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A SIMPLE CONSTRUCTION OF ASSOCIATIVE

DEFORMATIONS

ALEXEY A. SHARAPOV AND EVGENY D. SKVORTSOV

Abstract. We propose a simple approach to formal deformations of
associative algebras. It exploits the machinery of multiplicative cores-
olutions of an associative algebra A in the category of A-bimodules.
Specifically, we show that certain first-order deformations of A extend
to all orders and we derive explicit recurrent formulas determining this
extension. In physical terms, this may be regarded as the deformation
quantization of noncommutative Poisson structures on A.

1. Introduction

The algebraic deformation theory is at the heart of several branches of
modern mathematical physics: quantum groups, deformation quantization,
noncommutative geometry and field theory are just a few examples. For
associative algebras the deformation theory is known to be closely related to
the Hochschild cohomology [1]. In particular, the infinitesimal deformations
of an associative algebra A are classified by the elements of the second
cohomology group HH2(A,A), while the third group HH3(A,A) controls
the obstructions to integrability of infinitesimal deformations. As was first
observed by Gerstenhaber [2], the groups HH•(A,A) carry a rich algebraic
structure, namely, that of a graded Poisson algebra. Among other things
this allows one to transfer the notion of a Poisson structure from smooth
manifolds to noncommutative algebras [3], [4].

By definition, a Poisson structure on an associative algebra A is an ele-
ment Π ∈ HH2(A,A) whose Gerstenhaber bracket with itself vanishes, that
is, [Π,Π] = 0. The problem of noncommutative deformation quantization
can now be formulated as follows [5]: given a Poisson structure Π on A,
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construct an associative ∗-product in A[[t]] such that

(1.1) a ∗ b = ab+
∞
∑

n=1

tnµn(a, b) ∀a, b ∈ A

and the Hochschild cohomology class of [µ1] is equal to Π. As particular
cases this includes the usual (i.e.,‘commutative’) deformation quantization
of Poisson manifolds [6] as well as the noncommutative deformation theory
of Refs. [7], [8].

While the problem of quantizing smooth Poisson manifolds has been com-
pletely solved by Kontsevich [9], only a few explicit examples of genuine
noncommutative Poisson structures and their deformation quantization are
available in the literature. Most of them are related to the smash-product
algebras A = B ⋊Γ, with Γ being a finite group of automorphisms of an al-
gebra B. The case that B is the algebra of smooth functions on a Γ-manifold
M was thoroughly studied in [10], [11], [12]. The noncommutative algebra
C∞(M)⋊ Γ is known to be a good substitute for the commutative algebra
C∞(M)Γ of Γ-invariant functions whenever the action of Γ on M is not free,
so that the quotient space M/Γ is singular [13]. In [11], it was shown that,
in addition to the usual Poisson bivectors on M/Γ, the algebra C∞(M)⋊Γ
admits noncommutative Poisson structures with supports on codimention 2,
fixed-point submanifolds Mγ ⊂M , γ ∈ Γ. If one takes M to be a symplec-
tic vector space V endowed with a faithful action of a symplectic reflection
group Γ ⊂ Sp(V ), then the corresponding quantum algebra belongs to the
class of symplectic reflection algebras introduced in [14]. One more example,
where B is the polynomial Weyl algebra on two generators and Γ = Z2, was
considered in [7].

It should be noted that in most known examples of noncommutative de-
formation quantization the corresponding ∗-products were not obtained in
an explicit form. Their existence followed indirectly from the Poincaré–
Birkhoff–Witt property of the corresponding quantum algebras. Perhaps
the only exception is the paper [15], where a Moyal-type formula was de-
rived for the deformation quantization of C∞(R2)⋊ Zn.

In this paper, we propose a new approach to noncommutative deforma-
tion quantization. The main advantage of our method is that, similar to the
Fedosov deformation quantization [16], it provides explicit recurrent formu-
las for ∗-products, and not just existence theorems. Let us briefly explain
the basic idea behind our approach.

As we have already mentioned, the deformations of an associative algebra
A are governed by the Hochschild cohomology groups whose formal defini-
tion is the following:

HH•(A,A) = Ext•Ae(A,A) .

Here Ae = A ⊗ Aop is the enveloping algebra of A. To compute the Ext-
groups on the right one may use either projective or injective resolutions of
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the algebra A viewed as a module over Ae. Let us denote these resolutions
by AP and AJ :

· · · // A2
P

// A1
P

// A0
P

// A // 0 ,

0 // A // A0
J

// A1
J

// A2
J

// · · · .

It is the standard result of homological algebra (see e.g. [17]) that

(1.2) H•(HomAe(AP , A)) ≃ Ext•Ae(A,A) ≃ H•(HomAe(A,AJ)) .

There is also a definition symmetric with respect to both the arguments of
Ext-functor:

Ext•Ae(A,A) ≃ H•(HomAe(AP ,AJ)) .

The most popular way of computing the Hochschild cohomology is through
the projectives. Among various projective resolutions of the algebra A there
exists the standard resolution B(A), called also the bar-resolution. This
appears naturally in many specific problems including deformation theory.
Despite its theoretical importance, the bar-resolution does not help much
in practical computations with infinite-dimensional algebras. In order to
compute the Hochschild cohomology of a given algebra A one has to find a
special projective resolution AP . In the context of deformation quantization
all the computations with AP should then be followed by the construction
of a quasi-isomorphism from the complex HomAe(AP , A) to the standard
bar-complex HomAe(B(A), A) to get an explicit formula for the ∗-product.
Generally this last step may not be an easy task. Some explicit examples of
quasi-isomorphisms between the Koszul and bar-complexes can be found in
[11], [18], [19], [20].

Rel. (1.2) suggests also an alternative way to compute the Hochschild
cohomology, namely, through the injectives. It is easy to see that

(1.3) HomAe(A,AJ) ≃ AA
J ,

where AA
J ⊂ AJ is the submodule of A-invariants:

AA
J = {a ∈ AJ | ab = ba , ∀b ∈ A} .

Hence, the Hochschild cohomology of A is isomorphic to the cohomology of
the subcomplex AA

J , i.e.,

(1.4) HH•(A,A) ≃ H•(AA
J ) .

Having in mind the deformation problem for the algebra A, it is quite natural
to look for injective resolutions AJ that are differential graded algebras, and
not just Ae-modules. In Sec. 3, we show that certain elements of H2(AA

J )
give rise to a formal deformation of A; in so doing, the corresponding ∗-
product (1.1) is recurrently defined in terms of the Hochschild differential
and the contracting homotopy operator for the resolution AJ . Moreover,
the requirement of injectivity is not actually needed for our construction:
in many interesting cases one can use non-injective coresolutions to produce
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nontrivial deformations. In Sec. 4, we illustrate the general method by
several examples of commutative and noncommutative algebras.

2. Preliminaries

Throughout this paper, k is an arbitrary field of characteristic zero and
all unadorned tensor products ⊗ and Homs are taken over k.

By a differential graded k-algebra (DG-algebra for short) we mean a non-
negatively graded, unital, associative algebra A =

⊕

n≥0A
n over k endowed

with a differential d : An → An+1 such that

An · Am ⊂ An+m , d(ab) = (da)b + (−1)|a|adb , d2 = 0 ,

where |a| is the degree of a homogeneous element a ∈ A|a|. Notice that A0

is always a (non-differential) subalgebra in A.
Given a DG-algebra A, we can define the bicomplex C•,•(A,A) of k-vector

spaces

Cn,m(A,A) = {f ∈ Hom(A⊗n,A) | f is a linear map of degree m}

equipped with the pair of differentials

d : Cn,m(A,A) → Cn,m+1(A,A) , δ : Cn,m(A,A) → Cn+1,m(A,A) .

For any cochain f : A⊗n → A we set

(df)(a1⊗· · ·⊗an) = df(a1⊗· · ·⊗an)−

n
∑

i=1

(−1)ǫif(a1⊗· · ·⊗dai⊗· · ·⊗an) ,

(δf)(a1 ⊗ · · · ⊗ an) = −(−1)(|a1|+1)|f |a1f(a2 ⊗ · · · ⊗ an)

−
n
∑

i=2

(−1)ǫif(a1 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an)

+(−1)ǫnf(a1 ⊗ · · · ⊗ an−1)an .

Here ǫi = |f |+ |a1|+ · · ·+ |ai−1| − i+1 and |f | = m+ n is the total degree
of the cochain f . It follows from the definition that

d2 = δ2 = 0 , dδ + δd = 0

and we can define the total differential D = δ + d that increases the total
degree by 1. The Hochschild cohomology groups HH•(A,A) of the DG-
algebra A with coefficients in itself are now defined to be the cohomology of
the total complex

C•(A,A) = TotC•,•(A,A) .

The space of Hochschild cochains C•(A,A) has the structure of graded
Lie algebra with respect to the Gerstenhaber bracket

[f, g] = f ◦ g − (−1)(|f |+1)(|g|+1)g ◦ f ,
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where

f◦g =

n−1
∑

i=0

(−1)(|g|+1)
∑i

j=1
(|aj |+1)f(a1⊗· · ·⊗ai⊗g(ai+1⊗· · ·⊗ai+1+m)⊗· · ·⊗am+n−1) .

This bracket satisfies the standard properties

[f, g] = −(−1)(|f |+1)(|g|+1)[g, f ] ,

[[f, g], h] = [f, [g, h]] − (−1)(|f |+1)(|g|+1)[g, [f, h]] ,

d[f, g] = [df, g] + (−1)(|f |+1)[f, dg] .

In addition,

δf = [m, f ] , m(a1, a2) = (−1)|a1|a1a2 ,

and
δ[f, g] = [δf, g] + (−1)(|f |+1)[f, δg] .

As is seen, the coboundary operator D = δ + d of the total complex differ-
entiates the Gerstenhaber bracket, so that we can speak of the differential
graded Lie algebra (C•(A,A),D). Clearly, the Gerstenhaber bracket de-
scends to the cohomology making the k-vector space HH•(A,A) into a
graded Lie algebra.

The usual definitions of the Hochschild cohomology and Gerstenhaber
bracket for nongraded algebras are obtained from the above formulas just
assuming A to be concentrated in zero degree, i.e., A = A0. Then the total
degree is given by the first degree of C•,• and D = δ becomes the usual
Hochschild differential.

One of the motivations to introducing the Gerstenhaber bracket comes
from deformation theory. Let us rewrite (1.1) in the form a∗b = ab+µ(a, b),
where the 2-cochain µ ∈ C2(A[[t]], A[[t]]) describes the formal deformation of
the k[[t]]-algebra A[[t]]. Then one can see that the ∗-product is associative
iff the cochain µ satisfies the Maurer–Cartan equation

δµ = −
1

2
[µ, µ] .

Expanding this equation in powers of t, we get the sequence of equations

δµ1 = 0 , δµ2 = −
1

2
[µ1, µ1] , . . .

The first equation identifies µ1 as a 2-cocycle representing an element of
HH2(A,A). According to the second equation this cocyle squares to zero
up to coboundary, that is, defines a Poisson structure on A. At n-th order
we face the equation

(2.1) δµn = ψn , ψn = −
1

2

n−1
∑

k=1

[µk, µn−k] .

It follows from the definition that the 3-cochain ψn is δ-closed provided
all the previous n − 1 equations are satisfied. Thus, the (n − 1)-th order
deformation can be extended to the next order whenever the cocycle ψn is
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trivial. The extension, if exists, is not unique as we are free to add to µn any
2-cocycle, e.g. a trivial one. If HH3(A,A) = 0, then the obstruction space
is empty and we conclude immediately that any infinitesimal deformation
can be integrated to a global one. In the general case, however, the existence
of a solution to Eq. (2.1) depends not only on the algebra A itself, but also
on the choice of particular solutions for µ1, . . . , µn−1. This makes the whole
problem of constructing global deformations extremely difficult: no general
method is known for solving Eqs. (2.1).

3. Formal deformation

Let (A, d) be a DG-algebra with Ap = 0 for p < 0 and let H•(A) denote
the corresponding cohomology groups. Then the intersection A = A0 ∩
ker d ≃ H0(A) is a differential graded subalgebra of A (concentrated in
zero degree and endowed with trivial differential). The enveloping algebra
Ae = A⊗Aop of A acts naturally on A:

(a⊗ b)c = acb , ∀a, b ∈ A , ∀c ∈ A .

This allows us to think of (A, d) as a cochain complex of (left) modules over
Ae. Let us further assume that Hp(A) = 0 for all p > 0. Then,

(3.1) 0 // A
ε

// A0 d
// A1 d

// · · ·

is a coresolution of the Ae-module A. Denote by Z(A) the center of the
algebra A and let H•(AA) denote the cohomology groups of the subcomplex
AA ⊂ A of A-invariant cochains. The main result of the paper can now be
formulated as follows.

Theorem 3.1. Any cohomology class [λ] ∈ H2(AA) with a representative
λ ∈ Z(A) defines an integrable deformation of A.

The rest of this section will be devoted to the proof of the above theorem.
Our proof is constructive, namely, we will derive explicit recurrent formulas
that allow one to find the corresponding ∗-product up to any given order.

First of all, we extend the algebra A to the DG-algebra A[[t]] of formal
power series in deformation parameter t; the action of the operator d extends
to A[[t]] by k[[t]]-linearity and continuity. Correspondingly, the cochains
of the bicomplex C•,•(A[[t]],A[[t]]) are assumed to be k[[t]]-multilinear and
continuous with respect to the t-adic topology. This ensures the isomorphism

(3.2) C•,•(A[[t]],A[[t]]) ≃ C•,•(A,A)[[t]] .

In other words, each cochain of C•,•(A[[t]],A[[t]]) is completely specified
by its values on the subalgebra A ⊂ A[[t]]. This allows us to view the
cochains as spanning a k-vector space graded by powers of t. Then the
homogeneous subspaces are precisely the eigenspaces of the Euler operator
N = t d

dt
. Associated to this grading is a descending filtration: we say that

the (filtration) degree of f is bigger than m, if f ∈ tm+1C•,•(A,A)[[t]]. In
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this case we write deg f > m. The action of the Euler operator on the
cochains f ∈ C•,•(A[[t]],A[[t]]) is given by

(Nf)(a1 ⊗ · · · ⊗ an) = Nf(a1 ⊗ · · · ⊗ an)−

n
∑

i=1

f(a1 ⊗ · · · ⊗Nai ⊗ · · · ⊗ an) .

It is not hard to see that

[N, d] = 0 , [N, δ] = 0 , N [f, g] = [Nf, g] + [f,Ng]

for all f, g ∈ C•,•(A[[t]],A[[t]]).
Now, starting with the total differential D = d + δ in C•,•(A[[t]],A[[t]]),

we consider its formal deformation Dµ defined by

Dµa = Da+ [µ, a] , ∀a ∈ A[[t]] ,

for some cochain µ ∈ C2,0(A[[t]],A[[t]]) with

(3.3) deg µ > 0 .

It is straightforward to see that the operator Dµ squares to zero iff the
cochain µ satisfies the Maurer–Cartan equation

(3.4) Dµ = −
1

2
[µ, µ]

or, what is the same,

dµ = 0 , δµ = −
1

2
[µ, µ] .

The first equation just says that the cochain µ, when restricted to the sub-
algebra A[[t]] ⊂ A[[t]], takes the values in A[[t]]. Then the second equation
allows us to regard µ as an associative deformation of the original multi-
plication in A[[t]]. In other words, the operator δ + [µ,−] is a differential
whenever it defines or comes from an associative product m+ µ in A[[t]].

Our task now is to construct a solution to Eq. (3.4) by some class [λ] ∈
H2(AA) with a representative λ ∈ Z(A). To this end, we introduce the
cochains Λ, Ψ and Φ of the bicomplex C•,•(A[[t]],A[[t]]) with the following
distributions of bidegrees and filtration degrees:

(3.5)
Deg Λ = (0, 2) , DegΨ = (0, 1) , Deg Φ = (1, 0) ,

deg(Λ− λ) > 0 , degΨ > 0 , degΦ > 0 .

It is also convenient to combine Ψ and Φ into a single cochain Γ = Ψ+Φ of
total degree 1. Besides the grading conditions, these cochains are supposed
to satisfy the following ‘master equations’:

(3.6) DµΓ = tΛ−Nµ , NΛ = [Γ,Λ] .

By assumption, the complex (3.1) is acyclic and splits over k. Hence,
there is a contracting homotopy operator h. This operator extends to the
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complex 0 → A[[t]]
ε
→ A[[t]] by k[[t]]-linearity and continuity with respect

to the t-adic topology such that

hε = 1A[[t]] , εh+ hd = 1A0[[t]] , hd+ dh = 1Ap[[t]] , p > 0 .

Setting
(hf)(a1 ⊗ · · · ⊗ an) = hf(a1 ⊗ · · · ⊗ an) ,

one easily checks that
hd+ dh = 1C•,• − εσ ,

where σ = h|A0 .

Lemma 3.2. Eqs. (3.6) have a unique solution satisfying the additional
condition

(3.7) hΓ = 0 .

Proof. Expanding Eqs. (3.6) in homogeneous components with respect to
the bidegree, we get the four equations

(3.8) Nµ = −δΦ− [µ,Φ] , NΛ = [Φ,Λ] ,

(3.9) dΦ = −δΨ − [µ,Ψ] , dΨ = tΛ .

Using the homotopy operator and the normalization condition (3.7), we can
solve Eqs. (3.9) for Ψ and Φ as follows:

(3.10) Ψ = thΛ , Φ = −th(δhΛ + [µ, hΛ]) .

Substitution of these expressions into (3.8) yields then the system of ODEs

(3.11)
µ̇ = δh(δhΛ + [µ, hΛ]) + [µ, h(δhΛ + [µ, hΛ])] ,

Λ̇ = −[h(δhΛ + [µ, hΛ]),Λ] ,

where the overdot stands for the derivative in t. One can solve these equa-
tions by iterations and obtain a unique formal solution µ(t), Λ(t) subject to
the initial condition

µ(0) = 0 , Λ(0) = λ ,

cf. Eqs. (3.3) and (3.5). It is also seen that the cochains (3.10) obey the
conditions (3.5) and (3.7).

�

Lemma 3.3. The cochain µ defined by Eqs. (3.6) satisfies the Maurer-
Cartan equation (3.4) whenever

(3.12) Dλ = 0 .

Proof. Let us put

T = DµΛ , R = Dµ+
1

2
[µ, µ] .

We are going to show that the cochain R vanishes for any µ and Λ satisfying
Eqs. (3.6). Applying the operator Dµ to both sides of Eqs. (3.6), we find

[R,Γ] = tT −NR , NT = [Γ, T ] ,
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provided Λ, Γ, and µ obey (3.6). This yields the system of ODEs

Ṙ = T −
1

t
[R,Γ] , Ṫ =

1

t
[Γ, T ] .

Since deg Γ > 0 the right hand sides of these equations are regular in t. So,
the equations have a unique solution R = 0 and T = 0 subject to the initial
conditions

R(0) = 0 , T (0) = Dλ = 0 .

�

The condition (3.12) amounts to the equations

δλ = 0 , dλ = 0 .

The first equation defines λ as an element of the center of the algebra A,
then the second equation allows us to regard λ as a 2-cocycle of the complex
(AA, d). Combining the two Lemmas above yields the proof of Theorem 3.1.

For the sake of completeness we also present explicit recurrent relations
for determining µ up to any given order in deformation parameter. These
relations are obtained by expanding all the cochains µ, Λ, Φ, and Ψ as well
as the defining equations (3.8) and (3.9) in powers of t. We get

(3.13)

µn = −
1

n

(

δΦn +

n−1
∑

k=1

[µk,Φn−k]
)

,

Φn = −h
(

δΨn +
n−1
∑

k=1

[µk,Ψn−k]
)

,

Ψn = hΛn−1 ,

Λn =
1

n

n
∑

k=1

[Φk,Λn−k] , ∀n > 0 ,

Λ0 = λ .

From these relations one can readily find that the first-order deformation
is governed by the following noncommutative Poisson bracket:

(3.14) µ1 = δhδhλ .

Although the Hochschild cocycle µ1 ∈ C2(A,A) looks like a δ-coboundary,
it is not the case. One should keep in mind that the ‘potential’ hδhλ for µ1
is not an element of C1(A,A), rather it takes values in A0.

The expression for the second-order deformation is a bit more cumber-
some:

µ2 =
1

2

(

[δhδhλ, hδhλ] + δh[δhδhλ, hλ] − δhδh[hδhλ, λ]
)

.

Remark 3.4. In case A is an injective resolution of A, applying the standard
spectral sequence arguments to the bicomplex C•,•(A,A) shows that Rel.
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(3.14) is a particular manifestation of the quasi-isomorphism

τ• : C•(AA) → C•(A,A) , τn = (δh)n ,

inducing the (right) isomorphism (1.2) in cohomology. In that case, any
nontrivial 2-cocycle λ ∈ C2(AA) gives rise to a nontrivial infinitesimal de-
formation of the algebra A. The additional requirement λ ∈ Z(A) ensures
that the deformation is integrable.

4. Examples of quantization

In this section, we illustrate the above method of noncommutative defor-
mation quantization by several examples. Although the examples are well
known, it seems instructive to re-examine them all from a single perspective.

4.1. Moyal ∗-product. Let V be an n-dimensional vector space over k. We
are interested in associative deformations of the commutative algebra A =
S(V ∗), the symmetric algebra of the dual space V ∗. The basic ingredient of
our method is an appropriate multiplicative coresolution of the algebra A in
the category of A-bimodules. To construct such a coresolution we introduce
the symmetric algebra S(V ) of V . Upon choosing linear coordinates {xi}
on V and {pi} on V ∗, we can make the identification S(V ∗) = k[x1, . . . , xn].
Then the k-vector space B = Hom(S(V ∗), S(V ∗)) is isomorphic to the space
of formal power series in p’s with coefficients in polynomial functions in x’s.
The space B is given the structure of a noncommutative associative algebra
with respect to the following Moyal-type multiplication:

(4.1) a • b = a exp

( ←
∂

∂xi

→
∂

∂pi

)

b , ∀a, b ∈ B .

One can easily see that the •-product is well defined on B.1 Finally, we
define the algebra A = B ⊗ Λ(V ), where the second factor is given by the
exterior algebra of the space V . The standard grading on Λ(V ) induces a
grading on A =

⊕

Al, so that the homogeneous subspaces Al are spanned
by the l-forms

(4.2) ω = ωi1···il(x, p)dpi1 ∧ · · · ∧ dpil , ωi1···il(x, p) ∈ B .

To make A into a DG-algebra, we endow it with the differential d : Al →
Al+1 defined by

(4.3) dω =
∂ωi1···il

∂pj
dpj ∧ dpi1 ∧ · · · ∧ dpil .

By the Poincaré Lemma this differential is acyclic in positive degrees and

H0(A) ≃ A = S(V ∗). Thus, we get a coresolution 0 → A
ε
→ A, with

1Actually, this product originates from the composition of homomorphisms of
Hom(S(V ∗), S(V ∗)). If we identify these homomorphisms with pseudo-differential op-
erators acting on polynomials, then the •-product is nothing else but the product of their
px-symbols [21, Ch. 5].



A SIMPLE CONSTRUCTION OF ASSOCIATIVE DEFORMATIONS 11

ε : A→ A0 being the inclusion. This coresolution is certainly not injective:
according to (4.1)

a • b = ab ∀a ∈ A, ∀b ∈ A

and the A-bimodule A is not divisible from the right. Nonetheless we can
proceed with computation of the A-invariant cohomology H•(AA). Clearly,
it is enough to check the invariance only for the generators {xi}. We find

xi • ω − ω • xi = 0 ⇔
∂ω

∂pi
= 0 .

Hence, AA = S(V ∗) ⊗ Λ(V ) ≃ H•(AA). In other words, all the nontrivial
cocycles are given by the forms

(4.4) ω = ωi1···il(x)dpi1 ∧ · · · ∧ dpil .

On the other hand, by the Hochschild–Kostant–Rosenberg theorem

HH•(S(V ∗), S(V ∗)) ≃ S(V ∗)⊗ Λ(V ) ,

and we infer that our coresolution computes the entire Hochschild cohomol-
ogy of S(V ∗).

Although each 2-form ω = πij(x)dpi ∧ dpj (= a bivector field on V ) gives
rise to an infinitesimal deformation of S(V ∗), only a part of these deforma-
tions is integrable. The necessary and sufficient condition for integrability is
the vanishing of the Schouten bracket [ω, ω]S , the result following from the
Kontsevich formality theorem [9]. In our approach integrability is ensured
by a more restrictive condition, namely, ω ∈ Z(A). It is easy to see that a
form ω belongs to the center of A iff

ω = ωi1···ildpi1 ∧ · · · ∧ dpil , ωi1···il ∈ k .

Hence, all the constant bivectors λ = πijdpi ∧ dpj give rise to integrable

deformations. Using the standard contracting homotopy h : Al → Al−1,

(4.5) hω =

∫ 1

0
dssl−1ωi1···il(x, sp)pi1dpi2 ∧ · · · ∧ dpil ,

one readily finds that the first-order deformation is given by the Poisson
bracket

µ1(a, b) =
1

2
πij

∂a

∂xi
∂b

∂xj
, ∀a, b ∈ k[x1, . . . , xn] .

The whole deformation, being constructed by formulas (3.13), reproduces
the Moyal ∗-product.

4.2. Symplectic reflection algebras. We keep the notation of the previ-
ous subsection. Let Γ be a finite group acting faithfully and linearly on V .
Now we are interested in formal deformations of the smash-product algebra
AΓ = S(V ∗)⋊ Γ. As a k-vector space AΓ is equal to S(V ∗)⊗ k[Γ] and the
multiplication is defined by

γ · f = γf · γ , ∀f ∈ V ∗, ∀γ ∈ Γ ,
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where γf(v) = f(γ−1v) for all v ∈ V . The linear representation of Γ in
V induces a representation in the space A = B ⊗ Λ(V ) constituted by the
forms (4.2). Furthermore, the •-product (4.1) is obviously invariant under
the action of Γ and we can define the smash-product algebra AΓ = A ⋊ Γ.
The differential (4.3) extends to AΓ by setting dγ = 0 for all γ ∈ Γ. Thus,
AΓ is a DG-algebra extending the subalgebra AΓ = ker d ∩ A0

Γ.
As an A-bimodule the algebraAΓ splits into the direct sumAΓ =

⊕

γ∈Γ Aγ

of submodules, so that the generic element ω ∈ AΓ expands as

(4.6) ω =
∑

γ∈Γ

ωγγ , ωγ ∈ Aγ .

Each module Aγ is isomorphic to A as a vector space, but the right action
of A is now twisted by the element γ, i.e.,

(a⊗ b)c = a • c • γb , ∀a, b ∈ A , c ∈ Aγ .

Clearly, the m-form (4.6) is A-invariant iff

xi • ωγ − ωγ •
γxi = 0 , ∀γ ∈ Γ , ∀i = 1, . . . , n .

This is equivalent to the set of differential equations

(4.7) (xi − γxi)ωγ +
∂ωγ

∂pi
= 0 .

Let us introduce the exponential functions

(4.8) Eγ = e−〈p,x−
γx〉 ,

where the triangle brackets stand for the canonical pairing between the
spaces V and V ∗. Then the general solution to Eqs. (4.7) can be written as

(4.9)
ωγ = Eγω̄γ ,

∀ ω̄γ = ω̄i1···im
γ (x)dpi1 ∧ · · · ∧ dpim ∈ S(V ∗)⊗ Λm(V ) .

Verifying the Γ-invariance of the form (4.6), we find

αEγ = αEγα
−1 = Eαγα−1

and
αω = αωα−1 =

∑

γ∈Γ

Eαγα−1
αω̄γαγα

−1 =
∑

γ∈Γ

Eγ
αω̄α−1γαγ .

Since the exponential functions Eγ are linearly independent over S(V ∗) ⊗
Λ(V ), we conclude that αω = ω iff

αω̄γ = ω̄αγα−1 ∀γ, α ∈ Γ .

If we treat the assignment γ 7→ ω̄γ as a map from Γ to S(V ∗) ⊗ Λ(V ),
then the last relation identifies this map as Γ-equivariant with respect to
the adjoint action of the group Γ on itself.
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Remark 4.1. Notice that the exponentials (4.8) define an antihomomorphism
from Γ to the group of invertible elements of the •-product algebra B. In-
deed,

Eγ • Eβ = e−〈p,x−
γx〉e

〈
←

∂
∂x

,
→

∂
∂p
〉
e−〈p,x−

βx〉

= e
−〈p,(x+

→

∂
∂p

)−γ(x+
→

∂
∂p

)〉
e−〈p,x−

βx〉

= e−〈p,x−
βγx〉 = Eβγ .

Combining this antihomomorphism with inversion on Γ, one gets the ho-
momorphism γ 7→ Eγ−1 . Furthermore, all the Γ-automorphisms of the •-
product algebra B turn out to be internal:

γa = Eγ−1 • a • Eγ , ∀a ∈ B .

The last property is enough to check only for the generators xi and pi.

Our computations above show that the DG-algebra AAΓ

Γ , when considered
as a cochain complex, splits into the direct sum of subcomlexes:

AAΓ

Γ =
⊕

[γ]∈C(Γ)

(

S(V ∗)⊗ Λ(V )
)Z(γ)

.

Here C(Γ) denotes the space of conjugacy classes of Γ and we fix a rep-
resentative γ ∈ [γ] in each class [γ] ∈ C(Γ); Z(γ) stands for the cen-
tralizer of the representative γ ∈ Γ. The elements of the subcomplex

Ωγ =
(

S(V ∗) ⊗ Λ(V )
)Z(γ)

are given by Z(γ)-invariant forms (4.9). The
differential in AΓ induces the following coboundary operator in each Ωγ :

∂γ ω̄γ = −〈dp, x− γx〉 ∧ ω̄γ .

The cohomology of ∂γ is easily computed by decomposing the carrier space
into the direct sum V = V γ ⊕ Nγ , where V γ = ker(1 − γ)|V and Nγ =
im(1 − γ)|V . We put l(γ) = dimNγ . Clearly, l(αγα−1) = l(γ) for all
γ, α ∈ Γ. Then it is not hard to find that2

Hm(Ωγ , ∂γ) =
(

S(V γ∗)⊗ Λm−l(γ)(V γ)⊗ Λl(γ)(Nγ)
)Z(γ)

.

This agrees with the results of Ref. [10], where it was shown that

HH•(S(V ∗)⋊Γ, S(V ∗)⋊Γ) ≃
⊕

[γ]∈C(Γ)

(

S(V γ∗)⊗Λ•−l(γ)(V γ)⊗Λl(γ)(Nγ)
)Z(γ)

.

Thus, we see that our coresolution AΓ computes the entire Hochschild
cohomology of the smash-product algebra AΓ. For the second cohomology
group the structure of the direct product above can be refined. Notice that
Λ1(Nγ) = Nγ and for l(γ) = 1 the 1-dimensional space Λl(γ)(Nγ) has no
γ-invariant vectors by the definition of Nγ . Hence, the group elements γ ∈ Γ
with l(γ) = 1 do not contribute to the Hochschild cohomology. Furthermore,

2See e.g. [10, Sec. 3] or [22, Prop. 4.2] for similar computations.
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when the action of Γ on V is faithful3, the identity e ∈ Γ is the only group
element with l(γ) = 0. Therefore, we conclude

HH2(AΓ, AΓ) =
(

S(V ∗)⊗ Λ2(V )
)Γ

⊕
(

⊕

γ∈Γ,l(γ)=2

S(V γ∗)⊗ Λ2(Nγ)
)Γ
.

This is the space of infinitesimal deformations of the algebra AΓ. Having
in mind integrable deformations, we are looking for nontrivial 2-cocycles
belonging to the center of the algebra AΓ. These are given by the Γ-invariant
forms (4.6) and (4.9) satisfying the additional conditions:

pi • ω − ω • pi = 0 ⇔
∂ω̄γ

∂xi
= 0 , ∀γ ∈ Γ .

In other words, the coefficients of the central forms (4.6) depend on x’s and
p’s only through the exponential multipliers (4.8).

Consider now a special case that V is a symplectic vector space and
Γ ⊂ Sp(V ). Let π denote the Poisson bivector on V dual to the symplectic
structure. An element γ ∈ Sp(V ) is called a symplectic reflection if l(γ) = 2.
Correspondingly, Γ is a symplectic reflection group if it is generated by
symplectic reflections [14]. Denote by SΓ the set of all symplectic reflections
of Γ. Starting from the nondegenerate Poisson structure π, we can define
the following 2-cocycle of the algebra AΓ:

λ = ωe +
∑

γ∈SΓ

c(γ)ωγγ ,

ωe = π(dp, dp) = πijdpi ∧ dpj ∈ Λ2(V )Γ ,

ωγ = Eγ ω̄γ , ω̄γ = π(dp − dγp, dp − dγp) = πγ(dp, dp) ∈ Λ2(Nγ)Z(γ) .

The Γ-invariance of λ requires that c(αγα−1) = c(γ) for all α, γ ∈ Γ, that is,
c(γ) is a class function. The corresponding Poisson structure on AΓ can now
be restored by the general formula (3.14). Using the contracting homotopy
(4.5), we find

(hδhωγ)(a) = h

[

( ∂a

∂xi

)(

x+
∂

∂p

)

∫ 1

0
dsse−s〈p,x−

γx〉πijγ dpj

]

= h

∫ 1

0
dss
( ∂a

∂xi

)

(

(1− s)x+ sγx
)

e−s〈p,x−
γx〉πijγ dpj

=

∫ 1

0
du

∫ 1

0
dss
( ∂a

∂xi

)

(

(1− s)x+ sγx
)

e−su〈p,x−
γx〉πijγ pj

and then

(δhδhωγ )(a, b)

= b
(

x+
∂

∂p

)

∫ 1

0
du

∫ 1

0
dss
( ∂a

∂xi

)

(

(1− s)x+ sγx
)

e−su〈p,x−
γx〉πijγ pj

∣

∣

∣

∣

p=0

3The case of a nonfaithful action was considered in [23].
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=

∫ 1

0
du

∫ 1

0
dss
( ∂a

∂xi

)

(

(1− s)x+ sγx
)

( ∂b

∂xj

)

(

(1− su)x+ suγx
)

πij .

Here we simplified our calculations by noticing that, by construction, µ1(a, b)
must be independent of p’s, so that we can put pi = 0. After the change
of variables w = su, we can write the Poisson structure µ1 through the
integrals over a 2-simplex:

(4.10) µ1(a, b) = (δhδhλ)(a, b) =
1

2

∂a

∂xi
∂b

∂xj
πij

+
∑

γ∈SΓ

c(γ)

∫

0<w<s<1

dwds
( ∂a

∂xi

)

(

(1−s)x+sγx
)

( ∂b

∂xj

)

(

(1−w)x+wγx
)

πijγ γ .

To the best of our knowledge this representation for the noncommutative
Poisson structure on AΓ = S(V ∗) ⋊ Γ is new, cf. [11, Sec. 3.1]. Thus,
any constant (i.e., of polynomial degree zero) 2-cocycle of the algebra AΓ

defines a noncommutative Poisson structure. This is in agreement with the
general results of Ref. [24, Cor. 8.2]. The higher-order deformations can
be found in a similar way by formulas (3.13). The resulting algebra is the
formal analog of the symplectic reflection algebra introduced by Etingof and
Ginzburg [14]. It is a (p+1)-parameter deformation of the algebra AΓ, with
p being the number of conjugacy classes in SΓ.

4.3. Smash products of the Weyl algebra. In case c(γ) = 0, the sum
(4.10) reduces to the canonical Poisson bracket on V , whose deformation
quantization gives the Moyal ∗-product of Sec. 4.1. Actually, the Moyal
deformation of the polynomial algebra S(V ∗) is not formal and one may put
the deformation parameter t to be an arbitrary number, say t = 2. This
gives the space S(V ∗) the structure of a noncommutative, associative algebra
Weyl(V ), called the polynomial Weyl algebra of the symplectic vector space
V . The group Γ ⊂ Sp(V ) acts naturally on Weyl(V ) by automorphisms and
we can form the smash-product algebra Weyl(V ) ⋊ Γ. It follows from the
above consideration that the algebra Weyl(V ) ⋊ Γ admits the p-parameter
deformation associated to the functions c(γ) in Eq. (4.10). Moreover, by the
Alev–Farinati–Lambre–Solotar (AFLS) theorem [25, Sec. 6.1] this deforma-
tion exhausts all the possibilities. One could try to obtain this deformation
directly starting from the Weyl algebra. The main problem would then to
find an appropriate coresolution. Actually, such a coresolution has been al-
ready constructed in our recent paper [22]. As a k-vector space it is given
by the space AΓ of the previous subsection, while the •-product (4.1) is now
replaced by

a • b = ae

←

∂
∂xi

(

→

∂
∂pi

+πij
→

∂

∂xj

)

b , ∀a, b ∈ B .
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In accordance with the AFLS theorem the central 2-cocycles of the DG-
algebra AΓ are given by the linear combinations [22]

λ =
∑

γ∈SΓ

c(γ)Eγπγ(dp, dp)γ ,

where c(γ) is a class function on Γ and

Eγ = e−〈p,x−
γx〉+π(p,γp) .

Again, one can easily check that Eγ • Eβ = Eβγ . Omitting intermediate
computations, which are similar to those of the previous subsection, we just
write down the final expression for the noncommutative Poisson bracket:

(4.11) µ1(a, b) = (δhδhλ)(a, b)

=
∑

γ∈SΓ

c(γ)

∫

0<w<s<1

dwdse〈p1,(1−s)x+sγx〉+〈p2,(1−w)x+wγx〉

×eπ(p2,p1)+sπ(p1,p2−γp2−γp1)+wπ(p2,p1−γp1−γp2)

×es
2π(p1,γp1)+sw[π(p1,γp2)+π(p2,γp1)]+w2π(p2,γp2)πγ(p1, p2)a(x1)b(x2)γ

∣

∣

∣

x1=x2=0
.

Here

p1 =

{

∂

∂xi1

}

, p2 =

{

∂

∂xi2

}

.

The exponential function in the above integral is to be expanded in the
Taylor series and integrated term by term. As the functions a(x1) and b(x2)
are polynomial, only finitely many terms contribute nontrivially to µ1.

In the special case that V is a two-dimensional symplectic space and Γ
is generated by the parity automorphism, γx = −x, Rel. (4.11) reproduces
the Feigin–Felder–Shoikhet 2-cocycle of Ref. [26].
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