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Chapter 1

Introduction

1.1 Nuclear fusion

Global energy consumption is increasing mostly due to population growth and
rising living standards in developing countries [1]. Coal, fossil oil and natural
gas, the energy resources human beings are currently relying on, are limited and
not renewable. The demand for new sources of energy has become increasingly
urgent. Fusion [2], as the fundamental energy source in the known universe, is
regarded as a potential candidate for the ultimate source of energy on Earth.
Fusion is the process in which two light nuclei (e.g. deuterium and tritium)
fuse to form a heavier one (helium):

2
1D + 3

1T −→ 4
2He(3.5Mev) + 1

0n(14.1Mev) (1.1)

During the fusion reaction a huge amount of energy 17.6Mev is released in
the form of kinetic energy stored in helium (3.5Mev) and neutron (14.1Mev)
due to the mass defect. The main reason that deuterium and tritium have
been chosen as the fuel for thermonuclear reactions is that D-T reaction is the
easiest fusion reaction. Although tritium does not exist naturally on Earth, it
can be produced by combining fusion neutrons with abundant lithium metal.
The fact that tritium has a very short radioactive half-life, and deuterium,
which exists in the sea water, is practically unlimited, makes fusion energy
particularly appealing [3]. Additionally, the fusion reactor is intrinsically safe
because the Lawson criterion [4] which has to be fulfilled in order to make
fusion reaction possible, is difficult to achieve. The fusion reaction can only
happen when two nuclei come to each other close enough (< 10−15m), however,
they are positively charged, repelling each other. So they have to overcome the
Coulomb potential. Due to quantum mechanical tunneling, the nuclei kinetic
energy can be less than that required to overcome the Coulomb barrier. The
fuel temperature should be at least ∼ 10keV. In this high temperature the fuel
are already in ”plasma” state. For fusion reaction ignition with the deuterium
and tritium fuel, it requires [5]:

nTτE > 3× 1021m−3keVs (1.2)

1



2 1. Introduction

where n and T are the fuel plasma density and temperature. τE is energy con-
finement time. Achieving this criterion requires highly precise control system.
If an accident happened, the fusion reaction would be terminated automati-
cally [3].

1.2 Confinement fusion

Figure 1.1: A tokamak device.

There are two major branches of fu-
sion energy research: Magnetic Con-
finement Fusion (MCF) and Iner-
tial Confinement Fusion (ICF). They
both aim at satisfying the Lawson cri-
terion but with two extremely differ-
ent approaches.

Magnetic Confinement Fusion (MCF)
The fuel plasma inside a vacuum
vessel is confined by external strong
magnetic fields and is heated to ∼
5 − 10keV with ohmic and auxiliary
heating methods. Compared to the
air on Earth, plasma density in MCF
is quite low ∼ 1020m−3. It aims at
a self-sustaining steady state where
the temperature is maintained by the
produced high energy helium particles heating and the produced high energy
neutrons are thermalized in the blanket to produce energy. Part of the ther-
malized neutrons are used for tritium breeding.

Inertial Confinement Fusion (ICF) The fuel target (typically a pellet con-
taining deuterium and tritium) is heated and compressed by the powerful
laser into extremely high density and temperature plasmas where the ignition
condition can be reached. Compared to MCF, the confinement time in ICF is
tiny (∼ 10−9s), but plasma density can be extremely high (≥ 1032m−3).

1.3 Tokamak, divertor and scrape-off layer

The tokamak [5, 7–9], as one kind of MCF device, among various types of
fusion devices, is the most promising one to realize fusion power in the near
future. The tokamak (shown in Fig. 1.1) is a plasma confinement device with
strong external toroidal magnets. The fuel plasma is confined in the center of
the vessel by strong toroidal magnetic fields generated by toroidally arranged
magnets. However, the pure toroidal field is not sufficient to confine the plasma
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Figure 1.2: Magnetic field ~B is helical around the torus. ~BΦ

is toroidal magnetic field. ~Bθ is poloidal magnetic field. This
figure is taken from [6].

Figure 1.3: Poloidal cross
section of Fig. 1.2. A set
of nested magnetic flux sur-
faces are formed. This fig-
ure is taken from [6].

due to outward drifts. The toroidal plasma current Ip driven externally is also
necessary to provide a poloidal magnetic field so that plasma pressure gradi-
ent force is balanced by magnetic forces. As shown in Fig. 1.2, the resulting
total magnetic field Bt is helical around the torus. It has two components:
the toroidal magnetic field BΦ generated by toroidal magnets and the poloidal
magnetic field Bθ generated by the plasma current Ip. Each magnetic field line
lies on one of a nested set of toroidal flux surfaces [6], as shown in Fig. 1.3.
Typically in a tokamak, the poloidal field is an order of magnitude lower than
the toroidal field (Bθ � BΦ).

The poloidal cross section of the plasma region is shown in Fig. 1.4, where
the main fuel plasma is heated in the center to 5 ∼ 10keV. The so-called
divertor configuration [5] is often adopted in large present day tokamaks such
as ASDEX-Upgrade [10], JET [11], KSTAR [12], EAST [13], DIII-D [14] and
future devices e.g. JT60-SA [15] and ITER [16]. An X-point (Bθ = 0) is
formed by cancelling the local poloidal magnetic field generated by the plasma
current (Ip) with a current (ID) flowing in poloidal coils near the divertor:

ID =
x

b
Ip (1.3)

where x and b are the distances from the divertor coils and the center of the
plasma current to the X-point, respectively. By this, the magnetic field be-
comes open outside of the last closed flux surface (LCFS). The region outside
of LCFS is called the Scrape-off Layer (SOL). The plasma transport along the
magnetic field is much faster than that in the perpendicular direction. When
the plasma moves out of the core into the SOL through LCFS, it is diverted
along open magnetic field lines to the targets which are normally placed away
from the confinement region [5]. The interaction of the plasma with the solid
material causes neutral recycling and impurity sputtering [17]. The recycled
fuel neutrals, as well as sputtered impurity neutrals, are ionized mostly in the
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divertor region instead of entering the confinement region and thereafter con-
taminating the plasma there. The radiation due to ionization and other atomic
processes cools down the divertor plasma, forcing a substantial temperature
gradient from the mid-plane to the target in the SOL, which allows the inter-
action of the divertor plasma with the target to occur at a low temperature,
significantly reducing the impurity sputtering yields. Tungsten will be prob-
ably chosen as the first wall material in future fusion devices [18]. Avoiding
impurity sputtering becomes increasingly important since only a small amount
of tungsten in the core region can cool down the fuel plasma and terminate the
fusion reaction [19]. Additionally, power exhaust is one of the critical issues
in the future fusion devices [20]. In ITER, approximately 80% of the heating
power due to the fusion reaction should be exhausted in the divertor region,
hence the divertor should be well designed to have the capability of handling
such a large power exhaust.

1.4 Scrape-off Layer plasma simulation

Figure 1.4: Cross section of the plasma and
divertor targets.

An accurate prediction of the heat
flux deposited on divertor targets is
required for the divertor design. For
present tokamak edge plasma simu-
lation codes such as SOLPS [21], the
2D multi-fluid Braginskii model [22]
is implemented. It is based on mo-
ments of the Vlasov-Fokker Planck
equation [2, 5, 8] (described in detail
in section 2.2). The first three mo-
ments with unknown variables: ion
and electron densities, velocities and
temperatures, are commonly used
in a fluid model with closure equa-
tions to close the hierarchical struc-
ture of moment equations. The clo-
sure equations are the relations of
the higher order terms (the undeter-
mined terms: ion and electron heat
flux densities, thermal force coeffi-
cient) and the variables to be solved
for. In the Braginskii model, the closure of moment equations is achieved
by solving Vlasov-Fokker-Planck equation based on the assumption that the
distribution function deviates only slightly from the Maxwellian due to the
presence of gradients of density and temperature. However, with respect to
the electron parallel transport in the SOL, this assumption is easily violated
since the electron distribution function in particular near the target is, in most
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cases, far away from the Maxwellian, being highly asymmetric due to the pres-
ence of super-thermal electrons which are much less collisional and carry the
bulk of the heat flux [23–26]. Hence they contribute to the extended tails of
down-streaming electrons near the target. The sheath potential drop, acting
as an energy filter, reflects low energy electrons, thus cutting off the upstream-
ing electron distribution function [6]. In addition, parallel electron transport
is non-local due to long mean free paths of super-thermal electrons [26–28].

Earlier studies attempted to simplify the kinetic equation in the super-
thermal limit [28–31] by only considering the collisions of super-thermal elec-
trons which are responsible for the heat transport and then to obtain a parallel
heat transport equation with non-local terms which can be easily solved nu-
merically. For other analytical studies, self-similar solutions [27,32,33] for the
kinetic equation with a simplified collision operator are searched in order to
obtain an analytical expression for parallel conductive heat flux density which
converges to Braginskii formula in the collisional limit. These analytical for-
mulas clarified the dependence of parallel conductive heat flux density on other
macroscopic parameters despite many limitations posed on their applications
by the prerequisite assumptions.

Another approach of including non-local effects is to close the hierarchi-
cal structure in a higher moment (the 4th moment) [34–42]. A higher order
of a macroscopic parameter 〈v4〉 is introduced, but it cannot be determined
self-consistently. This parameter 〈v4〉 is then closed by being related to lower
order parameters by assuming a bi-Maxwellian distribution function [43].

Some other non-local expressions for the heat flux density are also proposed
in various kinetic simulations [44–47]. They take into account the non-local
nature of the conductive heat flux density by incorporating heat flux densities
at all positions into one i.e. calculating the heat flux density at one certain
location based on the whole parameter profiles, not just local values and their
derivatives.

The studies mentioned above are all within the framework of a fluid model.
However, from kinetic simulations [48–53] it was found that the electron dis-
tribution function near the target deviates significantly from the Maxwellian
due to super-thermal electrons coming from upstream. Therefore kinetic sim-
ulations are necessary to elucidate the physics that the fluid model is not able
to cover. The full kinetic equation is often reduced to a gyro-kinetic one by
averaging the gyro-motion.

Two main approaches are adopted to solve the kinetic equation: particle-
in-cell (PIC) [54] and continuum [55] methods.
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Particle in cell (PIC) method In the PIC approach, the initial distribution
function in the kinetic equation is recovered by a number of ”macroparticles”
statistically, each of which consists of many real particles. Then the evolution
of the distribution function is represented by evolving the positions and veloci-
ties of the ”macroparticles”. This approach is numerically easier to implement
in a code but it requires a large number of ”macroparticles” to reduce the
statistical noise. Some codes have been utilizing this method to investigate
kinetic effects in edge plasmas, e.g. PARASOL [50, 56–64], BIT [65–73], W1
and W2 [74–76].

Continuum method In the continuum approach utilized in other codes: FPET [51],
ALLA [49], COGENT [77–79], the kinetic equation is solved in a discretized
phase space. The macroscopic parameters are easily calculated by taking mo-
ments of the distribution function. However, the simulation accuracy is limited
by the resolution of velocity space grids that should be discretized in such a
way so as to cover the wide range of temperatures along field lines. Imple-
mentation of the simplified BGK collision operator [80] which is numerically
and physically simpler than the Fokker-Planck one [81], allows one to couple
kinetic effects related to the long mean free path particles [82–84] and non-
local boundary conditions with a fluid model [85]. Nevertheless, the simplified
approximation of a full collision operator is not applicable to arbitrary profiles
of density and temperature because of its low accuracy and the lack of con-
servativeness [83]. The existing kinetic codes are either imperfect in including
all the physical processes that already exist in a fluid code or extremely time-
consuming. Therefore the Kinetic Code for Plasma Periphery (KIPP) [86–89]
was developed to investigate kinetic effects of parallel plasma transport in a
systematic way with an aim of coupling it with SOLPS. It is supposed to be
fast at a cost of sacrificing a few features but without losing accuracy of col-
lision terms. On the other hand, SOLPS is a highly sophisticated code with
self-consistent recycling and physical and chemical sputtering as well as atomic
physics [90] which are the most sophisticated and time-consuming parts in the
numerical implementation of a kinetic code. In this thesis, the sophisticated
model of SOLPS and kinetic effects of electron parallel transport offered by
KIPP are combined in the KIPP-SOLPS coupling algorithm.

1.5 Thesis outline

The second chapter introduces the Braginskii model and the SOLPS code
package as well as its adaptation to a 1D geometry which is used by the present
version of KIPP. The third chapter describes the limitations of the fluid model
and basic features of KIPP. A family of self-similar KIPP cases, varying only
by upstream plasma collisionality [6], with the parabolic ion velocity profile
reaching ion sound speed at the target are run. The results showed that in a
small region near the target at a distance of the order of electron mean free
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path (MFP) calculated based on plasma parameters at the target, the fluid
model is not applicable due to non-local effects [48]. In the fourth chapter,
an iterative algorithm of coupling KIPP with SOLPS is fully investigated. A
special treatment of the region near the target for low upstream collisionalities
is required. Additionally, in the fifth chapter, the coupling results are compared
with the results obtained by using only SOLPS to identify electron kinetic
effects. Appendix A describes the numerical implementation of the Braginskii
model in the SOLPS code and the adaptation to the 1D geometry, while the
numerical details of the coupling algorithm are presented in Appendix B.
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Chapter 2

Fluid description of the edge
plasma

The Vlasov-Fokker-Planck equation [2,81] is the fundamental kinetic equation
to describe a plasma:

∂fα
∂t

+ ~v · ∇~rfα +
qα
mα

(
~E + ~v × ~B

)
· ∇~vfα =

(
∂fα
∂t

)
c

(2.1)

with fα(~r,~v, t) being the distribution function of species α with the mass mα

and the electric charge qα, at position ~r, with velocity ~v at time t. ~E (~r, t)

and ~B (~r, t) are the macroscopic electric and magnetic fields, respectively, at
position ~r and time t. The right hand side is the Fokker-Planck collision term,
which describes long-range Coulomb interactions considered in section 3.2.1.

The numerical solution of the above equation requires large computational
resources. A fluid model is often used to speed up calculations in the tokamak
edge plasma.

2.1 Fluid model

A fluid model can be derived by taking moments of the Vlasov-Fokker-Planck
equation (Eq. (2.1)) [2,5,22]. Moment equations can be derived by multiplying
Eq. (2.1) by an arbitrary function φ (~v) and integrating over the velocity space.

Particle conservation equation When φ (~v) = 1, the moment equation be-
comes the particle conservation equation:

∂nα
∂t

+∇ · (nα~uα) = 0 (2.2)

9
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where density and fluid velocity (the average velocity of all α particles):

nα =

∫
fαd~v (2.3)

~uα =
1

nα

∫
fα~vd~v (2.4)

and the right hand side is zero because the Fokker-Planck collision term con-
serves particles: ∫ (

∂fα
∂t

)
c

d~v = 0 (2.5)

Momentum conservation equation When φ (~v) = mα~v, the moment equation
becomes the momentum conservation equation:

mα
∂nα~uα
∂t

+∇ · (mαnα~uα~uα) = −∇ · P̂α + nαqα

(
~E + ~uα × ~B

)
+ ~Rα (2.6)

where P̂α is the pressure tensor and ~Rα is the friction force exerted on species
α by collisions with other species. They are defined by:

P̂α =

∫
mα

~v′~v′fαd~v (2.7)

~Rα =

∫
mα

~v′
(
∂fα
∂t

)
c

d~v (2.8)

with the random velocity ~v′ defined as:

~v′ = ~v − ~uα (2.9)

The pressure tensor P̂α can be split into two parts: the scalar pressure pα
which only exists in the diagonal elements and the viscosity Π̂α that arises due
to the deviation of the distribution function from spherical symmetry:

P̂α = pαÎ + Π̂α (2.10)

Pressure, as well as temperature, are defined as:

pα = nαTα (2.11)

Tα =
1

nα

∫
1

3
mα

~v′
2
fαd~v (2.12)

The viscosity tensor is defined as:

Π̂α =

∫
mα

(
~v′~v′ − 1

3
~v′

2
Î

)
fαd~v (2.13)
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Energy conservation equation When φ (~v) = 1
2
mα~v

2, the moment equation
becomes the energy conservation equation:

∂

∂t

(
1

2
nαmα~u

2
α +

3

2
nαTα

)
+∇ ·

(
1

2
nαmα~u

2
α~uα+

5

2
nαTα~uα + Π̂α · ~uα + ~q cond

α

)
=qαnα ~E · ~uα + ~Rα · ~uα +Qα (2.14)

where conductive heat flux density:

~q cond
α =

∫
1

2
mα

~v′
2~v′fαd~v (2.15)

and heat exchange between species α and other species due to collisions:

Qα =

∫
1

2
mα

~v′
2
(
∂fα
∂t

)
c

d~v (2.16)

Eqs. (2.2), (2.6) and (2.14) are basic equations of a fluid model with the un-
known variables: density, velocity and temperature, defined by Eqs. (2.3),
(2.4) and (2.12), to be solved for. As one can see, density is the zeroth mo-
ment of the distribution function, with fluid velocity being the first moment
and temperature being the second moment. A fluid model is attempting to
reduce the complexity of a kinetic model and give an approximate information
of macroscopic plasma parameters. However, one should note that a higher
moment variable due to the second term of Eq. (2.1) is always present and
undetermined in every moment equation. In principle, the information given
by Eq. (2.1) can be recovered by the infinite number of moment equations. In
practice, some closure equations after the energy conservation equation, relat-
ing the undetermined variables to density, velocity and temperature, are given
based on reasonable assumptions.

2.2 Braginskii model

The basic fluid equations are rewritten here:

∂nα
∂t

+∇ · (nα~uα) = 0 (2.17)

mα
∂nα~uα
∂t

+∇ · (mαnα~uα~uα) = −∇pα −∇ · Π̂α + nαqα

(
~E + ~uα × ~B

)
+ ~Rα

(2.18)

∂

∂t

(
1

2
nαmα~u

2
α +

3

2
nαTα

)
+∇ ·

(
1

2
nαmα~u

2
α~uα+

5

2
nαTα~uα + Π̂α · ~uα + ~q cond

α

)
=qαnα ~E · ~uα + ~Rα · ~uα +Qα (2.19)
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It is convenient to eliminate the kinetic energy [22] from Eq. (2.19), espe-
cially for numerical implementation. The so-called internal energy conserva-
tion equation can then be derived:

∂

∂t

(
3

2
nαTα

)
+∇ ·

(
3

2
nαTα~uα + ~q cond

α

)
=−

(
Π̂α · ∇

)
· ~uα − nαTα∇ · ~uα +Qα (2.20)

There are three unknown variables, nα, ~uα and Tα to be solved for. However,
there are still undetermined terms in red, which are also the moments of the
distribution function. Determining the closure terms requires the solution of
the kinetic equation. Nevertheless, this process can be simplified with some
reasonable assumptions. The most famous derivation of the closure terms is
from Braginskii [22], which is based on splitting fα into a Maxwellian and a
small correction:

fα = fMα + f 1
α (2.21)

where

fMα =
nα

(2πTα/mα)3/2
exp

(
−mα (~v − ~uα)

2Tα

)
(2.22)

is a Maxwellian distribution function and |f 1
α| � fMα . If the distribution is

Maxwellian with constant density, velocity and temperature everywhere, all
the closure terms would be zero and the thermal equilibrium would be already
achieved. In typical situations, source terms are present, leading to finite
density and temperature gradients. In the collisional limit, the distribution
function can be described as Eq. (2.21), of which the non-Maxwellian part
f 1
α is the response to gradients. If only one species of ions is considered with

charge Zi, i.e. α = i, e, and a strong external magnetic field ~B is present, the
Braginskii model gives the friction term:

~Re = −~Ri = ~Ru + ~RT (2.23)

where friction and thermal forces:

~Ru = ene

(
~j‖
σ‖

+
~j⊥
σ⊥

)
(2.24)

~RT = −k‖ne∇‖Te −
3en2

e

2σ⊥B2
~B ×∇Te (2.25)

The subscript ’‖’ denotes the projection of the vector along the magnetic field,
’⊥’ the projection perpendicular to the magnetic field. The thermal force
coefficient:

k‖ = 0.71 (2.26)

for Zi = 1. The current density is defined as:

~j = e (Ziniui − neue) (2.27)
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and the electrical conductivities (for Zi = 1) are:

σ‖ = 1.96
e2neτe
me

(2.28)

σ⊥ =
e2neτe
me

(2.29)

with defining ion and electron collision times [5]: τi and τe, as

τi = 12π3/2 ε
2
0m

1/2
i T

3/2
i

niZ4
i e

4lnΛ
(2.30)

τe = 3 (2π)3/2 ε
2
0m

1/2
e T

3/2
e

niZ2
i e

4lnΛ
(2.31)

where ε0 is vacuum permittivity and lnΛ is Coulomb logarithm, of order 10
in tokamak plasmas [5]. One component of the viscosity tensor is shown here
(more details can be found in [22]):

Π‖,‖α = −ηα‖
(

2∇‖ · ~uα −
2

3
∇ · ~uα

)
(2.32)

where viscosity coefficients (for Zi = 1) are:

ηi‖ = 0.96niTiτi (2.33)

ηe‖ = 0.73neTeτe (2.34)

Conductive heat fluxes are:

~q cond
i = −ci

niTiτi
mi

∇‖Ti + ~q cond
i⊥ (2.35)

~q cond
e = −ce

neTeτe
me

∇‖Te + ~q cond
e⊥ (2.36)

and the heat exchange terms are:

Qi = Q∆ =
3mene
miτe

(Te − Ti) (2.37)

Qe = −~Re · (~ue − ~ui)−Q∆ (2.38)

with heat conduction coefficients:

ci = 3.9 (2.39)

ce = 3.16 (2.40)

for Zi = 1.

Now we have unknown variables ne, ni, ~ue, ~ui, Te, Ti determined by
Eqs. (2.17), (2.18), (2.19) with the closure terms replaced by Eqs. (2.23), (2.32),
(2.36), (2.35), (2.38) and (2.37) (replacing α with e, i in all equations).
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2.3 SOLPS code package

The analytical solution of the Braginkii equations is not possible, especially
in the SOL where complicated magnetic geometry, often with an X point, is
present, and various atomic processes (e.g. neutral recycling, impurity sput-
tering, ionization and recombination) occur. The numerical solution is thus
necessary to gain better insight into the SOL physics. SOLPS [21], an abbre-
viation for Scrape-off Layer Plasma Simulator, is a code package developed
for the tokamak plasma edge physics community. It includes 5 parts [91](the
version of SOLPS5.0):

DG generates the geometry of the tokamak device to be simulated.

Carre generates the simulation grid in the geometry from DG, based on the
tokamak equilibrium produced by an equilibrium reconstruction code
(e.g. EFIT).

B2.5 solves the Braginskii model in the grid generated by Carre with treating
neutrals as one kind of fluid.

Eirene solves the kinetic model for neutrals based on Monte-Carlo method
for the given plasma background from B2.5 and calculates the associated
particle, momentum and energy sources for B2.5.

B2plot graphically presents simulation results.

B2.5 and Eirene are the main parts of this code package. Since neutrals have
no charge and are not bounded by the magnetic field, they have comparatively
long mean free paths and can either be treated as a fluid (by B2.5) or kinetically
(by Eirene). However, for the following discussions and coupling tests, neutrals
will be treated as a fluid since the 1D geometry is used in this work and the fluid
treatment is computationally significantly faster. Additionally, the neutrals are
not directly involved in the coupling algorithm which describes interactions
between the electron kinetic and fluid energy conservation equations.

2.3.1 B2.5 equations

SOLPS is a 2D fluid code, assuming that a tokamak device is toroidally sym-
metric, with poloidal direction from the inner target to the outer one denoted
by x and radial direction from the inner region to the vessel wall denoted by y,
as shown in Fig. 2.1. The magnetic field has toroidal (Bz) and poloidal (Bx)
components in a tokamak device. The transport in the poloidal direction x in
SOLPS arises due to the transport in the parallel (‖) and perpendicular (⊥)
directions as shown in Fig. 2.2 (”⊥” was called diamagnetic direction in [21]).
One should note that ⊥ here is different from the one discussed before. Here
and in later discussions the subscript ⊥ denotes the perpendicular direction
which is perpendicular to both the magnetic field and the radial direction y
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x

y

inner target outer target

separatrix

z

Figure 2.1: Poloidal cross section of a tokamak
with lower single null. x is along the poloidal di-
rection from the inner target pointing to the outer
target, y is along the radial direction from the core
pointing to the wall and z is along the toroidal di-
rection. All variables are assumed to be constant
along z in SOLPS.

x

y
z

k
?

~B

Figure 2.2: The magnetic field ~B in a
tokamak has two components: toroidal
field (TF) Bz along the toroidal direc-
tion z and poloidal field (PF) Bx along
the poloidal direction x. The parallel di-
rection ‖ is along the magnetic field while
the perpendicular direction ⊥ is perpen-
dicular to both the parallel (‖) and radial
(y) directions. Fluxes in the poloidal di-
rection (x) are actually sums of projec-
tions of parallel and perpendicular fluxes
on the poloidal direction (x).

(detailed discussions can be found in section 2.4).

We would like to remind again that, in later discussions, x and y indicate
the poloidal and radial directions, respectively, while ‖ and ⊥ indicate the
direction parallel to the magnetic field and the perpendicular direction which
is perpendicular to both the parallel (‖) and radial (y) directions, respectively.
And in later discussions, ’perpendicular’ transport means the transport only
in the perpendicular direction (⊥).

B2.5 equations

The equations to be solved in SOLPS (more details can be found in [21]) are

∂ni
∂t

+∇xΓix +∇yΓiy = Sni (2.41)

ne =
∑
i

Zini (2.42)

∂

∂t

(
miniui‖

)
+∇ ·

(
miniui‖~ui

)
= −∇‖ (pi + pe)−∇ · ~Π ‖i + Si‖ (2.43)

∇xjx +∇yjy = 0 (2.44)

∂

∂t

(
3

2
niTi

)
+∇x

(
FixTi + q cond

ix

)
+∇y

(
FiyTi + q cond

iy

)
−Q∆

= SEi − niTi∇ · ~ui −
(

Π̂i · ∇
)
· ~ui (2.45)

∂

∂t

(
3

2
neTe

)
+∇x

(
FexTe + q cond

ex

)
+∇y

(
FeyTe + q cond

ey

)
+Q∆
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= SEe − neTe∇ · ~ue +
1

ene
~j · ~Re (2.46)

Particle conservation equations Eq. (2.41) is the ion particle conservation
equation. Γix and Γiy are ion particle flux densities in poloidal and radial di-
rections, respectively. As discussed above, Γix is equal to the sum of projections
of the ion particle flux density both in parallel and perpendicular directions
on the x direction:

Γix = bxΓi‖ + bzΓi⊥ (2.47)

where the parallel ion particle flux density:

Γi‖ = niui‖ (2.48)

and

bx =
Bx√

B2
x +B2

z

(2.49)

bz =
Bz√

B2
x +B2

z

(2.50)

The perpendicular ion particle flux density will be discussed in the following
paragraph. Electron density is determined by the quasi-neutrality Eq. (2.42)
instead of solving the electron particle conservation equation.

Momentum conservation equations As one may note, only the parallel ion
momentum conservation equation is solved in SOLPS. The perpendicular one
is not present because the transport in the directions (⊥ and y) perpendicular

to ~B in a tokamak device is dominated by drifts and anomalous transport due
to turbulence, not yet well elucidated by theory. Instead, ion particle flux
densities in these directions are given by:

Γi⊥ = Γd
i⊥ + Γa

i⊥ (2.51)

Γiy = Γd
iy + Γa

iy (2.52)

where ion drift particle flux densities:

Γd
i⊥ = ΓExB

i⊥ + Γdia
i⊥ (2.53)

Γd
iy = ΓExB

iy + Γdia
iy (2.54)

and ion anomalous particle flux densities:

Γa
i⊥ = Dn∇⊥ni (2.55)

Γa
iy = Dn∇yni (2.56)
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with Dn being the anomalous diffusion coefficient, which is a free parameter
specified by the user in SOLPS. The drift terms are mainly E×B and diamag-
netic drifts. The divergence of the electric current is zero (Eq. (2.44)). The
poloidal current has two components:

jx = bxj‖ + bzj⊥ (2.57)

The parallel current j‖ is determined by the Ohm’s law (derived from the
electron momentum equation neglecting inertia terms):

j‖ = σ‖

(
−∇‖Φ +

1

ene
∇‖pe +

k‖
e
∇‖Te

)
(2.58)

Similar to the specification of the perpendicular ion particle flux, the radial and
perpendicular components are determined by the non-ambipolar fluxes mainly
from the diamagnetic drifts and other effects including inertia, viscosity and
ion-neutral friction (the full formula can be found in [21]):

j⊥ = jdia
⊥ + jother

⊥ (2.59)

jy = jdia
y + jother

y (2.60)

Hence electric potential can be determined by solving the charge conserva-
tion equation and thus electric currents and electron parallel velocity can be
obtained as a result.

Internal energy conservation equations Eq. (2.46) is the internal energy con-
servation equation for electrons implemented in SOLPS. The poloidal electron
heat flux density includes the convective piece:

q conv
ex = FexTe (2.61)

where Fex is poloidal electron particle flux density multiplied by a coefficient:

Fex = bxFe‖ + bzFe⊥ (2.62)

Fe‖ =
3

2
Γe‖ (2.63)

Fe⊥ =
3

2
ΓExB
e⊥ +

5

2
Γdia
e⊥ +

5

2
Γa
e⊥ (2.64)

with Γ being particle flux density, and the conductive piece:

q cond
ex = bxq

cond
e‖ + bzq

cond
e⊥ (2.65)

q cond
e‖ = −ce

neTeτe
me

∇‖Te (2.66)

q cond
e⊥ = −χe⊥ne∇⊥Te (2.67)

where χe⊥ is the anomalous thermal conductivity, similar to the diffusion coeffi-
cient, which is a free parameter specified by the user. τe is the electron collision
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time. The radial convective and conductive electron heat flux densities have
the same forms as the perpendicular ones (Eqs. (2.64) and (2.67)):

q conv
ey = FeyTe (2.68)

q cond
ey = −χe⊥ne∇yTe (2.69)

where

Fey =
3

2
ΓExB
ey +

5

2
Γdia
ey +

5

2
Γa
ey (2.70)

The ion heat flux densities have the same forms as the electron heat flux den-
sities. The ion temperature Ti in SOLPS is assumed to be the same for all ion
species and neutrals.

Now we have the unknown variables ni, ne, ui‖, j‖, Ti, Te and Φ deter-
mined by the Eqs. (2.41), (2.42), (2.43), (2.58), (2.45), (2.46) and (2.44). The
numerical implementation of these equations is described in Appendix A.

2.4 1D SOLPS adaptation

SOLPS was created as a 2D code, with poloidal and radial directions based on
the assumption that all parameters in the toroidal direction are constant. For
a number of applications, a 1D version of SOLPS was created [92, 93]. The
kinetic code KIPP (described in detail in section 3.2.1) is mainly aimed at
coupling parallel kinetic transport with SOLPS, therefore it is the 1D SOLPS
version without currents and drifts, with variables only varying in the poloidal
direction, that is used for testing the coupling algorithm (described in Chap-
ter 4) since parallel kinetic effects have no direct interaction with the radial
transport. This section describes how the 1D geometry is set up in SOLPS.

Fig. 2.3 shows the 1D grid cells generated along the poloidal coordinate (x)
in SOLPS. Only one cell is created in the radial direction. The radial transport
(e.g. Γiy, Γey, qiy or qey) is disabled by switching off drifts and forcing radial
gradients to 0 (∇y = 0). Hence radial particle and heat flux densities in this
version of SOLPS through the south and north faces of cell x are

Γy(x) = 0 (2.71)

qy(x) = 0 (2.72)

Without the radial transport it becomes essentially a 1D problem in the
poloidal direction, but, as discussed above, the poloidal transport is the sum of
projections of parallel transport along the magnetic field line and the transport
in the perpendicular direction in the magnetic flux surface on the poloidal
direction (see Fig. 2.4):

Γx(x) = bxΓ‖(x) + bzΓ⊥(x) (2.73)

qx(x) = bxq‖(x) + bzq⊥(x) (2.74)
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x
z

y

stagnation point target

0 1
nx− 1

−1
nx

2 3

qy = 0

qy = 0

North

EastWest
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Figure 2.3: 1D grid for SOLPS is generated along the poloidal direction (x). Radial
particle and heat flux densities (e.g. heat flux densities through north and south cell faces
qy = 0 for all species) are switched off (details can be found in the text). The number of cells
is nx+ 2, with two guard cells: cell −1 and nx, attached to the west and east boundaries.

We also attempted to achieve a real 1D geometry by artificially forcing
Γ⊥ = 0 and q⊥ = 0 for all species in Eqs. (2.73) and (2.74), with only parallel
transport left. However, neutrals are not bounded by the magnetic field, so,

stagnation point target

0 1
2

3 nx− 1

−1
nx

qk

q?

x

z

y

k

?

Figure 2.4: 1D grid for SOLPS (the top view of the grid in Fig. 2.3). 1D transport (e.g.
qx) along the poloidal direction (x) at the left face of a certain cell (e.g. cell 2) is the sum
of projections of the transport in parallel and perpendicular directions.



20 2. Fluid description of the edge plasma

the transport of neutrals from the target where they are recycled to upstream
regions is mainly attributed to the perpendicular term (the second term in
Eq. (2.73)) with the magnetic field Bz � Bx. Prohibiting neutrals flowing

across ~B makes them accumulate in the last two or three cells adjacent to the
target, finally leading to crashes in SOLPS. A steady state cannot be achieved.
Hence we chose to keep the terms with ”⊥” in this work. Since the anomalous
diffusion coefficient Dn and thermal conductivity χe⊥, χi⊥ are much smaller
than the parallel ones for plasmas, the perpendicular terms are not important.
They are regarded as source terms (see discussions in chapter 4).

Hence the adaptation of the B2.5 equations to the 1D geometry results in:

∂ni
∂t

+∇xΓix = Sni (2.75)

ne =
∑
i

Zini (2.76)

∇xjx = 0 (2.77)

∂

∂t

(
miniui‖

)
+∇ ·

(
miniui‖~ui

)
= −∇‖ (pi + pe)−∇ · ~Π ‖i + Si‖ (2.78)

∂

∂t

(
3

2
niTi

)
+∇x

(
FixTi + q cond

ix

)
−Q∆ = SEi − niTi∇‖ui‖ −

(
Π̂i · ∇

)
· ~ui

(2.79)

∂

∂t

(
3

2
neTe

)
+∇x

(
FexTe + q cond

ex

)
+Q∆ = SEe − neTe∇‖ue‖ +

1

ene
jxRex

(2.80)

where Rex is the projection of the thermal force on the poloidal direction. All
other variables have the same forms as discussed above.



Chapter 3

Kinetic effects of parallel
electron transport

3.1 Limitations of fluid models and kinetic fac-

tors

This section describes four electron-related ”kinetic factors” (this name was
used in [52, 53]): electron heat conduction coefficient ce, thermal force coef-
ficient k‖, sheath potential drop ∆φ and electron sheath heat transmission
coefficient γe. Their specifications are necessary for numerical solutions of a
fluid model since they cannot be determined self-consistently within the frame-
work of the fluid model. The following subsections will present the classical
approaches of specifying the four kinetic factors [6,22] and thereafter the lim-
itations.

3.1.1 Heat conduction and thermal force coefficients

qlqr

rTe

Te

x0

Figure 3.1: Schematic of the heat flux
density at a particular location x0 from
the kinetic point of view.

The closure equations in the previous sec-
tion are only valid under the assumption
that the collisionality is high enough so
that the electron conductive heat flux den-
sity and thermal force scale linearly with
the local temperature gradient:

qcond
e‖ = −cenτe

Te

me

∇‖Te (3.1)

RT‖ = −k‖n∇‖Te (3.2)

Below we explain the physical origin of these formulas using kinetic arguments.

Electron heat conduction coefficient ce Considering a certain location x0 in
the plasma (shown in Fig. 3.1) where an almost negligible electron temperature

21
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gradient, pointing to the left, is present, the net heat flux density at x0 is the
difference between heat fluxes of electrons moving from the left to right and
those moving in the opposite direction:

q = ql − qr (3.3)

Let’s assume that the electron density and temperature at x0 are n0 and T0. In
the collisional limit with a tiny temperature gradient, the distribution of the
electrons streaming to the right fMl and the other one fMr can be approximated
as half-Maxwellian distributions with slightly different Tl and Tr, respectively.
Hence the heat flux density coming from the left and right are:

ql =
1

2
me

∫ ∞
0

fMl v
2v‖d~v = 2TlΓl (3.4)

qr =
1

2
me

∫ 0

−∞
fMr v

2v‖d~v = 2TrΓr (3.5)

where Γl and Γr are half-Maxwellian random particle flux densities and Γl ≈
Γr. Electrons streaming to the right are characterized by temperature Tl,
which is the temperature at the location approximately one electron mean free
path λ0 to the left of x0. And it is the same case for electrons streaming to
the left. We assume:

λ0 � LT (3.6)

Tl and Tr can be related to T0 by first order Taylor expansion:

Tl ≈ T0 − λ0∇‖T (3.7)

Tr ≈ T0 + λ0∇‖T (3.8)

Substitution of Eqs. (3.7), (3.8), (3.4) and (3.5) into Eq. (3.3) leads to:

q = −cn0T0τ0

me

∇‖T (3.9)

where c is a constant of the order of unity. The net electron heat flux density
q, directed from the left to right, corresponds to the conductive part in a fluid
concept.

Thermal force coefficient k‖ Similarly, the thermal friction force can also be
described by a simple physical picture [6, 22] (see Fig. 3.2). Let’s assume ions
are at rest at x0. Electrons moving from the left to right and those streaming
in the opposite direction are colliding with ions. The thermal force exerted on
electrons RT at x0 consists of two forces opposite to electron moving directions:
Rl and Rr,

RT = Rr −Rl (3.10)
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which can be approximated as:

Rl ≈ meΓlνl ∝ men0vthνl (3.11)

Rr ≈ meΓrνr ∝ men0vthνr (3.12)

where vth is the electron thermal velocity at x0, vth =
√
T0/me.

RrRl

rTe

Te

x0

Figure 3.2: Schematic of the thermal
force at a particular location x0 from
the kinetic point of view.

νl and νr are the collision frequencies with
ions for the electrons streaming from the
left to right and those moving in the oppo-
site direction, respectively. They have the
following scaling with temperature:

νl ∝ T
3/2
l (3.13)

νr ∝ T 3/2
r (3.14)

Based on the assumption from Eq. (3.6), νl
and νr can be related to the collision frequency ν0 at x0 by first order Taylor
expansion:

νl ≈ ν0 − λ0
∂ν

∂T
∇‖T (3.15)

νr ≈ ν0 + λ0
∂ν

∂T
∇‖T (3.16)

Substitution of Eqs. (3.15), (3.16), (3.11) and (3.12) into Eq. (3.10) leads to:

RT ∝ men0vth (νr − νl) ∝ n0∇‖T (3.17)

Limitations The prerequisite (λ0 � LT ) for plasmas to be in the collisional
limit is often not valid in edge plasmas. From previous 1D kinetic simula-
tions [23–26, 88], the conductive heat flux was found to be carried mostly
by Heat Carrying Electrons (HCE) even in the collisional limit as shown in
Fig. 3.3. According to [88], the maximum energy flux density is achieved at
v‖ = 2.82vth, v⊥ = 1.98vth, corresponding to 5.95Te of the kinetic energy. The
mean free path of HCE is λHCE = v‖ × τHCE ≈ 25λth [88]. HCE are expe-
riencing much fewer collisions than thermal electrons. The collisional limit
condition (Eq. (3.6)) is often violated for HCE even when thermal electrons
are collisional.

3.1.2 Sheath potential drop and electron sheath heat
transmission coefficient
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Figure 3.3: The contour plot of the conductive heat
flux (taken from the reference [88]). v‖ and v⊥ are
velocity parallel to the magnetic field line and gyro-
motion velocity perpendicular to the magnetic field line
in the velocity space. vth =

√
Te/me.

A thin layer called ”Debye
sheath” [94] is present in the
region where the plasma in-
teracts with the target. The
sheath is so thin that it is
usually collisionless and fully
kinetic. Hence it cannot be
described by the fluid model,
as a result, the boundary con-
ditions for the fluid equations
(section 2.4) have to be speci-
fied separately. Here only the
boundary kinetic factors for
equations related to electrons
are discussed: ∆φ for the
charge conservation equation

(Eq. (2.77)) and γe for the electron energy conservation equation (Eq. (2.80)).

Sheath potential drop ∆φ The boundary condition for the charge conserva-
tion equation (Eq. (2.77)) cannot be determined self-consistently [6, 94–98] in
a fluid code since, as discussed above, the Debye sheath is fully kinetic and
not resolved, e.g. for the above mentioned geometry in SOLPS (Fig. 2.3) the
east boundary is technically the sheath edge instead of the target. The de-
termination of the sheath potential drop ∆φ depends on the local electron
distribution function, which is unknown at the boundary shown in Fig. 3.4.
In order to specify a proper boundary condition for Eq. (2.77), the potential
drop through the sheath ∆φ has to be given. One can assume the sheath to
be thin and collisionless, but the plasmas are often collisional enough for elec-

Figure 3.4: Sheath potential drop and heat transport through the boundary can not be
determined self-consistently in a fluid code since the Debye sheath is present between the
simulation boundary and the target, and the sheath physics is beyond the capability of a
fluid code.
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trons to have the Maxwellian distribution function at the sheath edge (sheath
entrance). Within the sheath, there are no particle sinks, and electrons satisfy
Boltzmann relation with the Maxwellian distribution function with constant
Te in an electrostatic field [6]:

ne(x) = ntexp

(
e(φ(x)− φt)

Te

)
(3.18)

where nt and φt are the electron density and potential at the sheath edge.
Then the electron density at the solid wall (the target) [6]:

nw = ntexp

(
e∆φ

Te

)
(3.19)

where ∆φ is the sheath potential drop, i.e. the potential difference between the
wall and the sheath edge, ∆φ = φw−φt. The electron flux density reaching the
wall equals to the one-way random particle flux density for a Maxwellian [6]:

Γew =
1

4
nw

(
8Te
πme

) 1
2

=
1

4
nt

(
8Te
πme

) 1
2

exp

(
e∆φ

Te

)
(3.20)

where ∆φ is the potential drop across the sheath. Without particle sinks in
the sheath, the electron particle flux density through the boundary Γet = Γew.
Without currents, ambipolar flow at the boundary is achieved, giving [6]:

Γit = Γet (3.21)

⇒ ntCs =
1

4
nt

(
8Te
πme

) 1
2

exp

(
e∆φ

Te

)
(3.22)

⇒ e∆φ

Te
=

1

2
ln

(
2π
me

mi

(
1 +

Ti
Te

))
(3.23)

For hydrogen plasmas with Te ≈ Ti,

e∆φ

Te
≈ −3 (3.24)

which is often taken as the boundary condition for the potential equation in
fluid codes [6].

Electron sheath heat transmission coefficient γe The boundary condition for
the electron energy conservation equation cannot be self-consistently deter-
mined either. As mentioned above, a Maxwellian distribution is assumed to
obtain the sheath potential drop. This assumption, which is, however, not ex-
actly true even for very collisional plasmas, leads to incorrect boundary heat
flux. In practice, the distribution function of electrons at the solid wall (the
target) cannot be a perfect Maxwellian [6]. In the collisional limit, a cut-off
Maxwellian distribution function [6] can be assumed at the boundary (sheath
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Figure 3.5: In the collisional limit, a cut-off Maxwellian distribution function is assumed
at the simulation boundary (se). The cut-off parts (denoted in shadow) are the electrons
which have enough energy to overcome the potential drop through the sheath and then be
deposited on the wall (target). Right on the target, there are no electrons coming back
upstream due to the absorbtion. So, a half-Maxwellian distribution function is assumed for
electrons.

edge), as shown in Fig. 3.5, with the cut-off high energy tail being absorbed
by the wall and bulk electrons with parallel electron velocity lower than the
cut-off velocity vc being reflected back into the simulation domain due to the
potential drop within the sheath. Right at the target the deposited electrons,
corresponding to the cut-off part at the sheath edge, have a half-Maxwellian
distribution due to the absorption, meaning that there are no upstreaming
electrons at the target. Since there are no particle sources in the sheath,
Γw = Γse. The deposited electron parallel heat flux density on the target,
based on a half-Maxwellian distribution, is [6]:

qw = 2TwΓw (3.25)

Similar to the assumption above, Te ≈ const is assumed throughout the whole
sheath, meaning Tet ≈ Tw. Every electron that is deposited on the target has
gone through the sheath, losing the energy |e∆φ| which needs to be added to
the electrons right at the sheath edge. Therefore the electron heat flux density
through the boundary is [6]:

qse = γeTetΓse (3.26)

γe = 2 +
|e∆φ|
Tet

(3.27)
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Now we have prescribed the boundary conditions for the charge and energy
conservation equations [6]:

∆φ ≈ −
3Tet

e
(3.28)

γe = 2 +
|e∆φ|
Tet

≈ 5 (3.29)

Limitations Electrons at the sheath edge can hardly be Maxwellian or cut-
off Maxwellian, especially in medium upstream collisionalities [6, 43, 99], since
the electrons that overcome the sheath potential drop and contribute to the
boundary heat flux may come from far upstream [99], being characterized by
significantly higher temperature than the local one [96,98,100–107] due to the
temperature variation along a flux tube in the edge. Hence the prerequisite for
deriving Eqs. (3.28) and (3.29) is not always valid in the edge. From previous
kinetic simulations [52, 53], the non-local effect can significantly influence the
values of γe and ∆φ.

3.2 The KIPP code and kinetic electrons

3.2.1 Introduction to KIPP

The Vlasov-Fokker-Planck equation is being solved in KIPP [86, 87]. At the
present stage, the code is focusing on the electron parallel transport:

∂f̃e

∂t̃
+ ṽ‖∇‖f̃e − Ẽ‖

∂f̃e
∂ṽ‖

=

(
∂f̃

∂t̃

)
coll.

+ S̃E + S̃p (3.30)

where the tilde sign ”∼” denotes that all parameters appearing in this code are
dimensionless, normalized by reference parameters: density n0, temperature
T0, velocity v0 and collision logarithm Λ0, with T0 = mev

2
0, normally taken at

the stagnation point. This sign will be omitted in the following discussion in
this section. fe is a 3D distribution function with two dimensions in velocity
space: parallel and gyro-averaged perpendicular velocity, and one dimension
in physical space along the magnetic field. SE and Sp are electron energy and
particle sources respectively.

Eq. (3.30) is solved by using an operator splitting scheme [86], with par-
allel free-streaming for 1/2 time step followed by Coulomb collision and the
electric field force over one time step, followed again by the other 1/2 time
step free-streaming [86,108,109].

The numerical implementation of the terms: collision (
(
∂f
∂t

)
coll.

), sources

(SE and Sp), free-streaming (v‖∇‖fe) and electric field (E‖
∂fe
∂v‖

), and the bound-

ary condition will be discussed below.
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Collision term(
∂f
∂t

)
coll.

is the collision term [87]:(
∂f

∂t

)
coll.

= −
∑
β=e,i

(
∂Γβv‖
∂v‖

+
∂Γβv⊥
v⊥∂v⊥

)
(3.31)

where

Γβv‖ = −Dβ
v‖
fe −Dβ

v‖v‖

∂fe
∂v‖
−Dβ

v‖v⊥

∂fe
∂v⊥

(3.32)

Γβv⊥ = −Dβ
v⊥
fe −Dβ

v⊥v‖

∂fe
∂v‖
−Dβ

v⊥v⊥

∂fe
∂v⊥

(3.33)

Γβv‖ and Γβv⊥ are flux densities in the velocity space. Dβ
v‖

and Dβ
v⊥

are dynamic

friction coefficients, Dβ
v‖v‖

and Dβ
v⊥v⊥

are diffusion coefficients, Dβ
v‖v⊥

and Dβ
v⊥v‖

are pitch-angle scattering coefficients. The superscript β can be ”e”: electron,
or ”i”: ion. The coefficients in Eqs. (3.32) and (3.33) are functions of mass,
charge and the distribution function of species ”β”, e.g. for the pitch-angle
scattering coefficient:

Dβ
v‖v⊥

= Dβ
v‖v⊥

(Zβ,mβ, fβ) (3.34)

The details of the form of these coefficients can be found in [87,110,111]. The
numerical details of the implementation of the collision term can be found
in [111] and references therein.

Source terms

Formulas for source terms SE and Sp depend on a specific problem being stud-
ied. In order to be compatible with sources in a fluid model where particle
and energy sources are separately applied to particle and energy conservation
equations (e.g. Eqs. (2.75) and (2.80)), the energy and particle sources are
numerically separated in KIPP, meaning that the particle source term only
adds particles into cells without introducing energy and vice versa.

By default, the energy source scheme FE(f) represents the process of uni-
form electron power input or subtraction which converts one Maxwellian into
another without changing the number of particles and momentum. This is
equivalent to increasing or decreasing the temperature in a fluid concept.

The electron particle source scheme FS(f) modifies the electron density
by scaling up fe evenly in velocity space with subsequent power removal with
the uniform energy source scheme FE(f) to compensate for the energy content
change during this process:

f1(~v) = αf0(~v) (3.35)

f2(~v) = FE(f1(~v)) (3.36)
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where

α =
n0 + ∆n

n0

(3.37)

The density is increased by ∆n in Eq. (3.35), while extra power 3
2
∆nTe is

introduced. The following energy source scheme FE(f1(~v)) is thus applied to
remove such power in order to make sure that the energy content is conserved.

Other forms of energy and particle source schemes will be used for specific
problems in the following section.

Free-streaming term

The free-streaming term is the so-called free-streaming advection, implemented
numerically based on the Reconstruct-Evolve-Average Algorithm (REA) [86] in
the concept of Finite Volume Method [55]:

v‖∇‖fe = −
F n
i− 1

2

− F n
i+ 1

2

∆si
(3.38)

where F n
i− 1

2

and F n
i+ 1

2

are the discretized numerical fluxes of v‖fe at the left

and right faces of cell i at time tn, respectively. Then the determination of the
free-streaming term is dependent on specifications of the numerical flux F n

i− 1
2

at cell faces at any time tn. The specification of F n
i− 1

2

is based on the process

of reconstructing the distribution function on account of the cell average dis-
tribution function fni [55] (details are discussed below), which is the average
value of the distribution function at time tn in cell i.

In order to achieve second order accuracy, non-zero slopes are used to
reconstruct the distribution function based on Fromm’s method in every cell,
e.g. the distribution function in cell i at time tn is reconstructed as increasing
or decreasing from the left face to right with a constant slope and with the
average value fni being at the cell center:

σni =
fni+1 − fni−1

si+1 − si−1

(3.39)

with σni being the slope at cell i and time tn, si being the center of cell i.
Additionally, the total variation diminishing (TVD) condition [55] has to be
satisfied to achieve non-oscillatory solutions:

TV (fn+1) ≤ TV (fn) (3.40)

where TV (f) is a function called total variation, defined as:

TV (fn) =
∑
i

∣∣fni − fni−1

∣∣ (3.41)
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(a) σni is specified as the gen-
tlest one of the three slopes: the
solid red slope and the other two
dashed blue slopes.

(b) σni = 0 in the case of ab ≤ 0.

Figure 3.6: Linear reconstruction of fni with non-zero slope based on the Fromm’s method
with the MC limiter.

Fromm’s method only satisfies the TVD condition when the solution is smooth
enough. Therefore the monotonized central-difference limiter (MC limiter) is
applied to the Fromm’s method. Assuming that the spatial grids are uniform,
the reconstruction becomes:

σni = minmod

(
fi+1 − fi−1

2∆s
, 2
fi − fi−1

∆s
, 2
fi+1 − fi

∆s

)
(3.42)

where minmod is a function defined by:

minmod (a, b) =


a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab ≤ 0

(3.43)

minmod (a, b, c) = minmod (minmod (a, b) , c) (3.44)

The reconstruction based on the Fromm’s method with the MC limiter is il-
lustrated in Fig. 3.6. Once the linear reconstruction is done at time tn, the
numerical flux through each cell face can be calculated:

F n
i− 1

2
= v‖

[
fni−1 +

1

2

(
∆si−1 − v‖∆t

)
σni−1

]
if v‖ ≥ 0 (3.45)

F n
i− 1

2
= v‖

[
fni −

1

2

(
∆si + v‖∆t

)
σni

]
if v‖ < 0 (3.46)

Due to the fact that the variation of the edge plasma density and temperature
can be large, non-uniform spatial grids are used with much finer grids in the
divertor region where atomic physics processes are present leading to shorter
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temperature and density scale lengths. Additionally, the velocity space is also
non-uniform with high resolution for the low velocity and much coarser res-
olution for very high velocity grids. Generally, the distribution functions at
very high velocity cells tend to be zero. Under some extreme conditions, with
non-uniform grids, free-streaming based on the reconstruction using Fromm’s
method with the MC limiter may introduce negative values in those coarser
velocity cells, which may propagate to other cells with advancing in time and
finally ruin the simulation. An example is shown in Fig. 3.7. Let’s assume

Figure 3.7: The slope at time tn in cell i is calculated based on the MC limiter (red dashed
line) and the modified MC limiter (blue solid line). The example shown in this figure has
the following assumptions: the widths of the cells are ∆si−1 = ∆si = 2∆si+1 = 2 with
the average values of the distribution functions in the three cells being fni−1 = 5, fni = 1,
fni+1 = 0.

there are three adjacent cells, numbered i− 1, i, i+ 1, with corresponding av-
erage distribution functions at time tn: fni−1, fni , fni+1 in each cell, respectively.
The widths of the cells are assumed to be ∆si−1 = ∆si = 2∆si+1 = 2. When
one does the reconstruction in cell i, the slope calculated by the MC limiter
is −4

3
(shown as red dashed line in Fig. 3.7). This reconstruction introduces

negative values near the right face of cell i, hence the free-streaming solver
may give fn+1

i+1 < 0 if v‖ > 0 and v‖∆t <
1
2
.

We made a modification (shown as the blue line in Fig. 3.7) for avoiding
negative values in such extreme situations without any impacts on the solution
when it is smooth by limiting the drop of the right end of the blue solid line
to zero. Then the reconstruction of the slope in cell i at time tn becomes:

σni = minmod

(
σ, sign (σ) · 2|fni |

∆si

)
(3.47)

σ = minmod

(
fni+1 − fni−1

si+1 − si−1

, 2
fni − fni−1

si − si−1

, 2
fi+1 − fi
si+1 − si

)
(3.48)

sign (σ) =

 σ/|σ| if σ 6= 0

0 if σ = 0
(3.49)
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Additionally, it is known that the evolving and averaging processes cannot
possibly increase the total variation [55]. The modified MC limiter does not
introduce extra instabilities since it tends to decrease the total variation in the
reconstruction process.

The modification on the MC limiter has no noticeable influence on the
solutions in the simulations described in this work.

Electric field term

Plasma neutrality is maintained by adjusting E‖ to compensate for parallel
momentum generation in each spatial cell [86]. This is only a numerical pro-
cedure without requiring solutions of any equations, which gives the electric
field contribution due to electron pressure gradient. The electric field contri-
bution due to the thermal force is calculated separately, and related to the
momentum generation in a cell due to Coulomb collisions. It is blended into
the implicit scheme for the collision operator [86]. Ambipolarity of parallel
plasma transport means that the total electric field is the sum of these two
contributions.

Boundary conditions

Boundary for velocity space KIPP is currently developed as a 3D (1D2V)
code. As described above, all parameters are normalized by the reference
parameters: n0, T0, Λ0, v0. The velocity grids are created based on the ref-
erence parameter v0. The highest velocity resolved in all simulation cases is
vmax = 7v0. Distribution functions outside of this range are treated as zero.
The justification for this choice was given in [86].

Boundary for spatial space: the stagnation point KIPP is currently designed
for 1D space along the magnetic field line with the stagnation point and the
target at the left and right ends, respectively. As mentioned above, Fromm’s
method with modified MC limiter is used for the free-streaming solver. It can
be clearly seen that the information from two adjacent cells to both left and
right sides of cell i is necessary for the calculation of the free-streaming term.
However, Fromm’s method is not applicable at the left or right boundaries
since no information outside of the boundaries is available. There are smax+1
cells created for the 1D space and they are numbered: 0, 1, · · · , smax. Dis-
cretization of the free-streaming term at boundary cells 0 and smax + 1 are

−
Fn
− 1

2

−Fn1
2

∆s0
and −

Fn
smax− 1

2

−Fn
smax+1

2

∆ssmax
, respectively. Determination of the numerical

fluxes F n
− 1

2

and F n
smax+ 1

2

require boundary conditions. The left boundary is the

center of cell 0, assumed as the stagnation point where the reconstruction is
based on the 1st order upwind scheme:

σn0 = 0 (3.50)
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Figure 3.8: The distribution of the downstreaming electrons is determined by upstream pa-
rameters. The upstreaming electrons (marked as (1)) are specified as the electrons (marked
as (2)) reflected back into the simulation domain.

and the numerical flux entering the boundary is assumed as:

F n
− 1

2

(
v‖, v⊥

)
= −F n

1
2

(
−v‖, v⊥

)
(3.51)

making the stagnation point a reflective boundary.

Boundary for spatial space: the target On the other hand, the right boundary
is the right face of cell smax, assumed as the target (technically sheath edge).
Concerning the specification of the boundary condition for the target, one
would naturally think of dealing with sheath physics and obtaining a proper
distribution function at the sheath edge. However, KIPP is designed to be
coupled with SOLPS. For numerical simplicity, Poisson equation and hence
the Debye sheath is not dealt with in KIPP since solving the Debye sheath
requires a very small time step ∆t ∼ τg (the gyro-motion time) and a small
spatial cell size ds ∼ LD (the width of the Debye sheath). Instead, the logical
sheath boundary condition is implemented [112], of which the main idea is
to give a reasonable electron distribution function at the sheath edge without
having to solve the sheath region of inherently small space and time scales. The
results compare reasonably well with those of analytical analysis and those
from simulation with solving the sheath region, since it captures the main
physics of the sheath illustrated in Fig. 3.8. The logical sheath boundary
condition is utilized to specify only the numerical flux entering the boundary
(v‖ < 0) since the downstreaming flux (v‖ > 0) out of the final boundary is
determined self-consistently by the upstream conditions:

F n
smax+ 1

2

(
v‖, v⊥

)
= v‖

[
fnsmax +

1

2

(
∆ssmax − v‖∆t

)
σnsmax

]
if v‖ > 0(3.52)
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The reconstruction of the boundary cell σnsmax is based on Lax-Wendorf ’s
method :

σnsmax =
fnsmax − fnsmax−1

ssmax − ssmax−1

(3.53)

Based on the logical sheath condition, the numerical flux entering the boundary
is assumed as:

F n
smax+ 1

2

(
v‖, v⊥

)
=

 −F n
smax+ 1

2

(
−v‖, v⊥

)
if − vc < v‖ < 0

0 if v‖ ≤ −vc
(3.54)

where the critical velocity vc (vc > 0) is determined by the assumption of
ambipolar flow through the final boundary:

Γit = Γet (3.55)

−→ nseCs =

∫ ∞
vc

F n
smax+ 1

2

(
v‖, v⊥

)
d~v (3.56)

where nse and Cs are boundary density and ion acoustic speed. The electrons
with parallel velocity larger than the critical velocity (denoted by the shadow in
Fig. 3.8) are absorbed by the target while the left part of the downstreaming
electrons (marked by (2)) is reflected at some positions within the sheath
and have the same velocity in opposite direction when they come back to
the sheath edge, becoming upstreaming electrons (marked by (1)) with part
(1) symmetric to part (2). Therefore if the downstreaming electrons at the
boundary determined by upstream profiles are denoted as fdown

t (v‖, v⊥) for
v‖ > vc, the logical boundary condition is equivalent to the assumption that
the distribution function at the simulation boundary is prescribed as:

fkipp
t (v‖, v⊥) =


fdown
t (v‖, v⊥) if v‖ > 0

fdown
t (−v‖, v⊥) if −vc ≤ v‖ ≤ 0

0 if v‖ < −vc

(3.57)

3.2.2 Investigation of kinetic electrons using KIPP and
a simple ion model

The KIPP code has been extensively tested and demonstrated high preci-
sion [86–89]. Before directly coupling KIPP with SOLPS, kinetic electrons
described by Eq. (3.30) with a simple ion model were used to evaluate the
degree of the deviation of kinetic results from the fluid assumptions in order
to develop an adequate coupling scheme.

Simulation model

A series of cases based on a family of self-similar background ion profiles were
run. The only variable parameter was upstream dimensionless collisionality
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Figure 3.9: Schematics of two numerical schemes of introducing electron particle sources.
Solid lines are distribution functions before the particle sources, while the dashed lines are the
distribution function after the particle source (A) was introduced and the particle source (B)
itself, respectively. These two particle sources only change density with conserving energy
and momentum. Case A is the uniform particle source scheme FS(f) (see section 3.2.1);
Case B is an extremely cold particle source scheme, adding electrons only in the velocity
cell: v‖ = 0, v⊥ = 0.

(varying from 13 to 130), ν∗ ≡ L/λ0. As was pointed out earlier, quasi-
neutrality in KIPP is maintained by adjusting parallel electric field E‖ (see
section 3.2.1). To characterize the effect of collisionality on kinetic factors, for
all the scan cases ion profiles are assumed to satisfy a simple SOL 1D model [6]
with some additional specifications:

1. Total pressure conservation: 2ni0Ti0 = 2ni(s)Ti(s) + ni(s)miv
2
i (s).

2. Parabolic profile of flow speed ui along B: ui(s) = s2

L2Cs, with the ion

sound speed calculated at the target Cs =
√

Te+Ti
mi

.

3. Equal ion and electron temperatures: Ti = Te.

4. Two numerical schemes for particle sources are implemented for each
collisionality (see Fig. 3.9) as described later in detail.

ni0, Ti0 are upstream dimensionless ion density and temperature at the stag-
nation point, respectively, assumed to be 1. s is the distance away from the
stagnation point. L is the system length and λ0 is the thermal electron mean
free path calculated using parameters at the stagnation point. The assump-
tion of equal ion and electron temperatures is used for simplification of the
model and generalization of its results. The variation of the free parameter ν∗

is achieved by changing the dimensionless system length.

Geometry

A 1D grid in real space is used. Cells are non-uniformly distributed along
the magnetic field with much finer cells near the target. The two ends of the
simulation domain have two different boundary conditions, with the left one
regarded as a reflective boundary and the right one treated as an energy filter
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for electrons, absorbing those with parallel velocity v‖ ≥ vc while reflecting
those with v‖ < vc back into the simulation domain with the same absolute
velocity but opposite direction (see section 3.2.1). Ion profiles are adjusted
at each time step according to the equation: vi(s) = s2

L2Cs. For electrons, in
addition to energy sources, particle sources are also necessary to compensate
for the divergence of parallel particle flux nv‖ and the target sink due to the
lack of self-consistent recycling source.

Collisionality scan cases

As mentioned in section 3.2.1, particle and energy sources are numerically sep-
arated. The energy source is described by the scheme FE(f) (section 3.2.1).
Two numerical schemes are implemented for modelling the electron particle
source as shown in Fig. 3.9. Case A is a ”uniform” particle source achieved
by scaling up fe evenly in the velocity space with the subsequent energy cor-
rection, described by the scheme FS(f) from Eqs. (3.35) and (3.36); Case B
has an ”extremely cold” particle source, by adding all electrons into f (0, 0, s).
The two cases are the same from the fluid model’s point of view, but totally
different kinetically.

Cases with various upstream collisionality: ν∗ = 13.30, ν∗ = 26.60, ν∗ =
66.50, ν∗ = 133.0, are run. The steady state macroscopic parameter profiles
of electron temperature (Te) and conductive heat flux density (qe‖), local colli-
sionality (λhce/L∇T , the ratio of HCE mean free path to electron temperature
scale length), are shown in Fig. 3.10. It can be clearly seen that the steady
state profiles from the two particle source models are the same for all col-
lisionalities since heat carrying electrons (discussed later in this section) are
not affected by the source model and hence the relation between conductive
heat flux density and temperature gradients remain unchanged i.e. the heat
conduction coefficient is not affected by the choice of the particle source model.

For the high collisionality case ν∗ = 133, the conductive heat flux den-
sity calculated in KIPP has already converged to the Braginskii conductive
heat flux density as shown in Fig. 3.10d. In contrast, for comparatively low
collisionalities ν∗ = 13.30 or 26.60 (Figs. 3.10a and 3.10b), although local col-
lisionality (λe/L∇T used in [26] where λe is local thermal electron mean free
path and L∇T is electron temperature scale length) remains always quite high:

λhce/L∇T ≈ 25λhce/L∇T < 1 (3.58)

through most of the SOL, it shows flux limiting upstream and flux enhancement
downstream [43]. It is clear from these figures that the occurrence of the flux
limiting and flux enhancement is unrelated to the local collisionality.
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Figure 3.10: Cases with various upstream collisionalities are shown: (a) ν∗ = 13.30; (b)
ν∗ = 26.60; (c) ν∗ = 66.50; (d) ν∗ = 133.0. All parameters are dimensionless. ’A’ and ’B’
denote cases with the uniform particle source (corresponding to Case A in Fig. 3.9) and with
the extremely cold particle source (corresponding to Case B in Fig. 3.9), respectively. For
the qe‖ profile, ’KIPP’ denotes the conductive electron heat flux density calculated in KIPP
while ’Brag’ denotes the one calculated with the Braginskii formula based on the electron
temperature profile obtained from KIPP. λhce/L∇T is the ratio of heat carrying electrons
mean free path to the temperature scale length. The positions s ≈ 5.85, s ≈ 12.20 (dashed)
in (a), s ≈ 23.00 in (b), s ≈ 65.96 in (c) are marked by the green vertical lines. fe at these
positions are plotted in Fig. 3.11.

Flux enhancement downstream

In the region near the target shown in Figs. 3.10a, 3.10b and 3.10c, from
locations where the Braginskii conductive heat flux density starts to decrease
with s (marked by solid vertical green lines) to the target, kinetic results for the
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Figure 3.11: 2D contour plots of fe at positions: (a) s ≈ 5.85 for ν∗ = 13.30, (b) s ≈ 23.00
for ν∗ = 26.60, (c) s ≈ 37.20 for ν∗ = 39.90, (d) s ≈ 65.96 for ν∗ = 66.50. (e) is at s ≈ 12.20
for collisionality scan case ν∗ = 13.30. (f) is at the same position for the case with enhanced
radiation. In all figures, red curves indicate local Maxwellian distributions and blue curves
indicate distribution functions from KIPP.

conductive heat flux density deviate substantially from the Braginskii theory.
This deviation is probably due to the electron temperature profile flattening
in the corresponding region, or due to non-local transport [26–28].

Temperature profile flattening The width of this region, between the solid
green vertical line (the first one in Fig. 3.11a) and the right end, is reduced
with the increase of the upstream collisionality ν∗, however, it stays unchanged
in units of the mean free path at the target (∼ 5λt with λt being thermal
electron mean free path at the target). It indicates that the temperature pro-
file flattening and significant discrepancies between KIPP and Braginskii heat
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conduction coefficients, as well as thermal force coefficients, in this region are
somehow related to the target cut-off effect that acts as a sink for high energy
electrons thus modifying the target distribution function ft asymmetrically.

fe at the positions where Braginskii conductive heat flux density starts to
decrease with s are plotted in Figs. 3.11a, 3.11b, 3.11c and 3.11d for cases
with ν∗ = 13.30, ν∗ = 26.60, ν∗ = 39.90 (note that this case is not shown
in Fig. 3.10), and ν∗ = 66.50, respectively. Fig. 3.11e shows the distribution
function inside the region at s ≈ 12.20 for the case with ν∗ = 13.30. The
comparison of fe and the local Maxwellian distribution shows that the cut-off
distribution of the upstreaming electrons starts to appear for all cases, and
there are obvious extended high energy tails of the downstreaming electrons
for medium collisionality cases. It means that the Braginskii conductive heat
flux formula is not applicable in the region approximately 5 times the mean
free path away from the target.
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Figure 3.12: Sheath heat transmission coefficient (γe)
and potential drop (∆φ) against collisionality both for
the collisionality scan cases (solid lines) and the case
with enhanced radiation (stars). Dashed lines are the
theoretical values from the reference [6].

Non-local transport In com-
paratively low collisionality
cases, shown in Fig. 3.11d
and 3.11f, a significant ex-
pansion of contours for the
downstreaming electrons com-
pared to the Maxwellian
fM occur (super-high energy
tails) due to non-local trans-
port. This, however, is only
the case for extremely high
energies, far above the heat
carrying electrons (HCE) en-
ergies. Such electrons are in
absolute minority and they
don’t contribute much to the
parallel heat flux. Up to the
HCE energies, fe are quite
close to the Maxwellians,
with the fe − fM difference
hardly visible on the figures, which also applies to Figs. 3.11a, 3.11b, 3.11c,
3.11d. This indicates that the effective HCE collisionality in these cases is
medium, allowing only for rather moderate heat flux limiting and enhance-
ment.

The heat transmission coefficient is quite sensitive to the upstream colli-
sionality, while the sheath potential drop agrees well with the classical value
used for a fluid model, as shown in Fig. 3.12. The case with enhanced radiation
(stars in Fig. 3.12) is discussed below.
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Figure 3.13: Two numerical schemes of modelling radiation power. Solid and dashed
curves indicate distribution functions before and after the power removal. Case A is the
case with applying uniform energy source (∆E < 0); Case B is mimicking electron impact
ionization power sink with subtracting power only from electrons with kinetic energy above
a specified threshold (Eth = 7Tt in this case).

Case with enhanced radiation

From collisionality scan cases above, one can see that a physically interesting
case with ν∗ = 13.30, corresponding to ITER outside mid-plane separatrix
parameters (ν∗ ∼ 12): electron density nu = 4 × 1019m−3, electron tempera-
ture Tu = 150eV, parallel length from mid-plane to the outer target L‖ ≈ 65m,
does not result in a large temperature drop without a strong energy sink down-
stream. Therefore an artificial radiation power sink is introduced to radiate
83% of the total input power, spatially distributed according to the (s/L)3 de-
pendence along the simulation domain to force the Te drop by factor 10. Similar
to the particle source, two different numerical schemes for modelling radiation
power are implemented, of which case A is using a fluid type radiation model
with uniform energy source scheme FE(f) (Fig. 3.13A) and case B is using the
model in which the energy sink is achieved by subtracting power only from the
high energy tail mimicking very approximately the electron impact ionization
processes at low Te. The threshold energy is set at about 7 times the target
temperature: Eth ≈ 7Tt. The radiation power is then evenly subtracted from
electrons with total kinetic energy above that threshold (0.5me(v

2
‖+v2

⊥) > 7Tt,

Fig. 3.13B), afterwards, these electrons are placed into (v‖ = 0, v⊥ = 0):

f1(v‖, v⊥) =

 αf0(v‖, v⊥) E(v‖, v⊥) > Eth

f0(v‖, v⊥) E(v‖, v⊥) ≤ Eth
(3.59)

f1(0, 0) = f0(0, 0) +

∫
E(v‖,v⊥)>Eth

(1− α)f0(v‖, v⊥)d~v (3.60)

The case with ν∗ = 13.30 is then rerun with the artificial radiation sink.
Steady state profiles of electron density, temperature and local collisionality
with two different radiation power schemes are shown in Fig. 3.14. Let’s first
discuss profiles with the uniform energy source (Case A). By comparing the
KIPP and Braginskii conductive heat flux densities in Fig. 3.14, one can see a
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moderate flux limiting upstream and enhancement downstream by factor 1.5.
Compared to the distribution function (shown in Fig. 3.11e) at s ≈ 12.20 in
the case with ν∗ ≈ 13.30 without artificial radiation for the collisionality scan
study, the same position at s ≈ 12.20 (indicated by the vertical green line in
Fig. 3.14) is chosen to show the steady state distribution function (3.11f) where
the distinct high energy tail of downstreaming electrons is seen. However, no
cut-off distribution (due to the Debye sheath effect) is seen in this case, since,
with the radiation sink, target Te drops substantially, resulting in decreasing
λt and moving this position out of the ∼ 5λt region. With the presence of
the super-high energy tail, the sheath heat transmission coefficient increases
by ∼ 40%, compared to the corresponding scan case, as shown in Fig. 3.12.

Comparing the two power input schemes

The comparison of Cases A and B (Fig. 3.14) demonstrates again that no
difference between the cases appears in the steady state macroscopic parame-
ter profiles for the two models of radiation power sink, which seems counter-
intuitive, since at cells near the target, in the steady state, the power is mainly
balanced between free-streaming heat flux coming into the cell and radiation
power sink taken from the cell. Two different radiation power sinks would be
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Figure 3.14: Profiles of conductive heat flux
density, local collisionality and electron tem-
perature for the case with enhanced radia-
tion. Case A: uniform radiation model (corre-
sponding to Fig. 3.13A); Case B: subtracting
radiation energy from electron high energy
tail (corresponding to Fig. 3.13B). The green
vertical line marks the position s ≈ 12.20,
to plot the distribution function in a steady
state (shown in Fig. 3.11f).
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Figure 3.15: Changes of fe (∆fe) for one
time step at the velocity cell v‖ ≈ 3.54Te,
v⊥ ≈ 3.54Te for the spatial cell adjacent to
the target, due to terms with: (1) power in-
put, (2) electric field, (3) free-streaming, (4)
collisions, (5) particle source and (6) radia-
tion power sink. A) shows the power balance
among various terms with the uniform en-
ergy source scheme (Case A in Fig. 3.13A).
B) shows the power balance among various
terms with removing power only from high
energy electrons (Case B in Fig. 3.13B).
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(a) ∆fe change due to free-streaming. (b) ∆fe change due to radiation.

Figure 3.16: In a steady state, with advancing one time step, distributions of ∆fe in
velocity space at the cell adjacent to the target are shown for Case A (Fig. 3.13A) with the
uniform energy source scheme due to the free-streaming term (A) and the radiation term
(B).

expected to result in two different steady state profiles. The reasons for this
are discussed below.

At the last spatial cell adjacent to the target, the change of fe for one time
step (∆fe) in velocity space due to the free-streaming and radiation loss for
Case B are shown in Figs. 3.16a and 3.16b, respectively. The ∆fe due to the
radiation loss is rather uniform compared to that due to the free-streaming
term despite the threshold being 7 times the target temperature. One velocity
cell with v‖ ≈ 3.54Te, v⊥ ≈ 3.54Te (Te is the local electron temperature) is
selected to show the ∆fe balance between different terms. As one can see in
Fig. 3.15, for both cases with two different radiation schemes, the ∆fe balance
in this velocity cell is mainly between the free-streaming and collision terms,
and the distribution function change ∆fe due to the radiation is several orders
of magnitude lower than the main balance terms. Therefore the difference
between numerical schemes in the radiation term for Cases A and B does not
result in any difference in the balance of heat carrying electrons (HCE) velocity
cells and the high energy tails, thus leading to similar transport coefficients,
resulting in similar macroscopic parameter profiles.

A somewhat surprising result that the two methods of energy input give
close results for the heat transport can be additionally explained by two factors.
First, across most of the spatial grid, not very close to the target, energy even
in the Case B is being removed mostly from thermal electrons, as local Te is
much higher than that near the target and ’high energy tail’ removal is done
actually from bulk (thermal) electrons. Closer to the target, the ∇Te has
already been formed by sources upstream. And near the target, the region
where Te is low enough so that the difference between the two methods of
power removal could lead to two different distribution function, is too narrow
to make an impact on ∇Te, so the two Te profile look almost identical on the
figure.
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Figure 3.17: Profile of the effective heat con-
duction coefficient defined by Eq. (3.61).

Simulation results confirm that ki-
netic effects of electron parallel trans-
port are primarily attributed to non-
local transport of high energy elec-
trons characterized by the extended
high energy tail in the downstream-
ing direction. A significant devi-
ation of the kinetic solution from
the fluid one is seen in the region
about 5λt from the target, mean-
ing that this region might require
special treatment in the coupling
scheme.

In a steady state, qe‖ and hence
plasma parameter profiles are mainly
determined by the spatial distribution of energy and particle sources. For the
above simulation cases, they are rather insensitive to kinetic details of where
(in which location of fe in velocity space) sources are introduced.

The profile of an effective heat conduction coefficient ceff from the case
with enhanced radiation is shown in Fig. 3.17. ceff is defined as the ratio of
conductive heat flux calculated in KIPP to the Braginskii one, multiplied by
3.16:

ceff = 3.16×
(

1

2
me

∫
fev

2v‖d~v −
5

2
TeΓe‖

)
/qBrag
e‖ (3.61)

where Γe‖ is electron particle flux density and qBrag
e‖ is the Braginskii electron

conductive heat flux density calculated based on the KIPP electron tempera-
ture profile. Contrary to values of heat flux limiter being strongly and non-
uniformly varied along the poloidal direction, this strong dependence on local
collisionalities found in previous PIC kinetic simulations [52, 53], the effective
heat conduction coefficient from upstream to downstream calculated in KIPP
is varied smoothly. This encourages us to attempt to do coupling by replacing
the local ce in SOLPS with the effective ceff calculated in KIPP.
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Chapter 4

Iterative coupling of KIPP with
SOLPS

As discussed in section 3.1, the fluid description of electrons is not always valid
in the SOL, kinetic corrections are necessary for arbitrary collisionalities. Since
the fluid model in SOLPS is already highly sophisticated with self-consistent
recycling, physical and chemical sputtering, as well as atomic physics models,
which are the most time-consuming parts of a kinetic code, KIPP was devel-
oped to account for kinetic effects of electron parallel transport in SOLPS,
leaving the rest of the physical models intact. An algorithm of coupling KIPP
with SOLPS will be investigated in this chapter.

4.1 Iterative coupling algorithm

4.1.1 Justification for the iterative algorithm

One difficulty with coupling a kinetic code to a fluid one is that they have very
different time scales. For a plasma with constant T = 50eV , n = 1.0×1019m−3

along a 25m flux tube, the time scale of the fluid model used in a fluid code is
characterized as the upstream ion transport time ∼ 10−4s, however, the time
scale of a kinetic code without resolving the gyro-motion can be characterized
as the electron collision time at the target ∼ 10−7s. The direct real-time
coupling is obviously not possible [113]. One can think of an iterative coupling
algorithm instead, which may offer a possible way of coupling a kinetic code
to a fluid one. In the following sections, an iterative coupling algorithm will
be investigated.

4.1.2 Analytical analysis of the iterative coupling scheme

One iterative coupling scheme, which avoids the difficulty caused by different
time scales, is proposed here. SOLPS passes converged profiles of macroscopic
plasma parameters to KIPP, while KIPP passes effective kinetic factors back

45
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run SOLPS

transfer
n,u,Te,Ti
to KIPP

run KIPP

coupling
convergence

test

output

transfer
ce,kq,
γe,∆φ

yes

no

Figure 4.1: The schematic of the KIPP-SOLPS coupling algorithm.

to SOLPS. This process is repeated until coupling convergence is reached. The
flowchart of this process is shown in Fig. 4.1. It consists of 4 main steps:

1. At the start of a coupled case, run SOLPS with default electron heat
conduction coefficients (ce = 3.16), thermal force coefficients (k‖ = 0.71),
sheath potential drop (Eq. 3.28) and electron sheath heat transmission
coefficient (Eq. 3.29). For a continuation of a coupled case, run SOLPS
with the modified (effective) electron heat conduction coefficients (ceff ),
thermal force coefficients (keff ), sheath potential drop (∆φeff ) and elec-
tron sheath heat transmission coefficient (γeff ). Calculations of the ef-
fective kinetic factors will be given below.

2. Transfer profiles of electron density, velocity and temperature, ion density
and temperature, particle flux density from SOLPS to KIPP.

3. Maintaining the transferred profiles by automatic energy and particle
sources, run KIPP and obtain new effective electron heat conduction
coefficients (ceff ), thermal force coefficients (keff ), sheath potential drop
(∆φeff ) and electron sheath heat transmission coefficient (γeff ).

4. Check if the coupling convergence has been reached: if yes, output all
profiles and coefficients; if not, transfer kinetic factors back to SOLPS
and continue with Step 1.
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The iterative coupling is automatically carried out by some user-specified pa-
rameters. In this section, analytical formulas of the modifications of the kinetic
factors by KIPP are described, while more numerical details of the coupling al-
gorithm can be found in Appendix B. The above mentioned Step 3 is the most
challenging since fluid equations in SOLPS and the kinetic equation in KIPP
are not explicitly related to each other. The correspondence of terms involved
to calculate the effective kinetic factors should be clarified. The following part
of this section first compares equations solved in SOLPS and KIPP separately
and then derives formulas for calculating effective kinetic factors in KIPP.

Comparison of electron balance equations between KIPP and SOLPS

The main goal of the iterative scheme is to incorporate kinetic effects of par-
allel electron transport calculated by KIPP into SOLPS. Equations solved in
SOLPS and KIPP are compared below.

Equations solved for electrons in SOLPS Since KIPP is only tackling electron
parallel transport, while, as discussed in section 2.4, 1d SOLPS transport is
essentially the sum of poloidal projections of parallel and perpendicular trans-
port, the particle and heat flux densities calculated based on fe in KIPP here
correspond to parallel parts in Eqs. (2.73) and (2.74). The electron equations
(Eqs. (2.76), (2.58) and (2.80)) solved in the SOLPS 1D geometry are shown
again here with moving the perpendicular terms to the right hand side and
replacing ∇x terms with ∇‖ and ∇⊥ terms (this will be discussed later in this
paragraph):

∂ne
∂t

+∇‖
(
Γe‖
)

= Sp −∇⊥Γe⊥ (4.1)

eneE‖ = RT‖ −∇‖pe (4.2)

∂

∂t

(
3

2
neTe

)
+∇‖

(
3

2
neTeue‖ + qcond

e‖

)
= −neTe∇‖ue‖ −Q∆ + SEe −∇⊥qe⊥ (4.3)

with the particle and heat flux densities in the perpendicular direction:

Γe⊥ = Γa
e⊥ (4.4)

qe⊥ =
5

2
Γe⊥Te − χE

e ne∇⊥Te (4.5)

where only anomalous transport is left, and the closure equations:

qcond
e‖ = −ceneτe

Te

me

∇‖Te (4.6)

RT‖ = −k‖ne∇‖Te (4.7)

where ce = 3.16, k‖ = 0.71 (default values for all species under the choice
of ”Braginskii” model in SOLPS). Sp and SEe are volumetric particle and
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energy sources, E‖ is the electric field, and Eq. (4.2) gives the profile of electric
potential. We remind that gradients along x can be expanded as follows:

∇xVx = ∇xbxV‖ +∇xbzV⊥

= ∇‖V‖ +∇⊥V⊥ (4.8)

since gradients in the toroidal direction are assumed zero. ~V is a vector, which
can be particle or heat fluxes (flux densities), with only the poloidal component
present in the 1D geometry. Hence the terms ∇‖V‖ and ∇⊥V⊥ in Eqs. (4.1),
(4.2) and (4.3) are from the transformations of the term ∇xVx.

Equations solved for electrons in KIPP The main equation to be solved in
KIPP is the Vlasov-Fokker-Planck equation for electron parallel transport
shown again here (not dimensionless):

∂fk
e

∂t
+ v‖∇‖fk

e −
eE‖
me

∂fk
e

∂v‖
=

(
∂fk

∂t

)
coll.

+ Senergy + Sparticle (4.9)

where fk
e (v‖, v|, s) is the 3D electron distribution function: 2D in velocity space

and 1D in real space along the magnetic field. KIPP can be easily adapted
to evolving fk

e while maintaining fixed density and temperature profiles by
specifying automatic energy and particle sources. The first three moment
equations following from Eq. (4.9) in KIPP are:

∂nk
e

∂t
+∇‖

(
Γk
e‖
)

= Sk
p (4.10)

enk
eE

k
‖ = Rk

T‖
−∇‖pk

e (4.11)

∂

∂t

(
3

2
nk
eT

k
e

)
+∇‖qk

e‖ = −enk
eu

k
e‖E

k
‖ +Qk

c + Sk
Ee (4.12)

where all variables with the superscript k are defined in the same way as those
in section 2.1 but calculated based on the distribution function in KIPP, fk

e .
The thermal force and electron parallel heat flux density are shown here:

Rk
T‖

=

∫
mev

′
(
∂fk

∂t

)
coll.

d~v (4.13)

qk
e‖ =

1

2
me

∫
fk
e v

2v‖d~v (4.14)

Modifications of kinetic factors in KIPP

As pointed out above in the Step 3 of the coupling scheme, profiles of electron
density, velocity and temperature etc. are transferred from SOLPS to KIPP
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and maintained there:

nk
e = ne (4.15)

uk
e‖ = ue‖ (4.16)

T k
e = Te (4.17)

Γk
e‖ = Γe‖ (4.18)

by adjusting Sk
p and Sk

Ee.

Effective thermal force coefficient Eqs. (4.10) and (4.11) are consistent with
Eqs. (4.1) and (4.2) which are solved in SOLPS. The profile of effective thermal
force coefficient can be obtained at the end of each KIPP loop (the quasi-steady
state is supposed to be achieved, details can be found in section 4.3.1). This
coefficient is defined as:

keff = Rk
T‖
/
(
−ne∇‖Te

)
=

∫
mev

′
(
∂fk

∂t

)
coll.

d~v/
(
−ne∇‖Te

)
(4.19)

In a coupling steady state (which means that SOLPS runs, with the modified
kinetic factors that are calculated in KIPP based on the profiles from the
previous SOLPS run, to reach convergence and the profiles out of it are the
same as those from the previous run) where the time-dependent terms can be
dropped, the electron perpendicular particle flux in SOLPS is automatically
included in the particle source in KIPP:

Sk
p = Sp −∇⊥Γe⊥ (4.20)

Effective heat conduction coefficient The kinetic factor, heat conduction co-
efficient ce, exists in the electron energy conservation equation, however, a
difficult point needs to be clarified when calculating the effective one, since
the internal electron energy equation (Eq. (4.3)) is solved in SOLPS. In order
to be compared with Eq. (4.3), subtracting Eq. (4.11) multiplied by uk

e‖ from

Eq. (4.12) leads to:

∂

∂t

(
3

2
nk
eT

k
e

)
+∇‖

(
qk
e‖ − n

k
eT

k
e u

k
e‖

)
= −nk

eT
k
e∇‖uk

e‖+Q
k
c−uk

e‖R
k
T‖

+Sk
Ee (4.21)

By comparing Eq. (4.3) with Eq. (4.21), the profile of the effective heat con-
duction coefficient can be obtained in KIPP as:

ceff =

(
qk
e‖ − nk

eT
k
e u

k
e‖ −

3

2
neTeue‖

)
/

(
−neτe

Te
me
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2
me

∫
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2
neTeue‖

)
/

(
−neτe

Te
me

∇‖Te
)

(4.22)
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And, in the coupling steady state, the perpendicular heat flux is automatically
included in the energy source term:

Sk
Ee = SEe −∇⊥qe⊥ (4.23)

since the energy source due to the collision term is:

Qk
c = uk

e‖R
k
T‖

+
3men

k
e

miτk
e

(
T k
i − T k

e

)
= ue‖RT‖ −Q∆ (4.24)

Effective sheath potential drop Now we deal with the implementation of ki-
netic effects into the boundary conditions. The two boundary coefficients: the
sheath potential drop and electron heat transmission coefficients in SOLPS, are
obtained by assuming a distribution function at the boundary (sheath edge).
As pointed out in section 3.2.1, KIPP can give a self-consistent distribution
function (Eq. (3.57)) at the boundary without solving Poisson’s equation for
the Debye sheath. And a critical velocity vc determined by Eq. (3.56) can thus
be achieved, which corresponds to a floating potential drop through the sheath
which gives ambipolar flux. Hence an effective potential drop can be obtained:

∆φeff =
mev

2
c

2e
(4.25)

The parallel heat flux density through the boundary (or at the target), calcu-
lated in KIPP, is:

qk
t‖ =

1

2
me

∫ ∞
vc

fk
t v

2v‖d~v (4.26)

In later discussions, ”boundary” and ”target” have the same meaning: the
right end of the simulation boundary. The left end is the stagnation point
(more details about the geometry can be found in section 4.2).

Effective electron sheath heat transmission coefficient We would like to re-
mind that the default boundary condition for the internal electron energy
conservation equation (Eq. (4.3)) in SOLPS is applied as an energy sink at the
guard cell nx shown in Fig. 4.2. It is not straightforward to directly calcu-
late the effective electron sheath heat transmission coefficient γeff in KIPP. In
the following discussions of this subsection we first analyse the energy balance
at cells adjacent to the target and then realize the adaptation of the SOLPS
boundary condition. Based on the adapted boundary condition, we then de-
rive the formula for calculating the effective electron sheath heat transmission
coefficient in KIPP.

We first analyse the energy balance of cell nx (the guard cell) in a SOLPS
run. The heat fluxes on the left and right faces of the guard cell are balanced,
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Figure 4.2: In the default SOLPS run, the bound-
ary electron heat flux is determined by the user-
specified constant c1 or γ′e (γ′e = c1 + |e∆φ|/Tet).
So qt = γ′ebxΓt‖Tet.
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Figure 4.3: Electron heat flux densities
through faces of the cell nx−1 in SOLPS
(in black) and of the corresponding cell
smax in KIPP (in blue). In a coupling
run, qt is supposed to be given based
on the self-consistent boundary heat flux
density qk

t‖.

implying that the poloidal heat flux density through the boundary is specified,
as shown in Fig. 4.2, as:

qt = γ′ebxΓt‖Tet

=

(
c1 +

|e∆φ|
Tet

)
bxΓt‖Tet (4.27)

where Γt‖ and Tet are electron particle flux density and electron temperature
at the boundary, c1 is a user-specified constant. γ′e is a coefficient, defined as:

γ′e ≡ c1 +
|e∆φ|
Tet

(4.28)

It is not the electron sheath heat transmission coefficient. The relation be-
tween the coefficient γ′e specified for the SOLPS default boundary condition
and the electron sheath heat transmission coefficient will be discussed below
and summarized in Appendix B.3.7.

We then analyse the energy balance of cell nx− 1 in the steady state of a
SOLPS run. One should note again that the electron heat flux density in the
poloidal direction is defined according to Eq. (2.74) at cell faces for internal
cells, but defined as qt at the boundary. Based on Eq. (4.3), in the steady
state, at cell nx− 1, as shown in Fig. 4.2, the energy for electrons is balanced
by heat flux densities through the left and right faces of this cell, and the terms
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on the right hand side of Eq. (4.2):

1

hx

[
qt −

((
3

2
neTeue‖ + qcond

e‖

)
bx + qe⊥bz

)
l

]
= −neTe∇‖ue‖ −Q∆ + SEe (4.29)

where hx is the poloidal length of cell nx − 1 and the subscript l denotes the
variable calculated at the left face of cell nx− 1. As it can be clearly seen, the
electron heat flux density at the left face still has the form of Eq. (2.74), but
it is replaced with qt, since the right face is the simulation boundary and the
boundary heat flux density cannot be given self-consistently within the fluid
model, as discussed in section 3.1.

Similarly, in the steady state of a KIPP run, the energy balance can be
achieved based on Eq. (4.21) at the corresponding cell (cell smax), as shown
in Fig. 4.3:

1

h‖

[(
qk
t‖ − Γt‖Tet

)
−
(
qk
e‖ − Γe‖Te

)
l

]
= −nk

eT
k
e∇‖uk

e‖ +Qk
c − uk

e‖R
k
T‖

+ Sk
Ee (4.30)

The parallel length of the cell in KIPP h‖ = hx/bx. The subscript l denotes the
variable calculated at the left face of this cell. The details of the geometry and
the relation between the grids generated in SOLPS and KIPP can be found in
sections 4.2.2 and 4.2.3. The subscript l means that the corresponding vector
variable is calculated at the left face of the cell. For simplicity, one can specify:

qt = bx
(
qk
t‖ − Γt‖Tet

)
(4.31)

to incorporate the kinetic boundary condition into SOLPS. In the coupling
steady state, the additional heat flux density qe⊥bz in SOLPS at the left face
will be included in the automatic source term Sk

Ee in KIPP. However, Eq. (4.31)
is not used in this work since the term qe⊥bz is present in Eq. (4.29), but not
explicitly in Eq. (4.30). Eq. (4.31) would result in an inconsistent source term
for cell smax in KIPP. An adaptation of the SOLPS boundary condition can
avoid this.

Before describing the adaptation of SOLPS boundary condition, one point,
which we did not mention above because it would only add difficulty to dis-
cussions, has to be clarified for following discussions. The boundary electron
heat flux density mentioned above is defined, in the SOLPS code, as the same
form as internal cells. It consists of two parts:

qt = bxqt‖ + bzqt⊥ (4.32)

where qt‖ and qt⊥ are defined in the same forms as those at the internal cell
faces but calculated based on parameters in cell nx− 1 and the guard cell nx.
This will be discussed more in detail below.
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Figure 4.4: In the default boundary condi-
tion in Fig. 4.2, the boundary electron heat
flux density is specified as qt = bxqt‖ +
bzqt⊥ = γ′ebxΓt‖Tet. However, in the
adapted boundary condition here, it is spec-
ified as qt = bxqt‖ + bzqt⊥ = γ′e‖bxΓt‖Tet +
bzqt⊥.

Adaptation of the SOLPS
boundary condition to the cou-
pling scheme As mentioned above,
the boundary electron heat flux den-
sity in SOLPS still has the form of
Eq. (2.74): qt = bxqt‖+ bzqt⊥, as shown
in Fig. 4.4. In order to be compati-
ble with the internal cells and have the
same form of the source (Eq. (4.23)),
the SOLPS boundary is modified as
(shown in Fig. 4.4):

bxqt‖ + bzqt⊥ = γ′e‖bxΓt‖Tet+ bzqt⊥
(4.33)

−→ qt‖ = γ′e‖Γt‖Tet (4.34)

Instead of specifying the constant c1 in
Eq. (4.27), the new boundary condi-
tion only specifies the parallel part, and then the perpendicular part is deter-
mined automatically since qt⊥/qt‖ ∝ bzχe⊥/bxχe‖. The numerical details and
the proof that this doesn’t change the physics can be found in Appendix B.3.7.
Subtracting∇⊥qe⊥ from both sides of Eq. (4.29) and substitution of Eq. ( 4.33)
into it, leads to:

1

h‖

[
γ′e‖Γt‖Tet −

(
3

2
neTeue‖ + qcond

e‖

)
l

]
= −neTe∇‖ue‖ −Q∆ + SEe −∇⊥qe⊥ (4.35)

The adapted SOLPS boundary condition (specifying γ′e‖) is used in the follow-
ing coupling runs.

By comparing Eqs. (4.30) and (4.35), one can derive:

γ′
‖,eff =

qk
t‖ − Γt‖Tet

Γt‖Tet

=
qk
t‖

Γt‖Tet
− 1

= γeff − 1 (4.36)

where the effective electron sheath heat transmission coefficient is defined as:

γeff =
qk
t‖

Γt‖Tet

=
1

2
me

∫ ∞
vc

fk
t v

2v‖d~v/(Γt‖Tet) (4.37)
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In the coupling steady state, Eq. (4.23) is automatically fulfilled.

The difference of unity between γ′‖,eff and γeff in Eq. (4.36) is attributed to
the fact that the ”internal” electron energy conservation equation, as a result
of subtracting∇‖

(
neTeue‖

)
from both sides of the total electron energy conser-

vation equation, is used in SOLPS. For simplicity, the following discussions in
this work are based on the total electron energy conservation equation where
the electron sheath heat transmission coefficient is γe‖, and 5

2
is the coefficient

for the convective heat flux (instead of γ′e‖ and 3
2
):

γe‖ = γ′e‖ + 1 (4.38)

In a coupling run, γe‖ is replaced by γeff . The difference of unity between the
electron sheath heat transmission coefficient γe‖ and the coefficient γ′e‖ used for
SOLPS ”internal” electron energy conservation equation is explained numeri-
cally in Appendix B.3.7. Since the perpendicular terms have been regarded as
source terms, in later discussions, heat flux density through the cell faces or
the boundary only means the parallel part (qe‖ and qt‖).

The effective heat conduction coefficient ceff , effective thermal force co-
efficient keff , effective potential drop ∆φeff and effective sheath heat trans-
mission coefficient γeff mentioned above are obtained when KIPP reaches a
quasi-steady state, since a steady state like one in a fluid code is not possible
in a kinetic code (this will be discussed in section 4.3.1), which here means
that the heat flux through each cell face is not changing much with time, that
is, the profile of ceff and boundary γeff are not changing much with time.
Then the effective coefficients are transferred back into SOLPS, replacing ce,
k‖, ∆φ and γe‖ in Eqs. (4.6), (4.7), (3.28) and (4.38). The numerical details of
the iterative coupling scheme can be found in Appendix B.3.

4.2 1D geometry for the iterative coupling

4.2.1 The simulation geometry

Since we are currently mainly focusing on kinetic effects of electron parallel
transport, 1D SOLPS (section 2.4) is used here in order to test the compati-
bility of the coupling algorithm with the KIPP code.

In ASDEX-Upgrade, major plasma radius R0 = 1.65m, minor horizontal
plasma radius a = 0.5 ∼ 0.52m, minor vertical plasma radius is ∼ 0.8m and
the ellipticity is ∼ 1.8. Therefore the perimeter of the plasma in the poloidal
plane is ∼ 4.5m. We assume that the average distance along the poloidal mag-
netic field between the two targets is ∼ 5m. Half of the length is taken as the
length of the simulation domain in our case since one target is assumed at one
end, while the other is the stagnation point, Lpol = 2.5m. The magnetic field
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B = const, poloidalBpol = 1.045285×10−1T, toroidal Btor = 9.945219×10−1T.

SOLPS and KIPP generate simulation grids separately, therefore, the grids
in both codes should be generated based on the above mentioned parameters
and made consistent with each other.

As mentioned in section 3.2.1, all parameters in KIPP are dimensionless.
However, in later discussions, all parameters in KIPP and SOLPS will be given
in dimensional form unless stated otherwise.

4.2.2 Grid cells generated in KIPP

In the KIPP code, the 1D grid cells are generated along the magnetic field
based on parameters EPSS and Lpar:

EPSS =
ds(m)

ds(m+ 1)
(0 ≤ m < smax) (4.39)

Lpar =
smax∑
m=0

ds(m) (4.40)

where m is the cell number and smax is the highest cell number, hence there
are smax+1 cells. ds(m) is the parallel length of cell m and Lpar is the length
of the simulation domain along the magnetic field line:

Lpar = Lpol ×

√
B2
pol +B2

tor

Bpol

(4.41)

The simulation domain in KIPP is shown as the red line in Fig. 4.5. The left
end is the center of cell 0, the stagnation point, therefore only half of cell 0
belongs to the simulation domain, the other half is assumed to have mirror-
reflected parameters. The height of the cells in Fig. 4.5 doesn’t reflect the real
grids since the real geometry in KIPP is only 1D with boundaries at the two
ends. Electron temperature, density, velocity, electric field, volumetric power
and particle sources or sinks are defined at cell centers, while all fluxes are
defined at cell faces.

4.2.3 Grid cells generated in SOLPS

In contrast to KIPP, in SOLPS grid cells are generated along the poloidal
direction. In order to be compatible with the KIPP grid, they are generated
in the following way:

hx(0) =
1

2
ds(0) · bx (4.42)

hx(m) = ds(m) · bx (0 ≤ m ≤ nx− 1) (4.43)
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Figure 4.5: The grids generated in KIPP (red lines) and SOLPS (blue boxes). x and y
are poloidal and radial directions respectively. The KIPP grid cells are generated along the
direction parallel to the magnetic field with the center of cell 0 being the stagnation point
and the right face of cell smax being the target while the SOLPS grid cells are generated
along the poloidal direction with two guard cells attached to the two ends. nx = smax+ 1.
The KIPP simulation domain is from the stagnation point (black solid line at the left end)
to the target (black solid line at the right end).

where hx(m) is the poloidal length of the cell m and bx =
Bpol√

B2
pol+B

2
tol

. nx is

the number of cells generated in the simulation domain.

nx = smax+ 1 (4.44)

There are also two small guard cells attached to the two ends, numbered −1
and nx.

hx(−1) =
1

1000
hx(0) (4.45)

hx(nx) =
1

1000
hx(nx− 1) (4.46)

The guard cells are created only for implementing boundary conditions, and
one should note that they are not included in the simulation domain. The
comparison between the generated SOLPS and KIPP grids is shown in Fig. 4.5.
The west and east boundaries are the left and right ends of the KIPP grid,
respectively.

4.3 Testing the iterative coupling scheme

The simulation geometry is defined in sections 4.2.1, 4.2.2 and 4.2.3. The
poloidal length of the simulation domain is 2.5m from the stagnation point
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to the target. The two ends in the poloidal direction are assumed to be the
stagnation point and the target. The simulation domain physically corresponds
to a flux tube from the upstream mid-plane position to the target with constant
magnetic field projected onto the poloidal plane. The external power source is
distributed evenly over cells 0 to 10 (from x = 0m to x ≈ 0.83m). In order to
systematically study the feasibility and performance of the iterative coupling
algorithm, a series of cases with only deuterium plasma is run.

4.3.1 Coupling setup

A pure deuterium plasma is used for the convergence and density scan studies
in sections 4.3.2 and 4.3.3 respectively. Carbon is introduced as an impurity to
study the case with large temperature drop but comparatively low upstream
collisionality in section 4.4.2. α denotes one kind of species. It can be D0

or D+ for pure deuterium plasma, while it can be D0, D+, C0, C+, C2+,
C3+, C4+, C5+ or C6+ for deuterium plasma with the carbon impurity. The
recycling coefficient at the target is set as 0.999 for deuterium, 0 for carbon.
At the stagnation point, a constant deuterium ion density is maintained by
an automatic particle source while the deuterium and carbon neutral particle
fluxes are specified as 0, meaning that this is a reflective boundary for neutrals.
The quasi-neutrality condition is fulfilled at each time step, indicating that
electron density is evolving along with the ion densities to satisfy Eq. (2.42).
At the target, the velocity of each ion species satisfies the Bohm condition,
but the speed of neutrals is assumed to be zero:

vα‖(nx)

 ≥ Cs if α is an ion

= 0 if α is a neutral
(4.47)

where vα(nx) is the velocity of species α at the boundary and Cs is local
acoustic speed [91]

Cs =

√
βiTit + z2

α
nα
ne
Tet

mα

(4.48)

where Tit and Tet are ion and electron temperatures at the boundary, βi is a
free parameter, with 5

3
being the default value. Ambipolar flows are specified:

j‖ = 0 (4.49)

j⊥ = 0 (4.50)

−→ jx = bxj‖ + bzj⊥ = 0 (4.51)
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where j is the current density, resulting in equal ion and electron particle flux
densities: ∑

α

zαΓα‖ = Γe‖ (4.52)∑
α

zαΓα⊥ = Γe⊥ (4.53)

−→
∑
α

zαΓαx = Γex (4.54)

The subscripts ’x’, ’‖’, ’⊥’ have the same meaning as in section 2.4. Since
only electrons are treated kinetically, the default boundary condition for the
ion energy conservation equation is used by specifying the ion sheath heat
transmission coefficient [91]:

γi = 2.5 (4.55)

This value is fixed during the entire run. As pointed out above, the modified
boundary condition A.34 for electron energy conservation equation is used. In
the initial iteration, we specify [91]:

γini
e‖ = 1.9 + |e∆φini|/Tet (4.56)

Afterwards, this value is replaced by γeff calculated from Eq. (4.37). The
initial sheath potential drop ∆φini is determined by Eq. (3.28) and then re-
placed by Eq. (4.25). Likewise, the coefficients for electron heat conduction
and thermal force are initially specified as:

cini
e = 3.16 (4.57)

kini
‖ = 0.71 (4.58)

and later replaced by ceff and keff calculated by Eqs. (4.22) and (4.19).

Initial plasma parameter profiles in KIPP are transferred from the steady
state of the initial SOLPS run. Electron distribution functions in each cell are
specified initially as Maxwellian. They evolve during KIPP runs to reach a
quasi-steady state. However, the concept of the quasi-steady state is not well
defined, so it cannot be regarded as a convergence criteria. In practice, one
can run KIPP for certain number of steps to reach a state at which the profile
of an evolving parameter P is changing slowly with time, for example,∣∣∣∣dP n

dt

∣∣∣∣ ≤ β

∣∣∣∣dP 1

dt

∣∣∣∣ (4.59)

where dt is the time step, dP n is the change of the parameter P during the
time step n, and β is a free parameter typically. In order to get precise results
in KIPP, the specified time step is chosen to be [86,87]:

dt ≤ 0.1τ0 (4.60)
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where τ0 is the Trubnikov collision time [81] in any cell. Because the collision
time is typically smallest at the target, the condition 4.60 becomes

dt ≤ 0.1τt (4.61)

The evolving parameter P here can be electron heat flux through cell faces or
kinetic factors, but it cannot be electron density or temperature since these
profiles are maintained in KIPP, not evolving with time. If β = 0, it means that
a complete steady state is reached, however, this is not possible for a kinetic
code. Nevertheless, based on the simulation results shown in section 4.3.3, the
exact value of β seems not to influence the coupling steady state profiles, it
rather influences the efficiency of reaching the coupling steady state.

4.3.2 Convergence study

Sensitivity to coupling schemes
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Figure 4.6: Three coupling schemes are com-
pared. ’center’, ’face’, ’decouple’ denote the
coupling Schemes A, B, and C respectively.

In SOLPS the electron heat con-
duction coefficient ce is defined at
cell centers (details can be found in
appendix B.3) while the conductive
heat flux density is defined at cell
faces and then calculated with a hy-
brid regime based on interpolations
of ce on cell faces as described in de-
tail in appendix A. Since the numer-
ical scheme implemented in SOLPS
has been extensively studied and op-
timized, one should keep it as intact
as possible. In KIPP the distribution
function fe is defined at cell centers
while the flux term is defined at cell
faces (see section 3.2.1). One must
therefore make changes to the nu-
merical schemes of either SOLPS or
KIPP. Three coupling schemes with increasing changes in SOLPS are investi-
gated (numerical details can be found in appendix B.3):

Scheme A ’center’ : replace ce in cell centers in the SOLPS part with the
effective ceff calculated in cell centers in the KIPP part.

Scheme B ’face’ : replace the interpolated ce on cell faces in the SOLPS part
with the effective ceff calculated at cell faces in the KIPP part.

Scheme C ’decouple’ : replace the electron heat flux formula in the SOLPS
part with decoupled convective and conductive pieces, making sure that
the electron heat flux at each cell face is the same as the one calculated
in KIPP in the coupling steady state.
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The pure deuterium plasma with the stagnation point density nu = 1.5 ×
1019m−3 is used to test the coupling schemes. The steady state profiles from
the three coupling schemes are compared in Fig. 4.6. As expected, they almost
coincide with each other. In the following test simulations, the Scheme C is
used to force the parallel electron heat flux densities in SOLPS and KIPP to
have the same form in order to make the testing as simple as possible. However,
in future applications, the Scheme B is proposed because it attempts to keep
the numerical form of the heat flux density in SOLPS intact.

Sensitivity to initial conditions

In a coupling run, the KIPP part depends on profiles provided by the SOLPS
part. If the iterative coupling scheme works, different initial conditions with
different specifications in the SOLPS part are supposed to give the same profiles
in the coupling steady state. There are two main free parameters in SOLPS
determining electron profiles:

Electron heat flux limiter αe modifying the electron parallel heat flux den-
sity according to:

qe‖ =
5

2
Γe‖Te −

1

1 + ceλe
αeLTe

ce
neTeτe
me

∇‖Te (4.62)

where λe is electron mean free path and LTe is electron temperature scale
length.

Electron sheath heat transmission coefficient γe‖ determining the bound-
ary electron heat flux density as discussed above.

Four cases with different combinations of initial values of αe and γe‖ are run
to investigate coupling properties:

Case A Initial run with

γe‖ = 1.9 + |e∆φini|/Tet (4.63)

but without heat flux limiter (αe =∞).

Case B Initial run with

γe‖ = 4.1 + |e∆φini|/Tet (4.64)

but without heat flux limiter (αe =∞).

Case C Initial run with

γe‖ = 1.9 + |e∆φini|/Tet (4.65)

and with heat flux limiter αe = 0.3.
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Case D Initial run with

γe‖ = 4.1 + |e∆φini|/Tet (4.66)

and with heat flux limiter αe = 0.3.

The heat flux limiter is removed after the initial run of SOLPS. The coupling

0.0
0.5
1.0
1.5
2.0

q e
||(
W
/m

2
)

1e6

0
10
20
30
40
50

T
e
(e
V
)

0.0 0.5 1.0 1.5 2.0 2.5
Poloidal length x(m)

0
5

10
15
20

n
e
(
×1

019
m
−

3
)

Case A

Case B

Case C

Case D

Figure 4.7: Four cases: A, B, C, D (see text
for details) with the different initial specifi-
cations finally converge to the same steady
state profiles. However the coupling effi-
ciency varies (see Fig. 4.8).
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Figure 4.8: Evolution of γe‖ and ∆φ with
the coupling iterations for the four cases.
Iteration = 0 means the values used in the
initial run of SOLPS; iteration=1 means the
values obtained after the initial run of SOLPS
and then KIPP, and the same for iteration =
2, 3, · · · . They converge to the same values
(7.2 and 3.0 respectively).

iterations converge to the same steady state profiles as expected, as shown
in Fig. 4.7. This means that results of the iterative coupling scheme doesn’t
depend on initial conditions. However, the convergence efficiency is better
when initial profiles are closer to the steady state ones (see Fig. 4.8). In the
following simulations, the initial specifications of Case A are used.

4.3.3 Deuterium density scan study

As pointed out in section 3.2.2 and in reference [43], the upstream collisionality
ν∗ is the critical parameter that determines the role of kinetic effects of parallel
electron propagation. Since ν∗ ∝ T 2

u/nu, in the coupling algorithm, the easi-
est way of scanning upstream collisionality is to vary upstream plasma density
while keeping the same power input (keeping the upstream temperature ap-
proximately constant). In this section, a pure deuterium plasma is assumed. A
series of runs scanning the stagnation point ion density from nu = 0.5×1019m−3

to nu = 2.5 × 1019m−3 is carried out. The recycling coefficient and boundary
conditions are the same as those described in section 4.3.1.
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Figure 4.9: Evolution of electron density and temperature profiles for the case with the
stagnation point density nu = 0.5×1019m−3. All parameters are normalized by the reference
parameters (density n0 = 0.5 × 1019m−3, the temperature T0 = 47eV, Coulomb logarithm
Λ0 = 15). The horizontal axis s is the parallel distance from the stagnation point (normalized
by the electron mean free path λ0 calculated based on the reference parameters). The colorful
dashed (solid) lines are the profiles of electron temperature (density) evolving with coupling
iterations. Profiles denoted by ’0’ means the convergent profiles after the initial SOLPS
run based on default inputs. ’1’ means the convergent profiles achieved in SOLPS with the
effective ceff , γeff , keff , ∆φeff which are calculated in KIPP based on the profiles with ’0’.
The four vertical black dashed lines from left to right denote locations 1, 2, 3, 4, respectively.

Low stagnation point density nu = 0.5× 1019m−3

The case with the stagnation point density nu = 0.5 × 1019m−3 is run. The
upstream collisionality (ν∗) of this case is ≈ 5.6, which is very low. The evo-
lution of electron density and temperature profiles with coupling iterations is
shown in Fig. 4.9. One complete coupling iteration means that SOLPS runs
until the steady state is achieved and then KIPP runs to the quasi-steady state
based on density and temperature profiles transferred from the steady state
SOLPS solutions. The evolution details are not clearly seen in this figure.
Four locations: 1, 2, 3, 4, at poloidal coordinates: x ≈ 0.890m, x ≈ 1.514m,
x ≈ 2.485m, x ≈ 2.499m, denoted by the four black vertical dashed lines are
chosen to show evolution trends of some parameters.

Te at the four locations, the electron sheath heat transmission coefficient
(γe‖) and the sheath potential drop (∆φ) achieve the coupling steady state at
iteration = 4, as shown in Figs. 4.10 and 4.11a. ∆φ is insensitive to electron
kinetic effects at this collisionality. γe‖ in the coupling steady state is not far
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Figure 4.10: Evolution of the electron temperature with coupling iterations at the 4
locations: 1, 2, 3, 4 marked in Fig. 4.9.
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Figure 4.11: Evolution of γe‖ and ∆φ for the case with the stagnation point density
nu = 0.5× 1019m−3.
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away from value 5. This is due to the fact that the electron temperature profile
is rather flat (T0/Tt < 2). The electron distribution function has a slightly
extended high energy tail, as shown in Fig. 4.12, where the 1D distribution
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F
(v

)
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Maxw

Figure 4.12: 1D electron distribution func-
tion at the cell adjacent to the target. The
blue curve is the distribution function from
KIPP while the red one is the local Maxwellian
distribution function.

function is defined by integrating
fe(v‖, v⊥) over perpendicular velocity
space as:

F (v‖) =

∫
fe(v‖, v⊥)d ~v⊥ (4.67)

The small deviation from the local
Maxwellian at the high positive par-
allel velocity is responsible for the
small increase (above 5) of the elec-
tron sheath heat transmission coeffi-
cient.

As mentioned in section 4.3.1, the
quasi steady state is expected for
each KIPP run. However, γe‖ doesn’t
fully reach the steady state in the second and third KIPP runs shown in
Fig. 4.11b. The vertical dashed lines denote steps at which SOLPS is run
and thus fixed density and temperature profiles in KIPP are updated. The
values at the first dashed line are corresponding to the values at iteration = 1
in Fig. 4.13a, etc. It is not practical to set the quasi-steady state as the exit
condition for KIPP since one has no prior knowledge about the evolution trend
and the time required to reach the quasi-steady state. At least one should as-
sign more time steps at the initial iteration where most significant changes are
expected. The influence of the size and number of the time steps specified
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(a) Evolution of ce with coupling itera-
tions at the 4 locations: 1, 2, 3, 4 marked
in Fig. 4.9.
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Figure 4.13: Evolution of ce within KIPP at the 4 locations for the case with the stagnation
point density nu = 0.5× 1019m−3.



4.3 Testing the iterative coupling scheme 65

in each KIPP run on the optimization of the coupling regime might require
further study. It is inferred however that the coupling steady state does not
depend on these details.

Although profiles of Te and ne, γe‖ and ∆φ achieve the coupling steady
state at iteration = 4, as discussed above, ce at locations 3 and 4 (close to
the target in Fig. 4.9) are increasing exponentially (numerical instability) with
coupling iterations (see Fig. 4.13).

The numerical instability in the low upstream density case

An exponential increase in ce reveals the limitation of the coupling scheme.
Here we investigate the reason for this phenomenon, and a new coupling scheme
is discussed later in section 4.3.4.

The vertical dashed lines in Fig. 4.13b have the same meaning as those in
Fig. 4.11b. The exponential increases of ce are seen at locations 3 and 4 (see
Fig. 4.13a) after iteration = 4, although profiles of Te and ne, γe‖ and ∆φ al-
ready achieve the coupling steady state. Changes in ce only occur at the initial
step, afterwards they stay unchanged for the following steps in each KIPP run.
This results in a flatter electron temperature profile, which, in turn, leads to
larger coefficients for the next KIPP run. With coupling iterations, the coeffi-
cients in this region keep increasing while electron temperature profile becomes
increasingly flatter, however, ce∇‖Te ≈ const. Since the electron temperature
profile is very flat in the region near the target, a flatter profile has no impact
on any other parameters. This explains why the coupling steady state profiles
of Te, ne and γe‖, ∆φ can be achieved, while the numerical instability still
exists.

The instability might be explained by fact that the prerequisite of a fluid
model is violated in the region near the target for such a low collisionality case
since the distribution function in this region deviates far from a Maxwellian
one due to the non-local transport [48]. The Braginskii formula for the elec-
tron conductive heat flux density completely fails. A new coupling scheme
is proposed and discussed in section 4.3.4 in order to avoid such numerical
instability in the low collisionality case.

Medium stagnation point density nu = 1.0− 2.0× 1019m−3

Here we analyse the case with the stagnation point density nu = 1.5×1019m−3

which is representative in showing trends for cases with nu = 1.0 − 2.0 ×
1019m−3. Profiles of electron density and temperature reach the coupling
steady state already at iteration = 1 (shown in Figs. 4.14 and 4.15), although
ce near the target, γe‖ and ∆φ require more iterations (see Fig. 4.16).
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Figure 4.14: Evolution of ne (solid) and Te (dashed) profiles for the case with the stag-
nation point density nu = 1.5 × 1019m−3. The four vertical dashed lines from left to right
denote locations: 1, 2, 3, 4, respectively, corresponding to the 4 positions: x ≈ 0.890m,
x ≈ 1.514m, x ≈ 2.485m, x ≈ 2.499m in poloidal coordinate.
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Figure 4.15: Evolution of Te at the 4 locations: 1, 2, 3, 4 marked in Fig. 4.14.
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Figure 4.16: Evolution of γe‖, ∆φ and ce with coupling iterations for the case with the
stagnation point density nu = 1.5× 1019m−3.

Challenge posed by the steep temperature drop

When the stagnation point density increases up to 2.0× 1019m−3 and higher,
ce in the near target region converges quickly, however, the upstream parame-
ters (heat conduction coefficient, electron temperature) evolve slowly because
of the time step limitation posed by Eq. (4.61). The large difference between
electron collision times upstream and downstream presents a challenge for the
kinetic code by requiring large computation times. This provides a motivation
for alternative ways of specifying the time step.

Since the initial KIPP run always requires more steps, we increase the time
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Figure 4.17: Evolution of the ratio of the specified time step to the Trubnikov collision
time [81] calculated based on parameters at cell 0: the stagnation point, cell 20: upstream,
cell 80: downstream, cell 126: the cell adjacent to the target for the (a) ”original” and (b)
”test” cases.
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(c) Evolution of ce at the 4 locations
within KIPP in the ”original” case.
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(d) Evolution of ce at the 4 locations
within KIPP in the ”test” case.

Figure 4.18: Comparison of the evolution of heat conduction coefficients between two cases
(the ”original” and ”test” cases), with the stagnation point density nu = 2.0× 1019m−3.

step in the initial KIPP run and then decrease it gradually to satisfy the con-
dition given by Eq. (4.61) during last iterations. Such a case will be referred
to as the ”test” case below, with the standard case, with constant time step
dt, referred to as the ”original” case.

Two cases with nu = 2.0 × 1019m−3: ”original” and ”test” cases, are run
and compared below. The only difference between them is the size of time
steps specified for the initial, second and third runs of KIPP (see Fig. 4.17
where the ratio of the specified time step to electron collision times calculated
at cell 0: the stagnation point, cell 20: upstream, cell 80: downstream, cell 126:
the cell adjacent to the target, is shown for the (a) ”original” and (b) ”test”
cases). The two cases both reach the same coupling steady state, however, it
can be clearly seen that in the ”test” case, upstream ce (at locations 1 and 2,
corresponding to x ≈ 0.890m, x ≈ 1.514m) reaches the coupling steady state
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in the ”original” case.
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Figure 4.19: Comparison of the evolution of the electron heat transmission coefficients,
sheath potential drops and electron temperature profiles between the two cases (the ”origi-
nal” and the ”test” cases) with nu = 2.0× 1019m−3.

.
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Figure 4.20: Evolution of ne and Te profiles. The profiles denoted by ”1” are already in
the coupling steady state.

faster, despite downstream ce (at locations 3 and 4, corresponding to x ≈
2.485m, x ≈ 2.499m) requires more iterations (compare Figs. 4.18b and 4.18a)
than the ”original” case due to larger time steps specified at the first three
KIPP runs. The larger time steps in the ”test” case speed up the evolution of
upstream temperatures (locations 1 and 2) without impacting the downstream
ones (locations 3 and 4, see Figs. 4.19e and 4.19f). It is surprising that γe‖ in
the ”test” case also converges faster (Figs. 4.19a and 4.19b, 4.19c and 4.19d)
which is probably attributed to the fact that the electron heat flux transport
through the boundary is only determined by the high energy electrons with
v‖ > vc, coming from the upstream region. The method adopted in the ”test”
case can be used for cases with substantial temperature drops.

High stagnation point density nu = 2.5× 1019m−3

The ”test” case method is used here for the case with the stagnation point
density nu = 2.5 × 1019m−3. The upstream collisionality of this case is ∼ 40,
which is quite collisional even for Heat Carrying Electrons (HCE):

ν∗HCE ≈
40

25
= 1.6 > 1 (4.68)

The profiles of ne, Te and γe‖, ∆φ only require 2 iterations to achieve the cou-
pling convergence as shown in Fig. 4.20. Although this case still shows heat
flux limiting upstream and heat flux enhancement downstream (up to factor
1.5 near the target) shown in Fig. 4.21, the Te profile in the coupling steady
state is quite close to the fluid model result, with only a slight decrease in
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Figure 4.21: The coupling steady state profile of ce for the case with nu = 2.5× 1019m−3.

target electron temperature (∼ 25%, from 1.6eV to 1.15eV) and an increase in
γe‖ (from 5 to 5.8). The electron distribution function fe at the target shows
a high energy tail, which however is not so pronounced to significantly impact
the value of γe‖ (see section 4.4.1).

Coupling steady state profiles of ne and Te with higher stagnation point
density are expected to converge to the fluid ones. However, cases with the
electron temperature at the final cell smax smaller than ∼ 1eV will cause new
numerical instability with coupling iterations. The profile of ce will start to
oscillate after several coupling iterations for reasons that are not yet clearly
understood.

4.3.4 Limitations of the iterative coupling algorithm and
a possible solution

The numerical instability of evolving ce in the region near the target reveals
the failure of the effort of describing conductive heat flux densities based on
local temperature gradients. As shown in section 2.4, the electron parallel
heat flux density in SOLPS consists of two contributions: the conductive heat
flux density proportional to the local electron temperature gradient and the
convective heat flux density 5

2
Γe‖Te. Up to now, only the conductive piece was

manipulated to incorporate the contribution of kinetic effects in a coupling
run, which failed in the low upstream collisionality case.

As shown in Fig. 3.1, the heat flux density calculated in KIPP at a cer-
tain location consists of two parts: ql and qr. The electrons contributing to
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the downstreaming heat flux density ql come from far upstream while those
contributing to qr come from the target reflection in very low collisional cases.
The net heat flux density has obviously no direct relation to the local electron
temperature gradient. Such an artificial linkage has led to an uncontrolled rise
of ce in the region near the target, as discussed earlier. Hence in this section
a new numerical coupling scheme is proposed and investigated for cases with
low upstream collisionality.

New scheme

Since the numerical instability occurs in the region where it shows flux en-
hancement (ceff > 3.16) near the target, the main idea of the new scheme is
to transfer the enhanced electron heat flux density, captured by KIPP, not only
to the conductive heat flux density (by increasing ce, causing the numerical
instability in low density cases) but also to the convective piece (by increasing
the coefficient, which was 2.5, in the convective heat flux formula). So the
electron heat flux density in SOLPS is modified as:

γveTeΓe‖ − ceffneτe
Te
me

∇‖Te (4.69)

The conductive piece (the second term) is still retained because of numerical
stability issue discussed later. Initially

γve = 2.5 (4.70)

ceff = 3.16 (4.71)

are adopted as a default input. In a coupling run, the enhanced heat flux
density calculated in KIPP is split into two parts by determining γve and ceff
in SOLPS:

γveTeΓe‖ − ceffneτe
Te
me

∇‖Te =
1

2
me

∫
fkipp
e v2v‖d~v (4.72)

with

γve ≥
5

2
(4.73)

ceff ≤ clim (4.74)

where clim is the user-specified limiting constant, determining the splitting ratio
of the two parts (i.e. the values of γve and ceff ). In later discussions, we will
show that the coupling steady state does not depend on the choice of clim. We
define a coefficient c′e, which is the effective heat conduction coefficient when
transferring all the enhanced part to the conductive piece, as:

c′e =

(
1

2
me

∫
fkipp
e v2v‖d~v −

5

2
TeΓe‖

)
/

(
−neτe

Te
me

∇‖Te
)

(4.75)
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Then c′e is compared to the limiting coefficient clim. If c′e exceeds the limiting
coefficient clim, we limit the effective heat conduction coefficient to clim instead
of c′e (ceff = clim), then transfer the further enhanced part to the convective
part (i.e. γve is increased above 2.5). Otherwise, we transfer all the enhanced
flux density to the conductive piece by specifying ceff = c′e and γve = 5

2
.

The analytical expression for determining γve and ceff can be found from the
following equations:

if c′e ≤ clim

 γve = 5
2

ceff = c′e

(4.76)

if c′e > clim

 γve = 5
2

+ (c′e − clim)
τe∇‖Te
meue‖

ceff = clim

(4.77)

The conditions γve = 2.5, ceff = 3.16 must be satisfied in the collisional limit.
In the case of flux limiting (normally in the upstream region), ceff is reduced,
γve = 2.5. On the other hand, ceff is increased in the case of flux enhancement
(downstream near the target), however, its increase is limited to the threshold
clim, with any further enhancement moved to the convective piece.

The conductive term in Eq. (4.72) is still retained since it helps to avoid the
numerical instability, although it is pointed out in section 4.3.3 that the formula
of conductive heat flux density completely fails in the target region with low
upstream collisionality. Removing completely the conductive term was found
to cause numerical instabilities in SOLPS. The other kinetic factors: k‖, γe‖
and ∆φ are still calculated by Eqs. (4.19), (4.37) and (4.25). This coupling
scheme will be investigated in the following part of this section.
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Figure 4.22: Coupling steady state profiles of qe‖, Te and ne are compared among various
limiting coefficients: clim = ∞, clim = 3.16, clim = 6, clim = 10, for the case with the
stagnation point density 0.5× 1019m−3.
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Figure 4.23: Coupling steady state profiles of ceff (a) and γve (b) for various clim with
the stagnation point density nu = 0.5× 1019m−3.
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Figure 4.24: Coupling steady state profiles of ceff (a) and γve (b) for various clim with
the stagnation point density nu = 1.5× 1019m−3.

Testing the new scheme

Three limiting coefficients: clim = 3.16, clim = 6, clim = 10 are tested for the
case with nu = 0.5 × 1019m−3 and then compared to the one in section 4.3.3
without the limiting coefficient (clim = ∞). They all achieve the same steady
state profiles as shown in Fig. 4.22. The coupling steady state profiles of ceff
and γve are compared among these three cases with various limiting coefficients
in Fig. 4.23, where it can be clearly seen that ceff is limited to clim near the
target and γve in the corresponding region is increased above 2.5.

In order to further test the performance of this numerical scheme, clim =
3.16 is also tested for the cases with the stagnation point densities nu = 1.5×
1019m−3 and nu = 2.0 × 1019m−3. The coupling steady state profiles of ceff
and γve with the limiting coefficient are compared with the ones without this
limit (clim = ∞) for the case with nu = 1.5 × 1019m−3 shown in Fig. 4.24
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Figure 4.25: Coupling steady state profiles of ceff (a) and γve (b) for various clim with
the stagnation point density nu = 2.0× 1019m−3.

and for the case with nu = 2.0 × 1019m−3 shown in Fig. 4.25. As expected,
the steady state profiles of ne, Te and qe‖ are the same as shown in Fig. 4.26
despite a slight increase (5%) of γe‖ for the case with nu = 2.0 × 1019m and
with clim = 3.16, resulting in slightly steeper electron temperature profile near
the target.

0.0
0.5
1.0
1.5
2.0

q e
||(
W
/m

2
)

1e6

clim=Inf

clim=3.16

0
10
20
30
40
50

T
e
(e
V
)

0.0 0.5 1.0 1.5 2.0 2.5
Poloidal length x(m)

0
5

10
15
20

n
e
(
×1

019
m
−

3
)

(a) nu = 1.5× 1019m−3

0.0
0.5
1.0
1.5
2.0

q e
||(
W
/m

2
)

1e6

clim=Inf

clim=3.16

0
10
20
30
40
50

T
e
(e
V
)

0.0 0.5 1.0 1.5 2.0 2.5
Poloidal length x(m)

0
5

10
15
20
25

n
e
(
×1

019
m
−

3
)

(b) nu = 2.0× 1019m−3

Figure 4.26: Coupling steady state profiles of qe‖, Te and ne are compared between clim =
∞ and clim = 3.16 for (a) case with nu = 1.5×1019m−3 and (b) case with nu = 2.0×1019m−3.

4.3.5 Summary on the coupling scheme

One may be suspicious of the idea that the information about non-local trans-
port modelled by KIPP can be wrapped up into a local effective heat conduc-
tion coefficient ceff in the coupling scheme. However, based on the analysis
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in section 4.1.2, achieving the coupling steady state of the iterative coupling
scheme already means treating electrons fully kinetically. The coupling steady
state profiles can always be achieved, and they seem to be unique despite the
numerical instability on the evolution of heat conduction coefficients (however
the heat flux density is already in the steady state since ceff∇‖Te ≈ const with
coupling iterations) in the region near the target in cases with low upstream
collisionality.

The three coupling schemes: ’center’ (Scheme A), ’face’(Scheme B), ’de-
couple’(Scheme C) give the same steady state profiles (see section 4.3.2) and
Scheme B is suggested for future simulations.

The coupling steady state does not depend on initial conditions, however,
the convergence efficiency is rather sensitive to the initial profile (see sec-
tion 4.3.2). The initial setup with the default coefficients: ce = 3.16, k‖ = 0.71
and γe‖ = 5 is suggested.

For cases with the large electron temperature drop (Tu/Tt > 10), the neces-
sary condition (Eq. (4.61)) limits the time step to a significantly smaller value
compared to the upstream collision time τu:

dt < 0.1τt . 6× 10−4τu (4.78)

which leads to slow evolution of upstream parameters. Instead of specifying
dt < 0.1τt for the entire coupling run, we tested the scheme with varying time
step dt from ∼ τt to 0.1τt at the first one or two KIPP runs, which signifi-
cantly accelerated the evolution of upstream parameters without affecting the
downstream parameter evolution (see section 4.3.3).

The numerical instability occurring in the low density case can be avoided
by splitting the enhanced heat flux into two parts and adding them to both
the convective and conductive pieces in SOLPS, controlled by the limiting co-
efficient clim (see section 4.3.4). The most important point is that electron
profiles of the coupling steady state are rather insensitive to clim, further prov-
ing that the coupling solution is unique. In addition, it can be concluded that
the electron temperature profile doesn’t depend on the ratio of the convective
to conductive heat flux densities. Instead, it is determined by the total heat
flux density profile which is related to energy sources and sinks. This further
justifies the conclusion that the choice of a coupling scheme is not critical:
whether it wraps up non-local information into a local effective coefficient or
by other possible ways, which only act as a bridge to transfer information from
KIPP to SOLPS. The most important point is the achievement of the coupling
steady state in the end.

Since the new scheme gives the same simulation results as the iterative
coupling scheme even for the low collisionality case, later discussions in this
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work are based on the iterative coupling scheme (corresponding to the new
scheme with clim =∞).

4.4 Kinetic effects in the coupling runs

4.4.1 Pure D cases

Effects of collisionality

In this section, γe‖ and ∆φ in the coupling steady states are compared with
the classical values γe‖ ≈ 5.0 and −e∆φ/Te ≈ 3.0, calculated based on the
Maxwellian distribution, for all scanned cases with various collisionalities,
as shown in Fig. 4.27. The sheath potential drop is rather insensitive to
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Figure 4.27: The comparison between the ki-
netic electron heat transmission coefficients, the
sheath potential drops and the classical values.

the collisionality variation. The
electron heat transmission coeffi-
cient is first increasing and then de-
creasing with collisionality [50, 52,
53, 99], close to the classical value
for cases with low and high stag-
nation point densities, however, it
can be ∼ 50% higher than the clas-
sical value for cases with medium
collisionalities. Accordingly the
extended high energy tail of the
distribution function downstream
is pronounced at medium upstream
collisionalities [48,49,51,53,75] (see
Figs. 4.28f and 4.28g), but, it is not
obvious at low and high collisional-
ities (see Figs. 4.28e and 4.28h) due
either to a small temperature drop,
so that upstream electrons have similar energies to those downstream, or to
the plasma being too collisional causing fast maxwellization of the high energy
tail appearing due to electron free-streaming [43].

Effects of the extended tail on the target temperature

The coupling steady state 1D distribution functions (defined by Eq. 4.67) for
low (nu = 0.5×1019m−3), medium (nu = 1.0 ∼ 1.5×1019m−3) and high (nu =
2.5×1019m−3) stagnation point density cases are shown, at the cell adjacent to
the target in Fig. 4.28: (e),(f),(g),(h), and at cell 10 in Fig. 4.28: (i),(j),(k),(l),
respectively. We introduce a 1D heat flux distribution q1D, defined as a surface
integral along a certain surface in the velocity space:

q1D (ε) =
1

2
me

∮
v′2‖ +v2⊥=2ε

fev
′v′‖dSv (4.79)
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where

v′‖ = v‖ − ue (4.80)

v′ =
√
v′2‖ + v2

⊥ (4.81)

ue is electron fluid velocity defined by Eq. 2.4. Sv is the surface satisfying
v′2‖ + v2

⊥ = 2ε in the velocity space with ε being arbitrary kinetic energy. A
dimensionless 1D heat flux distribution q̃1D is thus defined as:

q̃1D (ε) =
q1D (ε)

qmax
1D

(4.82)

where qmax
1D is the largest value of q1D (ε) with varying ε in the velocity space.

Dimensionless 1D heat flux distributions against kinetic energy ε (normalized
by local electron temperature) are calculated by the corresponding distribu-
tion functions, respectively, shown in Fig. 4.28 (red lines denote the ones cal-
culated by the corresponding distribution functions at cell 10 and blue lines
denote those at the cell adjacent to the target): (a),(b),(c),(d). By relating the
extended high energy tails in Fig. 4.28:(a),(b),(c),(d) with the corresponding
γe‖ for the four cases: 5.3, 7.3, 7.2, 5.8, it can be concluded that the extended
high energy tails are mainly responsible for the increases of the electron heat
transmission coefficient from the classical value (5.0).

Fig. 4.29 shows the difference between the target electron temperature (Tet)
in the coupling steady state case and that from the initial coupling iteration
(which is actually the steady state in SOLPS only case without any kinetic
effects) for the scanned cases. For the cases with the stagnation point density
1.0×1019m−3 and 1.5×1019m−3, the coupling steady state Tet drops by ∼ 45%
and ∼ 43% while the sheath heat transmission coefficient increases to 7.30
(by ∼ 45%) and 7.21 (by ∼ 40%), respectively, compared to the ones without
kinetic effects (see Fig. 4.30). The decrease of Tet due to kinetic effects seems to
be related mostly to the deviation of the electron heat transmission coefficients
from the classical values. This will be discussed further in section 5.1.

Summary

From the above discussions, it can be concluded that kinetic effects of electron
parallel transport are primarily attributed to two factors [48]:

1. Non-local effects of high energy downstreaming electrons featured by the
extended high energy fe tail towards the target in medium or even highly
collisional cases.

2. Asymmetric target sink characterized by a cut-off fe in the region near
the target in weakly collisional cases.

There are two key conditions that determine the importance of the non-local
effects of high energy downstreaming electrons:
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Figure 4.28: Dimensionless 1D heat flux distribution at the cell (cell smax) next to the
target (in blue) and at cell 10 corresponding to the position at ∼ 1

3 of the simulation
domain upstream (in red) are shown for a) nu = 0.5× 1019m−3, b) nu = 1.0× 1019m−3, c)
nu = 1.5× 1019m−3, d) nu = 2.5× 1019m−3. The corresponding 1D distribution functions
against v‖ are shown at cell max (in blue) in e,f,g,h and the ones at cell 10 are shown (in
blue) in i,j,k,l, the red curves in e,f,g,h,i,j,k,l are local Maxwellian distribution functions.

0.5 1.0 1.5 2.0 2.5
stagnation point density nu  (1019 m−3 )

0
5

10
15
20
25
30
35
40
45

T
et
(e

V
)

Tet coupling steady state

Tet coupling initial state

Figure 4.29: Target electron temperature
of a coupling steady state (black) and of a
SOLPS steady state (blue) for various cases
with different stagnation point densities.
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• The upstream collisionality ν∗ = Lpar
λu

.

• The electron temperature drop Teu/Tet

Medium upstream collisionality cases with pure deuterium plasmas already
show observable kinetic effects. In order to achieve stronger electron temper-
ature drops but with unchanged upstream collisionalities, we will increase the
radiation downstream by introducing impurities. Carbon impurities, used as
the radiator, will be added in the following section 4.4.2.

4.4.2 D+C case

In a future fusion reactor e.g. ITER [16], the high confinement mode [114,115]
with highly radiative divertor regime [116] is planned. Accordingly, in the SOL,
the upstream temperature will be high, improving confinement, with a very
low temperature at the target, reducing impurity sputtering, i.e. the upstream
collisionality ν∗ will be low and the temperature drop will be substantial, so
that electron kinetic effects are expected to play a significant role. In order
to investigate such a situation with low upstream collisionality but a strong
temperature drop, carbon, used as a radiator, is introduced in the coupling
simulation as an impurity.

Simulation setup

The upstream deuterium ion density is set at 2.2× 1019m−3, and power input
is set to match the power flux through the separatrix with constant flux den-
sity 0.132MW/m2 from the stagnation point to ∼ 1

4
of the simulation domain

(corresponding to the first 7 cells, from x = 0m to x ≈ 0.68m). The cells with
power input are hence separated from the region where the radiation power is
concentrated (downstream). Chemical and physical impurity sputtering mod-
els in SOLPS are activated to produce carbon impurities. The constant sput-
tering yield with deuterium sputtering coefficient 0.095 is prescribed for the
chemical sputtering model. TRIM database is used for the physical sputter-
ing model. The recycling coefficient of carbon particles (including all charged
states and neutrals) is set to zero while the deuterium recycling coefficient is
set to 0.999.

One problem for the 1D geometry with carbon impurity is that carbon ions,
especially highly charged ions (particularly C4+), tend to concentrate upstream
due to thermal force since there are no sinks for them. This concentration
would make the evolution unstable and cause the cases to crash even if the
chemical sputtering coefficient is prescribed at a very small value. To avoid
this problem, an artificial carbon ion particle sink is introduced along the
simulation domain, mimicking the radial loss out of a 2D geometry. The sink
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loss rate is specified as:

SCi+ = −rinCi+
√
Ti
mi

i = 0, 6 (4.83)

where nCi+ is particle density of species Ci+. Carbon neutrals have i = 0,
and SCi+ is particle loss rate of species Ci+. ri is loss rate coefficient, a free
dimensionless parameter to be prescribed by the user. In this case, in order to
efficiently remove highly charged ions upstream, the loss rate coefficient ri is
prescribed to be proportional to the local pressure of Ci+, as:

ri =
nCi+(x)Ti(x)Lpol∫
nCi+(x)Ti(x)dx

i = 3, 6 (4.84)

ri = 0 i = 0, 2 (4.85)

where Lpol is poloidal length of the simulation domain and x is poloidal coor-
dinate.

Coupling test with carbon impurity

Evolution of ne and Te profiles, γe‖ and ∆φ with coupling iterations are shown
in Fig. 4.31. The upstream collisionality is ∼ 18, comparable to the case
with nu = 1.0 × 1019m−3 of pure deuterium plasmas (section 4.3.3), however,
the electron temperature drop Teu/Tet ≈ 12.20 here is larger by about factor
2. Such a medium upstream collisionality, but with the substantial electron
temperature drop, results in an extended high energy tail of the 1D distribution
function at the cell adjacent to the target, as shown in Fig. 4.32a. The contour
plot of the electron conductive heat flux density and dimensionless 1D heat
flux distribution at the same cell are shown in Fig. 4.33. It can be clearly
seen that the contribution of high energy electrons is increased dramatically
because of their non-local transport since they experience significantly fewer
collisions when moving from upstream to downstream.

The extended high energy tail leads to a rather high electron sheath heat
transmission coefficient γe‖ ≈ 11.20, more than 100% increase from the clas-
sical value, while it does not contribute much to the sheath potential drop,
∆φ ∼ 3.15Te

e
. Accordingly, the target electron temperature is decreased by

∼ 60%, while the stagnation electron temperature is not much affected (see
Fig. 4.31c), indicating that the kinetic boundary conditions are important in
the modification of the profile of electron temperature (the reason can be found
in section 5.1).

4.5 Summary

The iterative coupling algorithm has been tested and proven to be working
well for various upstream collisionalities. The numerical instability, occurring
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(c) Evolution of ne and Te profiles.
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Figure 4.31: Evolution of ne and Te profiles, ce, γe‖ and ∆φ with coupling iterations for
the case with carbon impurity, with the stagnation point density nu = 2.2× 1019m−3. The
four vertical dashed lines in (c) from left to right denote locations: 1, 2, 3, 4, respectively,
where the evolution of ce (b) and Te (d) is shown.

in the case with low collisionalities, can be removed by the new scheme with a
limiting coefficient clim. Additionally, the coupling steady state profiles of ne,
Te and qe‖ from the new scheme with various clim are found to be exactly the
same as those from the iterative coupling scheme.

As was expected (see e.g. [43]), density scan cases with pure deuterium
plasmas show strong kinetic effects in cases with medium upstream collisional-
ities. However, in real situations, radiation sinks due to impurities are always
present in the divertor region. Hence the upstream collisionality ν∗ is not the
only free parameter to determine the role of kinetic effects. The Te drop is also
important. A case with lower collisionality and stronger temperature drop is
expected to have stronger kinetic effects. This can be concluded by comparing
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Figure 4.32: 1D distribution functions (Eq. (4.67)) at the cell adjacent to the target (a)
and the cell 10 (b). Blue curves denote the distribution function calculated by KIPP while
red ones denote local Maxwellian.

the case with the carbon impurity and the case with nu = 1.0× 1019m−3 with
pure deuterium, which have similar upstream collisionalities ν∗ ≈ 16− 18 but
different electron temperature drops.

For all cases run in this section, the extended high energy tail of the dis-
tribution function for the downstreaming electrons at the target results in
the increase of γe‖ compared to the classical value. This increase, instead of
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impacting target electron heat flux density, leads to the decrease of target elec-
tron temperature (Tet) from the value in the initial coupling state to the final
coupling steady state (see Fig. 4.29 discussed in section 4.4.1). The relation
between γe‖ and Tet is investigated in section 5.1.



Chapter 5

Comparison of the coupling
results with SOLPS results

In Chapter 4 we demonstrated that the iterative coupling algorithm allows
one to include kinetic electrons into the sophisticated fluid code, SOLPS, by
treating electron parallel transport fully kinetically with KIPP and wrapping
up non-local transport information into ’local’ effective heat conduction coef-
ficients.

The following nomenclature will be adopted in this section. Similar to def-
initions given in [52, 53], we classify the four kinetic factors into two groups:
boundary factors (γe‖ and ∆φ) and flux factors (ce and k‖). The kinetic factors
in a coupling steady state are indicated as γss

e‖, ∆φss, css
e , kss

‖ , while those de-

termined by Eqs. (3.29), (3.23), (2.40), (2.26) and commonly used for the fluid
model, are indicated as γc

e‖, ∆φc, cc
e, k

c
‖. We will call γss

e‖ and ∆φss ”kinetic
boundary factors”, css

e and kss
‖ ”kinetic flux factors”, γc

e‖ and ∆φc ”classical
boundary factors”, and cc

e and kc
‖ ”fluid flux factors”.

Based on the coupling simulations in chapter 4, we conclude the so-called
flux enhancement downstream (css

e > cc
e) tends to flatten electron temperature

rather than enhancing the heat flux. Instead of influencing the target heat flux
density, the deviation of γss

e‖ from γc
e‖ causes the decrease of the target electron

temperature (see Fig. 4.30). This indicates, counter-intuitively, that, by flat-
tening the electron temperature profile, non-local transport tends to reduce
the target electron temperature.

In order to explain the counter-intuitive phenomena pointed out above and
investigate the difference between the contributions of the two groups of kinetic
factors to the modification of the Te profile, the boundary and flux factors
are separately applied to SOLPS. Then the results are compared with those
obtained by applying all four kinetic factors: γss

e‖, ∆φss, css
e , kss

‖ , to SOLPS.

85
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5.1 Density scan cases: pure deuterium

Alongside the coupling cases with pure deuterium plasmas in section 4.3.3 for
each stagnation point density, four SOLPS cases with and without applying
kinetic boundary factors and the heat flux limiter are run:

Case A running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), classical

boundary factors (γe‖ = γc
e‖, ∆φ = ∆φc) and without heat flux limiter

(αe =∞).

Case B running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), classical

boundary factors (γe‖ = γc
e‖, ∆φ = ∆φc) and with heat flux limiter

(αe = 0.3).

Case C running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), kinetic

boundary factors (γe‖ = γss
e‖, ∆φ = ∆φss) and without heat flux limiter

(αe =∞).

Case D running SOLPS with fluid flux factors (ce = cc
e, k‖ = kc

‖), kinetic

boundary factors (γe‖ = γss
e‖, ∆φ = ∆φss) and with heat flux limiter

(αe = 0.3).

Low stagnation point density nu = 0.5× 1019m−3
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Figure 5.1: Profiles of qe‖, Te and ne with
the stagnation point density nu = 0.5 ×
1019m−3 are compared for the 5 cases: cases
A, B, C, D and the coupling case (see text for
details).

The comparison of profiles of electron
density ne, electron temperature Te,
electron heat flux density qe‖ among
the 5 cases: A, B, C, D and the cou-
pling case with nu = 0.5 × 1019m−3,
is shown in Fig. 5.1. As pointed out
above, the upstream collisionality of
these cases is quite low, ∼ 6. Inter-
estingly enough, profiles of qe‖ from
all cases are the same, even the tar-
get electron heat flux densities (qt‖)
are the same, although γe‖ for cases
A and B is different from that for
cases C, D and the coupling case. By
comparing Te profiles from cases A,
C and the coupling case, it can be in-
ferred that the deviation of γss

e‖ from
γc
e‖ is mainly responsible for decreas-

ing the target electron temperature.
The flux limiting upstream (css

e < cc
e)

slightly increases the stagnation point temperature while the flux enhancement
(css
e > cc

e) downstream flattens the electron temperature profile.
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Figure 5.3: Profiles of qe‖, Te and ne with
the stagnation point density nu = 1.5 ×
1019m−3 are compared for the 5 cases: cases
A, B, C, D and the coupling case (see text
for details).

Medium stagnation point densities

The comparison of profiles of ne, Te and qe‖ among the 5 cases with nu =
1.0 × 1019m−3 and nu = 1.5 × 1019m−3 are shown in Figs. 5.2 (a blow-up
of the region x = 2.30m − 2.50m) and 5.3 (a blow-up of the region x =
2.45m−2.50m), respectively. As one can see by comparing the 5 cases for nu =
1.0×1019m−3 and nu = 1.5×1019m−3, qe‖ is insensitive to the kinetic boundary
factors and heat flux limiter, however, target electron temperatures with the
kinetic boundary factor (cases C, D and the coupling case) are almost half
of those with the classical boundary factor (cases A and B). This strengthens
the argument that the deviation of γss

e‖ from γc
e‖ tends to decrease the target

electron temperature rather than to modify the target heat flux. From Fig. 5.4,
where the stagnation point and target electron temperatures (Teu and Tet) with
increasing nu are shown for the 5 cases, one can conclude that the deviation
of Tet in the coupling case from that in case A is mainly attributed to the
deviation of γss

e‖ from γc
e‖. The reason for this is investigated in the following

subsection.

Relation between γe‖ and Tet

To explain the relation between γe‖ and Tet discussed in section 4.4.1 (see
Fig. 4.30) and above, a simple analysis is given here. The target electron heat
flux density is specified as:

qt‖ = γe‖ntTetCs ∝ γe‖ntT
3/2
et (5.1)



88 5. Comparison of the coupling results with SOLPS results

0.5 1.0 1.5 2.0 2.5
stagnation point density nu  (1019 m−3 )

0

10

20

30

40

50

E
le

ct
ro

n
 t

e
m

p
e
ra

tu
re

 (
e
V

)

Tet coupling

Tet Case A

Tet Case B

Tet Case C

Tet Case D

Teu coupling

Teu Case A

Teu Case B

Teu Case C

Teu Case D
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where ntCs is the target electron particle flux density. Upstream and down-
stream pressures can be related to each other by the two-point model [6]:

nuTeu ≈ 2ntTet (5.2)

Hence the target electron heat flux density can be transformed as:

qt‖ ∝ γe‖nuTeuT
1/2
et (5.3)

We compare case A and the coupling case at a certain nu. As pointed out
above (see Figs. 5.1, 5.2 and 5.3), the target electron heat flux densities for
case A and the coupling case:

qA
t‖ ∝ γA

e‖nuT
A
eu

√
TA
et (5.4)

qcpl
t‖ ∝ γcpl

e‖ nuT
cpl
eu

√
T cpl
et (5.5)

are more or less the same:

qA
t‖ ≈ qcpl

t‖ (5.6)

where the variables with the superscript ”A” are for the Case A and ”cpl” for
the coupling case. So,

γA
e‖ = γc

e‖ (5.7)

γcpl
e‖ = γss

e‖ (5.8)

As can be seen in Fig. 5.4, TA
eu ≈ T cpl

eu , since the upstream electron temperature
depends mainly on the upstream power input. Therefore:

qA
t‖

qcpl
t‖

=
γA
e‖

√
TA
et

γcpl
e‖

√
T cpl
et

≈ 1 (5.9)
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Figure 5.6: Profiles of qe‖, Te and ne with the stagnation point density nu = 2.5×1019m−3

are compare among the 5 cases: cases A, B, C, D and the coupling case (details can be found
in the text).

in agreement with the profile in Fig. 5.5. Hence

TA
et

T cpl
et

≈

(
γcpl
e‖

γA
e‖

)2

(5.10)

This above equation clearly explains the result shown in Fig. 4.30.

By comparing profiles of ne among the 5 cases both in Figs. 5.2 and 5.3,
one may notice that the deviation of ne in the coupling case from that in case
A near the target is mainly due to the fact that kinetic and fluid flux factors
are implemented respectively for the two cases (case A and coupling case).
This is clarified in section 5.2.

High stagnation point density

Despite the difference between the target electron temperature (∼ 1.6eV) for
cases A, B and that (∼ 1.15eV) for cases C, D and the coupling case, the
profiles of ne, Te and qe‖ in the coupling case start to converge to the ones with
running only SOLPS (cases A and B) as shown in Fig. 5.6 (a blow-up of the
region x = 2.48m− 2.50m).

5.2 D+C case

Similar to pure D cases in section 5.1, cases A, B, C, D are run with carbon
impurity with the same setup as in section 4.4.2. However, instead of applying
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a flux limiter αe = 0.3, the case B is run with implementing the kinetic flux
factors (ce = css

e ) in order to investigate their effect on the ne profile. Then
the four cases are compared with the coupling case with the carbon impurity
from section 4.4.2.

Fig. 5.7 shows the comparison of ne, Te and qe‖ profiles among the five cases
(only a blow-up of the region near the target x = 2.46− 2.50m is shown). As
mentioned above, by comparing case A (or B), case C (or D) and the coupling
case, it is clear again that the deviation of γss

e‖ from γc
e‖ is mainly responsible

for decreasing the target electron temperature, however, the kinetic flux fac-
tors have little impact on Tt, as can be concluded by comparing cases A and B.

ne near the target in the coupling case can be matched by running SOLPS
only with the kinetic flux factors (case B), as seen in Fig. 5.7, consistent with
the discussions in section 5.1.

Nevertheless, in difference to the results in section 5.1, the electron heat
flux densities near and at the target are distinctly different among the five
cases. It can be inferred from Fig. 5.8 that the discrepancy between the elec-
tron heat flux densities is mainly attributed to differences in electron energy
sinks due to differences in electron temperatures and densities in this region,
rather than to kinetic effects on the ionization rate coefficients, since kinetic
atomic rates were not calculated here.
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Figure 5.9: Profiles of (a) the electron heat conduction coefficient (ce = csse ) and (b)
the thermal force coefficient (k‖ = kss

‖ ) in the steady state coupling case with the carbon
impurity.

Both kinetic flux and boundary factors play an important role in deter-
mining profiles of ne, Te and therefore qe‖. The significant deviation of css

e and
kss
e from cc

e and kc
e near the target (see Fig. 5.9) tend to increase ne, and, as

discussed above, the deviation of γss
e from γc

e tends to decrease the target elec-
tron temperature, which together results in the modification of the radiation
density in the near target region.

5.3 Summary

Coupling simulations successfully reproduce the expected effect of heat flux
limiting (css

e < cc
e) upstream and enhancement (css

e > cc
e) downstream [43]. For

cases with pure deuterium plasmas, based on our simulations, the flux limiting
and enhancement factors were found to have no impact on the profile of elec-
tron heat flux, although, in the region near the target, the deviation of css

e from
cc
e is significant (e.g. by factor 3 or 4 for medium upstream collisionalities).

The flux enhancement only tends to flatten the electron temperature profile
without affecting the absolute value much in the near target region. We con-
clude that the kinetic boundary factor γss

e is mainly responsible for the electron
target temperature decrease compared to a fluid simulation, which leads to the
change in the electron temperature profile. The SOLPS case with fluid flux
factors (ce = cc

e, k‖ = kc
‖) and kinetic boundary factors (γe‖ = γss

e‖, ∆φ = ∆φss)
is able to produce profiles close to those from the coupling simulation.

This, however, is not true for the case with the carbon impurity. The
combined effect of a remarkable decrease of the downstream electron temper-
ature, attributed to the deviation of the kinetic boundary factors from the
fluid boundary factors, and a strong density increase, caused by the difference
between the kinetic flux factors and the fluid flux factors in the same region,
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strongly affect the ionization radiation power, thus modifying the electron heat
flux profile as a result.

We would like to conclude that the inclusion of kinetic boundary factors
is always important for a fluid model to correctly predict the target electron
temperature for all collisionalities we have investigated in this chapter. Instead
of influencing the boundary heat flux, the kinetic sheath heat transmission
coefficient γss

e rather modifies the target electron temperature. The increase
of the upstream electron temperature due to flux limiting upstream is always
small and hence can be neglected. The heat flux profile is determined by
the energy sources and sinks rather than being directly affected by the flux
limiting or enhancement. However, for cases with the carbon impurity where
the radiation concentrates downstream, the electron heat flux profile near the
target is substantially modified by kinetic effects of electron parallel transport
as a result of the modification of radiation power profile due to the change of
electron density and temperature in that region.



Chapter 6

Summary and conclusions

Power exhaust is one of the critical issues for future fusion reactors. The power
flux from the core plasma to the SOL deposits in the divertor region. This
power is carried mostly by parallel transport in SOL. The parallel heat flux
density can be up to ∼ 1GWm−2 for ITER [20], which is way above the limit
of divertor materials (10MWm−2). A detached divertor regime is planned for
ITER operation and some novel divertor geometries, e.g. snow-flake diver-
tor [117], small angle slot divertor [118], have been tested to avoid high power
depositions. The careful divertor design, which requires highly precise heat
flux calculation, is the key for successful fusion energy realization.

SOLPS is the main tool for the prediction of SOL and divertor conditions
in the future fusion device ITER, where parallel kinetic effects in the SOL
will play an important role. The default version of SOLPS solves the Bra-
ginskii (fluid) equations which don’t take kinetic effects into account. The
present work has enabled SOLPS in its 1D version to incorporate kinetic ef-
fects of parallel electron transport by coupling it with KIPP. We fully tested
the iterative coupling algorithm, in which SOLPS solves the fluid equations
with effective kinetic factors for electrons transferred from KIPP and KIPP
solves the Vlasov-Fokker-Planck equation maintaining plasma profiles trans-
ferred from SOLPS. The iteration was made as an automatic process.

The coupling scheme used in the coupling algorithm takes advantage of
the strong points of SOLPS which uses a highly sophisticated fluid model,
with self-consistent recycling and physical and chemical sputtering models, as
well as atomic physics, while treating electrons kinetically in order to consider
the most important kinetic effects of parallel electron transport with the rest
(ion transport, atomic physics, etc.) tackled by the fluid model. It has been
demonstrated that typically only 2 or 3 iterations between SOLPS and KIPP
are necessary to achieve a coupling steady state (see section 4.3.3).

In some circumstances where the electron temperature profile from the
stagnation point to the target is flat hence Te is still quite high at the target,
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there exists an exponential increase in ce near the target region with coupling
iterations, although this increase has no influence on the already convergent ion
and electron parameter profiles. This numerical instability only occurred in low
collisionality cases. It can be avoided by the new scheme which applies a limit-
ing coefficient clim to conductive heat flux density (see section 4.3.4). The new
scheme modifies the formula of parallel electron heat flux density qe‖ by limiting
ce ≤ clim and allows the enhanced flux transferred not only to the conductive
piece but also to the convective piece. The achieved clim-independent coupling
steady states for various collisionalities imply that the coupling scheme allows
one to obtain the unique solution with the kinetic treatment of electrons by
simply maintaining profiles of electron density, temperature and particle flux
density in KIPP and then transferring kinetic coefficients from KIPP back to
SOLPS.

A fairly low sensitivity of the electron heat flux density profile to electron
kinetic effects in cases with pure deuterium plasmas can be inferred from the
comparison between the coupling and SOLPS only simulations (see chapter 5).
The deviation of the coupling steady state sheath heat transmission coefficient
γss
e‖ from the classical value γc

e‖, attributed to non-local transport of upstream
hot electrons, is mainly responsible for the difference of the target electron
temperature in a coupling steady state and the one achieved only by SOLPS.
The electron heat conduction coefficient ce and the electron sheath heat trans-
mission coefficient γe‖ in a fluid code are specified to give the electron heat flux
densities through cell faces and the boundary. However, instead of influenc-
ing the profile of electron heat flux density and the target electron heat flux
density (see section 5.1) they tend to modify the electron temperature pro-
file. This phenomenon may be explained by the fact that, for a self-consistent
complete model with the Vlasov-Fokker-Planck equation or the infinite num-
ber of moment equations, the profiles of electron heat flux and temperature
are essentially determined by energy sources and sinks. Nevertheless, for the
Braginskii model where only the first three moment equations are present, the
electron temperature profile is imposed by the closure equation (Eq. (4.6)).

Similar to fully kinetic simulations, the iterative coupling algorithm self-
consistently achieves the profiles of electron temperature and heat flux density
determined by sources, but with the help of the fluid model to provide in-
formation that cannot be obtained with only electron kinetic equation. The
effective kinetic factors ceff , keff , γeff , ∆φeff connects the kinetic electron
equation and the fluid equations in the coupling scheme. For example, ceff
acts as a free parameter, matching the relation between electron temperature
and heat flux density that is used in the fluid model. It indicates that the spe-
cific form of the equation for the relation between electron temperature and
heat flux density (the closure equation 4.6) doesn’t influence the simulation re-
sults with the iterative coupling scheme, which only acts as a bridge to transfer
information from KIPP to SOLPS (as has been elucidated in section 4.3.4).
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The achievement of the coupling steady state is the most important point.
However, the choice of the closure equation should not introduce numerical
instabilities, e.g. removing the conductive piece from the closure equation can
introduce numerical instability to SOLPS and hence the coupling steady state
will never be reached (see section 4.3.4).

In order to simulate the case with low upstream collisionality but a strong
temperature drop which is expected in ITER, we switched on carbon impurity
sputtering. The carbon was introduced as a radiator in the coupling simu-
lation. One problem for 1D geometry with carbon impurity is that highly
charged ions tend to concentrate near the stagnation point, which causes cases
to crash. The artificial carbon ion particle sink (see section 4.4.2) was ap-
plied to avoid this problem. In difference to pure deuterium cases, however,
the comparison between the coupling and SOLPS only cases with the carbon
impurity as a radiator shows that the heat flux density profile can be affected
indirectly by parallel kinetic effects (see section 4.4.2), since the modifications
of temperature and density profiles near the target change rate coefficients for
atomic physics.

Electron kinetic effects are expected to have significant impacts on divertor
detachment regime [72, 73, 75]. Based on 1D SOLPS simulations, detachment
occurs when Ti ≈ 1eV and Te < 1eV. However, the present work has shown
that there exists a new numerical instability for the iterative coupling scheme
when simulating cases with target electron temperature Tet . 1eV. For these
cases, ce profile oscillated in the near target region and the amplitude of this
oscillation grew with coupling iterations. Above a certain amplitude, negative
values appeared in the ce profile, ruining the simulation. The reason is not yet
clearly understood. This may require further study in future.
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Appendix A

Numerical details of SOLPS

A.1 Numerical implementation of B2.5 equa-

tions

In SOLPS, the 2D B2.5 equations (Eqs. (2.41-2.46)) are discretized using the
finite volume method. Since it is very important for the coupling, the electron
energy conservation equation (Eq. (2.46)) for cell ix, iy, taken as an example,
is discretized (the change of the average energy content in one cell is due to
the heat flux flowing in/out of the cell faces and the volumetric sources/sinks
inside this cell) as:

3

2
V

∆(neTe)

∆t
= Ql−Qr +Qb−Qu−Q∆V +

(
SEe − neTe∇ · ~ue +

1

ene
~j · ~Re

)
V

(A.1)
As shown in Fig. A.1, Ql, Qr, Qb, Qu are the numerical electron heat fluxes
through the left, right, bottom and top faces of cell ix, iy, respectively. V is
the volume of this cell. A hybrid scheme is used for convective and conductive
heat fluxes (numerical details can be found in Appendix B). For example, the
heat flux through the left face Ql has the form:

Ql = Qv
l +Qd

l (A.2)

Qv
l is the convective piece and Qd

l is the conductive piece:

Qv
l = fl · T up

e · Al

= flAl
1

2
[T (ix − 1, iy) + T (ix, iy)]−

1

2
|flAl| [T (ix, iy)− T (ix − 1, iy)]

(A.3)

Qd
l =

(√
D2
l + f 2

l /4− |fl| /2
)

T (ix, iy)− T (ix − 1, iy)

(hx(ix, iy) + hx(ix − 1, iy)) /2
· Al (A.4)

where T (ix, iy) is the electron temperature at cell ix, iy. hx(ix, iy) is the length
of cell ix, iy in the x direction. Al is the effective area of the left face (exactly
the left face area if the cell is rectangular), fl is the poloidal convective piece
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Figure A.1: Energy balance of cell ix, iy is related to the four adjacent cells.

coefficient (Eq. (2.62)) interpolated onto the cell left face and Dl is the poloidal
conductive diffusivity (Eq. (2.65)) interpolated onto the cell left face:

fl = Fex|l (A.5)

Dl = b2
x ce

neTeτe
me

∣∣∣∣
l

+ b2
z χ

E
e ne
∣∣
l

(A.6)

where ”|l” denotes the linear interpolation onto the left face of cell ix, iy, by
defining:

Fl = fl · Al (A.7)

Cl =
2
(√

D2
l + f 2

l /4− |fl| /2
)
· Al

hx(ix, iy) + hx(ix − 1, iy)
+

1

2
|Fl| (A.8)

The heat fluxes through the four faces are transformed to consist of two com-
ponents:

Ql =Fl
1

2
[T (ix − 1, iy) + T (ix, iy)]− Cl [T (ix, iy)− T (ix − 1, iy)] (A.9)

Qr =Fr
1

2
[T (ix + 1, iy) + T (ix, iy)]− Cr [T (ix + 1, iy)− T (ix, iy)] (A.10)

Qb =Fb
1

2
[T (ix, iy − 1) + T (ix, iy)]− Cb [T (ix, iy)− T (ix, iy − 1)] (A.11)

Qu =Fu
1

2
[T (ix, iy + 1) + T (ix, iy)]− Cu [T (ix, iy + 1)− T (ix, iy)] (A.12)

The variables with the subscriptions ”r, b, u” have the same forms of Eq. (A.7)
and (A.8), but, Db and Du are radial diffusivities:

Db = χEe ne
∣∣
b

(A.13)

Du = χEe ne
∣∣
u

(A.14)
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The heat exchange term Q∆ is described in the same way as in Eq. (2.37). The
sixth term on the right hand side of Eq. (A.1), with the time-dependent term
moved to the right, is regarded as electron energy source and is written in the
form:

(
SEe − neTe∇ · ~ue +

1

ene
~j · ~Re −

3

2

∆(neTe)

∆t

)
V = S0+S1T (ix, iy)+S2ne+S3neT (ix, iy)

(A.15)
with S0, S1, S2 determined based on electron density and temperature. The
variable remained to be solved is the profile of the electron temperature. The
implicit numerical scheme is used to describe the evolution of the electron
temperature by solving the following equation at every time step:

{
Fl

1

2

[
T n+1(ix − 1, iy) + T n+1(ix, iy)

]
− Cl

[
T n+1(ix, iy)− T n+1(ix − 1, iy)

]}
−
{
Fr

1

2

[
T n+1(ix + 1, iy) + T n+1(ix, iy)

]
− Cr

[
T n+1(ix + 1, iy)− T n+1(ix, iy)

]}
+

{
Fb

1

2

[
T n+1(ix, iy − 1) + T n+1(ix, iy)

]
− Cb

[
T n+1(ix, iy)− T n+1(ix, iy − 1)

]}
−
{
Fu

1

2

[
T n+1(ix, iy + 1) + T n+1(ix, iy)

]
− Cu

[
T n+1(ix, iy + 1)− T n+1(ix, iy)

]}
−Qn+1

∆ V + S0 + S1T
n+1(ix, iy) + S2ne + S3neT

n+1(ix, iy) = 0 (A.16)

Here T n+1 describes the unknown temperature profile to be solved in the above
equation:

T n+1(ix, iy) = T n(ix, iy) + dT (ix, iy) (A.17)

with T n (the solution from the previous time step) already known at time step
n. The other variables: Fl, Fr, Fb, Fu, Cl, Cr, Cb, Cu, S0, S1, S2 are calculated
based on profiles of electron density and temperature at time step n, which are
already known from the solution of the previous time step. Now the unknown
variable becomes the profile of dT . Substitution of Eq. (A.17) into Eq. (A.16),
leads to:

aab(ix, iy) ∗ dT (ix, iy − 1) + aau(ix, iy) ∗ dT (ix, iy + 1)

+aal(ix, iy) ∗ dT (ix − 1, iy) + aar(ix, iy) ∗ dT (ix + 1, iy)

+aac(ix, iy) ∗ dT (ix, iy) = resn(ix, iy) (A.18)
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where

aab(ix, iy) = −Fb − Cb (A.19)

aau(ix, iy) = Fu − Cu (A.20)

aal(ix, iy) = −Fl − Cl (A.21)

aar(ix, iy) = Fr − Cr (A.22)

aac(ix, iy) = −S1 − S3ne + V
∂Q∆

∂Te

∣∣∣∣n
− aab(ix, iy)− aau(ix, iy)
− aal(ix, iy)− aar(ix, iy) (A.23)

and

resn(ix, iy) ={
Fl

1

2
[T n(ix − 1, iy) + T n(ix, iy)]− Cl [T n(ix, iy)− T n(ix − 1, iy)]

}
−
{
Fr

1

2
[T n(ix + 1, iy) + T n(ix, iy)]− Cr [T n(ix + 1, iy)− T n(ix, iy)]

}
+

{
Fb

1

2
[T n(ix, iy − 1) + T n(ix, iy)]− Cb [T n(ix, iy)− T n(ix, iy − 1)]

}
−
{
Fu

1

2
[T n(ix, iy + 1) + T n(ix, iy)]− Cu [T n(ix, iy + 1)− T n(ix, iy)]

}
−Qn

∆V + S0 + S1T
n(ix, iy) + S2ne + S3neT

n(ix, iy) (A.24)

As one may note, there are five points involved in each cell. Eq. (A.18) is the
discretized electron energy conservation equation only for cell ix, iy. We have
a mesh with nx + 2 cells poloidally from −1 to nx, ny + 2 cells radially from
−1 to ny. The discretized electron energy conservation equations for all cells
can be written as a matrix equation:

A · dT = Res (A.25)

A is a square matrix with (nx + 2)(ny + 2) × (nx + 2)(ny + 2) elements; dT
is a vector, remained to be solved, with (nx + 2) × (ny + 2) elements, while
Res is the right hand side vector with (nx + 2)× (ny + 2) elements. One has
to note that the boundary cells (e.g. the right boundaries with ix = nx) are
ghost cells for specifying boundary conditions. The flux terms in Eq. (A.16)
at the right face of cells with ix = nx are specified as:

Fr = 0 (A.26)

Cr = 0 (A.27)

In these ghost cells, the boundary conditions, e.g. the electron heat flux out of
the simulation domain, are regarded as sinks specified in the source term SEe
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Figure A.2: Radial heat fluxes through bottom and top faces of cell ix, iy are 0.

in Eq. (A.1). The same numerical schemes are used for the other ghost cells.
LU decomposition is then performed on the matrix A:

A = LU (A.28)

and hence the equation LU · dT = Res can be easily solved iteratively.

A.2 1D adaptation

The 1D geometry (see section 2.4) is used in this work. The radial transport is
switched off by implementing periodic boundary conditions in the y direction
(see Fig. A.2), so the radial heat fluxes are:

Γb = Γu = Dy(ix, iy)×
n(ix, iy)− n(ix, iy)

hy
= 0 (A.29)

Qb = Qu =
5

2
ΓbT (ix, iy) + κy(ix, iy)×

T (ix, iy)− T (ix, iy)

hy
= 0 (A.30)

Coefficients with subscripts ”u” and ”b” in the discretized electron energy bal-
ance equation (Eq. (A.16)) can be dropped, therefore, the discretized 5-point
energy balance equation (Eq. (A.18)) becomes essentially a 3-point equation:

aal(ix, iy) ∗ dT (ix − 1, iy) + aar(ix, iy) ∗ dT (ix + 1, iy)

+aac(ix, iy) ∗ dT (ix, iy) = resn(ix, iy) (A.31)

All the variables have the same forms as those in Eq. (A.18) but with terms
with the subscript ”u” or ”b” being dropped.
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A.3 Adaptation of boundary conditions in SOLPS

to the coupling scheme

A.3.1 The default boundary condition

As discussed in section 4.1.2, in order to be compatible with the KIPP target
boundary conditions (technically the sheath edge, but referred to as ”bound-
ary” or ”target” in later discussions) where the parallel heat flux density is
the only contributor (see Eq. (4.37)), a modification is made to the boundary
condition for the electron energy conservation equation in SOLPS. As pointed
out in section 4.2.3, there are two ghost cells at each end of the simulation
grid for implementation of boundary conditions. Cell nx is adjacent to the
target (sheath edge). As shown in Fig. A.3a, the electron heat flux through
the simulation boundary (denoted as ”target” in the figure) is defined as Qt,
which consists of two components:

Qt = bxqt‖A+ bzqt⊥A

= Qt‖ +Qt⊥ (A.32)

where qt‖ and qt⊥ are electron parallel and perpendicular heat flux densities
through the boundary and A is the boundary area. Since the ghost cell is
attached to the simulation boundary, Qt is also the heat flux entering the
ghost cell. The boundary condition with specified γ′e is applied to the ghost
cell (actually γ′e = c1 + |eφ| /Tet with c1 being the free parameter, but, for
simplicity, here we only discuss γ′e, see discussions in section 4.1.2) as an energy
sink to balance Qt. So, in the steady state, it leads to:

Qt‖ +Qt⊥ = γ′ebxΓt‖ATet (A.33)

where Γt‖ is the parallel electron particle flux density through the boundary
and Tet is the electron temperature interpolated at the boundary. γ′e is specified
for both parallel and perpendicular parts through the boundary, although the
perpendicular one is normally substantially smaller (. 10%) than the parallel
one. The perpendicular heat flux density is treated as a source in KIPP even
in the final cell, hence the divergence term ∇⊥qe⊥ in SOLPS (details can be
found in section 4.1.2) is already included automatically in the energy source
term. Therefore, the effective heat transmission coefficient γeff from Eq. (4.37)
obtained in KIPP, related to the parallel transport, corresponds to the parallel
part Qt‖ in Eq. (A.33).

A.3.2 The adapted boundary condition

The modified boundary condition

The boundary condition for the electron energy conservation in SOLPS is
modified as:

Qt‖ +Qt⊥ = γ′e‖bxΓt‖ATet +Qt⊥ (A.34)
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(a) The default boundary condition
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(b) The modified boundary condition for
the electron energy conservation equation.
γ′e‖ is the user specified parameter. In a
coupling simulation, this value will be re-
placed by the effective one calculated in
KIPP.

Figure A.3: Schematic of the modification of the boundary condition in SOLPS.

where γ′e‖ (instead of γ′e) is a free parameter to be specified or replaced by γeff
(Eq. (4.36)). The comparison between the default and modified boundary con-
ditions is illustrated in Fig. A.3.

The purpose of the boundary modification is to adapt SOLPS boundary
condition to the coupling scheme. It is not aimed at altering the physics or
numerics of SOLPS.

Testing the modified boundary condition

Theoretically, the modified boundary condition is supposed to give the same
boundary electron heat flux relative to the default one if one specifies γ′e‖ and
γ′e which satisfies the following relation:

γ′ebxΓt‖ATet = γ′e‖bxΓt‖ATet +Qt⊥ (A.35)

In this section, we test whether the modified boundary condition gives the same
result as the default one both numerically and physically. Two cases with the
default boundary conditions of two different γ′e (γ′1, γ′2) and two cases with the
modified boundary condition of two corresponding γ′e‖ (γ′1‖, γ

′
2‖) are run with

the same power input. The stagnation point density is fixed as 2.0× 1019m−3.
Each pair of γ′e and γ′e‖ satisfies Eq. (A.35). Note that the term Qt⊥, or the
relation between Qt‖ and Qt⊥, is not known at the beginning, therefore, the
cases with the default boundary conditions:

γ′1 = 1 + |e∆φ|/Tet (A.36)

γ′2 = 3 + |e∆φ|/Tet (A.37)
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(b) Comparison of the cases with γ′2‖
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Figure A.4: The modified boundary condition works in exactly same way both numerically
and physically as the default one.

are run first. Then the ratios of r1 and r2:

r1 =
Q1⊥

Q1

(A.38)

r2 =
Q2⊥

Q2

(A.39)

are obtained. Qi⊥ and Qi are perpendicular and total heat fluxes through the
boundary for i = 1, 2, when the case reaches the steady state. Then the two
cases with the modified boundary condition are run with specifying:

γ′1‖ = 1 + |e∆φ|/Tet − r1 (A.40)

γ′2‖ = 3 + |e∆φ|/Tet − r2 (A.41)

The steady state profiles are thus compared in Fig. A.4. It can be clearly
seen that the profiles of electron density, temperature and heat flux density
from the cases with the modified boundary condition are exactly the same as
those with the default boundary condition. Additionally, the same boundary
electron heat flux and potential drop are achieved, indicating that the modified
boundary condition is behaving both physically and numerically the same way
as the default one. The modified boundary condition is used in the coupling
test.



Appendix B

Details of the iterative coupling

KIPP is a parallelized code while SOLPS only uses one core. The main program
b2mn.F in SOLPS is modified to become a subroutine in the KIPP main
program Maxi.f90. This appendix is arranged as follows. Sections B.1.1 and
B.1.2 list the main subroutines of SOLPS. Those in red are related to the
coupling scheme. The structure of the coupled version of SOLPS and KIPP
is described in section B.2. Section B.3 describes the details of the numerical
implementation of the coupling scheme.

B.1 The structure of SOLPS and KIPP

B.1.1 The structure of SOLPS

main program

b2mn.F



define main parameters

open and read files

main subroutine

b2mndr.F



read control parameters

calculate rate coefficients

for atomic processes

main loop { =⇒

output final plasma state

output and close files

107
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main loop



loop condition:

do while itim<ntim

b2mndt.F { =⇒

output time dependent files

itim=itim+1

b2mndt.F



calculate drifts

loop1



calculate rate coefficients

b2spel.F,b2sqel.F

loop2



calculate ne, ni

calculate transport coefficients

b2tral.F,b2trcl.F,b2trno.F

calculate sources b2sral.F

loop3



main equations solved

in b2news.F
{ =⇒

update ne

calculate residuals
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b2news.F



some reading and testing

update ne and e− i energy exchange coefficient

calculate transport coefficients, b2tral.F,b2trcl.F,b2trno.F

calculate heat flux limiter

calculate sources b2sral.F

calculate particle flux b2tfnb.F

recalculate sources b2sral.F

parallel momentum conservation solver (update u‖)

recalculate particle flux b2tfnb.F

particle conservation solver (update na)

recalculate particle flux b2tfnb.F

charge conservation solver (inner loop) ∇ ·~j = 0 (update φ)

recalculate heat flux b2tfhe.F(electron),b2tfhi.F(ion)

energy conservation solver (update Te, Ti)
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B.1.2 The structure of KIPP

main program

Maxi.f90



define main parameters

open and read files

read initial profiles

Maxwellian as initial fe

solvers

loop



do it= 1, nt

power source

particle source

electric field E‖

free-streaming

particle source

collision solver

output and close files
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B.2 Structure of the coupling algorithm

main program

Maxi.f90



define main parameters

open and read files

read initial profiles

Maxwellian as initial fe

solvers

loop



do while it< nt

if it=mod(nt,ninter)+1


(1) call b2mn ←− (2) modules

(3) update all profiles

power source (to keep fixed Te profile)

particle source (to keep fixed ne profile)

electric field E‖

free-streaming

particle source

collision solver

(4) calculate effective

ce,k‖,γe,∆φ,Scr
−→ (5) modules

it=it+1

output and close files
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For simplicity, the coupling version of KIPP and SOLPS is split into 3 parts:

KIPP part Files used by KIPP

SOLPS part Files used by SOLPS (e.g. b2mn.F and its subroutines)

common part Modules (2) and (5) that are used to transfer common param-
eters, including files:

ini 2 SOLPS.F transfer some control parameters from the KIPP part
to the SOLPS part.

KIPP 2 SOLPS.F transfer effective ce, k‖, γe, ∆φ, Scr and related
parameters, as well as some control parameters from the KIPP part
to the SOLPS part.

SOLPS 2 KIPP.F transfer profiles of electron and ion densities and
temperatures, as well as other parameters to the KIPP part.

KIPP norm.F specify reference parameters (n0, T0, Λ0) in the input
file runpar.dat

The module KIPP 2 SOLPS.F transfers the effective ce, k‖, γe, ∆φ, Scr to the
corresponding subroutines in the SOLPS part, and the module SOLPS 2 KIPP.F
transfers the required steady state profiles to the KIPP part. Afterwards, the
subroutine (3) updates all the required profiles in one single time step in the
KIPP part.

The SOLPS part (1) remains the main structure of SOLPS, however, the
main program b2mn.F is modified to become a subroutine which is inserted in
the ”loop” in KIPP. The following parameters are introduced to describe the
coupling:

niter The number of coupling iterations

ninter The number of KIPP time steps within each coupling iteration (de-
scribed in the following part)

nt The total number of time steps specified in KIPP, nt = niter × ninter
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The structure of the coupling algorithm is shown below:

main program

Maxi.f90



define main parameters

open files and read

initial state

} KIPP part

define main parameters

open files and read

initial state

} SOLPS part

coupling

iteration



do while iter< niter

SOLPS loop ←− modules

update profiles based on SOLPS loop results

KIPP loop −→
calculate effective

ce,k‖,γe,∆φ,Scr
−→ modules

iter=iter+1

output and close files

(SOLPS part)

output and close files

(KIPP part)

As one can see, there are essentially 3 loops in the coupling algorithm:

SOLPS loop The time step dtim and the number of time steps ntim within
one coupling iteration are specified in the input file b2mn.dat .

KIPP loop The time step dt, the number of time steps within one coupling
iteration ninter and the total number of time steps nt for one coupling
run are specified in the input file runpar.dat .
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coupling iteration one coupling iteration means one SOLPS loop + one
KIPP loop.

B.3 Numerical implementation of the coupling

algorithm

B.3.1 Geometry

The standard SOLPS version has 2D grid cells, in poloidal (x) and radial (y)
directions. However, it is the 1D SOLPS version (section 2.4) that is used in
the coupling algorithm. The simulation grid cells are generated separately in
SOLPS and KIPP. There are two lines of ghost cells attached to north and
south boundaries of the simulation domain created originally to implement
boundary conditions in 2D SOLPS version, but they are not used in 1D sim-
ulations and will, therefore, be omitted in the following descriptions. The two
grids conform to each other, as shown in Fig. 4.5. The SOLPS grid has nx+ 2
cells from cell −1 (ghost cell) to cell nx (ghost cell) while the KIPP grid has
smax+ 1 cells from cell 0 to smax, hence:

nx = smax+ 1 (B.1)

Since SOLPS has two ghost cells attached to the two ends of the simulation
domain, but not included in it, the simulation domain in SOLPS is from the
left face of cell 0 (stagnation point) to the right face of cell nx − 1 (target),
corresponding to the simulation domain in KIPP, which is from the center
of cell 0 (the stagnation point) to the right face of cell smax (the target).
Cells generated in SOLPS are cubic boxes (in the 1D geometry), areas of all
cell faces perpendicular to the poloidal direction x are the same, A, and the
length in the poloidal direction is hxi for cell i. Hence the volume of cell i is
Vi = hxiA. Accordingly, in the KIPP grid, the length of cell i is dsi and the
corresponding relation between hxi and dsi is described in section 4.2.1 and
shown here again:

hx0 =
1

2
ds0 · bx (B.2)

hxm = dsm · bx (0 ≤ m ≤ nx− 1) (B.3)

B.3.2 Definition of variables at cell centers and faces

In the SOLPS part, electron density ne, ion density na of species a, electron
and ion temperatures Te, Ti, electron and ion (species a) fluid velocities ue, ua,
as well as particle, momentum and energy sources are defined at cell centers,
but all fluxes e.g. particle and heat fluxes (or flux densities) are defined at cell
faces. In the rest of this section, we will use the following notations:
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Qi i = −1, 0, · · · , nx indicates variable Q at the center of cell i, Q can be
density, temperature, velocity, heat conduction coefficient, or a volumet-
ric source.

Qif i = 0, · · · , nx indicates the interpolation of Qi on the left face of cell i.

Pif i = −1, 0, · · · , nx indicates poloidal flux (or flux density) variable P at
the left face of cell i, P can be particle, momentum and heat flux (or
flux density). P−1f = 0 since the ghost cell particle and power balance
is maintained between the flux through the boundary and the source
terms due to boundary conditions (boundary conditions are specified as
”source” terms in ghost cells).

As discussed in chapter 4, for the 1D SOLPS geometry, a poloidal flux (or flux
density) variable Pif is the sum of projections of the parallel and perpendicular
fluxes on the poloidal direction:

Pif = bxifP‖if + bzifP⊥if (B.4)

where

bxif =
Bpol√

B2
pol +B2

tor

= bx (B.5)

bzif =
Btor√

B2
pol +B2

tor

= bz (B.6)

In the 1D SOLPS geometry, B is assumed to be constant. Since the flux
variable appears in the form ∇xPif (see Eq.s (2.41) and (2.46)), ∇xPif =
bx∇xP‖if + bz∇xP⊥if . In the KIPP part, bz∇xP⊥if will be automatically in-
cluded in the particle and power sources (see section 4.1.2), therefore, only
P‖if is discussed in the following sections.

B.3.3 First SOLPS loop with default coefficients

For the initial coupling run, with the logical parameter continue case specified
as false in the input file runpar.dat , the SOLPS loop will start with the
Braginskii coefficients:

ce = 3.16 (B.7)

k‖ = 0.71 (B.8)

and the classical boundary conditions:

∆φ = −3Te/e (B.9)

γe = e|∆φ|/Te + const+ 1 (B.10)
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The const in Eq. (B.10) is specified in the input file b2.boundary.parameters .
The reason for mentioning ”1” here will be discussed in section B.3.7.

For the second and following coupling runs, the SOLPS loop will start
with the effective coefficients and boundary conditions transferred from the
modules. Chapter 4 shows the analytical description of the coupling scheme,
while here the numerical implementation is described.

B.3.4 Transferring plasma profiles from the SOLPS part
to the KIPP part

In the final time step of a SOLPS loop (when the steady state has been
reached), profiles of:

na,i Density of species a at the center of cell i. The subscript a denotes the
species, which can be D0, D+ for a pure deuterium plasma and D0, D+,
C0, C+, C2+, C3+, C4+, C5+, C6+ for a case with the carbon impurity.
The subscript a has the same meaning for other parameters listed below.

ua‖,i Parallel velocity of species a at the center of cell i.

Γa‖,if Parallel particle flux density of species a at the left face of cell i

Ti,i Ion temperature at the center of cell i. It is assumed that ion temperatures
of all species are the same.

Te,i Electron temperature at the center of cell i.

za Charge of species a.

and other relevant variables (e.g. radiation power), as well as some control pa-
rameters, are transferred to the KIPP part via the module SOLPS 2 KIPP.F
and a subroutine output for kipp.F . Then, in the KIPP part, the profiles are
updated accordingly in the subroutines ion update.f90 , electron update.f90 ,
inial power b.f90 , for electron density at cell centers:

nkipp
e,i =

∑
a

zana,i for i = 1, 2, · · · , smax

nkipp
e,0 =

∑
a

zana,−1

nkipp
e,t =

∑
a

zana,nx (B.11)

for electron temperature at cell centers:

T kipp
e,i = Te,i for i = 1, 2, · · · , smax
T kipp
e,0 = Te,−1

T kipp
e,t = Te,nx (B.12)
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for electron particle flux density at cell faces:

Γkipp
e‖,if =

∑
a

zaΓa‖,if for i = 1, 2, · · · , smax

Γkipp
e‖,t =

∑
a

zaΓa‖,nxf (B.13)

for ion temperature (used for the collision operator) at cell centers:

T kipp
i,i = Ti,i for i = 1, 2, · · · , smax
T kipp
i,0 = Ti,−1

T kipp
i,t = Ti,nx (B.14)

The subscript ’t’ denotes variables at the right face of cell smax (the target
boundary). The superscript ’kipp’ denotes variables specified in the KIPP
part which will be indicated as nk

e,i, Γk
e‖,if , T

k
e,i, T

k
i,i in the following discussions

for clarity. Then the KIPP loop starts solving the distribution function fe,i
by maintaining profiles of macroscopic parameters. These profiles are main-
tained constant by automatic sources where perpendicular transport P⊥if in
the SOLPS part is automatically included as a source in the KIPP part.

B.3.5 Effective heat transport coefficient ceff
e calculated

in the KIPP part

In the SOLPS part, parallel electron heat conduction coefficients and relevant
parameters are specified in the subroutines b2tqce.F , b2trcl.F . By default, the
electron heat conduction coefficient and parallel heat diffusivity are calculated
at cell centers. For cell i:

ce,i = 3.16 (B.15)

De‖,i = ce,ine,iχe‖,i

= ce,i
ne,iτe,iTe,i

me

(B.16)

As discussed in Appendix A, the hybrid scheme is used for the heat flux density.
The electron parallel heat flux density is calculated in b2tfhe.F :

qe‖,if = qconv
e,if + qcond

e,if (B.17)

where the convective and conductive pieces are:

qconv
e,if =

3

2
Γe‖,if

Te,i−1 + Te,i
2

+

∣∣∣∣32Γe‖,if

∣∣∣∣ Te,i−1 − Te,i
2

(B.18)

qcond
e,if = Ce‖,if

(Te,i − Te,i−1)

(hxi−1 + hxi) / (2bx)
(B.19)
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where

Ce‖,if =
(√

D2
e‖,if + F 2

e‖,if − Fe‖,if
)

(B.20)

Fe‖,if =

∣∣∣∣34Γe‖,if

∣∣∣∣ (B.21)

Γe‖,if is the electron parallel particle flux density at the left face of cell i
calculated in subroutine b2tfnb.F . De‖,if is the left face interpolation of De‖,i:

De‖,if =
Vi−1D‖e,i−1 + ViD‖e,i

Vi−1 + Vi
(B.22)

Eq. (B.22) can be rewritten as:

De‖,if = ce,if
neτeTe
me

∣∣∣∣
if

(B.23)

where cell-face interpolated heat conduction coefficient ce,if and the term with
|if are defined as:

ce,if =
Vi−1ce,i−1 + Vice,i

(Vi−1 + Vi)
(B.24)

neτeTe
me

∣∣∣∣
if

=
ne,i−1τe,i−1Te,i−1Vi−1 + ne,iτe,iTe,iVi

me (Vi−1 + Vi)
(B.25)

with |if denoting the interpolation of a variable onto the left face of cell i. The
interpolation scheme is defined by Eq. (B.25).

In KIPP, electron distribution functions are specified at cell centers, e.g. fe,i
is the electron distribution function at the center of cell i. At the same time,
the numerical flux (for numerical implementation of fev‖ see section 3.2.1)
is specified at cell faces, e.g. F k

if (denoted as F n
i− 1

2

in section 3.2.1) is the

numerical flux at the left face of cell i. Hence the particle and heat flux
densities at cell faces can be calculated:

Γk
e‖,if =

∫
F k
ifd~v (B.26)

qk
e‖,if =

1

2
me

∫
F k
ifv

2d~v (B.27)

One of the three coupling schemes can be selected to calculate the effective
heat transport coefficient in the KIPP part, in the subroutine kapae.f90 :

Scheme A ”center”: replaces the heat conduction coefficients at cell centers
(Eq. (B.15)) in the SOLPS part with the ones calculated based on dis-
tribution functions fe,i at the cell centers in the KIPP part, s = smax
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and i = 1, 2, · · · , smax− 1:

ceff
e,i =

1

2
me

∫
fe,iv

′2v′‖d~v/

(
nk
e,iτ

k
e,iT

k
e,i

me

· ∇‖Tek
i

)
(B.28)

ceff
e,s =

1

2
me

∫
fe,sv

′2v′‖d~v/

(
nk
e,sτ

k
e,sT

k
e,s

me

· ∇‖Tek
s

)
(B.29)

where the electron temperature gradients are:

∇‖Tek
i

=
dsi+1 + dsi

dsi−1 + 2dsi + dsi+1

∇‖Tekif

+
dsi−1 + dsi

dsi−1 + 2dsi + dsi+1

∇‖Tek
i+1f

(B.30)

∇‖Tek
s

=
dss

dss−1 + 2dss
∇‖Tek

sf

+
dss−1 + dss
dss−1 + 2dss

∇‖Tekt (B.31)

Scheme B ”face”: replaces heat conduction coefficients at cell faces (Eq. (B.24))
in the SOLPS part with the ones calculated based on particle and heat
flux densities at the cell faces in the KIPP part, i = 1, 2, · · · , smax:

ceff,b
e,if =

(
qk
e‖,if −

5

2
Γk
e‖,ifT

k
e,if

)
/

(
nk
e,ifτ

k
e,ifT

k
e,if

me

· ∇‖Tek
if

)
(B.32)

ceff,b
e,t =

(
qk
e‖,t −

5

2
Γk
e‖,tT

k
e,if

)
/

(
nk
e,tτ

k
e,tT

k
e,t

me

· ∇‖Tek
t

)
(B.33)

where the electron temperature gradients are:

∇‖Tek
if

= 2
T k
e,i − T k

e,i−1

dsi + dsi−1

(B.34)

∇‖Tek
t

= 2
T k
e,t − T k

e,smax

dssmax
(B.35)

Scheme C ”decouple”: replaces Ce‖,if (B.20) from the hybrid scheme and
decouples the conductive and convective pieces to force the Eq. (B.19)
having the same heat conduction coefficients as calculated based on par-
ticle and heat flux densities at the cell faces in KIPP. In the KIPP part,
at the cell faces, i = 1, 2, · · · , smax:

ceff,c
e,if =

(
qk
e‖,if −

5

2
Γk
e‖,ifT

k,up
e

)
/

(
nk
eτ

k
e T

k
e

me

∣∣∣∣
if

· ∇‖Tek
if

)
(B.36)

ceff,c
e,t =

(
qk
e‖,t −

5

2
Γk
e‖,tT

k,up
e

)
/

(
nk
eτ

k
e T

k
e

me

∣∣∣∣
t

· ∇‖Tek
t

)
(B.37)
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where ∇‖Tek
if

and ∇‖Tek
t

are taken from Eqs. (B.34) and (B.35). T k,up
e is

the upstream electron temperature. In the coupling test, T k,up
e = T k

e,i−1

when Γk
e‖,if > 0, T k,up

e = T k
e,i when Γk

e‖,if < 0. nk
eτ

k
e T

k
e

me

∣∣∣
if

and nk
eτ

k
e T

k
e

me

∣∣∣
t

have

the same form as in Eq. (B.25).

After the KIPP loop, the effective heat transport coefficients at cell centers
from Scheme A based on Eqs. (B.28) and (B.29), and at cell faces from
Scheme B based on Eqs. (B.32) and (B.33), and those from Scheme C based
on Eqs. (B.36) and (B.37) are transferred to the SOLPS part via the module
KIPP 2 SOLPS.F and the subroutine output for SOLPS.f90 .

In the SOLPS part, the choice of a coupling scheme is determined by
the control parameter ’b2tqce transp KIPP’ in the input file b2mn.dat. If
’b2tqce transp KIPP’ is set to 0, the default values will be used. Otherwise, if
’b2tqce transp KIPP’ is set to 1, effective heat conduction and thermal force
coefficients (described in the following subsection) will be used in the SOLPS
loop. Control parameters ’tempro flat’ and ’force match’ in the file runpar.dat
determine which coupling scheme will be used in the SOLPS loop:

if ’tempro flat’ is set to 0, the cell ”center” coupling regime (Scheme A) will
be used in a coupling run. Replace Eq. (B.15) with Eqs. (B.28) and
(B.29) in the subroutine b2tqce.F ,

ce,i = ceff
e,i for i = 1, 2, · · · , nx− 1

ce,−1 = ceff
e,1

ce,0 = ceff
e,1

ce,nx = ceff
e,nx−1 (B.38)

Therefore the conductive heat flux density is calculated by Eqs. (B.19),
(B.20), (B.22), (B.16) and (B.38).

if ’tempro flat’ is set to 1 and ’force match’ is set to 0, the cell ”face” coupling
(Scheme B) will be used in a coupling run. Replace Eq. (B.24) with
Eqs. (B.32) and (B.33) in the subroutine b2trcl.F ,

ce,if = ceff,b
e,if for i = 1, 2, · · · , nx− 1

ce,0f = ceff,b
e,1f

ce,nxf = ceff,b
e,t (B.39)

Therefore the conductive heat flux density is calculated by Eqs. (B.19),
(B.20), (B.22), (B.23) and (B.39)

if ’tempro flat’ is set to 1 and ’force match’ is set to 1, the ”decouple” coupling
(Scheme C) will be used in a coupling run to decouple the conductive



B.3 Numerical implementation of the coupling algorithm 121

and convective pieces. Replace Eq. (B.20) with the following formulas in
the subroutine b2tfhe.F :

Ce‖,if = ceff,c
e,if

neτeTe
me

∣∣∣∣
if

for i = 1, 2, · · · , nx− 1

Ce‖,0f = ceff,c
e,1f

neτeTe
me

∣∣∣∣
0f

Ce‖,nxf = ceff,c
e,t

neτeTe
me

∣∣∣∣
nxf

(B.40)

Therefore the conductive heat flux density is calculated by Eqs. (B.19)
and (B.40).

One should note that, for Scheme C, the coefficient entering the electron energy
conservation solver (Eq. (A.8)) should be modified accordingly. The convec-
tive piece in the SOLPS part has the coefficient 3

2
while it is 5

2
in the KIPP

part. This is because the ”internal” energy conservation equation is used in
SOLPS where part of the convective heat flux is moved to the right hand side
and treated as a source term, while in KIPP the third moment of the distri-
bution function is the total heat flux instead of the internal heat flux. At the
boundary, the discrepancy originating from this difference will be discussed in
detail in B.3.7. In chapter 4, the three coupling schemes are first compared,
giving the same results, then in the later analysis the Scheme C is adopted.

B.3.6 Effective thermal force coefficient k‖ calculated in
the KIPP part

Similar to the above discussion, the thermal force coefficient and thermal elec-
tric coefficient are specified in the subroutine b2tqce.F in the SOLPS part with
the default value:

k‖,i = −0.71 for i = −1, 0, · · · , nx (B.41)

α‖,i = k‖,i
σe‖,i
e

(B.42)

where σe‖,i is parallel electric conductivity at the center of cell i. α‖,i is then
used to calculate electric currents and solve the charge conservation equation.
Electric field consists of two parts if ambipolar flows are assumed:

E‖ = Ethr + Epe (B.43)

where the terms due to thermal force and electron pressure gradients are given
by:

Ethr =
k‖
e
∇‖Te (B.44)

Epe = − 1

en
∇‖pe (B.45)
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In the KIPP part, the ambipolar flow is maintained at each time step by
adjusting:

Ek
pe,i

the part of the electric field due to electron pressure gradient at the
center of cell i, for i = 1, 2, · · · , smax.

Ek
thr,i the part of the electric field due to thermal force at the center of cell i,

for i = 1, 2, · · · , smax.

Ek
pe,i corresponds to the free-streaming term (the pressure gradient term in the

frame of a fluid model), while Ek
thr,i corresponds to the collision term. Effec-

tive thermal force coefficients at cell centers are calculated in the subroutine
kapae.f90 :

keff
‖,i = eEk

thr,i/∇‖Tek
i

for i = 1, 2, · · · , samx− 1 (B.46)

keff
‖,s = eEk

thr,s/∇‖Tek
s

for s = smax (B.47)

where ∇‖Teki and ∇‖Teks are taken from Eqs. (B.30) and (B.31). The effective
thermal force coefficients are then transferred to the SOLPS part by the mod-
ule KIPP 2 SOLPS.F and the subroutine output for SOLPS.f90 .

In the SOLPS part, as mentioned above, the use of the effective thermal
force coefficients is also determined by the control parameter ’b2tqce transp KIPP’
in the input file b2mn.dat specified by the user. If ’b2tqce transp KIPP’ is set
to 1, the SOLPS loop will be run with the effective thermal force coefficients:

k‖,i = keff
‖,i for i = 1, 2, · · ·nx− 1

k‖,−1 = keff
‖,1

k‖,0 = keff
‖,1

k‖,nx = keff
‖,nx−1 (B.48)

B.3.7 Effective electron sheath heat transmission coef-
ficient and sheath potential drop

The modified boundary condition of SOLPS (numerical details can be found
in Appendix A.3) is used in coupling runs as discussed above and in section
4. In the following discussion, the boundary condition for the electron energy
conservation equation in SOLPS is referred to as γ′e‖ (instead of γ′e which is for

the default SOLPS boundary condition).

Without coupling with KIPP, the boundary conditions in SOLPS are spec-
ified in the subroutine b2stbc phys.F (based on the same collisional plasma
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theory as discussed in Chapter 4), ∆φ and γ′e‖ are then determined by:

e
∑
a

zaΓa‖,nxf = e
1

4
ne,nxfce,nxf expe∆φ/Te,nxf (B.49)

γ′e‖ = c1 +
e|∆φ|
Te,nxf

(B.50)

The first equation assumes equal ion and electron particle flux densities across
the simulation boundary. c1 is a constant specified by the user (default value
is 0.9) in the input file b2.boundary.parameters . The subscript nxf indicates
the left face of cell nx, corresponding to the simulation boundary. Γa‖,nxf is
the particle flux density of species a at the left face of cell nx:

Γa‖,nxf = na,nxfua,nxf (B.51)

and ce,nxf is the electron average thermal speed of a Maxwellian, given by:

ce,nxf =

√
8Te,nxf
πme

(B.52)

where ua,nxf is determined by the boundary condition for the momentum con-
servation equation based on the Bohm’s criteria:

ua,nxf ≥

√
γiTi,nxf + z2

ana,nxfTe,nxf/ne,nxf
mi

(B.53)

where γi is the adiabatic coefficient, with the default value 5
3
.

We would like to remind that the internal energy conservation equation is
implemented in SOLPS, meaning that the parallel convective heat flux density
numerically defined in SOLPS is with coefficient 3

2
instead of 5

2
, where the part(

5
2
− 3

2

)
has been moved to the right hand side of the equation and regarded as

a source. Therefore, a numerical mismatch arises between the boundary heat
flux term in the SOLPS part and that in the KIPP part. Hence one has to
be careful in transferring the effective heat transmission coefficient from the
KIPP part to the SOLPS part. We will discuss this below.

The relation between γ′e‖ and the electron sheath heat transmission
coefficient γe‖ in SOLPS

The internal energy equation solved in SOLPS is

∂

∂t

(
3

2
neTe

)
+∇x

[
bx

(
3

2
Γe‖Te + q cond

e‖

)
+ bzqe⊥

]
= SEe − neTe∇xbxue‖ −Q∆ (B.54)



124 B. Details of the iterative coupling

In the ghost cell nx (shown in Fig. A.3b) energy is balanced between the heat
flux flowing through the left face and the term due to the boundary condition
(Eq. (A.34)):

bx

(
3
2
Γe‖,nxfTe,nxf + qcond

e‖,nxf

)
A+Qe⊥,nxf

=
(
c1 + e|∆φ|

Te,nxf

)
bxΓe‖,nxfTe,nxfA+Qe⊥,nxf (B.55)

where the left side is the numerical heat flux through the boundary and the
right side is the boundary condition specified. If one then looks at the energy
balance of cell nx − 1 (the energy flowing out of the right face of this cell is
the one that flows into cell nx) in steady state, the balance equation is:[

bx

(
3

2
Γe‖,nxfTe,nxf + qcond

e‖,nxf

)
A+Qe⊥,nxf

]
−
[
bx

(
3

2
Γe‖,nx−1fTe,nx−1f + qcond

e‖,nx−1f

)
A+Qe⊥,nx−1f

]
=
(
SEe −Q∆ − neTe∇xbxue‖

)
Vnx−1 (B.56)

However, the third term on the right hand side is not the real physical source
in this cell. It has been partly cancelled as follows:

neTe∇xbxue‖Vnx−1 = bx
(
ne,nxfTe,nxfue‖,nxf − ne,nx−1fTe,nx−1fue‖,nx−1f

)
A−bx∇xneTe
(B.57)

where

ne,nxfue‖,nxf ≈ Γe‖,nxf (B.58)

ne,nx−1fue‖,nx−1f ≈ Γe‖,nx−1f (B.59)

Substitution of Eq. (B.57) into Eq. (B.56) leads to:[
bx

(
5

2
Γe‖,nxfTe,nxf + qcond

e‖,nxf

)
A+Qe⊥,nxf

]
−
[
bx

(
5

2
Γe‖,nx−1fTe,nx−1f + qcond

e‖,nx−1f

)
A+Qe⊥,nx−1f

]
=
(
SEe −Q∆ + bxue‖∇xneTe

)
Vnx−1 (B.60)

The above equation is the full electron energy conservation balance equation.
Therefore, combined with Eq. (B.55), the parallel heat flux density flowing out
of this cell through its right face becomes

5

2
Γe‖,nxfTe,nxf + qcond

e‖,nxf ≈
(
c1 + 1 +

e|∆φ|
Te,nxf

)
Γe‖,nxfTe,nxf (B.61)

Hence γe‖ (= γ′e‖ + 1) is the actual electron heat transmission coefficient (γ′e‖
is only for the internal electron energy balance equation, however, the second
moment of the Vlasov-Fokker-Planck equation solved in KIPP gives the total
electron energy balance equation).
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Calculating and transferring effective boundary coefficients

In the KIPP part, the effective electron heat transmission coefficient γeff
e and

the sheath potential drop ∆φeff are calculated in the subroutine heat coefficient tar.f90
by solving the following equation:∫

vc

(
fe,s +

1

2

(
dss − v‖dt

)
σs(v‖, v⊥)

)
v‖d~v = Γk

e‖,t for s = smax (B.62)

which follows from the logical sheath condition, from which vc can be deter-
mined. σs(v‖, v⊥) is calculated based on the Lax-Wendorff method with the
modified MC limiter (see section 3.2.1). Then the effective boundary condi-
tions are determined by:

∆φeff = −1

2

mev
2
c

T k
e,t

(B.63)

γeff
e =

1

2

me

∫
vc

(
fe,s + 1

2

(
dss − v‖dt

)
σs(v‖, v⊥)

)
v‖v

2d~v

Γk
e‖,tT

k
e,t

(B.64)

The effective boundary coefficients are then transferred to SOLPS via the mod-
ule KIPP 2 SOLPS.F and the subroutine output for SOLPS.f90 .

The use of the effective boundary conditions in the SOLPS part is de-
termined by the control parameter ’b2stbc boundary KIPP’ in the input file
b2mn.dat . If ’b2stbc boundary KIPP’ is set to ’1’, the SOLPS loop will run
with the effective boundary conditions from Eqs. (B.63) and (B.64) by speci-
fying:

∆φ = ∆φeff (B.65)

γ′e‖ = γeff
e − 1 (B.66)

One should note that in a coupling run the effective boundary conditions are
only used when ’BCENE’ is set to ’3’ in the input file b2.boundary.parameters
which is the default value for the target boundaries.

Summary on γ′
e, γ

′
e‖, γe‖, γ

eff
e

There are several coefficients discussed above relevant to electron sheath heat
transmission coefficient which might be confusing to readers. For clarity, here
we list all of them together:

γ′e is the coefficient specified for the SOLPS default boundary condition for
the ”internal” electron energy conservation equation.

γ′e‖ is the coefficient specified for the adapted SOLPS boundary condition (de-

tails can be found in Appendix A.3.2) for the ”internal” electron energy
conservation equation.
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γe‖ is electron sheath heat transmission coefficient. γe‖ = γ′e‖ + 1.

γeff
e is effective electron sheath heat transmission coefficient calculated in the

KIPP part.

Since the SOLPS boundary condition has been adapted to the coupling scheme,
γ′e is not used in this work, instead γ′e‖ is used as a free parameter for the SOLPS

part. In coupling runs, we calculate γeff
e in the subroutine heat coefficient tar.f90

in the KIPP part and then specify γ′e‖ = γeff
e − 1 in the subroutine b2stbc.F

in the SOLPS part. γe‖ does not appear in the code, but is introduced for
discussions.

B.4 Added control parameters and switches

B.4.1 in runpar.dat

———————
’fully coupling’ = integer

0 (default): Iterative coupling.

1 (not used): Real time coupling.

———————
’internal kipp step’ = integer

specifies the number of time steps in the KIPP loop.

———————
’n norm’ = double precision

specifies reference density (normally the value near or at the stagnation point)
for normalization.

———————
’T norm’ = double precision

specifies reference temperature (normally the value near or at the stagnation
point) for normalization.

———————
’lambda norm’ = double precision

15 (default): specifies reference Coulumb Logarithm (normally the value near
or at the stagnation point) for normalization.

———————
’source 1d’ = double precision
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1.0× 106 (default): specifies the power source into the simulation domain.
The power is evenly distributed over the region from cell 0 to cell s,
which is given by the parameter ’b2sral 1Dsource end’ in ’b2mn.dat’.
The power input density into each cell is given by:

SE = source 1d× A∑s
0 hxi

———————
’use e sub’ = integer

0 (default): uses subroutine energy input g.f90 for power input.

1: uses subroutine energy input h.f90 for power input.

———————
’exun’ = integer

0 (default): uses subroutine energy input g.f90 to specify radiation power
(uniformly).

1: uses subroutine e cooling ion coupling.f90 to specify radiation power based
on the ground state ionization cross section.

2: uses subroutine e cooling simple.f90 to specify radiation power by subtract-
ing it only from the electrons with energy above the value ’exun thresh’.

3: uses subroutine e cooling inelastic.f90 to calculate the radiation power based
on the inelastic collision operator.

———————
’exun thresh’ = double precision

0.0 (default): specifies the threshold when ’exun’ is set to 2.

———————
’solps force continue’ = integer

0 (default): if ’continue case’ is set to ’false’ in runpar.dat, in SOLPS part,
it runs with default coefficients and boundary conditions and KIPP part
will run starting with initial Maxwellian distributions.

1: if ’continue case’ is set to ’false’ in runpar.dat, in SOLPS part, it runs with
saved effective coefficients and boundary conditions under the directory
’./kipp out/continue case/’ and KIPP part will run starting with initial
Maxwellian distributions.

———————
’tempro flat’ = integer
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0 (default): cell center coupling scheme (Scheme A) of effective heat conduc-
tion coefficients is used.

1: cell face coupling scheme (Scheme B) of effective heat conduction coeffi-
cients is used.

———————
’all conv’ = integer

0: does nothing.

1 (default): saves the evolution of the effective coefficients and boundary
conditions in the KIPP part to ’./kipp out/continue case/iterative’.

———————
’con test’ = integer

0 (default): does nothing.

1: calculates coefficients γve, γvth and print

γve,if =
qk
e‖,if

Γk
e‖,ifT

k
e,if

(B.67)

γvth,if =
qk
e‖,if −

5
2
Γk
e‖,ifT

k
e,if

nk
e,if

√
T k
e,if/meT k

e,if

(B.68)

———————
’on flux correc’ = integer

0 (default): does particle flux correction after free-streaming calculations in
the KIPP part.

1 (for testing): does nothing.

———————
’force match’ = integer

0 (default): does nothing.

1: if ’tempro flat’ is set to 1, the cell face coupling scheme with decoupled
convective and conductive electron parallel heat fluxes (Scheme C) is
used.

———————
’conv only’ = integer (this parameter is used to study the divergence phe-
nomenon in low density cases)

0 (default): does nothing.
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1 (doesn’t work due to numerical instability): the entire electron par-
allel heat flux calculated in KIPP is transferred to SOLPS and treated
as the convective piece.

2 (not used):

3 (not used):

4: limits the heat conduction coefficient to ’ce thresh’.

———————
’ce thresh’ = double precision

0.0 (default): limits the heat conduction coefficient to the specified value.
The rest of the heat flux is moved to the convective piece.

———————
’conv only4 extrem’ = integer

0 (default): does nothing.

1 (doesn’t work due to numerical instability): fixes heat conduction co-
efficient ce = 3.16 and manipulates the convective piece to incorporate
flux limiting or enhancement. This is not working well due to the fact
that in the upstream region with typically flux limiting, parallel heat is
mostly carried by the conductive piece. Modification of the convective
piece to incorporate this flux limiting would result in negative coefficients
(instead of 2.5) and cause numerical instability in SOLPS.

——————–
’tbrag ttrub’ = integer

0 (default): assumes the ratio of Braginskii electron collision time to Trub-
nikov one is τB/τT = 3.76.

1: assumes τB/τT = 3
2

√
2π (slightly higher precision).

B.4.2 in b2mn.dat

———————
’b2mndr internal nt’ = integer

specifies the number of time steps in the SOLPS loop.

———————
’b2sral 1Dsource end’ = integer

-1 (default): specifies an integer s. The power is introduced evenly with
constant power density along the region from cell 0 to cell s. If set to -1,
the power will be introduced evenly along the whole simulation domain.
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———————
’b2tqce transp KIPP’ = integer

0 (default): runs SOLPS loop with default electron heat conduction and e-i
thermal force coefficients.

1: runs SOLPS loop with effective electron heat conduction and e-i thermal
force coefficients.

———————
’b2tqce transp force evolv’ = integer

0 (default): does nothing.

1: if ’b2stbc boundary KIPP’ is set to 0 but the subroutine b2mndr.F is called
the second time or further, run SOLPS loop with effective heat conduc-
tion and e-i thermal force coefficients.

———————
’b2tqce no kippalf ’ = integer

0 (default): does nothing.

1: runs the SOLPS loop with the default e-i thermal force coefficient even if
’b2tqce transp KIPP’ is set to 1.

———————
’b2trcl test tar ce’ = integer

0 (default): does nothing.

1: if ’tempro flat’ is set to 1, uses the boundary heat conduction coefficient
ce,nxf = 3.16.

———————
’b2stbc boundary KIPP’ = integer

0 (default): runs SOLPS loop with default values of the electron heat trans-
mission coefficient and sheath potential drop.

1: runs SOLPS loop with effective values of the electron heat transmission
coefficient and sheath potential drop.

———————
’b2stbc boundary force evolve’ = integer

0 (default): does nothing.

1: if ’b2stbc boundary KIPP’ is set to 0 but the subroutine b2mndr.F is called
the second time or further, run SOLPS loop with effective values of the
electron heat transmission coefficient and sheath potential drop.
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———————
’b2sral pow from KIPP’ = integer

0 (default): power input density is specified by the parameter ’source 1d’ in
the input file runpar.dat.

1 (not used): power input density is specified from reading files.

———————
’b2sral 1dC radialoss’ = integer

0 (default): does not introduce additional sinks for carbon.

1 (necessary for D+C cases): introduces particle sinks for carbon parti-
cles. The sinks are controlled by the following control parameters:

’b2sral 1dC lossfac neutral’ = double precision
’b2sral 1dC lossfac ion’ = double precision
’b2sral 1dC1 lossfac2’ = integer
’b2sral 1dC2 lossfac2’ = integer
’b2sral 1dC3 lossfac2’ = integer
’b2sral 1dC4 lossfac2’ = integer
’b2sral 1dC5 lossfac2’ = integer
’b2sral 1dC6 lossfac2’ = integer
’b2sral 1dCi uloss’ = integer
’b2sral 1dC1 loss rec’ = double precision
’b2sral 1dC2 loss rec’ = double precision
’b2sral 1dC3 loss rec’ = double precision
’b2sral 1dC4 loss rec’ = double precision
’b2sral 1dC5 loss rec’ = double precision
’b2sral 1dC6 loss rec’ = double precision

———————
’b2sral 1dD radialoss’ = integer

0 (default): does not introduce additional sinks for deuterium.

1: introduces sinks for deuterium particles. The sinks are controlled by the
following control parameters:

’b2sral 1dD lossfac neutral’ = double precision
’b2sral 1dD lossfac ion’ = double precision

———————
’b2sral 1dener radialoss’ = integer

0 (default): does not introduce energy sinks corresponding to the particle
sinks mentioned above.
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1: introduces the energy sinks controlled by parameters ’b2sral 1dC radialoss’
and ’b2sral 1dD radialoss’.

———————
’b2out potential for2D’ = integer

0 (default): only 1D parallel transport is considered.

1: poloidal transport is assumed to be the sum of poloidal projections of par-
allel and perpendicular transport. The modified boundaries are used, as
described in Chapter 4.

———————
’b2news poteq’ = integer

3: if ’b2tfhe no current’ is set to 1 (switches off currents), 1D potential profile
is calculated by the subroutine potential 1D KIPP.
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