair. Cell 151, 807-820. 

Psakhye, I., and Jentsch, S. (2016). Identification of Substrates of Protein-Group 
SUMOylation. Methods Mol Biol 1475, 219-231. 



REFERENCES 
 

 106 

Rajan, S., Plant, L.D., Rabin, M.L., Butler, M.H., and Goldstein, S.A. (2005). 
Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121, 37-47. 

Ramage, L., Junne, T., Hahne, K., Lithgow, T., and Schatz, G. (1993). Functional 
cooperation of mitochondrial protein import receptors in yeast. EMBO J 12, 4115-
4123. 

Rampelt, H., Kirstein-Miles, J., Nillegoda, N.B., Chi, K., Scholz, S.R., Morimoto, R.I., 
and Bukau, B. (2012). Metazoan Hsp70 machines use Hsp110 to power protein 
disaggregation. EMBO J 31, 4221-4235. 

Randall, S.K., and Shore, G.C. (1989). Import of a mutant mitochondrial precursor 
fails to respond to stimulation by a cytosolic factor. FEBS Lett 250, 561-564. 

Rao, H., and Sastry, A. (2002). Recognition of specific ubiquitin conjugates is 
important for the proteolytic functions of the ubiquitin-associated domain proteins 
Dsk2 and Rad23. J Biol Chem 277, 11691-11695. 

Rassow, J., Guiard, B., Wienhues, U., Herzog, V., Hartl, F.U., and Neupert, W. 
(1989). Translocation arrest by reversible folding of a precursor protein imported into 
mitochondria. A means to quantitate translocation contact sites. J Cell Biol 109, 
1421-1428. 

Rassow, J., Hartl, F.U., Guiard, B., Pfanner, N., and Neupert, W. (1990). 
Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Lett 
275, 190-194. 

Ravid, T., Kreft, S.G., and Hochstrasser, M. (2006). Membrane and soluble 
substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 
25, 533-543. 

Reid, G.A., and Schatz, G. (1982). Import of proteins into mitochondria. 
Extramitochondrial pools and post-translational import of mitochondrial protein 
precursors in vivo. J Biol Chem 257, 13062-13067. 

Renatus, M., Parrado, S.G., D'Arcy, A., Eidhoff, U., Gerhartz, B., Hassiepen, U., 
Pierrat, B., Riedl, R., Vinzenz, D., Worpenberg, S., et al. (2006). Structural basis of 
ubiquitin recognition by the deubiquitinating protease USP2. Structure 14, 1293-
1302. 

Rodriguez, M.S., Dargemont, C., and Hay, R.T. (2001). SUMO-1 conjugation in vivo 
requires both a consensus modification motif and nuclear targeting. J Biol Chem 276, 
12654-12659. 

Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between 
autophagy receptors and ubiquitin-like proteins form the molecular basis for selective 
autophagy. Mol Cell 53, 167-178. 

Rojas-Fernandez, A., Plechanovova, A., Hattersley, N., Jaffray, E., Tatham, M.H., 
and Hay, R.T. (2014). SUMO chain-induced dimerization activates RNF4. Mol Cell 
53, 880-892. 

Rojo, E.E., Guiard, B., Neupert, W., and Stuart, R.A. (1998). Sorting of D-lactate 
dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal 
and energetic requirements. J Biol Chem 273, 8040-8047. 



REFERENCES 
 

 107 

Roscic, A., Moller, A., Calzado, M.A., Renner, F., Wimmer, V.C., Gresko, E., Ludi, 
K.S., and Schmitz, M.L. (2006). Phosphorylation-dependent control of Pc2 SUMO E3 
ligase activity by its substrate protein HIPK2. Mol Cell 24, 77-89. 

Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. (1997). Substrate 
specificity of the DnaK chaperone determined by screening cellulose-bound peptide 
libraries. EMBO J 16, 1501-1507. 

Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. 
(2001). PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity 
by sequestration into nuclear bodies. Genes Dev 15, 3088-3103. 

Sacher, M., Pfander, B., Hoege, C., and Jentsch, S. (2006). Control of Rad52 
recombination activity by double-strand break-induced SUMO modification. Nat Cell 
Biol 8, 1284-1290. 

Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., and Tanaka, K. 
(2009). Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 
26S proteasome. EMBO J 28, 359-371. 

Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related 
protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252-6258. 

Saitoh, T., Igura, M., Obita, T., Ose, T., Kojima, R., Maenaka, K., Endo, T., and 
Kohda, D. (2007). Tom20 recognizes mitochondrial presequences through dynamic 
equilibrium among multiple bound states. EMBO J 26, 4777-4787. 

Sass, E., Blachinsky, E., Karniely, S., and Pines, O. (2001). Mitochondrial and 
cytosolic isoforms of yeast fumarase are derivatives of a single translation product 
and have identical amino termini. J Biol Chem 276, 46111-46117. 

Schatz, G., and Dobberstein, B. (1996). Common principles of protein translocation 
across membranes. Science 271, 1519-1526. 

Scheffner, M., Nuber, U., and Huibregtse, J.M. (1995). Protein ubiquitination 
involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81-83. 

Schimmel, J., Larsen, K.M., Matic, I., van Hagen, M., Cox, J., Mann, M., Andersen, 
J.S., and Vertegaal, A.C. (2008). The ubiquitin-proteasome system is a key 
component of the SUMO-2/3 cycle. Mol Cell Proteomics 7, 2107-2122. 

Schleyer, M., and Neupert, W. (1985). Transport of proteins into mitochondria: 
translocational intermediates spanning contact sites between outer and inner 
membranes. Cell 43, 339-350. 

Schulz, S., Chachami, G., Kozaczkiewicz, L., Winter, U., Stankovic-Valentin, N., 
Haas, P., Hofmann, K., Urlaub, H., Ovaa, H., Wittbrodt, J., et al. (2012). Ubiquitin-
specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-
catalytic functions. EMBO Rep 13, 930-938. 

Schwaiger, M., Herzog, V., and Neupert, W. (1987). Characterization of translocation 
contact sites involved in the import of mitochondrial proteins. J Cell Biol 105, 235-
246. 



REFERENCES 
 

 108 

Schwartz, M.P., Huang, S., and Matouschek, A. (1999). The structure of precursor 
proteins during import into mitochondria. J Biol Chem 274, 12759-12764. 

Schwartz, M.P., and Matouschek, A. (1999). The dimensions of the protein import 
channels in the outer and inner mitochondrial membranes. Proc Natl Acad Sci U S A 
96, 13086-13090. 

Seeler, J.S., and Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nat 
Rev Mol Cell Biol 4, 690-699. 

Seifert, A., Schofield, P., Barton, G.J., and Hay, R.T. (2015). Proteotoxic stress 
reprograms the chromatin landscape of SUMO modification. Sci Signal 8, rs7. 

Shalizi, A., Gaudilliere, B., Yuan, Z., Stegmuller, J., Shirogane, T., Ge, Q., Tan, Y., 
Schulman, B., Harper, J.W., and Bonni, A. (2006). A calcium-regulated MEF2 
sumoylation switch controls postsynaptic differentiation. Science 311, 1012-1017. 

Sheffield, W.P., Nguyen, M., and Shore, G.C. (1986). Expression in Escherichia coli 
of functional precursor to the rat liver mitochondrial enzyme, ornithine carbamyl 
transferase. Precursor import and processing in vitro. Biochem Biophys Res 
Commun 134, 21-28. 

Sheffield, W.P., Shore, G.C., and Randall, S.K. (1990). Mitochondrial precursor 
protein. Effects of 70-kilodalton heat shock protein on polypeptide folding, 
aggregation, and import competence. J Biol Chem 265, 11069-11076. 

Shimizu, Y., Okuda-Shimizu, Y., and Hendershot, L.M. (2010). Ubiquitylation of an 
ERAD substrate occurs on multiple types of amino acids. Mol Cell 40, 917-926. 

Shin, E.J., Shin, H.M., Nam, E., Kim, W.S., Kim, J.H., Oh, B.H., and Yun, Y. (2012). 
DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep 13, 
339-346. 

Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H.E., 
Schonfisch, B., Perschil, I., Chacinska, A., Guiard, B., et al. (2003). The proteome of 
Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100, 13207-
13212. 

Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host 
strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. 
Genetics 122, 19-27. 

Sollner, T., Griffiths, G., Pfaller, R., Pfanner, N., and Neupert, W. (1989). MOM19, an 
import receptor for mitochondrial precursor proteins. Cell 59, 1061-1070. 

Sollner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert, W. (1990). A 
mitochondrial import receptor for the ADP/ATP carrier. Cell 62, 107-115. 

Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004). 
Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. 
Proc Natl Acad Sci U S A 101, 14373-14378. 

Steffan, J.S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L.C., Slepko, N., Illes, 
K., Lukacsovich, T., Zhu, Y.Z., Cattaneo, E., et al. (2004). SUMO modification of 
Huntingtin and Huntington's disease pathology. Science 304, 100-104. 



REFERENCES 
 

 109 

Stehmeier, P., and Muller, S. (2009). Phospho-regulated SUMO interaction modules 
connect the SUMO system to CK2 signaling. Mol Cell 33, 400-409. 

Stein, I., Peleg, Y., Even-Ram, S., and Pines, O. (1994). The single translation 
product of the FUM1 gene (fumarase) is processed in mitochondria before being 
distributed between the cytosol and mitochondria in Saccharomyces cerevisiae. Mol 
Cell Biol 14, 4770-4778. 

Steinacher, R., and Schar, P. (2005). Functionality of human thymine DNA 
glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol 15, 
616-623. 

Sternsdorf, T., Jensen, K., Reich, B., and Will, H. (1999). The nuclear dot protein 
sp100, characterization of domains necessary for dimerization, subcellular 
localization, and modification by small ubiquitin-like modifiers. J Biol Chem 274, 
12555-12566. 

Stojanovski, D., Guiard, B., Kozjak-Pavlovic, V., Pfanner, N., and Meisinger, C. 
(2007). Alternative function for the mitochondrial SAM complex in biogenesis of 
alpha-helical TOM proteins. J Cell Biol 179, 881-893. 

Sugar, J., Schimpfessel, L., Rozen, E., and Crokaert, R. (1970). The mitochondrial 
alcohol dehydrogenase of the yeast "Saccharomyces cerevisiae". Arch Int Physiol 
Biochim 78, 1009-1010. 

Suissa, M., and Schatz, G. (1982). Import of proteins into mitochondria. Translatable 
mRNAs for imported mitochondrial proteins are present in free as well as 
mitochondria-bound cytoplasmic polysomes. J Biol Chem 257, 13048-13055. 

Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase 
of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated 
and Matalpha2 repressor degradation. Genes Dev 15, 2660-2674. 

Taipale, M., Jarosz, D.F., and Lindquist, S. (2010). HSP90 at the hub of protein 
homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11, 515-528. 

Takahashi, Y., Iwase, M., Strunnikov, A.V., and Kikuchi, Y. (2008). Cytoplasmic 
sumoylation by PIAS-type Siz1-SUMO ligase. Cell Cycle 7, 1738-1744. 

Takahashi, Y., and Kikuchi, Y. (2005). Yeast PIAS-type Ull1/Siz1 is composed of 
SUMO ligase and regulatory domains. J Biol Chem 280, 35822-35828. 

Takahashi, Y., Mizoi, J., Toh, E.A., and Kikuchi, Y. (2000). Yeast Ulp1, an Smt3-
specific protease, associates with nucleoporins. J Biochem 128, 723-725. 

Tang, Z., El Far, O., Betz, H., and Scheschonka, A. (2005). Pias1 interaction and 
sumoylation of metabotropic glutamate receptor 8. J Biol Chem 280, 38153-38159. 

Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, 
E.G., Palvimo, J.J., and Hay, R.T. (2008). RNF4 is a poly-SUMO-specific E3 
ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10, 538-
546. 

Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, 
J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are 



REFERENCES 
 

 110 

conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368-
35374. 

Tatham, M.H., Matic, I., Mann, M., and Hay, R.T. (2011). Comparative proteomic 
analysis identifies a role for SUMO in protein quality control. Sci Signal 4, rs4. 

Terada, K., and Mori, M. (2000). Human DnaJ homologs dj2 and dj3, and bag-1 are 
positive cochaperones of hsc70. J Biol Chem 275, 24728-24734. 

Terada, K., Ohtsuka, K., Imamoto, N., Yoneda, Y., and Mori, M. (1995). Role of heat 
shock cognate 70 protein in import of ornithine transcarbamylase precursor into 
mammalian mitochondria. Mol Cell Biol 15, 3708-3713. 

Terziyska, N., Grumbt, B., Kozany, C., and Hell, K. (2009). Structural and functional 
roles of the conserved cysteine residues of the redox-regulated import receptor 
Mia40 in the intermembrane space of mitochondria. J Biol Chem 284, 1353-1363. 

Truscott, K.N., Kovermann, P., Geissler, A., Merlin, A., Meijer, M., Driessen, A.J., 
Rassow, J., Pfanner, N., and Wagner, R. (2001). A presequence- and voltage-
sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat 
Struct Biol 8, 1074-1082. 

Ungermann, C., Guiard, B., Neupert, W., and Cyr, D.M. (1996). The delta psi- and 
Hsp70/MIM44-dependent reaction cycle driving early steps of protein import into 
mitochondria. EMBO J 15, 735-744. 

Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S.R., Glanemann, C., 
Schnellhardt, M., Niessen, M., Scheel, H., Hofmann, K., Johnson, E.S., et al. (2007). 
Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282, 
34167-34175. 

van der Veen, A.G., and Ploegh, H.L. (2012). Ubiquitin-like proteins. Annu Rev 
Biochem 81, 323-357. 

van Nocker, S., Sadis, S., Rubin, D.M., Glickman, M., Fu, H., Coux, O., Wefes, I., 
Finley, D., and Vierstra, R.D. (1996). The multiubiquitin-chain-binding protein Mcb1 is 
a component of the 26S proteasome in Saccharomyces cerevisiae and plays a 
nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16, 6020-6028. 

van Wilpe, S., Ryan, M.T., Hill, K., Maarse, A.C., Meisinger, C., Brix, J., Dekker, P.J., 
Moczko, M., Wagner, R., Meijer, M., et al. (1999). Tom22 is a multifunctional 
organizer of the mitochondrial preprotein translocase. Nature 401, 485-489. 

Varshavsky, A. (1997). The ubiquitin system. Trends Biochem Sci 22, 383-387. 

Vasiljev, A., Ahting, U., Nargang, F.E., Go, N.E., Habib, S.J., Kozany, C., Panneels, 
V., Sinning, I., Prokisch, H., Neupert, W., et al. (2004). Reconstituted TOM core 
complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of 
the ADP/ATP carrier across membranes. Mol Biol Cell 15, 1445-1458. 

Verhoef, L.G., Lindsten, K., Masucci, M.G., and Dantuma, N.P. (2002). Aggregate 
formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol 
Genet 11, 2689-2700. 



REFERENCES 
 

 111 

Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, J.R., 3rd, Koonin, E.V., 
and Deshaies, R.J. (2002). Role of Rpn11 metalloprotease in deubiquitination and 
degradation by the 26S proteasome. Science 298, 611-615. 

Vestweber, D., and Schatz, G. (1988). A chimeric mitochondrial precursor protein 
with internal disulfide bridges blocks import of authentic precursors into mitochondria 
and allows quantitation of import sites. J Cell Biol 107, 2037-2043. 

Wang, C., and Youle, R.J. (2009). The role of mitochondria in apoptosis*. Annu Rev 
Genet 43, 95-118. 

Wang, Z., and Prelich, G. (2009). Quality control of a transcriptional regulator by 
SUMO-targeted degradation. Mol Cell Biol 29, 1694-1706. 

Weinberg, S.E., Sena, L.A., and Chandel, N.S. (2015). Mitochondria in the regulation 
of innate and adaptive immunity. Immunity 42, 406-417. 

Wiedemann, N., Kozjak, V., Chacinska, A., Schonfisch, B., Rospert, S., Ryan, M.T., 
Pfanner, N., and Meisinger, C. (2003). Machinery for protein sorting and assembly in 
the mitochondrial outer membrane. Nature 424, 565-571. 

Wienhues, U., Becker, K., Schleyer, M., Guiard, B., Tropschug, M., Horwich, A.L., 
Pfanner, N., and Neupert, W. (1991). Protein folding causes an arrest of preprotein 
translocation into mitochondria in vivo. J Cell Biol 115, 1601-1609. 

Wilkinson, K.A., Nishimune, A., and Henley, J.M. (2008). Analysis of SUMO-1 
modification of neuronal proteins containing consensus SUMOylation motifs. 
Neurosci Lett 436, 239-244. 

Williams, C.C., Jan, C.H., and Weissman, J.S. (2014). Targeting and plasticity of 
mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346, 
748-751. 

Williamson, A., Wickliffe, K.E., Mellone, B.G., Song, L., Karpen, G.H., and Rape, M. 
(2009). Identification of a physiological E2 module for the human anaphase-
promoting complex. Proc Natl Acad Sci U S A 106, 18213-18218. 

Wohlschlegel, J.A., Johnson, E.S., Reed, S.I., and Yates, J.R., 3rd (2004). Global 
analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279, 
45662-45668. 

Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M.E., Oeljeklaus, S., 
Varabyova, A., Lirski, M., Chroscicki, P., Mroczek, S., et al. (2015). Mistargeted 
mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524, 
485-488. 

Wu, Y., and Sha, B. (2006). Crystal structure of yeast mitochondrial outer membrane 
translocon member Tom70p. Nat Struct Mol Biol 13, 589-593. 

Wykoff, D.D., and O'Shea, E.K. (2005). Identification of sumoylated proteins by 
systematic immunoprecipitation of the budding yeast proteome. Mol Cell Proteomics 
4, 73-83. 

Xu, P., Duong, D.M., Seyfried, N.T., Cheng, D., Xie, Y., Robert, J., Rush, J., 
Hochstrasser, M., Finley, D., and Peng, J. (2009). Quantitative proteomics reveals 



REFERENCES 
 

 112 

the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 
133-145. 

Xu, W., Marcu, M., Yuan, X., Mimnaugh, E., Patterson, C., and Neckers, L. (2002). 
Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for 
c-ErbB2/Neu. Proc Natl Acad Sci U S A 99, 12847-12852. 

Yau, R., and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nat 
Cell Biol 18, 579-586. 

Yin, Y., Seifert, A., Chua, J.S., Maure, J.F., Golebiowski, F., and Hay, R.T. (2012). 
SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells 
to DNA damage. Genes Dev 26, 1196-1208. 

Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 
and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 
41-50. 

Zhang, H., Saitoh, H., and Matunis, M.J. (2002). Enzymes of the SUMO modification 
pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22, 6498-
6508. 

Zhang, Y.Q., and Sarge, K.D. (2008). Sumoylation of amyloid precursor protein 
negatively regulates Abeta aggregate levels. Biochem Biophys Res Commun 374, 
673-678. 

Zhao, Q., Xie, Y., Zheng, Y., Jiang, S., Liu, W., Mu, W., Liu, Z., Zhao, Y., Xue, Y., 
and Ren, J. (2014). GPS-SUMO: a tool for the prediction of sumoylation sites and 
SUMO-interaction motifs. Nucleic Acids Res 42, W325-330. 

Zhao, X., and Blobel, G. (2005). A SUMO ligase is part of a nuclear multiprotein 
complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci 
U S A 102, 4777-4782. 

Zhou, W., Ryan, J.J., and Zhou, H. (2004). Global analyses of sumoylated proteins in 
Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J 
Biol Chem 279, 32262-32268. 

Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E., 
and Hendrickson, W.A. (1996). Structural analysis of substrate binding by the 
molecular chaperone DnaK. Science 272, 1606-1614. 

Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., and McBride, H.M. 
(2007). The SUMO protease SENP5 is required to maintain mitochondrial 
morphology and function. J Cell Sci 120, 1178-1188. 
 

 



ABBREVIATIONS 
 

 113 

7 INDEX OF ABBREVIATIONS 

7.1 Abbreviations 
Ax   absorbance at x nm 
Ac   acetyl group 
ACT   aspartate kinase, chorismate mutase, TyrA 
ADP   adenosine 5’-diphosphate 
AIM   Atg8-interacting motif 
ALS_ss_C  acetolactate synthase small subunit C-terminus 
AMP   adenosine 5’-monophosphate 
ATP   adenosine 5’-triphosphate 
bp   base pair 
CHX   cycloheximide 
CPC   cysteine-proline-cysteine 
CSM   complete supplement mixture 
dNTP   2’-deoxyribonucleoside-5’-triphosphate 
DTT   dithiothreitol 
CCD   charge-coupled device 
CHIP   carboxy terminus of HSC70-interacting protein 
cl.   clone 
DMSO   dimethylsulfoxide 
DNA   deoxyribonucleic acid 
Drp1   dynamin-related protein 1 
ds   double stranded 
DUB   deubiquitylating enzyme 
E1   activating enzyme 
E2   conjugating enzyme 
E3   ligase 
ECL   enhanced chemiluminescence 
E. coli   Escherichia coli 
EDTA   ethylenediaminetetraacetic acid 
e.g.   exempli gratia (for example) 
ER   endoplasmic reticulum 
ERAD   ER-associated degradation 
FAD   flavin adenine dinucleotide 
FAT10   human leukocyte antigen F-associated transcript 10 
FUB1   Fau ubiquitin-like protein 1 
FUS   fused in sarcoma 
G418   geneticin sulfate 
GABARAP  gamma-aminobutyric acid receptor-associated protein 
Gal   galactose 
GAP   GTPase-activating protein 
GFP   green fluorescent protein 
GLUT   glucose transporter 
GST   glutathione S-transferase 
HA   influenza hemagglutinine epitope 
HCS   high content screening 
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HDAC   histone deacetylase 
HECT   homologous to the E6-AP carboxy terminus 
HEPES  4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 
hphNT1  gene conferring resistance to hygromycin B 
HRP   horseradish peroxidase 
HS   heat shock 
HSC   heat shock cognate 
HSP   heat shock protein 
IκB-α   nuclear factor of κ light polypeptide gene enhancer in B-cells 
   inhibitor-α 
IM   (mitochondrial) inner membrane 
IMP   (mitochondrial) inner membrane peptidase 
IMS   (mitochondrial) intermembrane space 
IPTG   isopropyl β-D-1-thiogalactopyranosid 
ISG15   interferon-stimulated gene 15 
kanMX4  gene conferring resistance to G418 
LB   lysogeny broth 
LC   liquid chromatography 
LC3   microtubule-associated protein 1A/1B light chain 3 
LIR   LC3-interacting region 
MAPL   mitochondria-anchored protein ligase 
MEF2A  myocyte-specific enhancer factor 2A 
MIA   mitochondrial intermembrane space assembly 
MOPS   3-(N-morpholino)propanesulfonic acid 
MPIB   Max Planck Institute of Biochemistry 
MPP   mitochondrial processing peptidase 
mRNA   messenger RNA 
MS   mass spectrometry 
MSF   mitochondrial import stimulation factor 
mt   mitochondrial 
MTS   mitochondrial targeting sequence 
MUL1   mitochondrial ubiquitin ligase activator of NF-κB 1 
NAT   nourseotricin 
natNT2  gene conferring resistance to nourseotricin 
NBR1   next to BRCA1 gene 1 protein 
NEDD8  neuronal-precursor-cell expressed developmentally 
   downregulated protein 8 
NEF   nucleotide exchange factor 
NEM   N-ethylmaleimide 
Ni-NTA  Ni2+-charged nitrilotriacetic acid 
NLS   nuclear localization signal 
NPC   nuclear pore complex 
NSE2   non-structural maintenance of chromosomes element 2 
   homolog 
ODx   optical density at x nm 
OM   outer (mitochondrial) membrane 
ORF   open reading frame 
OXA   cytochrome oxidase activity 
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PAGE   polyacrylamide gel electrophoresis 
PAM   presequence translocase-associated motor 
PBF   presequence binding factor 
PBS   phosphate-buffered saline 
Pc2   polycomb 2 homolog 
PCNA   proliferating cell nuclear antigen 
PCR   polymerase chain reaction 
PD   pull-down 
PEG   polyethylene glycol 
Pi   phosphate 
PIAS   protein inhibitor of activated STAT 
PIP   PCNA-interacting protein 
PPi   pyrophosphate 
PTM   posttranslational modification 
PVDF   polyvinylidene fluoride 
Ran   Ras-related nuclear protein 
RanBP2  Ran-binding protein 2 
RanGAP1  Ran GTPase-activating protein 1 
RING   really interesting new gene 
RNA   ribonucleic acid 
Rpl   ribosomal protein of the large (60S) subunit 
rpm   rounds per minute 
Rps   ribosomal protein of the small (40S) subunit 
RSUME  RWD-containing SUMOylation enhancer 
SAE   SUMO-activating enzyme 
SAF-A/B  scaffold attachment protein A/B 
SAM   sorting and assembly machinery 
SAP   SAF-A/B, Acinus, PIAS 
SC   synthetic complete 
S. cerevisiae  Saccharomyces cerevisiae 
SDS   sodium dodecyl sulfate 
SENP   sentrin-specific protease 
sHSP   small HSP 
SILAC   stable isotope labeling by amino acids in cell culture 
SIM   SUMO-interacting motif 
SP-RING  Siz/PIAS-RING 
SQSTM1  sequestosome-1 
STUbL   SUMO-targeted ubiquitin ligase 
SUMO   small ubiquitin-like modifier 
TBE   Tris, boric acid, EDTA 
TBS   Tris-buffered saline 
TBST   TBS containing 0.1 % Tween-20 
TCA   trichloroacetic acid 
TDG   thymine DNA glycosylase 
TIM   translocase of the (mitochondrial) inner membrane 
TOM   translocase of the (mitochondrial) outer membrane 
TOPORS  topoisomerase Ι-binding arginine/serine-rich protein 
TRAF7   tumor necrosis factor receptor-associated factor 7 
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Tris   Tris(hydroxymethyl)aminomethane 
Triton X-100  4-(1’,1’,3’,3’-tetramethylbutyl)phenyl polyethyleneglycol ether 
Tween-20  Polyethylene glycol sorbitan monolaurate 
Ub   ubiquitin 
UBA   ubiquitin-associated 
UBD   ubiquitin-binding domain 
UBL   ubiquitin-like 
UCH   ubiquitin C-terminal hydrolase 
UFM1   ubiquitin-fold modifier 1 
UPS   ubiquitin-proteasome system 
UV   ultraviolet 
v/v   volume per volume 
WB   western blot 
WT   wild type 
w/v   weight per volume 
YPD   yeast extract, peptone, dextrose 
ZMIZ1   zinc finger MIZ domain-containing protein 1 
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7.2 Amino acids 
 
1-letter code 3-letter code Amino acid 
A Ala Alanine 
C Cys Cysteine 
D Asp Aspartate 
E Glu Glutamic acid 
F Phe Phenylalanine 
G Gly Glycine 
H His Histidine 
I Ile Isoleucine 
K Lys Lysine 
L Leu Leucine 
M Met Methionine 
N Asn Asparagine 
P Pro Proline 
Q Gln Glutamine 
R Arg Arginine 
S Ser Serine 
T Thr Threonine 
V Val Valine 
W Trp Tryptophan 
Y Tyr Tyrosine 
 

7.3 Prefixes and units 
k kilo (103)   °C degree Celsius 

m milli (10-3)   Da Dalton 

µ micro (10-6)   g gram 

n nano (10-9)   g acceleration of gravity 

     h hour(s) 

     Hz Hertz 

     l liter 

     min minute(s) 

     M molar 

     s second(s) 

     S Svedberg 

     V Volt 
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