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The recent experimental discovery of a semi two-dimensional silica glass has offered a realistic
description of the random network theory of a silica glass structure, initially discussed by Zachariasen.
To study the structure formation of silica in two dimensions, we introduce a two-body force field, based
on a soft core Yukawa potential. The different configurations, sampled via Molecular dynamics
simulations, can be directly compared with the experimental structures, which have been provided in
the literature. The parameters of the force field are obtained from comparison of the nearest-neighbor

Received 27th February 2018,
Accepted 8th May 2018

distances between experiment and simulation. Further key properties such as angle distributions,
distribution of ring sizes and triplets of rings are analyzed and compared with the experiment. Of
DOI: 10.1039/c8cp01313f particular interest is the spatial correlation of ring sizes. In general, we observe a very good agreement
between experiment and simulation. Additional insight from the simulations is provided about the

rsc.li/pccp temporal and spatial stability of the rings in dependence of their size.
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1 Introduction

The atomistic arrangement of glassy materials is often described
by the continuous random network model." Silica is by far the
most commonly used and extensively studied oxide-glass material.
More than 80 years ago, Zachariasen began the search for a theory
to explain the structure of amorphous materials.> For reasons
of simplicity, the ideas of the random network theory were
formulated in 2D. Conceptually, this model can be applied to
silica, when silicon atoms are reduced to three rather than four
oxygen neighbors as in bulk silica. Experimentally, neutron
diffraction (ND) and X-ray diffraction (XRD) studies were the
only useful methods available to peek into the complex world of
glass structures. However, due to the integrating nature of these
methods,” an experimental all-atom understanding of the
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structure of silica glass remained impossible. The Bell and
Dean wire-frame model* or the Shackelford tile model® were
some of the famous attempts to understand random network
theory of silica by mechanical models. Development of computer
simulations has helped us to understand the properties of silica
networks more deeply. Empirical force-fields like the Beest-—
Kramer-Santen (BKS) potential® or the Tangney-Scandolo (TS)
potential” are now well established for simulating the bulk silica
network. A comparison of these model force-fields can be found
in ref. 8.

1.1 Experimental background: two-dimensional silica

The hand-drawn two-dimensional model of Zachariasen became
reality only recently through the experiments of Lichtenstein
et al.® and Huang et al.'® It was possible to prepare an extremely
thin silica film on Ru(0001)° as well as on graphene." The ‘two-
dimensional silica’ is indeed a ‘semi 2D’ allotrope of silica, that
fulfills all valence criteria of silicon and oxygen in 3D, but still
maintains a flat surface at reduced dimensionality.

The surface was studied mainly using a scanning tunneling
microscopy (STM) and for the first time a detailed real space
image of a silica network was obtained. Depending on the initial
film coverage, annealing temperature and cooling methods,* the
surface of two dimensional silica could either show amorphous
or crystalline network structures. Despite having a flat surface, it
was not possible to capture both silicon and oxygen coordinates
at the same time with STM because of their different chemical
properties. The authors had to make some assumption with the
backing of density function theory (DFT) calculations to estimate
the positions of one component, given the exact positions of the
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Fig. 1 (left: top view, right: side view) Two dimensional silica in its perfect
crystalline state, according to ref. 3. Red = O, green = Si. The two layers are
joined together along the tetrahedra height via common apical oxygens
which define an indicated mirror plane.

atoms of the other component.® The full structure of this allotrope
was proposed to be a bilayer structure with two tetrahedral units
joined together with a common bridging oxygen in Z direction
(Fig. 1, right). The nature of the bridging ‘silicon-oxygen-silicon’
bond is very interesting. From infrared reflection absorption (IRA)
spectrum analysis together with DFT calculations, it was proposed
that the angle is close to approx. 180 degrees in both the
amorphous and the crystalline state.'>" This is very different from
bulk amorphous silica where the Si-O-Si angles vary from 145-
155 degrees. Therefore, a horizontal mirror plane and a vertical
3-fold symmetry axis was predicted to be present through these
bridging oxygen atoms. As a consequence, in both the crystalline
and the amorphous state, the top and bottom layer were predicted
to have the same structure. The surface of the material was possible
to study quite well using STM, which proves the two-dimensionality
of the surface of silica bilayer (2D-silica in short).

Interestingly, the nature of the glass network structure had a
very close agreement with the drawings of Zachariasen. The
STM images showed that in the amorphous phase, 2D-silica is
composed of a combination of several rings with various sizes.
The crystal phase, on the other hand, was strictly made of
6 member rings. These six member rings were found to have
some small disorder in the Si-O-Si bond angles,® similar to
XRD and ND and ab initio studies. The ring distribution pattern
for the amorphous phase was found to be lognormal which was
qualitatively matched with Shackelford’s tile model.” The binding
energy of 2D-silica with the underlying Ru(0001)>"* or graphene
surface'® was found to be quite small. Hence, this ring distribution
pattern on the surface should be an inherent effect of the
amorphous phase of 2D-silica.

Recently, atomic rearrangements have been visualized by
TEM in 2D-silica."* The authors were able to observe changes in
the ring network structure under the impact of the imaging
electron beam. A transformation from the 5-7-5-7 to the 6-6-6-6
ring was highlighted.

The ring distribution in amorphous graphene was also
found to be similarly distributed as observed with recent
Transmission electron microscopy (TEM) methods." It was pre-
dicted that any two-dimensional network with trigonal geometry
will have the same type of defect in its amorphous state, irrespective
of the chemical nature of the structural units.>®
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1.2 Theoretical background: two-dimensional silica models

Previously, bulk-silica structure in three dimensions was simulated
with Molecular Dynamics (MD)""™*° and also with Monte Carlo
(MC) methods.”® The relaxation mechanism used for these MC
simulations were based on the a bond-switching method, namely
the Wooten-Winer-Weaire (WWW) algorithm.”’ Because of the
similarity of ring distribution patterns of 2D-silica with graphene,
ring networks of amorphous 2D-silica can be simulated with a 2D
graphene-based model, just including one type of particles. MC
and MD simulations were performed to understand properties
of 2D-silica with such models. Kumar et al.?* and Vink®* had
performed MC simulation with a graphene-based model with
either a Tersoff-Il potential®* or a Keating potential.’*** An
annealing process, coupled with bond-switching methods, was
also performed with such models to generate a 2D ring network.>*
The ring distribution pattern and correlation measurements
of such an annealed system did show close similarity with the
available experimental data for 2D-silica.>*

Wilson et al.”®> devised a method to generate the full 3D
structure of 2D-silica, from an amorphous graphene template.
They have shown that it is possible to minimise such reconstructed
structure with a harmonic or TS potential while keeping the overall
ring structure intact. Molecular dynamics simulations with a 3D
force field were also used previously by Huang et al.'* and recently
by Zhang et al®® to equilibrate the 3D structure of 2D-silica.
However, this applications required the detailed knowledge of
experimental atom positions as a starting configuration and
the MD simulations allowed for further local equilibration far
below the glass transition. To the best of our knowledge, no
classical 3D force field, based on previous 3D silica force fields,
is available which allows one to simulate the 3 atomic layers in
thermal equilibrium with a complete symmetry between the
upper and lower layer.

ADb initio studies’ were also employed to calculate the energies of
several ring clusters of 2D-silica. For example, via DFT simulations
the effect of strain'®*’ in hexagonal, haeckelite and other strained
forms of 2D-silica could be analyzed. Recently, a DFT based analysis
was performed on small cluster of amorphous 2D silica to
understand the effect of different additives®® such as aluminum,
germanium, or potassium cations, embedded in 2D-silica.

1.3 Summary of the paper

In this work, we introduce a 2D model which on a semi-
quantitative level is able to reproduce the different experimental
observations of 2D-silica, including the spatial correlation of
different ring sizes. Inspired by the success of the pair-wise
BKS-potential to describe the properties of 3D-silica, we use a pair-
wise potential for that modeling. Based on the excellent similarity
between the observed IRA spectrum and the calculated harmonic
IRA spectrum from a DFT optimised structure,"*"* the symmetry
between the two atomic layers were proposed. To incorporate this
symmetry, we restrict the degrees of freedom of our model to two
dimensions. A key issue for this comparison is the restriction to
defect-free configurations which become rare for either high
simulation temperatures and/or large system sizes. At the same
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time a sufficiently large number of uncorrelated states need to
be sampled in order to obtain good statistics.

The outline of the paper is as follows. In Section 2 we briefly
repeat the required background for the experiments. Then, in
Section 3, the simulation model is introduced. The generation
of defect-free states is discussed in Section 4. In the subsequent
Section 5 experiments and simulations are compared with
respect to their structural properties such as pair correlation
functions or angular distributions. Section 6 contains the
results of the single ring statistics, whereas in Section 7 the
spatial ring correlations, described in terms of doublets and
triplets, are discussed. A study regarding spatial fluctuation of
the rings are given in Section 8. We conclude with a discussion in
Section 9. The scope of the article and possible future applications
in the field physical chemistry is discussed in Section 10.

2 Relevant information about the
previous experiments

Annealing of the experimental system was performed at 1180 K.?
The resulting 2D-silica film turned out to have a mirror plane
between the top and bottom layer. Thus, the observed structures
can be characterized by a two-dimensional description. In this
section, we summarize some crucial information which are
relevant for either the model development or the procedure
how to compare experiment and simulation in the present case.

The density of only the surface atoms (both silicons and
oxygens) per unit area is relevant for 2D modelling. Since this is
a classical model, we use the term particle instead of atom in
the subsequent text. The surface particle density in the 2D
plane can be directly calculated from the coordinates and is
also available from the literature® (0.2068 surface-particles/A?).
As the system is amorphous, the density varies locally in the 2D
plane. The experimental coordinates are collected from ref. 3 as
discussed above and used as the reference structure in our
simulations.

The amorphous 2D-silica coordinates were obtained using
STM methods separately for silicon and oxygen.® As it was not
possible to sample silicon and oxygen coordinates at the same
time, the authors devised empirical ways to generate them.*?°
When observing the positions of the silicon atoms, the non-
detected oxygen atoms were placed at the middle point of the
line joining two closest silicon atoms. In the opposite case, the
non-detected silicon atoms were placed at the center of a
circumscribed circle encapsulating three nearest oxygen atoms.
Although the ring statistics would be the same for both
methods, some differences in the pair correlation functions
and angle distributions in two dimensions are expected. The
z-coordinates for silicon atoms were approximated via a DFT
calculation.? Since we restrict the comparison to the 2D projection,
these z-coordinates are of no relevance for the present work.

In both methods of generating 2D-silica coordinates discussed
above, the resulting structural properties are very close to each
other. Both methods generate very similar pair correlation
functions, except for the first peak. Also, angular distributions
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for O-Si-O and Si-Si-Si angles are very similar in both cases
(see ESIT). In this work we choose the coordinates, based on the
direct observation of oxygen atoms. For this choice one also
obtains a non-trivial distribution of the Si-O-Si bond angles
which may be also compared with the simulations.

The experimentally reported configurations are defect-free,
such that each silicon particle has three oxygen neighbors in 2D
plane and each oxygen particle two silicon neighbors. We
exclude the peripheral atoms from the statistical analysis
because no information is available about their neighborhood.
Since with the presence of dangling bonds the ring distribution
is no longer well defined, only simulated defect-free configurations
can be taken for comparison.

3 Simulation and modeling
background
3.1 Approach towards a 2D model

In this paper, we want to study the ring statistics and dynamics
at the surface of 2D-silica. For this purpose, we opted for a
purely 2D model which represented the surface silicons and
oxygens of 2D-silica. We wanted to study a model which
automatically incorporates the observed symmetry between both
layers, seen experimentally. Thus, structural and thermodynamic
properties are fully characterized by 2D degrees of freedom.
Naturally, only when studying the precise transformation between
different ring sizes the 3D nature would be relevant.

As explained in Section 1.2, previous 3D modeling of 2D-silica
involved equilibration of a 3D structure which was generated
from a 2D model. However, there is yet no reliable force-field
available for the 3D structure of 2D-silica. The 3D structure of
amorphous 2D-silica was previously generated by Wilson et al.*
from a graphene based model, i.e. the structure basically reflects
properties of graphene. Also, a LAMPPS based modeling was
performed by Huang et al'® and recently by Zhang et al.>®
However, these studies did not extend to generate transitions
between any dynamical experiments. 2D bilayer ice, a structural
analogue of 2D-silica, was previously simulated in 3D with
molecular dynamics.*>*" However, the dynamical simulations
were only performed in a hypothetical confinement.

Also, the mysterious symmetry between the layers is not yet
well understood. This particular symmetry requires the brid-
ging oxygens to stay in a straight alignment with the two
adjacent silicon atoms which is far away from the ‘silicon-
oxygen-silicon’ angle (145 degrees) in standard 3D bulk silica.
The previous 3D simulation approach, using a classical force-field,
showed deviations from 180 degree in the bridging connections,>
although the symmetry plane was present. However, a DFT
optimized structure with fully 180 degree ‘silicon-oxygen-silicon’
angle in the bridging connection did predict excellent match with
the observed IRA spectrum.''® Therefore, using common silica
force-fields like BKS in simulating 2D-silica is still questionable.

We have also neglected any quantum chemical calculations
in this paper. Naturally, to obtain correct energies for a given
structures, 3D-DFT is an option. However, it cannot be used to

Phys. Chem. Chem. Phys., 2018, 20, 14725-14739 | 14727


http://dx.doi.org/10.1039/c8cp01313f

Published on 08 May 2018. Downloaded by Fritz Haber Institut der Max Planck Gesellschaft on 6/28/2018 1:43:19 PM.

Paper

generate a sufficiently large set of statistically uncorrelated
structures (see later).

Since we are interested in ring statistics, one may argue about
using a graphene based system with only one type of particles.
Although graphene based models®*** do produce good correlation
for the ring statistics, we do not want make such approximation at
the beginning. Naturally, the presence of oxygens makes the model
closer to the experimental system.

We chose to use MD methods to sample the equilibrium
population of our model system. Previously, most of the
theoretical simulations for investigating structure formation
of graphene type systems involved a MC routine with a bond-
switching algorithm. However, it is still unclear which kind of
mechanisms are responsible for 2D-silica ring transformations
and how they affect the equilibrium.>* On the other hand, MD
simulations do not restrict the system to a particular relaxtion
path. Use of MD method have other benefits over MC, which
will be discussed in the later sections.

For these reasons our analysis will be based on a binary 2D
model with the goal to simulate the structure and thermo-
dynamics of 2D-silica using molecular dynamics simulations.

3.2 Model potential

We have prepared a binary 2D model where two types of particles
represent the surface silicon and oxygens. These particles are
labeled as ‘Si’ and ‘O’, reflecting the types of the atoms in the top
and bottom layer. Due to the symmetry between both layers, one
may visualize the Si particles as ‘(top-layer silicon)-(bridging
oxygen)—(bottom-layer silicon)’; and O particles as ‘(top-layer
oxygen)—(bottom-layer oxygen) units of 2D-silica (see Fig. 1).

The model force-field is prepared as a simple ionic model
with charge ratio Si:O = (+1.5):(—1) to guarantee charge
neutrality. The Coulomb potential is approximated as a Yukawa
potential. As shown by Méndez-Maldonado et al***® for
Yukawa systems in two dimensions, it is possible to simulate
ionic properties with that potential. We have used a softer core
potential than Méndez-Maldonado et al. together with the
Yukawa term. Thus, the inter-particle potential energy function
(V) can be written as,

Vi(Ry) = [(04/Ry)"* + (q/Ry)exp(—KRy)] (1)

g; represents the charge ratio of the pair interactions with
respect to Si-O interactions.

By construction this potential is dimensionless. In order to
estimate appropriate values for the three parameters o; we
identify the unit distance with 1 A. In what follows we will
express all quantities except length in dimensionless units, e.g.,
temperature as 7%, time as ¢*.

The density of the system N/L* (N: number of particles, L:
box length) is chosen such that it agrees with the experimental
one (see above). Specifically, we require that the three nearest
neighbor distances of the respective pair correlation functions,
i.e. Si-Si, Si-O, and O-0O, are matched (see further below). The
resulting parameters are listed in Table 1.

The screening parameter  is chosen as 2/L, to resemble the
long-range Coulomb potential as much as possible. We truncate
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Table 1 Parameters of model potential
Interaction parameters Si-Si Si-O 0-0
gy 2.250 1.075 0.900
qij 1.50 —1.00 0.67

and shift the potential and the corresponding forces such that
the potential, as well as the derivative, are continuous at the
cut-off. The cut-off distance (R.) is given by L/2. The truncated
and shifted potential function reads

VinetedRy) = Vy(Ry) — Vy(Re) — Vi R)(Ry — o). (2)

3.3 Molecular dynamics simulations

The molecular dynamics simulations are performed with a
software package, developed in our group. An important aspect
of molecular dynamics is the system size. As discussed in
Section 2 the analysis has to be based on defect-free configurations.
For larger systems it turns out that the large majority of
configurations is not defect-free for trivial statistical reasons.
For this purpose we choose a relatively small binary system of
80 particles (32 Si particles + 48 O particles) with periodic
boundary conditions (Fig. 2). In recent work we have shown
that even for a 3D system a similar system size (N = 99) is
sufficient to reproduce, e.g., activation energies of oxygen and
silicon diffusivity.'® With the chosen system size it is possible
to obtain a sufficiently large number of different defect-free
states, which are taken as a basis for the comparison with the
ESI,f key observables analysed in this work are basically
identical for 80, 200, and 500 particles (except for a by far
poorer statistics for large systems).

We choose a square box with side lengths of 19.67 A and
cut-off 9.8 A. The cut-off distance was chosen such that all
particles of two neighbor rings can interact with each other,
ensuring that we take into account enough ring correlation
effects. The ratio of these two types of particles are keptat 1:1.5
for Si:O to maintain the correct stoichiometry of 2D-silica in
the 2D plane. The masses of the particles are chosen as 1 and
0.57 for Si and O, respectively. A constant volume-temperature
(NVT) simulation is performed by coupling the box to a Nose-
Hoover thermostat.**

The simulations are performed in equilibrium, ie. the
configurations are sampled from a Boltzmann distribution of

:/_.

Fig. 2 A snapshot from the simulation at T* = 0.015 with 80 particles.
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the underlying distribution of states. The model system is
simulated at 5 different temperatures (0.014 < T* < 0.016)
with a time-step (¢¥) of 0.01. This specific temperature interval
is motivated below. In all cases, the system is minimized at an
interval of 100 steps to identify the underlying inherent
states.®® This minimization procedure, taking out the vibra-
tional energy, has several advantages. First, this allows a closer
comparison with the frozen-in experimental configuration.
Second, this procedure is the basis for the determination of
the underlying density of states via Boltzmann re-weighting, as
outlined below. Third, a clear-cut identification of defect-free
states becomes possible. After this analysis step the simulation
is continued with the previous configuration and momenta. A
total of ~2.5 x 10° steps are recorded for each temperature.
Whereas the length scale can be extracted from the comparison
with the experiment, this is not possible for the energy scale since
the experiments are performed for relatively lower temperatures
where no ring rearrangement can be observed. Temperatures
above 1300 K are not accessible experimentally because the silica
layer detaches from the substrate. As discussed in the ESL¥
comparison with previous DFT calculations in ref. 3 yields an
energy scale of 57 eV; which, however, should be taken as an upper
limit. As a consequence, the simulation temperature 0.015

Fig. 3 (a) A snapshot from the simulation at T* = 0.015 with 500 particles.
(b) Experimental structure collected from ref. 3, with the experimental
method described in the Section 2. Note the apparent similarity. It will be
shown that the 500 particle simulation agrees very well with the 80 particle
simulation (see ESIf) and that the latter agrees in great detail with the
experimental structural results.
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corresponds to approx. 9700 K (again upper limit). Furthermore,
we discuss that the choice of our simulation temperatures does
nevertheless allow us to extract structural information, relevant
at much lower temperatures. The physical implication of this
high temperature is discussed further below.

4 Generation of defect-free states
4.1 Identification of defect-free states

In order to filter out the minimized configurations with defects
for the subsequent analysis, we use a fixed Si-O bond distance
cut-off of 2.0 and Si-Si bond distance at 3.6. We check that each
type of particles are defect-free, i.e., they have the required
number of neighbors for silicon-oxygen, oxygen-silicon and
silicon-silicon combinations. The choice of that bond distance
cut-off is based on the observation that the first neighbor peak
in the silicon-oxygen and silicon-silicon pair correlation function
has basically decayed to zero for that distance. All states which
contains at least one particle with defect, is considered as a defect
state. Ring edges are defined by Si particles which share a common
O particle. In Fig. 3 we show an experimental configuration
together with one of the very few defect-free simulated systems
with 500 particles. On first sight both configurations look very
similar. This will be quantified for different relevant observables
(taking the 80 particle rather than the 500 particle system).

Since the efficient generation of defect-free states is of major
relevance, we start by showing the energy distribution Pg(E;s) of
inherent states in Fig. 4, distinguishing states with and without
defects and sampled for different temperatures (0.014 < T* <
0.016). The energy distribution shows two distinct peaks,
corresponding to defect-free and defect states. Typically, the presence
of defects gives rise to higher energies. Since the defect-free states
have lower energies, their Boltzmann probability decreases with
increasing temperature; see Table 2. From Fig. 4 it is clear that
all simulated configurations at low energies are defect-free.

Most remarkably, the lowest energy, encountered during the
simulations, does not change upon variation of the temperature.
This directly shows that in analogy to 3D BKS silica there exists a
low-energy cutoff'® in the potential energy landscape of the

0.08 T T T T 0.08 T T T T 0.08 T T T T
T=0.014, total P)g — ="~ T=0.015, total Pig ==~ T=0.016, total Pig — ="~
(a) " defect-free (b) defect-free (c) defect-free
I defect defect defect
0.06 - il . 0.06 - .\ . 0.06 - 1
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Fig. 4 Inherent states probability distribution at T* = 0.014, 0.015, 0.016. Shaded areas shows population of defect-free (green) and defect (red) states.
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Table 2 Fraction of defect free states, the statistical efficiency (see main
text) and the variance of the ring-size distribution at different temperatures

Fraction of Statistical ~ Variance of ring-size
Temperature  defect free states  efficiency  distribution
0.014 0.54 0.0010 0.97
0.0145 0.45 0.0010 0.98
0.015 0.31 0.0015 1.06
0.0155 0.21 0.0016 1.08
0.016 0.18 0.0019 1.11

disordered states. Such a cutoff is not observed for, e.g.,
Lennard-Jones type systems and results as a consequence of
the network structure.'®

As a consequence, in the chosen temperature regime the
observed inherent structures of defect-free states are identical
to those which would be sampled during a simulation at much
lower temperatures where, let’s say, 99% of all configurations
were defect-free. We conclude that the high temperature, used
for reasons of statistical efficiency, yields results which enable a
direct comparison with the low-temperature experimental
results. We remind that the same property was also explored
for the simulations of 3D BKS silica.'®

4.2 Correlation times

For amorphous systems the relaxation times can strongly increase
when decreasing the temperature. Thus, the overall statistical
efficiency requires the knowledge of the fraction of defect-free states
relative to the inverse time until the configuration is uncorrelated,
ie., 7. The latter can be extracted from the ring auto-correlation
function

Aftosto + 6 = ({1 = 5 (3)

Here, 6, = 0 or 1 depending on whether a particular ring,
which is defined by the indices of its corners, still exist after a
time-lag J, or not. This time-lag is actually the frame gap in
between the defect free states. For each ring-size, this quantity
is averaged over all rings of size ‘7’ in all frames with time-lag J,.
This quantity has a maximum value of 1 and vanishes for long
times; see Fig. 5(a) for the different decay functions. For each
curve we extract the average correlation times 7, from the area
of the curves of the decay function, respectively. The results are

600 = () T'=0014 = ®~ 1
S, T'=00145 ®
500 rer  T'=0015 —*
oo T'=0.0155 ~®"
400 [ . —e—
s :‘T 0.016

Tr

300 - ' \ 7

200 -

100 [~

0 500 1000 1500 2000 0
&

Ring

Fig. 5 (a) Decay of ring auto-correlation function (4,), for individual rings,
at T* = 0.015. (b) Average relaxation time (¢,) as a function of ring size and
temperature.
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shown in Fig. 5(b) as a function of temperature and ring size. As
expected the ring size 6 is by far the most stable one.

The results are also included in Table 2. In turns out that the
statistical efficiency is highest for 7* = 0.016. A temperature
decrease to T = 0.015 only displays a weak reduction in the
statistical efficiency, whereas a larger reduction is found for a
further decrease to 7" = 0.014.

It also turns out that within the sub-ensemble of defect-free states
the ‘diversity’ of states is higher for higher temperatures as reflected
by the temperature-dependent variance of the ring-size distribution,
also given in Table 2. This is a natural consequence of the fact that
amorphous structures with many six-rings are energetically favorable
and are mainly observed at low temperatures. Note that the observed
variance at a temperature of 0.015 is close to the experimental value
(2D-silica ring-variance = 1.06).”® Therefore, we will restrict ourselves
to that temperature in the subsequent analysis.

5 Structure: comparison between
experiment and simulation
5.1 Pair correlation functions

The experimental and the simulated pair correlations functions
are shown in Fig. 6. By construction the distances of the three

16 T T T T
(@) Exp. ——
12 Sim. ====*

<gsi.o(R)?°>
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I
|

<gsi-si(R)2P>
N F=N o
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o
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o — N w F=N
T

R(A)

Fig. 6 The experimental and simulated pair correlation functions for (a)
Si—O pairs, (b) Si-Si pairs, (c) O-O pairs. The experimental reference
structures are provided in ref. 3. Simulations data are convoluted with a
Gaussian function of width 0.12 A for Si-Si and 0.08 A for Si—-O and O-0,
respectively. Only defect-free states are taken for the analysis.
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nearest-neighbor peaks agree very well between experiment and
simulation (Si-O: 1.5 A, Si-Si: 3.0 A, 0-0: 2.5 A). Remarkably, also
the positions and widths of all the other peaks agree extremely
well for all three pairs. This agreement suggests that this simple
model allows one to reproduce the structure in great detail.

Initially we found a sharp g(r) for the nearest neighbor peaks
for Si-O and Si-Si. The sharpness is indeed not very different
from previous BKS-simulated defect-free vitreous bulk-silica
structures.”® In order to obtain the agreement of the experi-
mental and simulated width of the nearest neighbor peaks it
was necessary to convolute the simulated pair correlation
functions by a Gaussian with widths 0.12 A for Si-Si and
0.08 A for Si-O and O-O, respectively. This convolution is
supposed to reflect the finite resolution in the experiments.
The unconvoluted data can be found in the ESI.{

5.2 Angular distribution

The angle distributions from all defect-free states are collected
and compared with the experimental structure (Fig. 7 and Table 3).
The angle distributions are calculated for the corresponding set of
atoms which lie within a chosen bond-length from each other. The
angle distribution of Si-Si-Si and O-Si-O of the model show an
excellent matching with the average angle distribution pattern of
2D-silica. The Si-O-Si angle distribution is too narrow as compared
to the experimental data. One might use additional three-body
potentials to optimize the agreement between simulation
and experiment. However, because we are mainly interested in
the network structure, as defined by the Si particles, we refrained
from this additional complexity.

5.3 Inner ring angles

Here we show the distribution of the inner ring angles as a
function of ring sizes (see Fig. 8(a)). Trivially, the average inner
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Table 3 Mean angles in Fig. 7
0-Si-O Si-O-Si Si-Si-Si
Experiment 120.1 164.7 120.0
Simulation 119.6 175.9 119.7

ring angles are fixed by the geometric properties of a ring.
Whereas small rings display relatively small deviations around
their average angle, these deviations strongly increase for larger
rings. In Fig. 8(b) these fluctuations are compared with the
experimentally observed fluctuations. The agreement is again very
promising, except for deviations for the largest two ring sizes (8 and
9ring). In any event, since large 9-rings are quite rare in the
experiment, we may state that the current version of the force field
can closely reproduce the angle distributions for the most frequently
occurring rings in agreement with the results in Fig. 7(c).

6 Single ring statistics
6.1 Ring size distribution

The distribution of ring sizes is plotted in Fig. 9. The average value of
the ring sizes for the experiment is 5.981, whereas for the simulation
it is strictly 6 because of periodic boundary conditions. We find a
reasonable agreement between experiment and simulation. The
main deviation in relative terms is observed for ring size 7.

6.2 Correlation analysis for the experimental data

For a quantitative comparison between simulation and experi-
mental data it is essential to determine the statistical errors. This
is a non-trivial task because, on the one hand, ring sizes of spatially
adjacent rings are expected to be correlated and, on the other hand,
subsequent simulated configurations are strongly correlated as well.
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Fig. 7 Angle distribution comparison between real 2D silica and our model system for (a) O-Si—-O, (b) Si—-O-Si, and (c) Si-Si-Si. In (a) and (b), the Si-O

cutoff is chosen as 2.0 and in (c) the Si-Si cutoff as 3.6.

This journal is © the Owner Societies 2018

Phys. Chem. Chem. Phys., 2018, 20, 14725-14739 | 14731


http://dx.doi.org/10.1039/c8cp01313f

Published on 08 May 2018. Downloaded by Fritz Haber Institut der Max Planck Gesellschaft on 6/28/2018 1:43:19 PM.

Paper
0175F T T T T A | | |,
©)] 4ring 20+ b o ]
015 5ring = . p
ing —— 8 "
0.125 [ 6 ring - 8.
9 7ring E 15F 7 =2
g 01 8ring —— & o6 .
& 9ring = & 5 ¢
D
S oot - . .’
¢ 0 ‘ B
005 g .
[ : . -
0.025 - < 5 ’ Idlagonal ,lne |
0 : 5 0 15 20
75 100 125 150 175
08, Exp
G}

Fig. 8 (a) Inner Si-Si-Si angle distribution for various ring sizes from
simulation data. Each data set for ring sizes are self-normalized. (b)
Comparison between experimental and simulation data for the standard
deviation (og) for different ring sizes. The experimental values were
collected from ref. 29.
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Fig. 9 Comparison of the experimental and numerical ring size distribu-
tion. The experimental data are taken from ref. 37. For the numerical data
we only take into account the defect-free states.

For the experimental data with a total of 317 rings, the
estimation of the statistical uncertainties are carried out by
performing a block analysis. For this purpose we divide the
coordinates into M = 9 boxes with approximately 35 rings per
box (see Fig. 11). Only rings with no open edge were taken into
account. Detailed data is given in the ESI.{

The error bars in Fig. 9 are the standard errors of the
estimated ring-size probabilities (P}) from each set, i.e,

SE, = \/M(A/}—I)Z(P;n _ pr)2 (4)

m

This actual standard error can be compared with the case
that the occurrence of an r-ring is independent of the number
of rrings in the neighborhood. In this extreme limit the
distribution is binomial and reads

SEPP = /P.(1 - P),/NM. (5)

Here, N is the number of rings per configuration. Now, a
comparison between SE, and SEPPY allows one to estimate
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Fig. 10 The statistical error SE, is shown along the ordinate for (a) experimental
data and (b) simulation data. The abscissa displays the hypothetical statistical
error if all configurations were statistically independent and no spatial correlation
of r-rings with themselves are present.

correlations among the ring sizes of the adjacent rings. As
shown in Fig. 10(a), correlation effects are only significant for
r = 6, reflecting a favourable grouping of 6-rings. For all other
ring sizes these self-correlations are very small, if at all present.
Of course, this does not imply that correlations among different
ring sizes are small. For example it will turn out that a 5-ring
attracts 8-rings in its neighborhood.

6.3 Correlation analysis for the simulated data

For the calculation of the statistical error for the simulated
data, we again perform a block analysis and divide the total
trajectory of defect-free configurations into M = 34 sets with
N = 2500 subsequent configurations. As each frame of the system
contains 16 rings, the total count of rings was ~ (85000 x 16). In
analogy to the experimental data this allows us to calculate the
statistical uncertainty SE,; see Fig. 10(b).

Due to the strong correlation of subsequent configurations
this estimate is much larger than estimated from the binomial
distribution. The difference is reflected by the correlation times
1,, already shown in Fig. 5(b). Multiplying SEPP? with /2t, (for
7, » 1) allows one to estimate the true statistical uncertainty.*®
Indeed, as shown in Fig. 10(b) these values agree reasonably
well with the actual statistical uncertainties, resulting form the
block analysis. We have no direct explanation for the remaining
deviations for r =5 and r = 7.

Collecting all information together, it is possible to draw the
error bars in Fig. 9. These error bars are sufficiently small so that the
remaining differences between experiment and simulation are real.

7 Spatial ring correlations
7.1 General

The previous analysis was sensitive to the question whether an
r-ring likes or dislikes to have another rring in its neighborhood.
Here, we generalize this question and analyze the occurrence of
doublets and triplets. doublets are defined as two rings sharing a
common edge and triplets as three rings, sharing a common
corner.’” This is sketched in Fig. 12.

To compare with the experimental distribution, we filter all
defect-free states and determine all doublets and triplets, containing
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Fig. 11 Structure collected from ref. 37 and reproduced with permission from J. Non-Cryst. Solids Copyright 2016 Elsevier B.V. The structure was
divided in 9 equal blocks. The black rings were excluded from ring counting. The overlapping rings were assigned to the respective blocks depending on
the area covered by the rings inside each overlapping block. Assigned block numbers were mentioned inside such rings.

Fig. 12 Example of (a) a doublet, sharing a common edge, and (b) a triplet,
sharing a common corner.

rings with ring-sizes between 4 and 9. For a reliable comparison
with the experimental data, we only take into account combinations
with probability of more than 1%. For this lower limit the estimated
error for the experimental data is approximately one third of the
value itself as estimated from the binomial statistical error.

In the simplified case of uncorrelated spatial arrangement of
rings, one can simply reproduce the probabilities of these ring
combinations by multiplying individual ring probabilities with
an appropriate permutation factor. In this case the predicted
probabilities are given by

dicted
PR =pr 1] 2 (6)
i

The permutation factor pf is given by
=1

=2, fori#j

fori=j

)

This journal is © the Owner Societies 2018

for a doublet and

pf =1, fori=j=k
=3, fori=j+#k (8)
=06, fori#j#k

for a triplet.

This permutation factor counts, in how many ways a
given combination of rings can be generated. Thus, in this
uncorrelated scenario, the value

P

ff ijk...

P;k - Ppredicled (9)
ifk...

is constant. As a consequence this ‘effective probability’ reflects
the degree of compatibility of the rings, forming a doublet or a
triplet, respectively. An additional advantage of the effective
probabilities as compared to the bare probabilities becomes
relevant when comparing experiment and simulation. As discussed
in the context of Fig. 9 the ring statistics is slightly different.
However, when comparing the effective probabilities this
difference is taken out and one can directly compare the amount
of spatial correlations. For all subsequent experiment-simulation
comparison graphs, we have taken the experimental values from
ref. 37.

7.2 Properties of doublets

In Fig. 13 the experimental and simulated doublet probabilities
are compared. The data agree very well. Note that the absolute
values of the probabilities vary by two orders of magnitude.
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Fig. 13 Comparison of the probabilities of all doublets found by both
experiment and simulation. The shaded area reflects probabilities <1%.

The fluctuations in the lower part of Fig. 13 also reflect the large
statistical uncertainties of these low-probability doublets.

Properties of the neighborhood of a ring in a triangular
network were previously analyzed by Aboav®’ and later by
Weaire et al.*® and Rivier et al.*' In case of an ideal situation,
aring of a certain size (n) should have no preference towards its
nearest neighbor ring, which share a common edge. Therefore,
the average neighbor ring size (m(n)) of any ring should be
equal irrespective of its size. However, this average changes
when certain rings prefer rings of certain size in their neighborhood.
In general, for macrosystems like cells and soaps, it was observed
that m(n) is inversely proportional to n.*° A generalized theory was
proposed to calculate the average ring size of the neighborhood of a
ring as

m(n)=6—a+ (10

6a + ity
n
Here, m is the average ring-size of the neighbors of ring-size n.
The factor ‘a’ measures the overall effect of correlations in between
the rings. As shown in Fig. 14, both data-sets are reasonably
matched for ring-sizes 5-8, which are most common in the system.
As suggested by Weaire et al.,*® the case a > 1 generally
suggests a tendency to minimize strain of a ring by having
appropriate neighbors, i.e. introducing spatial correlations of
specific ring sizes. In case of trigonal atomistic networks like
2D-silica, this strain usually occurs due to angle distortions at
the corners. As discussed above, the spatial correlations are
best analyzed by studying the effective probabilities P5". As
shown in Fig. 15, Pfff varies by more than an order of magni-
tude, reflecting the importance of spatial correlations. We
observe a very high correlation coefficient 0.96. This result is
maybe the most sensitive test concerning the very good agree-
ment between simulation and experiment.
Doublets with large values of P;ff contain one large ring (r > 6)
and one small ring (r < 6) component (e.g. ‘58’). In contrary,
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Fig. 15 Comparison of effective doublet probabilities. All doublets which
have Ppredicted - 0.01 as well as P; > 0.01 for both experiment and
simulation are marked in red. The correlation coefficient is calculated for
the red points only.

particularly small effective probabilities occur for a combination
of two small rings (e.g. ‘55’). This suggests that the coupling
between large and small rings through edges give rise to the
extra stabilization. This effect can be directly seen in Fig. 16
where the effective probabilities for doublets are shown in a
different representation. For small rings, the effective probabil-
ities increase with increasing ring size of the second ring. For
large rings the opposite holds true.
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7.3 Properties of triplets

In analogy to the case of doublets, the same statistical analysis
can be performed for triplets. One expects that the triplets show
a different correlation effect than the edge sharing doublets. As
discussed by Biichner et al.,’” these corner sharing triplets can
be considered as the building blocks of the triangular network.
As all three rings join at a single corner the total angle has to be
360 degrees. This condition gives rise to selectivity effects.

The probabilities of the individual triplets show good agree-
ment with the experimental data (Fig. 17). The most probable
triplet was 567, predicted both by simulation and experiment.

Also the effective probabilities of triplets match very well
between experimental and simulated data (Fig. 18). In analogy
to the case of doublets, the triplets with large-small ring
combinations also shows higher values of effective probabilities
as compared to small-small ring combinations.

Theoretically, a large ring has higher chances to deform
because of its size and flexibility whereas the smaller rings
should have a stricter geometry. Thus the strain caused by a

This journal is © the Owner Societies 2018

neighbored small ring does not build up if a large ring is
present nearby. Also, to keep the total angle around each corner at
360 degrees, a large ring is necessary in a triplet if one of the rings
is small. This effect may, e.g., explain the relation P.(567) ~
2P.(566), observed numerically as well as experimentally.

8 Spatial fluctuations of rings

In Section 4.2, we have determined the average life-time of each
ring. In this section, we investigate how the spatial co-ordinates
of the corners in the ring fluctuate during its life-time. These
fluctuations can be directly related to the thermally broadened
intensity in scattering experiments.*>** Of course, experimentally
one can only see the average effect from all rings. The present
simulations allow us to see the fluctuation behavior of the
individual ring sizes.

To analyze the fluctuations during the life-time of a specific
ring we naturally have to choose the real trajectories in this
calculation. We monitor the co-ordinates of each ring-corners
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Fig. 17 Comparison between simulation and experimental triplet data for
all triplets found by both experiment and simulation. The shaded area
reflects probabilities <1%.
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Fig. 18 The comparison of effective triplet probabilities. All triplets which
have ppredicted ~ 0,01 as well as Py > 0.01 for both experiment and
simulation data are marked in red. The correlation coefficient is calculated
for the red points only.

(Si particles) from the real trajectory, as long as the corres-
ponding ring appear in the minimized trajectory. From these
data we directly obtain the variance of the X and Y coordinates
(u*(X),1%(Y)) for each Si particle. The total variance is taken as
= 1 (X) + u2(Y). For a ring of size r this variance is averaged
over all r Si atoms of that ring. Then this analysis is repeated for
all rings of size r.

Clearly, the variance will increase with the number of
acquired data. Naturally, the variance will be higher for 5, 6
and 7 rings since they have larger life time. Therefore, we
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cannot obtain information about the immediate fluctuation
of the rings from the full trajectory analysis. To overcome this
problem, we chose a limiting time for all rings to calculate
(¢*(r)). The limiting time is chosen as 7, ~ 50 steps, such that
we obtain sufficient data for small and large rings. The aver-
aging procedure of (1%(r)) is performed for the 50 initial steps
for all rings of ring-size r, which live for at least 50 steps.

The results are shown in Fig. 19. The variation of the
fluctuations as a function of ring size is quite small (10%).
Looking in more detail we find that the small rings show a
slightly larger variance, while for larger rings the variance is
nearly constant. A possible explanation is the diffusion of the
center of mass during the chosen time. Small rings with only a
few atoms are expected to show larger diffusion. This will
slightly bias the average (u*(r)) calculation.

9 Conclusions

Using a Yukawa-type force field we have succeeded in reproducing
key structural features of the experimentally studied silica film.
Assuming an identical top and bottom layer, as suggested by the
experimental observations, we can effectively use a purely 2D
model. As shown in this work, the structural properties and in
particular the ring statistics can be reproduced very well. A
conceptual key aspect is the preparation of defect-free states in
equilibrium which requires low but not too low temperatures. In
particular, this constraint requires the use of relatively small
systems. With the help of MD simulation, we are able to sample
the equilibrium distributions for both defective and defect-free
states. Although the defect states do not have any effect on the ring
distribution, they do occupy a significant portion of the energy
landscape (Fig. 4). From previous studies, we know that coordination
defects in bulk-silica play an important role in glass formation.'®
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It will be interesting to perform similar study for 2D-silica with
the sampled defect states.

We have found that despite the small deviations in the ring
statistics, the doublet and triplet statistics and the effective ring
probability plot showed very good correlations with the 2D-silica
system. In general, it is essential to use the effective probabilities
for a fair comparison because the residual differences of the ring
statistics are, at least to a large extent, removed. The main
remaining differences are related to the oxygen positions which
are too close to the connection line between two silicon atoms.

Conceptually, it was essential to use relatively small system
sizes. Studying possible finite size effects is difficult since the
availability of defect free states exponentially decreases with
increasing system size. Nevertheless, by using extensive simulations
to obtain a few defect-free configurations we have checked that for
the statistical observables, analyzed in this work, finite size effects
are small. Furthermore, it may be interesting to perform full 3D
simulations of the system in order to reproduce the conditions
under which the top and bottom layer of the system are basically
mirror images of each other, as observed experimentally. This would
involve the development of an appropriate 3D force field, reflecting
the energies as obtained by the corresponding DFT-calculations.

As derived from the analogy to 3D silica and as discussed
above, the properties of the subensemble of defect-free con-
figurations corresponds to the properties of states, generated at
much lower temperatures. Thus, the properties of the experimental
system, corresponding to a low-energy configuration (as reflected by
the absence of defects), can be directly compared to the results of
simulations at somewhat higher temperatures.

Interestingly, the required temperature scale (with an upper
bound of approx. 10000 K) for the 2D system to achieve
sufficiently fast equilibration is much higher than the corres-
ponding simulation temperatures of 3D silica (lower than 3000 K).
This may be related to the fact that typical barriers in 3D are lower
due to the higher number of degrees of freedom. Furthermore, it is
conceivable that in the present system the barrier might be smaller
(and, thus, the accessible temperature range lower) if during the
transitions between different inherent states one would allow for a
local suspension of the symmetry between both layers. In any
event, this is beyond the 2D model, promoted in this work.

10 Outlook

This work mainly serves the purpose to show that the 2D model
is able to reproduce many experimental observations in great
detail. Also additional information, only accessible from computer
simulations, was presented. For example additional insight about
the life-times and the spatial fluctuations of the different ring
sizes can be analyzed. In general, the verification of the 2D
model will allow us to explore a large variety of additional
information, not accessible experimentally. For example, one
may study the potential energy landscape of the total 2D system.
In this way, a detailed comparison may be possible with
standard bulk silica where an extensive analysis of the potential
energy landscape was previously performed.’® One important
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aspect of the simulation is a clear identification of defect- and
defect-free states and how their probabilities change with
temperature. This information is not possible to obtain in
experiment, since the required temperature would be too high.
In Fig. 4, the presence of a cut-off energy in both defect and
defect-free states can be identified. This observation may be
explored in future work in the framework of the potential energy
landscape in order to elucidate the properties of the glass
formation and the Kauzmann paradox.

The 2D model has also great potential for application in the
field of 2D continuous random networks (CRN). One may study
the impact of local ring energies on the formation of local
doublet or triplet structures. Since our model is strictly 2D, we
cannot directly compare dynamical properties (e.g. mechanisms)
with the real system. However, this model is an excellent example
of a 2D network-glass where a clear identification of the rings is
possible. Studying various relaxation paths of the network
structures through molecular dynamics, one may hope to obtain
a better mechanistic understanding of the resulting structures.
This might in turn help to develop a more general Monte-Carlo
algorithm for sampling various CRN in equilibrium in analogy
to ref. 23.

The Yukawa-type model also has potential application in
the development of various computational tools. As we have
discussed before, the previous 3D DFT calculations of 2D-silica
were primarily based on a graphene based CRN. As the structure
of the current Yukawa model agrees extremely well with the
experimental observations, it may be considered as a better
starting point than the structure of graphene.

There are various other 2D materials where the present
Yukawa-type model can be applied; see Fig. 20. It is important to
remember that the force-field does not incorporate any substrate
interaction. One may need an additional angle-dependent force
field for simulating binary mono-layer materials such as nitro-
genated graphene (C;N) or hexagonal boron nitride (hBN).
Another prime candidate for application of this model is
two-dimensional ice. It was possible to grow an ice mono-layer**
to a bi-layer and a multi-layer*> on a Ru or a Cu surface.
Theoretically, the bi-layer ice was previously simulated with
molecular dynamics within confinement.***"*® It shows almost
similar ring distribution and structure compared to 2D-silica.

graphene boronoxide silica germania
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Fig. 20 Various analogue of 2D-silica type materials in two dimensions.
The drawings are inspired from ref. 3, 47, 48 and 49, respectively.

Phys. Chem. Chem. Phys., 2018, 20, 14725-14739 | 14737


http://dx.doi.org/10.1039/c8cp01313f

Published on 08 May 2018. Downloaded by Fritz Haber Institut der Max Planck Gesellschaft on 6/28/2018 1:43:19 PM.

Paper

However, the layer symmetry of bi-layer ice is not as good as in
2D-silica.

The study of two-dimensional materials is an active field of
research with various examples coming to light every year. From
monolayer graphene to bi-layer silica, two-dimensionality is
explored in various materials. Amorphous silica bi-layer is a
special example of a free-standing 2D material which is experi-
mentally well studied. Another interesting bulk glass forming
system is boron oxide. It may be interesting to investigate the
possibility to generate 2D boron oxide in analogy to 2D-silica.
Recently, a germania analogue of a silica film has been prepared
in a monolayer form ref. 49 with strong substrate interaction.
Investigations are ongoing to synthesize germania in a bi-layer
form, which also may be a potential candidate for the application of
a Yukawa-type model.
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