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The Middle to Later Stone Age transition in Africa has been debated as a significant shift in

human technological, cultural, and cognitive evolution. However, the majority of research on

this transition is currently focused on southern Africa due to a lack of long-term, stratified

sites across much of the African continent. Here, we report a 78,000-year-long archeological

record from Panga ya Saidi, a cave in the humid coastal forest of Kenya. Following a shift in

toolkits ~67,000 years ago, novel symbolic and technological behaviors assemble in a non-

unilinear manner. Against a backdrop of a persistent tropical forest-grassland ecotone,

localized innovations better characterize the Late Pleistocene of this part of East Africa than

alternative emphases on dramatic revolutions or migrations.
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The terms Middle Stone Age (MSA) and Later Stone Age
(LSA) have long been used to frame discussions of beha-
vioral and cultural change in Africa1. Changes in lithic

production (such as making elongate blades and stone-tipped
arrows2, 3), the appearance of symbolic material culture4, 5, and
subsistence diversification3 associated with the MSA and LSA
have all been identified as important thresholds in human cog-
nitive and social evolution3, 6. Many researchers have highlighted
the revolutionary nature of MSA and LSA human capacities, in
some cases arguing that they reflect cognitive evolutionary
developments7 or that they stimulated pan-African and global
migrations from 60,000 years ago (ka) onwards8, 9. On the other
hand, recent discoveries in southern Africa have suggested a more
gradual development of these material culture traits10–13.

The debate as to the significance and tempo of behavioral
changes during the MSA and LSA has largely focussed on the
temperate and coastal environments of southern Africa12, 14. This
is due to a general lack of well-dated, well-stratified records in
other key areas of the African continent, particularly across
the period 80–40 ka, though the Haua Fteah and Taforalt in
North Africa are notable exceptions15, 16. Long-term, dated
records from East Africa remain scarce. Several East African sites
have produced evidence for novel practices, reflected in the
appearance of backed stone tools and beads over the last
60–40,000 years17–22. However, the chronologies and environ-
mental contexts of these key behavioral transitions are not clear.
Sites >50,000 years old have only just begun to be identified
beyond the East Africa Rift System23 and are limited to the Lake
Victoria region24–26.

The new archeological cave site of Panga ya Saidi (PYS)
described here offers an opportunity to address geographical and
ecological biases in our understanding of early human behavioral
and cultural change. The site is situated 15 km from the present-
day shoreline in the Zanzibar-Inhambane coastal forest mosaic
that runs along the East African littoral, with the coastal shelf
dropping below −125m depth within 5 km of the modern
coastline (Fig. 1a) (Supplementary Note 1). The cave is in the
Dzitsoni limestone hills on an ecotone between lowland tropical

forest and savannah (SM5). Excavations at PYS have revealed
exceptional preservation and stratigraphic integrity, and a record
of human activity back to ~78 ka, including a rich technological
sequence that includes lithic forms elsewhere associated with the
MSA and LSA. Alongside a rich range of paleoecological indi-
cators, these features mean that the site offers a rare opportunity
to study human behavioral changes in an evolutionarily critical,
but poorly-understood, region of Africa.

Results
Stratigraphy and chronology. The 3 m deep excavated sequence
at PYS encompasses 19 layers (Supplementary Note 2) (Fig. 1b).
Three lithological boundaries divide the profile into four main
lithostratigraphic units that are discussed in detail in Supple-
mentary Note 1. A series of 20 stratigraphically ordered and
internally consistent radiocarbon and optically stimulated lumi-
nescence (OSL) age estimates, when included in a Bayesian
model, show human occupation in every Marine Isotope Stage
(MIS), from late MIS5 c. 78 ka into the Holocene (Supplementary
Note 3). Geoarchaeological and micromorphological studies
indicate that the sequence consists of fine colluvia, spalling, and
anthropogenic deposits with abundant organic and cultural
microremains (e.g., fauna, flora, lithic microdebitage – Supple-
mentary Notes 4 and 5).

Geomorphological and magnetic susceptibility proxies for
human occupation intensity (Fig. 2; Supplementary Note 2)
indicate a pattern of intermittent pulses of human activity. In the
early part of the sequence, in Layers 19, 18, and the lower part of
Layer 17 (~78–73 ka), occupation intensity is low. This is
followed by a possible hiatus when both lithics and charcoal >c.
125 μm drop off, and magnetic susceptibility and biogenic input
signals are dramatically reduced (Fig. 2). Human occupation
proxies subsequently show a general trend of increasing intensity
from Layer 16 (beginning ~67 ka) to the Holocene (Fig. 2).

Cultural artifacts. The long artifactual sequence is comprised
of 17 ocher fragments, eight worked bone artifacts, 88 ostrich
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eggshell beads, 27 marine shell beads, five exotic manuports, as
well as >30,000 knapped stone artifacts, including Levallois cores
and backed artifacts—typical of MSA and LSA technologies,
respectively6, 27, 28 (Fig. 3). The metrics and characteristics of
these technologies are discussed in greater detail in Supplemen-
tary Note 4. The possible hiatus or ephemeral occupation in the
PYS sequence between 73 and 67 ka corresponds with a change in
the stone artifact sequence. In the early part of the sequence
stone artifacts are characterized by large flakes (Fig. 2), often

made using variations of the Levallois method, and large retou-
ched points (Supplementary Note 4), comfortably fitting with
other contemporary MSA assemblages29. Immediately after the
hiatus, in Layer 16, there is a shift in rock type proportions from
principally microcrystalline limestone to cryptocrystalline quartz
and chert, and a concomitant reduction in artifact size (Fig. 2,
Supplementary Note 4). Size reduction is evident across all stone
artifacts, including within cryptocrystalline materials and retou-
ched tools, demonstrating that this change does not simply reflect
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variation in procured raw material package size (Supplementary
Note 4).

Coupled with the switch to small cryptocrystalline stone tools
after ~67 ka is an increased use of bipolar technology (Supple-
mentary Fig. 4). A shift in technological emphasis toward bipolar
strategies and a reduction in stone tool size is considered a key
marker of LSA behavior elsewhere in Africa27, 30, 31. A change
from Levallois to prismatic blade technology and the appearance
of backed crescentic tools have also been highlighted as indicators
of the LSA6, 32. However, in the PYS sequence, Levallois
technology occurs alongside backed crescents in Layers 11 and
12 (~51–48 ka) and Layers 5–3 (~14–1 ka) (Supplementary
Note 4) (Fig. 3). Prismatic blade production is rare in the PYS
sequence, but bipolar and Levallois blades become common in
the upper part of the sequence (Layers 8–3) (~25–1 ka)
(Supplementary Note 4). Levallois and bipolar technology, blade
production, and backed crescentic tools occur recurrently and
intermittently, with no evidence for a unilinear accumulation of
traits or a uniform uptake of the latter three traits as a package.
Despite changes in technology, stone artifacts remain consistently
small and were predominantly produced on cryptocrystalline
materials after ~67 ka.

Beads, ocher fragments, and worked bone have been associated
with behavioral complexity in the Late Pleistocene and occur with
increasing regularity through the sequence at PYS (Supplemen-
tary Note 4). The earliest bead, a Conus sp. shell spire, occurs in
Layer 16 which dates from between ~67–63 ka (Fig. 3). At ~33 ka
(Layer 9) the most common beads were Conus shell spires (n=
13) (Fig. 3). Recurrent engagement with coastal resources for
symbolic use is behavioral, rather than geographic, given minimal
changes in distance from the shoreline during the site’s
occupation (Fig. 1a) (Supplementary Note 1). Ostrich eggshell
beads at PYS reach their highest frequency ~25 ka (Layer 8, n=
70), while fully-manufactured beads made of marine shells are the
dominant types during the Holocene (Layers 1–5) (Fig. 2). Layers
8-10 (~48–25 ka) produced two modified ocher fragments (Fig. 3),
as well as carved bone and tusk artifacts, including a decorated
bone tube (Fig. 3) and a small bone point ; artifact types that
have been argued to be characteristic of the LSA28. In contrast
to many revolutionary or unilinear interpretations of technolo-
gical and cultural development, the PYS sequence reveals a
pattern of intermittent presence of different technological traits
and symbolic artifacts that have been associated with the MSA
and LSA.

Paleoecology. Numerous proxies point to broad perseverance
of tropical forest and grassland environments throughout the
sequence (Supplementary Note 5). This is indicated, for example,
by the consistently high (> 25 species per sample) terrestrial
mollusk diversity, with most of the mollusk species requiring
humid shady conditions.

Sedimentology and magnetic susceptibility data indicates a
shift to drier conditions following the early occupation in Layers
17–19 ~78–73 ka (Fig. 2) (see also Supplementary Note 5). This is
supported, albeit with a lag, by the stable isotope data which
shows higher stable carbon (δ13C) in Layers 10–12 relative to
13–16 and 17 (Supplementary Tables 12 and 13), indicative of an
increase in the presence of C4 resources, most likely in the form of
grassland, in the diets of fauna being exploited at the site in the
region c. 48 ka. Visually, δ18O also tracks this trend but there is
no statistically significant difference between Layer 17 and Layers
13–16 or Layers 10–12 (Supplementary Tables 14 and 15).

From ~67–48 ka, paleoenvironmental proxies at PYS show that
the local environment underwent relatively little variation until
the final occupation of the cave at ~0.5 ka (Fig. 2). The wide δ13C

and δ18O ranges of fauna after Layer 17 (Fig. 2) (Supplementary
Data 1) reflects the persistence of C3 and C4 vegetation, and a
variety of water sources affected to differing extents by
evapotranspiration in the vicinity of PYS; likely in the form of
a forest-grassland ecotonal setting. A consistent ecotonal situation
is supported by zooarchaeological data for the persistent presence
of open and bush/forest adapted mammalian species, as well
as phytolith datasets that document the continued occurrence
of woody, grass, and palm phytoliths in the immediate site
environment (Fig. 2).

Discussion
The paleoecological datasets from PYS agree with other East
African records that point to a period of low amplitude envir-
onmental change throughout much of MIS4-1, particularly from
records nearer the coast where the maritime influence buffers
against temperature extremes33, 34. The consistent presence of
the forest-grassland ecotone throughout the last ~67,000 years
accompanies evidence for increasing occupation intensity at PYS,
perhaps suggesting a growing human presence in the region
linked to the use of mosaic habitats. Moreover, alongside the
magnetic susceptibility data for increased occupation intensity
from 60 ka, this may imply, as has been suggested elsewhere, that
the MSA–LSA transition of East Africa is a long-term pattern of
change related to growing population densities33, 35.

Indeed, the PYS sequence does not document a radical change
in technological or cultural behavior in East Africa ~60–50 ka that
might be suggestive of cognitive or technological “revolutions” or
migrations7, 8. Instead, PYS documents a long-term assembly, and
intermittent presence, of various innovative traits. In particular,
there is no dramatic appearance of an LSA technological package
and, instead, older MSA technological traits, such as Levallois
cores, exist alongside the development of backed artifacts
and blade production. The principal change in the sequence is
the reduction in lithic size and the shift to cryptocrystalline
materials ~67 ka.

From MIS6-3 Homo sapiens began to adapt to a diversity of
coastal13, 36, tropical forest37, 38, and hyper-cold39, 40 environ-
ments across Africa and Eurasia. Humans appear to have adapted
locally to these environments, gradually developing new symbolic
forms, technological production strategies, and subsistence
behaviors. It seems that the Middle and Late Pleistocene of Africa
is best characterized by diverse Homo sapiens populations,
adopting a range of survival strategies and new forms of social
communication on an intermittent, ad hoc basis in different
environmental and climatic contexts41, 42. It is this adaptive
plasticity that truly defines the expansion and development of
humans as a global species.

Methods
Excavation. Our excavation is in a large rockshelter in the first chamber of the
collapsed-roof cave, near to the main entrance. Three seasons of excavation
between 2010 and 2013 have exposed a 3 m deep sequence, with the trench
measuring 3.5 × 2 m at the top stepping into 2 × 1m at the base. The trenches were
excavated using the single context method according to the Museum of London
protocols with the addition of total excavated sediment volume recorded for each
context. Any animal burrows were excavated by hand and their contents discarded.
In situ excavated deposits were dry-sieved on site through a 5 mm mesh.

A program of bulk soil sampling for flotation (0.5 mm) and wet-sieving (1 mm)
to recover archeobotanical, zooarcheological, and paleoenvironmental
microremains was also implemented (see below). Where possible, a minimum
sample volume of 60 litres per context was maintained. Smaller contexts (<60 L)
were sampled in their entirety. Nineteen stratigraphic layers were identified in the
section, each corresponding to a particular excavation context. A continuous
column bulk sediment sample was taken for palaeoenvironmental analyses with
100 g samples taken at every 2 cm of depth. Deposits exposed in PYS Trench 4
(2013 excavation) were logged on-site following standard sedimentological
procedures43–45. Sediment color, texture, composition, structures, postdepositional
disturbance and the nature, and geometry of layer boundaries were recorded for
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each layer resolved by the excavators. Layers were grouped into higher-order,
multilayer lithostratigraphic units, as shown in Supplementary Fig. 1.

Micromorphology. A set of 23 undisturbed micromorphology sediment samples
were collected from the excavated profile in clear polyurethane boxes. In view of
the large dimensions and stratigraphic complexity of the excavated trench, sam-
pling was at a reconnaissance scale, concentrating on layer boundaries and dis-
tinctive features. Sample boxes were labeled, photographed and plotted on the
profile drawing before removal from the profile (Supplementary Fig. 1). Out of this
sample set, 10 samples from the Pleistocene part of the profile were processed for
micromorphological analysis at the Thin Section Micromorphology Laboratory,
University of Stirling (sample code PYS; thin sections manufactured by George
MacLeod). Samples were air-dried and impregnated with polyester (polylite) resin
following standard procedures (http://www.thin.stir.ac.uk/). Ca. 30 μm thick,
uncovered, large format thin sections (7.5 × 11 cm) were manufactured from the
hardened impregnated blocks.

Thin sections were observed with a polarizing microscope at magnifications of
×12.5 to ×400, using plain polarized (PPL), cross-polarized (XPL), and oblique
incident light (OIL). Relative abundance of sediment/soil components was
estimated using standard semi-quantitative estimation charts46, 47. Key sediment
constituents larger than ca. 50 μm (mineral grains; pedoclasts; biogenic particles,
etc.) were point-counted using a 0.5 × 0.5 cm grid overlay printed on clear acetate.
Point-counted biogenic particles included bone fragments (from small cave
vertebrates and larger vertebrate fauna—the latter possibly including human prey);
small vertebrate coproliths; indeterminate isotropic particles; shell fragments;
charcoal (both woody and non-woody tissue); burnt plant pseudomorphs; ash and
ash intraclasts; quartz debitage (Supplementary Fig. 2).

Paleomagnetism. A sub-sample of the continuous column sample from PYS was
transported to The Australian Archaeomagnetism Laboratory for preparation and
analysis. Once in the laboratory samples were dried to standardize water content,
crushed with a non-magnetic mortar, and pestle to become homogenized and then
packed into standard 8cc palaeomagnetic plastic cubes. The approach to the
analysis follows that of Herries48 and a number of analyses were run to establish
the magnetic mineralogy of the samples. These included mass specific low-field
susceptibility (χlf), mass specific high-field susceptibility (χhf), mass specific fre-
quency dependant susceptibility (χfd) and saturation isothermal remanent mag-
netization acquisition curves and backfields. This was done to understand the
mineralogy driving magnetic susceptibility change through identifying ferrimag-
netic vs. anti-ferromagnetic minerals on the basis of their coercivity, establish the
concentration of magnetic minerals present within each sample, and examine grain
size and domain state trends in the sequence.

The magnetic susceptibility of each sample was measured using a Bartington
MS2 susceptibility-meter connected to an MS2B sensor. Samples were measured at
0.47 kHz (low, χlf) and 4.7 kHz (high, χhf) to attain both low and high frequency
susceptibility values. These measurements were then used to compute the
frequency dependence of the magnetic susceptibility (χfd) and then expressed as a
percentage (χfd%) using the formula stated by Dearing et al.49. Isothermal
remanent magnetizations (IRM) were induced up to 1 T (representing the
saturation IRM: SIRM) using a magnetic measurements pulse magnetizer
(MMPM10) and measurements made on an AGICO JR6 magnetometer. Forward-
field measurements were taken at 20, 500, 600 mT, and 1 T and back-field
measurements at 20, 40, 100, 150, 200, 250, and 300 mT. Full IRM acquisition
curves and backfields were also produced for each layer of the site. HIRM
measurements were also taken using the method described by Liu et al.50. Soft IRM
measurements showing the concentration of ferrimagnetic minerals were taken at
20 mT. S-ratios (IRM-300 mT/SIRM and IRM-100 mT/SIRM) were calculated to
establish variation in the grain size of ferromagnetic minerals. Remanence of
coercivity values were also calculated to further establish the mineralogy, grain size,
and domain states of the magnetic minerals present within the samples.

Charcoal abundance. From the continuous column sample described in SM3,
subsamples of 1 cm3 were extracted for charcoal abundance analysis. The addition
of sodium hexametaphosphate to a beaker containing the sample was used to
disaggregate the samples and aid in the separation of the organic material and the
clay particles51. The contents of the beaker was then passed through a 125 μm sieve
and the trapped content transferred to a gridded Petri dish. Pieces of charcoal were
identified using comparative collections and the total charcoal count was deter-
mined through visual inspection and manipulation with a metal probing needle
under a Zeiss Stemi 2000-C optical stereomicroscope (×10–40 magnifications). The
microscopic charcoal size identified represents charcoal that was locally produced
during fires within the catchment area of the site52.

Radiocarbon dating. Items selected for radiocarbon dating were a human bone
and a charred sorghum seed (identified by Alison Crowther) from the upper part of
the sequence; as well as unidentified charcoal, and ostrich eggshell pieces including
a bead, from the middle part of the sequence. These dating samples were either
recovered during excavation or taken from the section at the end of excavation.

Fourteen 14C measurements were produced at the Oxford Radiocarbon
Accelerator Unit (ORAU) (n= 10) and by Beta Analytic (n= 4). Most charcoal
samples were prepared using the standard acid–base–acid (ABA) protocol53. While
for the younger material (<30 ka BP) this is usually sufficient, it has been shown
that ABA does not efficiently decontaminate older charcoal samples when
compared with the more rigorous protocol: acid–base oxidation/stepped
combustion (ABOx-SC)54. Paired ABA and ABOx-SC preparation was used on one
sample from context 413 C. For this particular sample, ABA and ABOx
methodologies produced identical AMS ages. This is probably due to the
exceptional state of preservation of the charcoal in this part of the sequence as well
as due to the fact that it is not very old sample. For material from lower levels
where only ABA dates from Beta Analytic exist these should be considered
minimum ages only. This is demonstrated by the much older ages returned from
ostrich eggshell samples from similar contexts.

It is not possible to interpret radiocarbon ages reliably without calibration, due
to variation in the concentration of radiocarbon in the atmosphere through time.
All terrestrial 14C measurements were calibrated using IntCal13 and SHCal13, the
most recent internationally agreed calibration curves available55, 56. As PYS lies
close to the equator, a 68.2/31.8 northern/southern hemisphere split was used in
the calibration curve, taking into account the position of the site relative to the
inter-tropical convergence zone. The radiocarbon ages obtained from PYS are
summarized in Supplementary Table 1.

OSL. Optically stimulated luminescence (OSL) samples were obtained by ham-
mering metal tubes into section faces following cleaning. The samples were sealed
using adhesive tape. Following transport to the Royal Holloway University of
London Luminescence Laboratory, samples were processed under subdued orange
light. The outer 5 cm of sample (presumed as being exposed to sunlight) was
removed and retained for background radioisotope concentration determination.

Quartz was extracted from the part of each sample not exposed to sunlight
following burial. As the bedrock at PYS is primarily composed of carbonate,
samples were initially wet-sieved to isolate the 212–180 µm size fraction. This
removes large bedrock clasts from the sample before acid treatment, meaning that
the possibility of incorporating grains liberated by dissolution of the bedrock was
minimized.

The volume of 1M HCl and H2O2 were used to remove carbonates and organic
matter from the 212–180 µm fraction, respectively. The samples were then re-
sieved at 180 µm and quartz extracted from the >180 µm fraction using density
separations at 2.62 and 2.70 g/cm3 followed by a HF acid etch (23M HF for 60 min
followed by 10M HCl rinse). The resulting, etched samples were sieved at 150 µm
to remove partially dissolved grains. All samples were then stored in opaque
containers prior to measurement.

All OSL measurements were carried out using a Risø TL/OSL-DA-15
automated dating system57, fitted with a single-grain OSL attachment58, 59. Single-
grains were stimulated using a 10 mW Nd: YVO4 solid-state diode-pumped green
laser (532 nm) focused to yield a nominal power density of 50W/cm2 57. All
infrared (IR) stimulation was carried out using an IR (870 nm) laser diode array
yielding a power density of 132 mW/cm2. OSL passed through 7.5 mm of Hoya
U-340 filter and was subsequently detected using an Electron Tubes Ltd 9235QB15
photomultiplier tube.

Irradiation was carried out using a 40 mCi 90 Sr/90Y beta source providing ~6
Gy/min. This source is calibrated relative to the National Physical Laboratory,
Teddington 60Co γ-source (Hotspot 800)60. Due to the spatial inhomogeneity of
beta emitters across the active face of our 90 Sr/90Y beta source we calibrated the
dose rate to each individual grain position on a single-grain disc61 using the
method reported by Armitage et al.62. For more detail on measurement and quality
criteria see Supplementary Note 3.

Bayesian methods. The absolute age determinations were used to construct an age
model using Bayesian software (OxCal 4.363) and the INTCAL13 curve. The
determinations were input as values in fraction modern (fM) plus or minor fM
errors at 1σ (R_F14C in OxCal). In order to determine whether there are pro-
blematic determinations that do not agree with the prior framework, an outlier
detection method was applied. When there is a lack of agreement with the prior
framework, significant outlier results allow us to quantify the degree of difference.
Values excessively higher than the prior outlier probabilities applied are auto-
matically down-weighted in the models. A posterior outlier probability of 0.5
means that the radiocarbon likelihood of the sample is only included in half of the
runs of the model. The two Beta dates were assigned a 0.3 value to reflect the
inadequate chemical protocol applied in the decontamination of these samples
prior to measurement.

Only age estimates older than 20,000 years ago were included in the model. The
inclusion of younger ages does not affect the older ages at all. Younger ages were
excluded because of the large span of the dates; the model runs with a broad
resolution of 50–100 years for the older data, whereas 20 years would be more
appropriate for the younger data. In each Bayesian model, a start and end
boundary was added in order to bracket the archeological phases within the
sequence. The posterior distributions of these boundaries facilitated determination
of probability distribution functions (PDF) for the beginning and ending of these
phases of activity. Due to the presence of a depositional hiatus represented in the

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04057-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1832 | DOI: 10.1038/s41467-018-04057-3 | www.nature.com/naturecommunications 5

http://www.thin.stir.ac.uk/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


later part of Layer 17, we used two boundaries between the end of 17 and start of
Layer 16. In addition, due to uncertainties related to the reliability of sample OSL-7
(see text above) these age estimates were not included in the model.

Lithics. A total of 30,420 lithic artifacts were recovered through the excavation
seasons at PYS between 2010 and 2013. The analyses proceeded by classifying all
lithics in accordance with stratigraphic context, raw-material type, and technolo-
gical class. All artifacts were subsequently weighed and counted according to these
categories. Cores and retouched artifacts were further classified in accordance with
reduction strategy and typology. For unretouched flakes, blades, Levallois flakes,
and bipolar flakes were counted. Levallois64, bipolar65, laminar, and discoidal
strategies as well as resultant blanks were all documented to varying frequencies in
a number of the layers.

Beads, osseous artifacts, and ocher. Over two hundred potential beads, bone
tools, engraved bone and stone objects, and pigment lumps recovered during
excavation, were examined under a low power reflected light microscope in search
for anthropogenic modifications. When necessary, sediment was carefully removed
under the microscope with a soft brush or a wet tooth pick. This resulted in the
retention of 159 pieces bearing compelling traces of manufacture and use,
unmodified or marginally modified shell fragments probably used as beads, and
modified and unmodified lumps of iron-rich rock and sediments, possibly used to
extract ocher powder.

The retained artifacts were examined at magnifications between ×4 and ×40,
and photographed with a motorized Leica Z6 APOA microscope equipped with a
Leica Application Suite (LAS) and Multifocus module, and Leica Map DCM 3D
computer software. The Multifocus module enables the acquisition of extended
depth of field images. Once the digital images had been complete for different
heights, algorithms in the software compile them into a single composite images
that significant extends the depth of field, and provides clarity in viewing the entire
object.

The selected areas of one Conus shell were scanned using a Sensofar Sneox
scanning confocal microscope with a ×20 objective. The resulting files were
analyzed with Mountains 7.2 software. For further details on the analytical
protocols for beads, osseuous artifacts, and ocher see Supplementary Note 4 and
the references therein. A full description of all osseous artifacts, beads, and used
ocher will be reported elsewhere, but Fig. 3 shows examples of each of these artifact
types from PYS excavation, and Supplementary Figure 19 gives an overview of their
distribution through the sequence.

Phytolith analysis. Seventeen sediment samples from the continuous stratigraphic
column described in SM3 were processed for phytolith analysis. Of these, the lower
six samples were barren. We followed extraction protocols employed on Middle
Stone Age sites from adjacent countries66 and modern topsoils67. The procedure
included sieving, drying, deflocculating, acid/base treatment, and sequential density
separation by manipulating the specific gravity of sodium polytungstate. Aliquot
mounting was with “Entellan New,” which allowed for microscopic inspection
(×40) and 3D rotation before drying. The average count per slide was 238 phy-
toliths. The inferential baseline was grounded on East African phytoliths from
plants and soils68, 69. Preservation was adequate for morphometric analysis and
type identification.

Mollusk analysis. Macro marine molluskan remains were identified and counted
by Patrick Faulkner using comparative modern reference collections. Since no
evidence for subsistence on these was found prior to Layer 6, they will be reported
in detail elsewhere. PYS is an open-roofed cave with substantial input from the
external environment. The paleoenvironmental samples recovered from PYS
contained terrestrial mollusk fauna representing the area in and immediately
outside the cave over a long time period70. There is no evidence that any of these
species have been transported to the site through natural or anthropogenic
processes.

Excluding large marine shells that form part of the archeological record, the
aquatic component of the assemblage is extremely small and is less significant than
that seen in faunas from the modern coastal forests on Zanzibar. As a result,
transport by fluvial activity or regular flooding of the area can be ruled out. The
diverse community of snails could not have been sustained in a closed cave
environment but would have required continual external input in the form of leaf
litter and the snails themselves or their shells. The non-marine mollusk record
from PYS therefore offers a long record of the local environment through time.

Tetrapod analysis. The zooarchaeological analysis of PYS osseous remains took
place in 2012 (Trench 3) and 2014 (Trench 4) and produced a database of 5256
identified specimens (Number of Identified Specimens, NISP). A total of 6.4 kg of
bone was excavated from Trench 3 and 14.7 kg from Trench 4. The Trench 4 study
included both taxonomic identification and taphonomic analysis, but microfauna
were not analyzed in Phase 1 due to time constraints. In Trench 3, microfauna were
identified to a very general level (e.g., “Muridae”).

Initial sorting of faunal remains created up to three categories: first, maximally
identifiable (maxID) specimens include teeth and those bones that preserve at least

one articular surface and/or key landmark, enabling identification to element and
usually to taxon or at least taxonomic group (e.g., “bird,” “small carnivore”).
MaxID specimens were identified in all contexts in both trenches. Second,
minimally identifiable (minID) bones include limb shafts and axial fragments that
can generally be identified at least to carcass size; these were identified in nine high-
priority contexts from Trench 4, in order to obtain a sample for taphonomic
analysis. Third, nonidentified (NID) bones were separated from minID specimens
and weighed in these selected contexts. On average across all contexts in Trench 4,
10% of the assemblage was maximally identifiable. When minID specimens
identified in nine selected contexts were included the average identification rate
rose to 37%.

Taxonomic identifications were made on the basis of extensive reference
collections housed at the National Museums of Kenya (Nairobi) Osteology Unit.
Calculations of the minimum number of individuals (MNI) were made using the
resulting database following completion of this analysis and took into account
specimen laterality, size, and where relevant, age estimates. It should be stressed
that limb shafts were only studied in selected contexts and therefore could not be
used to calculate the minimum number of elements (MNE) or the resulting MNI
values for layers or phases, as is standard practice in contexts where density-
mediated attrition has occurred. It is therefore possible that MNI estimates will be
too low in some instances.

Stable carbon and oxygen isotope analysis of mammalian tooth enamel. Stable
isotope analysis of mammalian tissues has frequently been used to assess the diets
and ecologies of East African fossil fauna71–73. This work primarily relies on the
distinction between the C3- or C4-photosynthetic pathways at the base of East
African foodwebs. In the context of tropical and sub-tropical forest ecologies, this
distinction can be used to assess the degree of faunal reliance on C3 forest resources
as opposed to C4 plant resources available in open habitats, with C4 plants being
enriched in 13C relative to C3 plants74–76.

This distinction is further enhanced by the “canopy effect” whereby vegetation
growing under a closed forest canopy is strongly depleted in 13C (with
correspondingly lower measured δ13C) due to low light and the presence of large
amounts of respired CO2

77, 78. This results in the tissues of animals consuming
forest vegetation, as well as forest herbivores, having lower δ13C values than
animals pending some, or all, of their time consuming open-habitat foodstuffs
e.g.79.

Stable oxygen isotope measurements from mammalian enamel can yield further
paleoecological information about water and food80, 81. Given a constant source of
water, plant water δ18O will primarily reflect the impacts of relative humidity on
leaf water evapotranspiration, with decreasing humidity resulting in increased δ18O
values82–84. In a tropical or sub-tropical setting, increased forest cover, and the
resulting shade and increased humidity, will lead to decreased evapotranspiration
and therefore decreased δ18O, especially on the forest floor79. As faunal tooth
enamel δ18O primarily reflects water and food-water δ18O, herbivores feeding and
drinking in forests can be expected to have lower enamel δ18O than those feeding
in open, irradiated areas. This is complicated by physiological and behavioral
variables85. Nevertheless, animals consuming plants and water in a shaded, forested
setting will broadly reflect the corresponding lower levels of evapotranspiration in
their enamel δ18O.

Stable carbon and oxygen isotope analysis of faunal tooth enamel excavated
from the various archeological Phases at PYS was undertaken in order to directly
assess the diets and ecologies of animals being exploited by humans living at the
site at different points in time. This should, in turn, provide information regarding
fluctuations in the degree of forest cover surrounding PYS in the past. Faunal
enamel samples were taken from all available PYS Layers. A broad selection of
species was sampled for each Layer based on availability. Where possible, up to five
members of each species/genus were sampled per layer grouping (Supplementary
Data 1). Faunal samples were identified to species and/or genus level using the
substantial reference collection available at the National Museums of Kenya,
Nairobi. The full list of faunal samples and tooth identifications analyzed in this
study are shown in Supplementary Data 1.

Air-abrasion was used to remove any adhering detrital material from the teeth
or tooth fragments to be studied. Gentle abrasion with a diamond-tipped drill was
performed along the full length of the buccal surface of the tooth or tooth fragment
in order to maximize the period of formation represented by the resulting isotopic
analysis. The resulting enamel powder was pretreated using standard, published
protocols in order to remove any organic or secondary carbonate contaminates.
This consisted of a wash in 1.5% sodium hypochlorite for 60 min, followed by three
rinses in purified H2O. A volume of 0.1 M acetic acid was then added for 10 min
prior to another three rinses in purified H2O86, 87.

Gases were evolved from the treated samples using 100% Phosphoric Acid. t
δ13C and δ18O of the resulting gases was measured using a Thermo Gas Bench 2
connected to a Thermo Delta V Advantage Mass Spectrometer at the Division of
Archeological, Geographic and Environmental Sciences Bradford University. δ13C
and δ18O measurements from samples were compared against international
standards (NBS 19 and CO-9) registered by the International Atomic Energy
Agency (five of each for a run of 60). Replicate analysis of in-house OES and
MERCK standards (six of each for a run of 60) suggests that machine measurement
error is c. ±0.1‰ for δ13C and ±0.2‰ for δ18O.
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Analysis of variance (ANOVA) tests were performed on faunal enamel δ13C
and δ18O to determine whether these isotopic parameters differed between groups
of stratigraphic layers. The stratigraphic layers were grouped based on meaningful
chronological and stratigraphic divisions as follows: 1–3, 4–6, 7–9, 10–12, 13–16,
and 17. Where variance was found to be significant following ANOVA testing, a
post-hoc Tukey pair-wise comparison was performed in order to determine which
layer groupings were significantly different from each other in terms of δ13C and
δ18O. All statistical analyses were conducted using the free program R software88.

Data availability. The authors declare that all data supporting the findings of this
study are available upon request from the authors. The artifacts and faunal remains
from the Panga ya Saidi excavation are curated in the National Museum of Kenya,
Nairobi, under the site code PYS and the suffixes 10, 11, and 13 (denoting the year
of excavation).
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