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An example of a higher spin gravity in four-dimensional flat space has recently been constructed by
D. Ponomarev and E. D. Skvortsov, J. Phys. A, 50, 095401(2017). This theory is chiral and the action is
written in the light-cone gauge. The theory has certain stringy features, e.g., admits Chan-Paton factors. We
show that the theory is consistent, both at the classical and quantum level. Even though the interactions are
nontrivial, due to the coupling conspiracy all tree level amplitudes vanish on shell. The loop corrections
also vanish. Therefore, the full quantum S matrix is one and the theory is consistent with the numerous
no-go theorems. This provides the first example of a (quantum) interacting higher spin gravity with an
action. We argue that higher spin gravities in anti–de Sitter space should display the same features.

DOI: 10.1103/PhysRevLett.121.031601

Introduction.—Higher spin gravities (HiSGRA) are
hypothetical theories that contain graviton and massless
fields with spin greater than two. HiSGRAs have a
checkered past, since they had long been believed not to
exist due to many no-go theorems [1,2], most notably the
Weinberg low energy theorem [5] and the Coleman-
Mandula theorem [6]. The theorems directly constrain
the S matrix: the former does not allow massless fields
with spin greater than two to couple nontrivially to the
usual low spin particles, and the latter prevents the Smatrix
from having symmetry generators that transform as tensors
under the Lorentz group.
While the theorems restrict the footprints of interactions

at infinity, they have little to say about local effects.
Intriguingly, massless higher spin fields were shown to
have some consistent local cubic interactions, with the first
positive results having been obtained in the light-cone
gauge [7,8]. One of the greatest advantages of the light-
cone approach is that it operates only with physical degrees
of freedom (d.o.f.) with the idea of explicitly constructing
field dependent realization of the Poincaré algebra.
However, the existence of cubic vertices does not yet

guarantee that the higher point amplitudes respect Poincaré
symmetries. The analysis of closure of the Poincaré algebra
at the quartic order was performed in [9,10] and left some

possibilities open. Recently in Ref. [1], which is heavily
based on Refs. [9,10], it was shown that there exists a
simple solution for the Poincaré algebra generators to all
orders. The solution was called chiral HiSGRA since its
interaction vertices discriminate between helicities: there
are more fields with positive helicities than with negative.
Despite its simplicity, the chiral HiSGRA has all the

features that HiSGRAs are expected to have on general
grounds. The spectrum consists of all massless integer spin
fields, starting with the scalar field. The graviton is a part of
this spectrum and the theory has a dimensionful coupling
constant, which can be identified with the Planck length, lp.
The theory admits Yang-Mills gaugings [11], which follow
the stringy Chan-Paton pattern. All fields have nontrivial
(self- and gravitational) interactions that are crucial for
classical consistency.
The purpose of this Letter is to report that the chiral

HiSGRA is consistent both at the classical and quantum
levels. Moreover, it is not in contradiction with the no-go
theorems: the couplings conspire in such a way that the full
S matrix is 1 and, therefore, when observed at infinity,
higher spin fields appear to have trivial scattering.
Nevertheless, the chiral HiSGRA provides the first example
of a quantum HiSGRA. Moreover, it is the first example of
an interacting HiSGRA whose action can explicitly be
written. We will also argue that the anti–de Sitter (AdS)
HiSGRA counterparts should follow the same pattern,
though in a more complicated way.
Chiral higher spin gravity.—Chiral HiSGRA is known

in the light-cone gauge and we present the action directly in
momentum space to facilitate the computation of ampli-
tudes. The 4d momentum is p ¼ ðpþ; p−; p; p̄Þ and pþ is
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usually denoted by β. In the light-cone gauge a massless
spin-s field is represented by a pair of scalar fields:
Φ�s

p ≡Φ�sðpÞ, Φþs†
p ¼ Φ−s

−p. It is also possible and com-
putationally convenient to consider a version of the theory,
the “higher spin glue,” by takingΦs to be uðNÞ valued. The
action of the chiral HiSGRA in momentum space reads

S ¼ −
X

λ

Z
d4pTr½Φλ†

p Φλ
p�p2

þ
X

λ1;2;3

Cλ1;λ2;λ3

Z
d4p1;2;3

P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

Tr½Φλ1
p1Φ

λ2
p2Φ

λ3
p3 �

× δ4ðp1 þ p2 þ p3Þ; ð1Þ

where Tr is the trace over the implicit uðNÞ indices,
P̄≡ P̄12 ≡ p̄1β2 − p̄2β1. It is crucial for the closure of
the Poincaré algebra to choose the coupling constants
as [1,9,10]

Cλ1;λ2;λ3 ¼
ðlpÞλ1þλ2þλ3−1

Γðλ1 þ λ2 þ λ3Þ
: ð2Þ

The Γ-factor requires the sum over helicities in the vertex
to be positive and triplets þþþ, þþ −, and þ − − are
present in general. There is a dimensionful coupling
constant lp to be associated with the Planck length as
the ðþ2;þ2;−2Þ vertex present here is a part of the usual
Einstein-Hilbert action. The light-cone approach is very
close to the spinor-helicity formalism, as it was noted, e.g.,
in Refs. [12–15], and the vertex has a clear interpretation,

P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

∼ ½12�λ1þλ2−λ3 ½23�λ2þλ3−λ1 ½13�λ1þλ3−λ2 :

Lastly, the presence of the Chan-Paton factors leads to
significant simplifications as only color-ordered amplitudes
need to be computed.
Tree amplitudes.—We would like to compute all physi-

cal n-point tree amplitudes, i.e., amplitudes Anðp1;…; pnÞ
with external legs being on shell, p2i ¼ 0. It turns out that all
n-point amplitudes can be computed recursively if lower-
order amplitudes with one external off-shell leg are known:

ð3Þ

The picture illustrates that the (nþ 1)-point amplitude with
one off-shell leg can be obtained as a sum over all ways to

attach (iþ 1)- and ðnþ 1 − iÞ-point amplitudes to the
cubic vertex. The legs being attached have to be off shell,
which explains why we need to know lower-order ampli-
tudes with just one off-shell leg. The simplest amplitude is
the 4-point one [16]

where we define Λn ¼ λ1 þ � � � þ λn,

N n ¼
ð−Þn

2n−2Γ(Λn − ðn − 3Þ)Qn
i¼1 β

λi−1
i

; ð4Þ

and αn ¼
P

n−2
i<j P̄ij þ P̄n−1;n, e.g., α4 ¼ P̄12 þ P̄34.

Thanks to the p24 factor, the physical amplitude A4

vanishes. Now it is a matter of direct computation to
prove, with the use of Eq. (3), that the n-point amplitude is

An ¼ N n
αΛn−ðn−2Þ
n β2…βn−2p2n
βnP12…Pn−2;n−1

:

Again, we see that it has p2n factor and therefore the physical
n-point amplitude An vanishes. This makes the chiral
HiSGRA consistent with the no-go theorems at least at
the tree level. It is worth stressing that such a simple result
for amplitudes with one off-shell leg relies on the particular
form of the coupling constants in Eq. (2). We call this
situation coupling conspiracy, since the multitude of non-
trivial interactions conspire to cancel in the physical
answers. Lastly, vanishing of tree level amplitudes should
improve the UV behavior of loop diagrams.
Vacuum loops.—Vacuum diagrams play an important

role in the cancellation of legged loop diagrams in the chiral
HiSGRA. If we had a covariant action for the theory [18],
the one-loop vacuum bubble would be equal to the product
of determinants of the kinetic terms [20]

where zs ¼ dets;⊥ j − ∂2j is the determinant of −∂2 on
the space of transverse and traceless rank-s tensors. The
numerator results from the kinetic terms of ghosts. Such
determinants have been already studied, both in flat and
AdS spaces [21]. The lesson is that the sum (product) over
spins needs to be regularized. In our case it is possible [29]
to adopt a regularization that makes the cancellation
between all numerators and denominators obvious. The
same partition function can be interpreted as Z1-loop ¼
ðz0Þν0=2, ν0 being the total number of d.o.f., which can be
regularized as
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ν0 ¼
X

λ

1 ¼ 1þ 2
X∞

s¼1

1 ¼ 1þ 2ζð0Þ ¼ 0; ð5Þ

i.e., we interpret the spectrum as a scalar field plus 2 d.o.f. per
each of s > 0 field. Then, we find Z1-loop¼ðz0Þν0=2¼1 [30].
All the other vacuum diagrams vanish without a need to

regularize. Indeed, the sum of helicities over all the vertices
has to be zero, while for a vertex to contribute the sum over
the three ingoing helicities must be positive due to the Γ
factor in Eq. (2). Therefore, there is always at least one
vertex where the Γ factor makes the whole diagram vanish.
To summarize, all vacuum diagrams vanish: the one-loop

diagram after the appropriate regularization and all the
others due to the coupling conspiracy.
Legged loops.—We would like to examine the behavior

of legged loop diagrams and see if the coupling conspiracy
makes them vanish in one way or another. Two lower order
amplitudes are considered in detail and then the general
argument is given. We expect the loops not to have any cuts
due to the vanishing of tree level amplitudes.
Self energy.—The self-energy diagram, the bubble, is the

one we might expect to be UV divergent:

where we dropped few unessential factors and k0;1 are the
dual momenta, p ¼ k1 − k0. We prefer to use the world-
sheet-friendly regularization [12,31], which was shown
to work nicely in a number of theories, including QCD.
The main feature is that ν0 factors out, which allows us to
declare vanishing of the whole diagram. Let us, never-
theless, evaluate the integral. For the physical amplitude
p2 ¼ 0 the result is simple and finite

Z
1

0

dx½xk̄0 þ ð1 − xÞk̄1�2; ð6Þ

which is reminiscent of the Πþþ amplitude in Ref. [12] for
Λ2 ¼ 2. If it were not for ν0 ¼ 0 we would have to add a
counterterm to eliminate the correction above since it
breaks Lorentz invariance (as discussed for Yang-Mills
theory in Ref. [12]).
Vertex correction: The physical three-point amplitude

for massless spinning fields is zero for kinematical reasons
and we keep one momentum off shell. In the large-N [32]
the result is

where p3 is the off-shell momentum and the expression is
similar to the Γþþþ amplitude for QCD [12]. We see that
the overall factor ν0 makes it vanish.
General loops: All loop diagrams can be shown to

vanish if the total number of d.o.f. is regularized to zero.
Indeed, any l-loop n-point diagram can be represented as
the union of elementary sunshine diagrams

where the external legs may be off shell and can be sewn
with other sunshine diagrams. The lower order sunshine
diagrams are the self-energy and the vertex correction given
above. In general, in the large-N limit for n > 2 we find an
integral of the type

Γn ∼ ν0
1

Q
n
i¼1 β

λi
i

Z
KnðP̄ijÞ

p2ðpþ p1Þ2…ðp − pnÞ2
; ð7Þ

with some numerator Kn. What is important is that the
“total number of d.o.f.” factors out in the form of ν0 [33].
Therefore, each elementary sunshine diagram gets multi-
plied by zero if we assume Eq. (5), and hence any loop
diagram also does so. As a result, all loop diagrams vanish,
confirming that S ¼ 1.
Let us note that the need to regularize the sums over

fields is to be expected in any theory with infinitely many
fields and represents one of the stringy features of the chiral
HiSGRA. Another instance of the same problem arises in
dimensional reductions, see, e.g., Ref. [34], and exceptional
field theories [35]. In general, it would be helpful to have
some worldsheet realization of HiSGRAs exempted from
these regularization issues.
Conclusions.—We have studied the simplest chiral

HiSGRA with uðNÞ Chan-Paton factors and showed that
it is a fully consistent quantum HiSGRA. Thanks to the
coupling conspiracy, both the tree-level amplitudes and the
loop corrections vanish. Therefore, S ¼ 1 to all orders in
perturbation theory, which is consistent with the no-go
theorems. This provides us with the first example of a
quantum HiSGRA. There are several variants of classical
chiral HiSGRAs [36] and it would be interesting to see if all
of them are quantum consistent.
One may wonder if S ¼ 1 is a satisfactory answer or

whether it means that HiSGRAs are trivial. First, this seems
to be the only possible answer consistent with the no-go
theorems [5,6,38]. Second, pure HiSGRAs are not meant to
be realistic models of nature, rather they are toy models of
quantum gravity whose importance is perhaps in having the
minimal multiplet that allows the graviton to be embedded
into a consistent quantum theory. More realistic models
should result from matter-coupled and Higgsed HiSGRAs,
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where the solution is expected to be string theory [39].
We argue below that the same reasoning should apply to
AdS HiSGRAs whenever they will be constructed and
quantized.
Our findings for flat space can also shed some light

on AdS HiSGRAs. HiSGRA in AdS [40] are generic
duals of free CFT’s [48–50]. Indeed, gauge symmetries
of massless higher spin fields in AdS translate into
dual operators being conserved tensors. The charges
associated with the latter signal an extension of the
conformal symmetry. The AdS/CFT analog [51–54]
of the Coleman-Mandula theorem [6] states that a
CFT with a higher spin current is a free one in d > 2.
In any free CFT, say with a free field ϕ, one can con-
struct infinitely many higher spin currents Js as bilinears
Js ¼ ϕ∂…∂ϕþ…. The fields of the dual HiSGRA in
AdS space are in one-to-one correspondence with Js and
bulk interactions should account for nonvanishing
hJ…Ji, which are built of free partons ϕ.
Therefore, being dual to a free CFT is a good generali-

zation of the S ¼ 1 statement from flat space to AdS/CFT
holographic S matrix: asymptotic higher spin symmetries
in flat space or in AdS imply S ¼ 1 or S ¼ free CFT,
respectively [55]. Based on the analogy above, our con-
jecture is that AdS HiSGRA should have better UV
behavior (compared to the naive power counting) and
the systematic reason for the loop corrections to vanish
(or be proportional to the tree-level result) should be a
factorization of sums over spins (one-loop bubbles), as
occurs for the chiral HiSGRA.
Lastly, there are non-HiSGRA examples that share

some of the properties of the chiral HiSGRA: self-dual
Yang-Mills and self-dual Gravity. They have vanishing
tree level amplitudes and finite loop corrections, even
though the reasons for cancellation seem to be somewhat
different [56,57]. Closer to the chiral HiSGRA are the
conformal HiSGRAs [58,59], which are defined in even
dimensions as the local part of the induced action of a
free CFT in the higher spin background. They should
have vanishing tree-level amplitudes and give examples
of consistent quantum conformal HiSGRA [60–62];
see also Ref. [63].
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