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Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst
standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses.
Here, we present a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations
for the point-, factor-, space groups, site symmetries, and Wyckoff positions. The protocol determines a system-specific
mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The
self consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared
with the most used programs and is successfully validated against the space group information provided for over 54,000 entries
in the Inorganic Crystal Structure Database. Subsequently, a complete symmetry analysis is applied to all 1.7+ million entries
of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use

through the automated, ab-initio framework AFLOW.

1. INTRODUCTION

Symmetry fundamentally characterizes all crystals, es-
tablishing a tractable connection between observed phe-
nomena and the underlying physical/chemical interac-
tions. Beyond crystal periodicity, symmetry within the
unit cell guides materials classification [1], optimizes
materials properties calculations, and instructs struc-
ture enumeration methods [2, 3]. Careful exploitation
of crystal symmetry has made possible the character-
ization of electronic [4], mechanical [5, 6], and ther-
mal properties [7-9] in high-throughput fashion [10]
— giving rise to large materials properties databases
such as AFLOW [1, 4, 11-19], NoMaD [20], Materials
Project [21], and OQMD [22]. As these databases incor-
porate more properties and grow increasingly integrated,
access to rapid and consistent symmetry characteriza-
tions becomes of paramount importance.

Central to each symmetry analysis is the identifica-
tion of spatial and angular tolerances, quantifying the
threshold at which two points or angles are considered
equivalent. These tolerances must account for numeri-
cal instabilities, and, more importantly, for atypical data
stemming from finite temperature measurements or de-
viations in experimentally measured values [23]. Exist-
ing symmetry platforms — such as FINDSYM [24, 25],
Platon [26], and Spglib [27] — all cater to different sym-
metry objectives, and thus address tolerance issues in
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unique ways. FINDSYM — designed for ease-of-use — ac-
knowledges that its algorithms cannot handle noisy data,
and it applies no treatments for ill-conditioned data [24].
The Platon geometry package, containing the subrou-
tine ADDSYM, allows a small percentage of candidate
atomic mappings to fail and attempts to capture miss-
ing higher symmetry descriptions [26]. Lower symmetry
descriptions in atomic coordinates can originate from i.
extraction issues with X-ray diffraction data (e.g., incor-
rectly identified crystal system, altered Laue class within
a crystal system, and neglected inversion) and ii. ab-
initio relaxations (e.g., lost internal translations) [28-
30]. The Spglib package applies independent tolerance
scans within subroutines — e.g., in its methods for find-
ing the primitive cell (get_primitive) and Wyckoff posi-
tions (ssm_get_exact_positions) — if certain crystal-
lographic conventions are violated, potentially yielding
globally inconsistent symmetry descriptions [27]. These
packages present suggested default tolerance values that
are largely arbitrary, and likely justified a posteriori on
a limited test set. In the general case, or in the event
where these global defaults fail, the packages fall back on
user-defined tolerances. Unfortunately, it is difficult to
compare results across packages outside of these default
values because tolerances are defined differently. FIND-
SYM and Spglib both offer a tunable atomic mapping
tolerance, along with a lattice tolerance (FINDSYM) and
an angular tolerance (Spglib); whereas Platon has four
separate input tolerances, each specific to a particular op-
eration type. Ultimately, these inconsistencies are symp-
tomatic of an underlying inability to appropriately ad-
dress tolerances in symmetry analyses.


mailto:stefano@duke.edu

a cartesian fractional
(N o
> -
\

cubic orthorhombic triclinic

cartesian

fractional

2D fractional <-/

FIG. 1. Visualizations of space warping with a basis transformation. (a) To validate a candidate mirror operation
(described by 7im) on a crystal (blue atoms), the operation is applied to yield a transformed crystal (hollow orange atoms
superimposed on the original crystal). The true minimum distance between the blue and orange atoms is resolved in cartesian
space, indicated by the green d™" vector. However, the bring-in-cell method determines another periodic image to be closer,
highlighted by the dashed red~vect0r. The mismatch is obscured in fractional space, where the red vector appears smaller
than the green, indicated by d™". (b) An atom is placed in the middle of the lattice with a surrounding sphere of radius
€. Mapping occurs when the position of an atom transformed by a symmetry operator is within the sphere. The size and
shape of the sphere is warped with a basis transformation (cartesian to fractional): uniform compression occurs in cubic cells,
oblate compression in orthorhombic cells, non-uniform (sheared) compression in triclinic lattices. (c) 2D illustration of how
the tolerance (€) warps in fractional space for cubic, orthorhombic and triclinic lattices. The orange circle with radius €' in
fractional coordinates indicates the bounds of the safe mapping region, independent of direction.



Managing input/output formats for these packages
also presents a challenge. FINDSYM and Platon both
read CIF and SPF files, which are particularly use-
ful for structures deriving from larger crystal struc-
ture databases, such as the Inorganic Crystal Structure
Database (ICSD) [31, 32] and Cambridge Structural
Database (CSD) [33]. Platon also supports a few other
useful input formats, while Spglib created its own input
format. Package-specific formats are useful for the devel-
opers, but create an unnecessary hurdle for the user to
implement structure-file converters. This is particularly
problematic when package developers change the formats
of these inputs with new version updates, forcing the
user to continuously adapt workflows/frameworks. Ad-
ditionally, all output formats are package-specific, with
a medley of symmetry descriptions and representations
provided among the three. The assortment of outputs
presents yet another hurdle for users trying to build cus-
tom solutions for framework integration. Furthermore, it
forces users to become locked-in to these packages.

These issues require extensive maintenance on the side
of the user, with little guarantee of the validity of the
resulting symmetry descriptions. In the case of large
materials properties databases, providing such individ-
ual attention to each compound’s symmetry description
becomes entirely impractical. Herein, we present a ro-
bust symmetry package implemented in the automated,
ab-initio computational framework AFLOW, known as
AFLOW-SYM. The module delivers a complete symme-
try analysis of the crystal, including the symmetry oper-
ations for the lattice point group, reciprocal space lattice
point group, factor group, crystal point group, dual of
the crystal point group, symmetrically equivalent atoms,
site symmetry, and space group (see Appendix A for an
overview of symmetry groups). Moreover, it provides
general crystallographic descriptions including the space
group number and label(s), Pearson symbol, Bravais lat-
tice type and variations, Wyckoff positions, and stan-
dard representations of the crystal. The routine em-
ploys an adaptive, structure-specific tolerance scheme
capable of handling even the most skewed unit cells.
By default, two independent symmetry procedures are
applied, enabling corroboration of the characterization.
The scheme has been tested on 54,000 ICSD compounds
in the aflow.org repository, showing substantial improve-
ment in characterizing space groups and lattice types
compared to other packages. Along with a standard-
ized text output, AFLOW-SYM presents the results in
JavaScript Object Notation (JSON) for easy integration
into different workflows. The software is completely writ-
ten in C++ and it can be compiled in UNIX, Linux, and
MacOSX environments using the gee/g++ suite of com-
pilers. The package is open-source and is available under
the GNU-GPL license. An AFLOW-SYM Python module
is also available to facilitate integration with other work-
flow packages, e.g., AFLOWr [19, 34] and NoMaD [20].
Thus, AFLOW-SYM serves as a robust one-stop symme-
try shop for the materials science community.
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FIG. 2. Variation of space group with mapping

tolerance for AgBr (ICSD #56551) as determined
by AFLOW-SYM. (a) Space groups and tolerance ranges
identified are as follows (ascending order): 1.0 x 107°% —
4.0855 x 1072 A is monoclinic (SG #11), 4.08556 x 1072 —
1.64186 x 10~* A is orthorhombic (SG #59), 2.46281 x
107 — 6.69605 x 10~* A is rhombohedral (SG #166), and
6.69606 x 10~ — 1.0 A is face-centered cubic (SG #225). (b)
A gap is highlighted between 1.64186x107!1—2.46281x 10~ A
where no consistent space group is identified. The orange ar-
rows illustrate how the algorithm scans possible tolerances to
find the closest consistent space group.

2. METHODS
A. Periodic boundary conditions in skewed cells

Analyzing the symmetry of materials involves deter-
mining the full set of their isometries. Algorithmically,
candidate symmetry operators are applied to a set of
atoms and validated if i. distances between atoms and
their transformed counterparts are within a mapping to-
lerance €, and ii. the mappings are isomorphic (one-to-
one). For convenience, ¢ is defined in units of a Euclidean
space — Angstroms in this case. An explicit mapping
function is defined, indicating whether atom mappings
are successful:

true if [|de]| <€
false

(1)

maPaom (de) = { otherwise
where d. is the cartesian distance vector between an atom
and a transformed atom. Symmetries of the crystal are
discovered when successful isomorphic mappings — given
by Equation (1) — exist between all of the original and
transformed atoms. Under periodic boundary conditions,
the minimum distance for the mapping function is iden-
tified by considering equivalent atoms of nearby cells (so-
called method of images [35]):

min __
do =

min (d¢ + nga + npb + ncec), (2)
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where a, b, ¢ are the lattice vectors; n,, ny, n. are
the indices of neighboring cells; and d™® is the glob-
ally optimal cartesian distance vector. In the sim-
plest case of a purely orthorhombic cell, the approach
requires exploration of the 26 surrounding unit cells
(=1 < ng,np,ne. < 1). However, additional neighboring
cells should be considered with increased skewness of
the lattice vectors (see Section 2G), making it pro-
hibitively expensive. Instead, many algorithms minimize
the distance vector through a greedy, bring-in-cell ap-
proach [35]. Working with fractional coordinates, each
component ¢ of the distance vector d¢ is minimized using
the nearest-integer function (nint [35]):

min

£ = dfvi — nint (de') Vi,

amin _ Laltcnin (3)
C b
where L is the column-space matrix representation of the
lattice, and d™" is d™" converted to cartesian coordi-
nates for the mapping determination in Equation (1).

While a convenient shortcut, the bring-in-cell mini-
mum distance is not generally equivalent to the globally
optimized distance: d2in # d™* (see Figure 1(a)). A
component-by-component minimization of the distance
vector assumes independent basis vectors (no skewness)
and neglects potentially closer images only considered
by exploring all neighboring cells. Occurrence of a dis-
tance mismatch depends on the lattice type and compro-
mises the integrity of the mapping determination. The
issue becomes particularly elusive in fractional coordi-
nates, where the size and shape of the cell is warped to
yield a unit cube as shown in Figure 1(b). The greater
the anisotropy of the lattice, the larger the warping. Fi-
gure 1(c) illustrates how the tolerance changes between
cartesian and fractional space. In the general case, a
spherical tolerance in cartesian coordinates warps into
an ellipsoid in fractional coordinates. Hence, the criteria
for successful mappings in fractional space are direction
dependent unless the distance is sufficiently small, i.e.,
within the circumscribed sphere of radius €’ (highlighted
in orange). Distances within ¢ in fractional space al-
ways map within € in cartesian space, but a robust check
(global optimization) is needed for larger distances to
account for the extremes of the ellipsoid. Since most
distances outside of ¢ do not yield mappings, such a ro-
bust check is generally wasteful. Instead, more useful
insight can be garnered from Figure 1(c): tolerances suf-
ficiently bounded by the skewness can still yield a proper
mapping determination using the inexpensive bring-in-
cell algorithm.

The goal is to define an upper tolerance threshold to
safely ensure that the bring-in-cell minimum (d™") and
global minimum (d™®) yield the same mapping results,
in spite of a distance mismatch:

mapatom (dgﬂm) = ma’patom (azmn) €< ||d:3mn|| ’

dznin 7& aénin .

—
=~
Nt

vd.

A mismatch is encountered when the image identified
by the bring-in-cell method is not the optimal neighbor,
therefore: d™® < d™®. A suitable threshold needs to
overcome the difference between the two methods for
all mismatch possibilities, i.e., € would need to be be-
low d™" or above d™® to yield a consistent mapping
determination. A threshold greater than d™™ is ruled
out to ensure that e is always smaller than the mini-

mum interatomic distance (d?n(mm)

), making it possible
to distinguish nearest-neighbors. To find a tolerance in
the remaining region (e < ||d2™"||), the largest mismatch
possible should be addressed directly, which yields the
smallest d™" and thus the most restrictive bound on the
tolerance. Given the angles between the lattice vectors

(o, B,7), a maximum skewness is defined as
Emax = max (cos «, cos 3, cos ) , (5)

where the cosine of the angle derives from the normal-
ized, off-diagonal terms of the metric tensor. &, ranges
from [0, 1), where &nax = 0 characterizes a perfectly or-
thorhombic cell. A suitable maximum mapping tolerance
is heuristically defined as

€max — (1 - gmax) dgn(min)7 (6)

which appropriately reduces d’cm(min) — an absolute up-

per bound for the tolerance to maintain resolution be-
tween atoms — with increasing skewness. The form of
the coefficient (1 — cosf) decays quickly with basis vec-
tor overlap (on the order of #?), ensuring a safe envelop-
ing bound. Tolerances well below €, should yield the
correct mapping determination with the bring-in-cell ap-
proach (in spite of a distance mismatch); otherwise, the
global minimization algorithm should be employed:

J. Ldmir if € < emax
c min (d¢ + n.L, + npLy + ncL.)  otherwise -
MNa,MNp,MNec

(7)
To demonstrate the robustness of €.y, extreme hypo-
thetical cases are presented in Appendix C.

B. Adaptive tolerance scheme

While e, offers a practical upper tolerance bound
for the choice of the distance minimization algorithm,
it offers no insight for choosing a specific tolerance. Of
course, there are fundamental constraints, such as the
minimum interatomic distance and the precision of the
input structure parameters: €precision < € < dém(mm), but
these can span over several orders of magnitude, through-
out which a variety of results are possible. Figure 2 il-
lustrates the different space groups that may be assigned
to AgBr (ICSD #56551) ! with various tolerance choices

L http://www.aflow.org/material.php?id=56551
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FIG. 3. Workflow for the algorithm converting a structure to the standard representation as defined by the
International Tables for Crystallography. Functions are represented by blue rectangles, and validation schemes by orange

diamonds.

(the ICSD reports space group #11). Interestingly, adja-
cent space group regions show non-isomorphic subgroup
relations: between space groups #59 and #11 and be-
tween #225 and #166. Of particular concern is the gap
highlighted in Figure 2(b) between space group regions
#166 and #59. Not surprisingly, these space groups
share no subgroup relations. These gaps represent prob-
lematic regions where noise in the structural information
interferes with determination of satisfied symmetry op-
erations, yielding profiles inconsistent with any possible
space group. Rather than an a posteriori selection of the

symmetry elements to include in the analysis, we em-
ploy an adaptive tolerance approach. A radial tolerance
scan is performed surrounding the initial input tolerance
€p to overcome the “confusion” region, as shown in Fi-
gure 2(b). With each adjustment of the tolerance, the
algorithm updates and validates all symmetry properties
and operations, yielding a globally consistent profile and
an effective spatial resolution for the structure.

To fully characterize a structure’s symmetry, AFLOW-
SYM employs two major symmetry procedures. The
first calculates the symmetry of the crystal in the



FIG. 4. Minimum symmetry identifiers of the lattice system: (a) mirror operations, (b) n-fold rotations. The resulting

lattice vectors are denoted by gray dotted lines.

International Tables for Crystallography [36-39] (ITC)
conventional cell, yielding the space group and Wyckoff
positions. The second resolves the symmetry profile of
the structure in the original (input) representation, in-
cluding: the lattice point group, reciprocal lattice point
group, factor group, crystal point group, dual of the crys-
tal point group, space group, inequivalent and equiva-
lent atoms, and the site symmetry. While both routines
can be employed independently, the two are combined in
AFLOW-SYM by default, affording additional validation
schemes to ensure a stricter consistency.

Ultimately, the combination of the tolerance scan and
integrated workflow (with robust validation schemes) en-
sures the automatic determination of a consistent sym-
metry profile. While the option remains for a user defined
tolerance (with and without the scan), AFLOW-SYM
heuristically defines two default tolerances values: tight
(Etight = d?n(“““)/loo) and loose (€lp0se = d?n(mm)/IO).
Generally, an expected symmetry profile (perhaps from
experiments) can be found in either of the two toler-
ances. If no tolerance is defined, AFLOW-SYM defaults
to the tight tolerance. The tolerance chosen for the
analysis is compared against €p.x to identify the re-
quired minimization technique to yield consistent map-
pings (see Equation (7)). Overall, the AFLOW-SYM to-
lerance scheme has been validated against 54,000 ICSD
entries, and subsequently applied to all 1.7 million en-
tries stored in the aflow.org repository. The symmetry
results can be retrieved from the AFLOW repository via
the REST-API [40] or the AFLUX Search-API [41].

C. Tolerance types and conversions

Outside of mapping distances, there are a number of
relevant quantities for which an equivalence criterion is
required, e.g., lattice vectors, axes, angles, and symme-
try operations. Instead of defining separate tolerances
for each, AFLOW-SYM leverages the single spatial tole-
rance, converting quantities to cartesian distances when-
ever possible. For vector quantities such as lattice vec-
tors and axes, the difference is taken, converted to the
cartesian form (if necessary), and the Euclidean norm of
the resulting vector is compared to the spatial tolerance.
For angles, each angle 6; is converted to a straight-line
distance d;:

d; = x;sin (91) R (8)

where Z; is the average length of the angle-defining vec-
tors in cartesian space. The two straight-line distances
are subtracted and compared with the input spatial tole-
rance. To compare rotation matrices for a particular lat-
tice, each matrix is transformed into its fractional form,
resulting in two integer matrices that can be matched
exactly.

D. International Tables for Crystallography
standard representation

One strategy for uncovering a structure’s symmetry
profile is to convert it to a standard form, such as the
one defined by the ITC. In this representation, the sym-
metry operations, space group, and Wyckoff positions are
well tabulated, mitigating the computational expense in-
volved in combinatorial operation searches. To efficiently



explore the possibilities, the algorithm exploits the lattice
symmetry to resolve the crystal symmetry, from which
the conventional cell is defined. The full workflow is il-
lustrated in Figure 3.

First, the algorithm finds a primitive representation of
the crystal (of which there are many) by exploring possi-
ble internal translations forming a smaller lattice [36]. To
optimize the search, only the vectors between the least
frequently occurring atomic species are considered. The
translation vector should preserve cell periodicity, and
the resulting reduced representation should conserve the
stoichiometry.

Next, the symmetry of the lattice is determined by cal-
culating the mirror and n-fold rotation operations. The
primitive cell is expanded from -1 to 1 in each direc-
tion [23] and combinations of lattice points are considered
for defining the following: i. mirror operations charac-
terized by a plane (normal fAy;or) between two lattice
points about which half the lattice points can be reflected
onto the other, and ii. n-fold rotations (n € {2,3,4,6})
described by an axis (f,,—t014) and angle (#) such that a
rotation about T, _g,q by € yields an isomorphic map-
ping of lattice points. The two types of operations are
illustrated in Figure 4.

The cardinality of each operation type defines the lat-
tice system, as detailed in Table 1. If the lattice and crys-
tal systems are the same, the characteristic vectors of the
lattice operators (Amirror and T, —go1d) and corresponding
lattice points define the lattice vectors of the conventional
cell (also outlined in Table 1). For all cases, these lattice
vectors are used to construct an initial conventional cell.
The aim is to find a conventional cell whose correspond-
ing symmetry operators (tabulated in the ITC in Table
11.2.2.1 [36]) are validated for the crystal, which can have
symmetry equal to or less than the lattice. If a mismatch
in cardinality is encountered, permutations of the lattice
vectors are attempted. Should a mismatch remain after
all permutations have been exhausted, the conventional
cell is reformed to reflect the crystal symmetry. The re-
formed cell is chosen based on the observed cardinality
of the symmetry operations (refer again to Table 1).

The resulting crystal point group set and internal
translations (lattice centerings) are then used to filter
candidate space groups. To pin down a space group ex-
actly, the symmetry elements of the crystal are matched
to the ITC generators — the operations generating sym-
metrically equivalent atoms for the general Wyckoff posi-
tion [36]. However, a shift in the origin may differentiate
the two sets of operators — a degree of freedom that
should be addressed carefully. The appropriate origin
shift should transform the symmetry elements to the ITC
generators, thus forming a set of linear equations. Con-
sider two symmetrically equivalent atom positions (x and
x') in the crystal,

x' =Ux+t, 9)

where U and t are the fixed-point and translation oper-
ations, respectively, between the two atoms. An origin

shift O relates these positions to those listed in the ITC:

XiTC = X + O, (10)
X/ITC = X/ + 0. (11)

Applying U to Equation (10) and subtracting it from
Equation (11) yields

x'17c — Uxire =% + 0 — Ux — UO. (12)

The ITC translation t;rc and the crystal translation t
are related via

tirc =t+ 0O —UO. (13)

Combining Equations (12)-(13) and incorporating Equa-
tions (10)-(11) produces the following system of equa-
tions:

(I-U)0 = (tirc — t), (14)

where I is the identity. Equation (14) must be solved for
each generator, often resulting in an overdetermined sys-
tem. Periodic boundary conditions should also be consid-
ered when solving the system of equations, as solutions
may reside in neighboring cells. If a commensurate ori-
gin shift is not found, the next candidate space group is
tested.

With the shift into the ITC reference frame, the Wyck-
off positions are identified by grouping atoms in the con-
ventional cell into symmetrically equivalent sets. These
sets are compared with the ITC standard to identify the
corresponding Wyckoff coordinates, site symmetry desig-
nation, and letter. The procedure to find the origin shift
is similarly applied to determine any Wyckoff parameters
(z, y, z). For some space groups, the Wyckoff positions
only differ by an internal translation (identical site sym-
metries), introducing ambiguity in their identification.
In these cases, AFLOW-SYM favors the Wyckoff scheme
producing the smallest enumerated Wyckoff lettering.

After finding the Wyckoff positions, the algorithm is
complete. AFLOW-SYM returns the space group, con-
ventional cell, and Wyckoff positions in the ITC standard
representation.

E. Input orientation symmetry algorithm

The standard conventional cell representation de-
scribed in the previous section affords easy access to
the full symmetry profile of the structure. Neverthe-
less, other representations, such as the AFLOW standard
primitive representation [4], are often preferred for reduc-
ing the computational cost of subsequent calculations/-
analyses, such as density functional theory calculations
[4]. While conversions are always possible, such as with
a Minkowski lattice reduction or as was done to find the
standard conventional cell, in practice it introduces er-
rors in the structural parameters, becoming particularly



lattice/crystal # mirrors|# n-fold rotations conventional cell
system
cubic 9 3 (four-fold)|a,b,c : parallel to three equivalent four-fold axes
c : parallel to three-/six-fold axis
hexagonal 7|1 (three-/six-fold)| a,b : parallel to mirror axes
(Ja] = |b| and g = 120°)
c : parallel to four-fold axis
tetragonal 5 1 (four-fold)| a,b : parallel to mirror axes
(Ja] = |b| and 8 = 90°)
c : parallel to three-/six-fold axis
rhombohedral 3|1 (three-/six-fold)| a,b : parallel to mirror axes
(la] = |b| and 8 = 120°)
orthorhombic 3 -|a,b,c : parallel to three mirror axes
b : parallel to mirror axis
monoclinic 1 (unique axis)
i "I a,c: parallel to two (choice of three)
smallest translations perpendicular to b [36]
triclinic 0 -la,b,c : same as original lattice
TABLE 1. Conventional cell construction rules based on symmetry operations.

problematic in “confusion” tolerance regions (Figure 2)
and tolerance-sensitive algorithms, e.g., calculations of
force constants [9, 42]. To mitigate the need for error-
accumulating conversions, a general-representation sym-
metry algorithm is also incorporated in AFLOW-SYM.
The integration of the two symmetry algorithms affords
additional validation schemes that combat “confusion”
tolerance regions and ensures an overall stricter consis-
tency. The full workflow of this algorithm is outlined
in Figure 5. For descriptions of the different symmetry
groups, refer to Appendix A.

First, the point group of the lattice is calculated by
finding all identical lattice cells of an expanded grid (see
Section 2 G). The unique set of matrices that transform
the rotated cells to the original cell define the lattice point
group, as depicted in Figure 5(a). The search first con-
siders all lattice points within a radius no smaller than
that of a sphere encapsulating the entire unit cell. These
points define the candidate lattice vectors (origin to lat-
tice point), and those not of length a, b, or ¢ (lattice
vector lengths of original cell) are eliminated. Next, all
combinations of these candidate lattice vectors are con-
sidered, eliminating sets by matching the full set of lat-
tice parameters (lattice vector lengths and angles of the
original cell). The transformation matrix is calculated as

U.=L(1L)™" (15)

where U, is the cartesian form of the transformation (ro-
tation) matrix, L is the original, column-space matrix
representation of the lattice, and L’ is the rotated lat-
tice. The fractional form of the transformation matrix
(Ug) is similarly derived replacing L and L’ with their

fractional counterparts (the fractional form of L is triv-
ially the identity matrix).

The calculation of the lattice point group allows rapid
determination of its reciprocal space counterpart, de-
scribing the point group symmetry of the Brillouin zone.
The transformation of symmetry operators is straight-
forward, following standard basis change rules in dual
spaces. A contragredient transformation converts the
real-space form of the operator to its reciprocal coun-
terpart, which is trivial for the cartesian form of the op-
erator (orthogonal matrix):

ve=(U)' =U,, (16)
Vi= (U

where U./U; and V./V; are the cartesian/fractional

forms of the symmetry operator in real and reciprocal

spaces, respectively [43].

Next, the coset representatives of the factor group are
determined, characterizing the symmetry of the unit cell.
These operations are characterized by a fixed-point ro-
tation (lattice point group) and an internal translation
that yield an isomorphic mapping among the atoms. The
smallest set of candidate translation vectors can be found
among atoms of the least frequently occurring species.
This symmetry description is represented by Figure 5(b).

The point group of the crystal is then extracted from
the coset representatives of the factor groups. By exploit-
ing the homomorphism — or isomorphism for primitive
cells — between the factor group and the crystal point
group, the internal translations of the coset representa-
tives are removed and the unique elements yield the crys-
tal point group. This is portrayed in Figure 5(c). The
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FIG. 5. Workflow for the algorithm calculating the symmetry operations of the system in its original represen-
tation. Functions are represented by blue rectangles, and validation schemes by orange diamonds.

dual space counterpart of the crystal point group is de- group describes the symmetry of the infinitely periodic
rived by performing the contragredient transformation, crystal, resulting from the propagation of the unit cell
as shown in Equation (16). symmetry throughout the lattice. A finite set of space

The space group operations are similarly derived from group operators are generated by applying the lattice
the coset representatives of the factor group. The space translations to each of the coset representative opera-



tions out to a specified radius. The operation is depicted
in Figure 5(d).

The coset representatives of the factor group also re-
solve the symmetrically equivalent atoms (Wyckoff po-
sitions). Atoms that are symmetrically equivalent map
onto one another through a coset representative opera-
tion. This organization is convenient for calculating the
site symmetry of the crystal. The site symmetry, or site
point group, are exposed by centering the reference frame
onto each atomic site and applying the operations of the
crystal point group, as illustrated in Figure 5(e). To ex-
pedite this process, the site symmetries are explicitly cal-
culated for all inequivalent atoms. They are then propa-
gated to equivalent atoms with the appropriate change of
basis (dictated by the coset representative mapping the
inequivalent atom to the equivalent atom).

F. Consistency of symmetry

There are a finite number of operation sets that a crys-
tal can exhibit [44]. A set of symmetry operations out-
side of those allowed by crystallographic group theory
are attributed to noisy data, thus warranting the adap-
tive tolerance scan. Numerous symmetry rules are vali-
dated throughout the AFLOW-SYM routines. The list of
consistency checks are indicated below.

1. Point group (lattice/crystal) contains (at the very
least) the identity element.

2. Point group (lattice/crystal) matches 1 of 32 point
groups.

3. Coset representative of the factor group is an in-
teger multiple of the crystallographic point group
(homomorphic/isomorphic condition).

4. Space group symbol decomposes into crystallo-
graphic point group symbol by removing transla-
tional components (with the exception of derivative
structures).

5. Number of symmetrically equivalent atoms is divis-
ible by the ratio of the number of operations in the
factor and crystal point groups.

6. Space group and Wyckoff positions match ITC con-
vention [36].

G. Exploring the atomic environment

A description of the local atomic environments in a
crystal is required for determination of atom coordina-
tion and atom/lattice mappings. Depending on the cell
representation, an expansion is generally warranted for
sufficient exploration of the nearest neighbors. Here,
an algorithm is outlined for determining the number of
neighboring cells to explore in order to capture the local
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environment within a given exploration radius (rsphere)-
In AFLOW-SYM, the default exploration radius is the
largest distance between any two lattice points in a sin-
gle unit cell. First, the normal of each pair of lattice
vectors is calculated and scaled to be of length 7sphere,
e.g., N1 = Tsphere - B X ¢/||b X ¢||, where b and c are lat-
tice vectors. Next, the scaled normals are converted to
the basis of the lattice, e.g., nj = L™'n;, where L is the
column-space matrix representation of the lattice. The
magnitude (rounded up to the nearest integer) of the i*®
component of the n) vector reveals the pertinent grid di-
mensions (dy,ds,ds). A uniform sphere of radius rsphere
centered at the origin fits within a 3-D grid spanning

[—di, d;].

3. RESULTS

Highlighted here are benchmarks to compare the vari-
ous standard symmetry packages: AFLOW-SYM, Spglib,
FINDSYM, and Platon. The results are calculated with
the most recent versions available for download:

e AFLOW version 3.1.169,

e Spglib version 1.10.2.4,

e FINDSYM version 5.1.0,

e Platon version 30118.

The default tolerances are employed as reported by the
authors: .

o AFLOW-SYM: €yigne = de”™™) /100,

e Spglib: symprec =1 x 107° A, angle_tolerance
derives from symprec — default listed on web
page [45],

e FINDSYM: €lattice = 1x 10_5 A7 €atomic position =
1 x 1073 A— default from web interface [46],

e Platon: €metric = 1.00°, €otation = 0.25 A,
€inversion = 0.25 A7 €translation = 0.25 A [23}

Alternative tolerances values are also used for Spglib,
FINDSYM, and Platon. In general, the alternative tol-
erances are 100 times the default tolerances, except in
the case of Platon, where the default tolerances are di-
vided by 100:

e Spglib: symprec =1 x 1073 A

e FINDSYM: €lattice = 1x 10_3 A, €atomic position =
1x1071 A

e Platon: €metric = 0.01°, €rotation = 2.5 X 1073 A,
€inversion = 2.9 X 1073 A, €translation = 2.9 X 1073 A

The results from the alternative tolerances are denoted
with T.

A. Accuracy of space group analyses

The CTF files stored in the ICSD contain information
such as the structural parameters and atomic species/-
positions, as well as the space group (often reported from
experiments), publication date, and citation. The exper-
imentally reported space group information provides a
unique validation opportunity for the various symmetry
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# space group # lattice |# crystal system |# space group
package mismatches | mismatches| mismatches not found
AFLOW-SYM 834 420 377 0
Spglib 10,022 (3,389) 9,644 (2,917) 9,523 (2,832) 0 (0)
FINDSYM 3,540 (1,067)| 3,066 (531) 2,982 (483) 127 (156)
Platon 3,000 (1,217)| 1,092 (588) 1,083 (486)| 195 (1,351)*

TABLE 2. Mismatch counts between reported and calculated space groups for entries in the ICSD. The test set
is comprised of 54,015 ICSD entries stored in the aflow.org repository, as of 6 October 2017. The columns indicate the number
of entries whose space group, lattice type, and crystal family do not match those reported by the ICSD. The results using the
user-defined /non-default tolerance values for Spglib, FINDSYM, and Platon are shown in parentheses. For more details, refer
to the Supplementary Information. The superscript ¥ indicates 2 entries for which the space group calculation exceeded 48

hours.
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FIG. 6. Breakdown of space group mismatches with the ICSD organized by lattice type. The lattice types are
derived from the space group number reported in the ICSD. The superscript * indicates the results using the user-defined /non-
default tolerance values. The lattice abbreviations are as follows: triclinic (tri), monoclinic (mcl), base-centered monoclinic
(mclc), orthorhombic (orc), base-centered orthorhombic (orcc), body-centered orthorhombic (orci), face-centered orthorhombic
(orcf), tetragonal (tet), body-centered tetragonal (bct), hexagonal (hex), rhombohedral (rhl), cubic (cub), body-centered cubic
(bee), and face-centered cubic (fec).

packages. The mismatch counts between the reported match is almost halved when comparing only the lat-

and calculated space groups are shown in Table 2. The
counts are additionally broken down by lattice and crys-
tal system (Figure 6) to highlight the severity of the mis-
match. The full comparison of results is provided in the
Supplementary Information, organized in tables by the
reported crystal system, with mismatches highlighted in
red.

AFLOW-SYM shows the best agreement with the ICSD
with a deviation of about 1.5% (reduced to 1.3% if the
mismatch is rectified at the loose tolerance). The mis-

tice and crystal systems, suggesting the algorithm found
similar/nearby space groups (e.g., see Figure 2). Using
their respective default tolerances, Platon performs sec-
ond best with a 5.6% deviation, followed by FINDSYM
and Spglib with deviations of about 6.6% and 18.5%, re-
spectively. With the alternative tolerances, the overall
number of mismatches decrease for each package: Platon
reduces to 2.3%, FINDSYM reduces to 2.0%, and Spglib
reduces to 6.3%. Table 2 also shows that there are a
number of systems for which FINDSYM and Platon are



unable to identify any space group.

Figure 6 illustrates the space group mismatch from
each package organized by lattice type. Overall, AFLOW-
SYM is the most consistent with the ICSD for all lattice
types for both the default and alternative tolerances, ex-
cept for cubic systems where FINDSYM has one less mis-
match than AFLOW-SYM using the alternative tolerance.
The default tolerance values certainly play a role in the
large deviation count, e.g., a tighter tolerance can yield
a lower symmetry than expected. This is evident with
hexagonal and rhombohedral lattices, where Spglib re-
solves isomorphic subgroups neglecting the 3-/6-fold ro-
tations (see Supplementary Information). However, in-
creases in tolerance do not necessarily yield more consis-
tent space group determinations. Figure 6 shows that the
default tolerance is more accurate than the alternative
tolerance for the triclinic (tri) and body-centered tetrag-
onal (bct) systems calculated by Spglib and FINDSYM,
respectively. To guarantee consistent symmetry results,
users of Spglib, FINDSYM, and Platon should tune the
tolerance for each system. The structure-specific tole-
rance choice and adaptive tolerance scheme incorporated
into AFLOW-SYM allows for the automatic calculation of
results that are generally consistent with experiments.

Overall, the results indicate the strength of the
AFLOW-SYM approach. Other packages can reach sim-
ilar performance of AFLOW-SYM, but they require con-
tinuous ad-hoc user adjustments of tolerances, possibly
producing results incommensurate with other character-
istics of the systems, such as its Pearson symbol. Only
the self-consistent approach of AFLOW-SYM is ripe for
the automation required by autonomous materials de-
sign.

B. Symmetry characterizations and representations

Of primary concern among the various standard pack-
ages is the identification and characterization of crys-
tal symmetry, i.e., a symmetry description considering
the lattice and basis of atoms. In addition, AFLOW-
SYM characterizes crystals with a sequence of symmetry-
breaking features, including the lattice, superlattice (lat-
tice with a uniform basis), crystal, and crystal-spin. With
the progression of symmetry-breaking, each characteri-
zation offers a new dimension of physical insight, and
is of particular importance for understanding complex
phenomena [47]. The suite of characterizations® offered
by each package is presented in Table 3. With inte-
gration into the automated framework AFLOW, new

2 Some packages provide more information than listed in Table 3.
For example, Platon presents additional useful structural/chem-
ical information such as bonding, coordination, planes, and tor-
sions. However, the comparison presented in Table 3 is limited
to symmetry information pertaining to space groups.
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tools and symmetry descriptions will continue to be in-
corporated. The forums at aflow.org/forum are the
venues for presenting updates and discussing new func-
tionalities. Anticipated future work includes going be-
yond translationally invariant structures and character-
izing disordered/off-stoichiometric structures [12, 48].

Furthermore, AFLOW-SYM presents the symmetry op-
erations in a wealth of representations. Both AFLOW-
SYM and Spglib explicitly offer representations for the
symmetry operations.®> Table 4 compares the opera-
tion representations provided by the two packages. Both
provide the unit cell symmetry operators (coset rep-
resentatives of the factor group). AFLOW-SYM offers
the symmetry operations in the rotation matrix (carte-
sian and fractional), axis-angle, generator, and quater-
nion representations [49, 50]; while Spglib only pro-
vides the rotation matrix representation in its fractional
form. AFLOW-SYM also presents the corresponding
mappings for each symmetry operation, almost enti-
rely eliminating the need to reapply the operators for
symmetry-reduced analyses such as calculating the force
constants [9, 42]. Along with the factor group coset repre-
sentatives, AFLOW-SYM provides the lattice point group,
reciprocal lattice point group, crystal point group, dual of
the crystal point group, site point group, and space group
symmetry operators. Catering to electronic structure cal-
culations, AFLOW-SYM also returns additional symme-
try information not explicitly provided by other routines,
such as the Pearson symbol, Bravais lattice type, and
Bravais lattice variation, necessary for constructing the
most efficient Brillouin zone [4]. The full set of descrip-
tions and representations offered by AFLOW-SYM is de-
tailed in Appendix B.

4. USING AFLOW-SYM
A. Input/output formats

AFLOW-SYM reads crystal structure information from
a geometry file containing the lattice vectors and atomic
coordinates (coordinate model), which is treated as the
bona fide representation of the structure. Information
can be lost during the transcription of the X-ray diffrac-
tion/reflection data to the coordinate model, resulting
in a lower symmetry profile. While a means to verify
the two representations offers higher fidelity symmetry
descriptions, the diffraction data is not nearly as accessi-
ble as the coordinate model representation. Furthermore,
the geometry file is the de facto input format for ab-initio
packages, and thus AFLOW-SYM resolves the material’s
symmetry based on this representation.

With AFLOW-SYM well-integrated into the high-
throughput ab-initio software package AFLOW, it can

3 FINDSYM and Platon do provide the general Wyckoff position,
though they do not explicitly present the symmetry operators.
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H symmetry H AFLOW-SYM ‘ Spglib ‘ FINDSYM‘ Platon H

lattice v

superlattice v v" (EQUAL)
reciprocal lattice v

crystal v v v v
crystal-spin v v v

TABLE 3. List of the symmetry descriptions provided by each of the four packages. The superlattice analysis refers
to the structure symmetry if each atomic site is decorated equally (same atom type), while crystal-spin indicates the structure
symmetry including the magnetic moment of each atom. Adding the keyword EQUAL to the Platon command performs a

superlattice analysis.

’ ‘ operator information

| AFLOW-SYM |spglib |

operator type

v

Hermann-Mauguin

Schonflies

transformation matrix (cartesian)

transformation matrix (fractional)

generator matrix

s0(3) coefficients (L, Ly, L)

angle

axis

quaternion (vector)

quaternion (2 X 2 matrix)

quaternion (4 x 4 matrix)

su(2) coefficients (Pauli)

inversion boolean

internal translation (cartesian)

internal translation (fractional)

atom index map

atom type map

lattice translation (cartesian)

lattice translation (fractional)

SN RN RN RN RN RN RN N RN RN RN IR RN RN RN RN RN RN N

TABLE 4. List of operation representations provided by AFLOW-SYM compared to Spglib. The internal trans-
lations are only applicable for the coset representative of the factor group and space group symmetry operators. Likewise, the
lattice translations are only applicable for the space group symmetry operators.

process many standard input file types, including that
of the ICSD/CSD [31-33] (CIF), VASP [51-54] (POSCAR),
QuAaNTUM ESPRESSO [55], ABINIT [56], and FHI-
AIMS [57].

Furthermore, all symmetry functions support the
JSON object output format. This allows AFLOW-
SYM to be employed from other programming languages
such as Java, Go, Ruby, Julia and Python; facilitating
smooth integration into numerous applications and work-

flows [19, 20]. These functionalities can be accessed by
either the command line or a Python environment. A
summary of the output for each command is provided in
Appendix D 2.
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functions allow an optional tolerance value (tol) to be
specified via a number or the strings “tight” or “loose”
corresponding to €gjght and €jgese, respectively. To per-
form the symmetry analysis of a crystal, the functions
are called with the following commands:

B. Command line options

There are three main functions that provide all sym-
metry information for a given input structure. These

J

e aflow ——aflowSYM[=<tol>] [--print=txt|json] < file
— Calculates and returns the symmetry operations for the lattice point group, reciprocal lattice point group, coset
representatives of the factor group, crystal point group, dual of the crystal point group, site symmetry, and space
group. It also returns the unique and equivalent sets of atoms.
e aflow --edata[=<tol>] [--print=txt|json] < file
— Calculates and returns the extended crystallographic symmetry data (crystal, lattice, reciprocal lattice, and
superlattice symmetry), while incorporating the full set of checks (see Section 2F, 1-6) for robust symmetry
determination.
e aflow --sgdata[=<tol>] [--print=txtl|json] < file
— Calculates and returns the space group symmetry of the crystal, while only validating the symmetry descriptions
match with the ITC conventions (see Section 2F, 6).

Square brackets [...] indicate optional arguments.
The --print flag specifies the output format. The
—--aflowSYM function stores the isometries of the different
symmetry groups to their own files aflow.<group>.out
or aflow.<group>. json. The <group> labels are as fol-
lows: pgroup (lattice point group), pgroupk (recipro-
cal lattice point group), fgroup (coset representatives
of the factor group), pgroup_xtal (crystal point group),
pgroupk_xtal, (dual of the crystal point group), agroup
(site symmetry), and sgroup (space group).

Crystal-spin symmetry functionality is also available
in AFLOW-SYM. The magnetic moment of each site
(collinear or non-collinear) can be specified for each of
the commands listed above by adding the magnetic mo-
ment flag: [--magmom=m1,m2,...|INCAR|OUTCAR]. The
magnetic moment information can be specified in three
formats: i. explicitly via mi, ms, ... m, in the same
order as the input file (or mq 4, M1y, M1z, M2 g oo M2
for non-collinear), ii. read from the VASP INCAR or iii.
the VASP OUTCAR. Magnetic moment readers for other
ab-initio codes will be added in later versions.

C. Python environment

Given the recent prevalence of Python programming,
we offer a module that employs AFLOW-SYM within a
Python environment (see Appendix D 1). It connects to
a local AFLOW installation and imports the AFLOW-
SYM results into a Symmetry class. A Symmetry object
is initialized with:

from aflow_sym import Symmetry
from pprint import pprint

with open(’test.poscar’, 'r’) as input_file:
sym = Symmetry(aflow_executable="./aflow’)
output = sym.get_edata(input_file)
pprint Coutput)

By default, the Symmetry object searches for an AFLOW

executable in the PATH. However, the location of an

AFLOW executable can be specified as follows:
Symmetry (aflow_executable=‘your_executable’).

The symmetry object has three built-in methods, which

correspond to the command line calls mentioned previ-

ously:

e get_symmetry(input_file, tol, magmoms)

e get_edata(input_file, tol, magmoms)

e get_sgdata(input_file, tol, magmoms)

Each method requires a Python file handler

(input_file), while the tolerance (tol) and mag-

netic moments of each site (magmoms) are optional

arguments.

D. AFLOW-SYM support

Functionality requests and bug reports should be
posted on the AFLOW Forum aflow.org/forum under
the board “Symmetry analysis”.

5. CONCLUSION

In this article, we present AFLOW-SYM, a symme-
try platform catered to — but not limited to — high-
throughput frameworks. We address problems stemming
from numerical tolerance in symmetry analyses by us-
ing a mapping procedure uniquely designed to handle
skewed cells and an advanced adaptive tolerance scheme.
AFLOW-SYM also includes consistency checks of calcu-
lated isometries with respect to symmetry principles.
These solutions are validated against the experimental
structures data reported by the ICSD. Comparison with
other symmetry analysis suites, Spglib, FINDSYM, and
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Platon, shows that AFLOW-SYM is the most consistent
with the ICSD.

For general use of AFLOW-SYM, the routines include
both a standard text output and a JSON output for easy
integration into other computational workflows. Lastly,
a comprehensive list of the symmetry descriptions are
presented (see Appendix D 2), illustrating the vast sym-
metry information available to users of AFLOW-SYM.
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Appendix A: Crystallographic symmetry
1. Mathematical group

A group is an abstract mathematical structure com-
prised of a set of elements (g), and an operation that
combines two elements to form a third [58]. There are
four axioms that a group satisfies.

1. closure: The combination of two elements with the
operator yields an element that exists in the set; it
does not create a new element outside the set.

2. associativity: The order of combining elements
with the operator is inconsequential given the se-
quence of operands is unaltered.

3. identity: There exists a neutral element (I) that
when combined with another element leaves that
element unchanged (gI = g).

4. inverse: For each element g in the set, there ex-
ists a corresponding inverse element ¢!, such that

gg’1 =1.

An abelian group includes the additional axiom of com-
mutativity. These rules are the foundation of group the-
ory and underline the construction of the different sym-
metry groups.

2. Point group

A point group is a set of symmetry transformations
about a fixed point {U;,Us,...,U,} that leave a sys-
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tem invariant?. The elements of the group are classified
as i. n-fold rotations, where n describes the rotation
order (i.e., the number of symmetric points it gener-
ates), ii. inversions, and iii. roto-inversions — com-
pound operations comprised of a rotation and inversion.
Three dimensional crystals are confined to one of 32 point
groups due to the crystallographic restriction theorem,
which limits the rotation order in a periodic system to
two-, three-, four-, and six-fold [36]. The 32 crystallo-
graphic point groups are categorized into one of seven
crystal systems: cubic, hexagonal, trigonal, tetragonal,
orthorhombic, monoclinic, and triclinic. The classifica-
tions are based on the lattice parameters (a, b, ¢, a, 3,
) of the crystal.

e cubic: a=b=c, a==v=090°

e hexagonal/trigonal: a = b # ¢, a = § =
90°, y = 120°

e tetragonal: a=b#c,a==~v=90°

e orthorhombic: a #b# ¢, a = =~ =90°

e monoclinic: a b # ¢, a =~ =90°, 5 # 90°

e triclinic: a b # ¢, a # f # v # 90°

In crystallography, two types of point groups are of par-
ticular importance — the lattice and crystal (vector)
point group. Each operates in a different space: the lat-
tice point group characterizes the symmetry of the lattice
points (an affine space), while the crystal point group
additionally considers the atomic basis and acts on the
underlying vector space of the crystal face normals. Fun-
damentally, the vector space captures the symmetry of
the macroscopic crystal [36]. The crystal point group op-
erations are defined as the linear mappings of the vector
space, i.e., the unique set of fixed-point transformations
of the factor group® [36, 59]. Owing to symmetry break-
ing from the atomic basis, the cardinality of the crystal
point group is at most as large as that of the lattice.
Furthermore, the dual (reciprocal) counterparts of the
lattice and crystal point group play an important role
in electronic structure theory: resolving the symmetries
of the Brillouin and irreducible Brillouin zones, respec-
tively. In AFLOW-SYM, the output for the lattice, recip-
rocal lattice, crystal, and dual of the crystal point group
operations are labeled pgroup, pgroupk, pgroup_xtal,
and pgroupk_xtal, respectively.

4 Here, the rotation matrix U is used to represent the different
symmetry groups; however, all rotation elements can also be de-
scribed in axis-angle, matrix generator, and quaternion form.
Without the relevant internal translations (complete coset repre-
sentatives), the crystal point group operations do not generally
apply in the affine point space (lattice points and atoms), as is
the case for non-symmorphic space groups. Conversely, the set
of operations that do apply in the point space define the site
symmetries.

ot



3. Space group

In periodic systems, translational symmetry gives rise
to another mathematical group — the space group. Its
elements are comprised of those found in the point group,
along with glide (mirror and translation) and screw (ro-
tation and translation) operations. The translational de-
gree of freedom extends the number of unique sets of
symmetry operations to 230. The translations of a crys-
tal are divided into lattice translations (T) and internal
translations (t).

(U, Us,..., U, [T + )} (A1)
Subsequently, a space group describes the full symmetry
of a periodic system. The space group operations are
labeled sgroup in AFLOW-SYM.

4. Factor group

From the space group, the elements of the factor group
are defined as the cosets of the subgroup of lattice trans-
lations (T):

{0} {1|T}, {Usfti} {I]T}, {U;[t;}{L, T}, ...,
(A2)

where U; are the point group operations, t; are the asso-
ciated internal translation, and I is the identity. The unit
cell symmetry is exposed via the coset representatives:

{I|0}7 {U’L|tz}7 {-[Jj“?j}7 e

The coset representatives themselves do not necessarily
form a mathematical group, since they violate the closure
condition. Repeated application of an internal transla-
tion will eventually traverse beyond the unit cell. The
unit cell symmetry elements (coset representatives) are
labeled fgroup in AFLOW-SYM.

In general, there exists a homomorphism between the
factor group and the crystal point group, i.e., the fac-
tor group cardinality is an integer multiple of the crystal
point group cardinality. The multiplicative factor (m) is
dictated by the number of internal translations in the sys-
tem. A crystal in a primitive representation exhibits an
isomorphic correspondence (m = 1), while non-primitive
representations possess the general homomorphic rela-
tionship (m > 1).

(A3)

5. Site point group

The site point group — or site symmetry — describes
the point group symmetry centered on a single site in the
crystal, revealing the local symmetry environment. The
analysis is performed on each atomic site in the crystal,
with symmetrically equivalent atoms (Wyckoff positions)
exhibiting the same point group symmetries. The origin
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of the fixed-point operations differentiates the site sym-
metry from the lattice/crystal point group, which are
centered on the unit cell origin. In the finite difference
method for calculating phonons, the unique distortions
for a given atomic site are resolved with its site symme-
try [9, 42]. In AFLOW-SYM, the site symmetry elements
are designated by agroup (“atomic site group”).

6. Crystal-spin symmetry

Introducing the spin degree of freedom can break crys-
tal symmetry. AFLOW-SYM includes functionality for a
crystal-spin (lattice, atoms, and spin) description, includ-
ing the relevant point group, factor group, space group,
and site symmetry operations. For magnetic systems,
these are the symmetry descriptions employed by ab-
initio packages, such as VASP [51-54]. Note that the
crystal-spin symmetry differs from the magnetic sym-
metry, which accounts for time-reversal symmetry (spin-
flips). The magnetic symmetry will be incorporated into
AFLOW-SYM in a later version.

Appendix B: Mathematical representation of
symmetry

Symmetry elements are characterized into three types
of transformation: translation, fixed-point, and fixed-
point-free (a combination of the two, i.e., screw and glide
operations) [36]. Translation are generally indicated by
3 x 1 vectors

(B1)

Fixed-point symmetries O(3) describing rotations, inver-
sions, and roto-inversions are represented by rotation
matrices. The rotation symmetries SO(3), i.e., a sub-
group of the orthogonal group O(3), can be represented
in three additional forms: axis-angle, matrix generator,
and quaternions. AFLOW-SYM provides the symmetry
operations for rotations in each of these four forms, which
are discrete subgroups of the continuous SO(3) group.

1. Rotation matrix

A rotation matrix describes a transformation between
two reference frames. In three-dimensions, the symmetry
operators are 3 X 3 square matrices with the following
form

Uil U2 U13
U21 U2 U223
U3zl U3z2 U33

U= (B2)

All transformations are unitary (norm preserving), and
therefore have det (U) = 1. The matrix representation



affords fast computation through use of optimized linear
algebra computational packages.

2. Axis-angle

Rotation operations are also characterized by their axis
and angle of rotation. The axis, ¥ = (rq,r2,73), indicates
the direction of the rotation operator, pointing perpen-
dicular to the fixed point motion. The angle, 6, specifies
the magnitude of the rotational motion (following the
right-hand rule). The angle and axis components are re-
lated to the matrix elements of U by

0 = cos™! <W> ;

2
rd Z\/(usz — u23)? + (w13 — usz1)? + (w21 — u12)?,
U3z — U23 U3 — U31 U1 — UL2
T = , T = , 's = )
Td Td Td
(B3)

where Tr(U) is the trace of U. The axis-angle repre-
sentation is directly applied to a point p via Rodrigues’
rotation formula

Prot = pcosf+ (F x p)sinf+#(¢-p) (1 —cosh), (B4)

where p,ot is the rotated point. This description high-
lights the operation order n via n = 360°/60 and identifies
the conventional cell lattice vectors, since they are par-
allel to certain symmetry axes.

3. Matrix generator

The Lie group SO(3) grants the use of the correspond-
ing Lie algebra so(3), which are comprised of the infinites-
imal matrix generators G. The generator is a skew-
symmetric matrix that describes the rotation about a
symmetry axis, with the following form:

0 —Tr3 T2
G = T3 0 —7r1 5 (B5)
—Tre T 0

where 11, 72, r3 are the components of the symmetry unit
axis . The identity and inverse elements have no axis;
therefore, the generator is not defined and is returned
as a zero matrix. While the rotation matrix transforms
one reference frame to another, the generator operates
about a single axis. The matrix exponential of the gen-
erator with the angle maps the operations into the ro-
tation matrix form (U = exp(#G)). For convenience,
AFLOW-SYM returns the generator multiplied with the
angle A = 6G. AFLOW-SYM also provides the expan-
sion coefficients of the generator matrix onto the follow-
ing so(3) basis:

G =2L, +yL, + 2L, (B6)
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where
00 O 0 01
L,=(00 -1 | ,L,= 0 00O
01 0 -100
(B7)
0-10
L.=[1 0 0
0 0 O

The expansion coefficients z, y, and z of this basis set are
the unit axis components r1, 73, and r3, respectively.

4. Quaternion

A quaternion is a mathematical representation of 3D
space with both real and imaginary components. Though
developed in 1843, the quaternion has only recently
gained relevance through the field of computer graph-
ics and modeling. As opposed to using a nine-element
3 X 3 matrix to represent a rotation in space, quater-
nions have a concise format consisting of four compo-
nents. The reduced element count increases computa-
tional efficiency, and thus is particularly suitable for high-
throughput frameworks.

Given an axis and angle, the corresponding quaternion

representation, q = (qo, ¢1, 92, q3), 8

qo = COS(0/2)7
q1 = r1sin(6/2),
g2 = r28in(6/2),
g3 = r3sin(6/2),
which are equivalent to the Euler parameters. Alternate

forms of the quaternion are 2 x 2 and 4 x 4 matrices. The
complex 2 X 2 unitary matrix of a quaternion is

C= 4o + (J31’ q2 + qlZ , (Bg)
—q2 +q1% qo — g3?

(B8)

which is an element of the SU(2) Lie group. The C ma-
trix can be expanded onto a basis formed by the Pauli
matrices:

(01 (0 =i (10
1=\ 10)°727 i o )07 0 -1)
(B10)
where multiplying by i (=v/—1) yields the following de-

composition:

C= qOI—f—qlia'l +QQi02+Q3i03. (Bll)
The corresponding Lie algebra, su(2), is [60]
{ rs  T1—Tal
= - . . B12
& 2(r1+r22 -3 ) ( )

AFLOW-SYM lists the su(2) generator coefficients ex-
panded on the Pauli matrices

g =101 +Yyo2 + 203, (B13)



where the expansion coefficients z, y, and z are (i/2)rq,
(i/2)rq, and (i/2)rs, respectively. Similar to the SO(3)
rotations, the matrix exponential of the su(2) generator
g with the angle maps the operations into the complex
2 x 2 SU(2) matrix (C = exp(fg)). The 4 x 4 matrix
representation of the quaternion is

g q1 492 g3
—q1 qo —943 Q2
= ; B14
Q —q2 43 qo —q1 ( )
—q3 —q2 Q1 qo

which includes all four components of the quaternion vec-
tor in a matrix, allowing transformations to be performed
through matrix multiplication rather than quaternion al-
gebra. This method is useful for performing operations
with other transformations in matrix or vector form,
whereas the quaternion vector notation has its own alge-
bra similar to the operations between complex numbers
with an additional scalar component (go).

5. Basis transformations of operators

The representations of the symmetry operations are
basis dependent and are customarily given with respect
to cartesian or fractional coordinates systems. It is
straight-forward to transform symmetry operations be-
tween these vector spaces via a basis change. In matrix
notation, the fixed-point operation in cartesian (U,) and
fractional (Uy) coordinates are related via the following
similarity transformations:

U;=L'U.L,

U, =LUL L. (B15)

Here, L is the column-space form of the lattice vectors:

ap by ¢
az by c2 |,
az bz c3

L=(abc)= (B16)

where a;, b;, and ¢; are the corresponding components
of the lattice vectors. A translation vector t.() is trans-
formed between cartesian and fractional coordinates by
t; = L™t and t. = Lt;.

6. Example representations

An example of a three-fold rotation in cartesian coor-
dinates is shown below in its rotation matrix, axis-angle,
matrix generator, and quaternion vector and matrix rep-
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resentations.
0-10
Uszga=| 0 0 -1
100
# = (0.57735,—0.57735,0.57735)
0 = 120°
0.0 —1.2092 —1.2092
A= 1.2092 0.0 —1.2092

1.2092 1.2092 0.0
q=(0.5,0.5,—0.5,0.5)

C— 0.5+0.5¢ —0.5+0.5¢
~ \054+0.5¢ 0.5—0.5¢

0.5 0.5 —0.5 0.5
—-0.5 0.5 =0.5 0.5
05 05 05 0.5
-05 05 05 0.5

Q=

Appendix C: Extreme cases of minimal distance
discrepancy between cartesian and fractional spaces

The bring-in-cell procedure applied to a crystal with
lattice parameters a = b = ¢ = 5 A, o = v = 90°
and 8 = 60° identifies the minimum distance between
the fractional coordinates (0,0,1/2) and (1/2,0,0) to be
||d™in|| = 4.3301 A, compared to the true minimum of
||[d™n|| = 2.5 A. A more extreme mismatch occurs if § =
5°, yielding a minimum of ||d™"|| = 4.9952 A with the
bring-in-cell method, differing significantly from the true
minimum of ||d™"|| = 0.2181 A. Applying the heuristic
threshold to the aforementioned skewed examples give
bounds of emax = 1.2130 A (with d2*™™ = 2.4259 A)

and emax = 0.0017 A (with d2™™™ = 0.4362 A) for
B = 60° and B = 5°, respectively. Both thresholds are
sufficiently below the true minimum distances — even in

the worst cases — validating our choice of the heuristic
threshold.

Appendix D: AFLOW-SYM details
1. Python module

The module to run the AFLOW-SYM commands refer-
enced in Section 4 C is provided below.

import json
import subprocess

import os

class Symmetry:

def __init__(self, aflow_executable="aflow’):
self.aflow_executable = aflow_executable



def

def

def

def

aflow_command(self, cmd):
try:
return subprocess.check_output(
self.aflow_executable + cmd,
shell=
D)

except subprocess.CalledProcessError:

print "Error aflow executable not found
— at: " + self.aflow_executable

get_symmetry(self, input_file, tol= ,
> magmoms= ):
fpath = os.path.realpath(input_file.name)
command = ' --aflowSYM’
output = '’
if tol:

command += =" + (tol)
if magmoms:

command += ’ --magmom=’ + magmoms
output = self.aflow_command(

command + --print=json --screen_only’

— + ' < ' + fpath
)
res_json = json.loads(output)
return res_json

get_edata(self, input_file, tol= ,
> magmoms= ):
fpath = os.path.realpath(input_file.name)
command = --edata’
output = '’
if tol:
command += =’ + (tol)
if magmoms:
command += ’ --magmom=’ + magmoms
output = self.aflow_command(

’ ’ )

command + --print=json’ +
<~ fpath

< +

)
res_json = json.loads(output)
return res_json

get_sgdata(self, input_file, tol= ,
> magmoms= ):
fpath = os.path.realpath(input_file.name)

’

command = --sgdata’

output =

if tol:

y_

command += ‘=’ + (tol)

if magmoms:

command += --magmom=" + magmoms

output = self.aflow_command (
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’

command + --print=json’ +
— fpath
)
res_json = json.loads(output)
return res_json

2. Output list

This section details the output fields for the sym-
metry group operations, extended crystallographic data
(edata), and space group data (sgdata) routines. The
lists describe the keywords as they appear in the JSON
format. Similar keywords are used for the standard text
output.

Symmetry operations output.
® pgroup

— Description: lattice point group symmetry opera-

tions.

— Type: array of symmetry operator objects
e pgroupk

— Description: reciprocal lattice point group symmetry

operations.

— Type: array of symmetry operator objects
e fgroup

— Description: coset representative of factor group

symmetry operations.

— Type: array of symmetry operator objects
e pgroup_xtal

— Description: crystal point group symmetry opera-

tions.

— Type: array of symmetry operator objects
e pgroupk_xtal

— Description: dual of the crystal point group symme-

try operations.

— Type: array of symmetry operator objects
e sgroup

— Description: space group symmetry operations out

to a given radius.

— Type: array of symmetry operator objects
e iatoms

— Description: groupings of symmetrically equivalen-

t/unique atoms.

— Type: iatom object
e agroup

— Description: site (atom) symmetry operations (point

group).

— Type: array of symmetry operator objects

Each symmetry group contains an array of symmetry ob-
jects, including the operation representations listed in
Table 4. The symmetry operator object contains the
following:
e Hermann_Mauguin

— Description: Hermann-Mauguin symbol of the sym-

metry operation.
— Type: string



e Schoenflies
— Description: Schonflies symbol of the symmetry op-
eration.
— Type: string
e Uc
— Description: transformation matrix with respect to
cartesian coordinates.
— Type: 3 X 3 array
o Uf
— Description: transformation matrix with respect to
fractional coordinates.
— Type: 3 X 3 array
e angle
— Description: angle corresponding to symmetry oper-
ation.
— Type: float
e axis
— Description: axis of symmetry operation.
— Type: 3 x 1 array
® generator
— Description: matrix generator of symmetry opera-
tion.
— Type: 3 X 3 array
e generator_coefficients
— Description: matrix generator expansion coefficients
onto L, Ly, and L, basis.
— Type: 3 X 1 array
e group
— Description: specifies the group type (“pgroup”,
“pgroupk*, “fgroup”, “pgroup_xtal”,
“pgroupk_xtal, “sgroup”’, and “agroup”).
— Type: string
e inversion
— Description: indicates if inversion exists.
— Type: bool
e quaternion_matrix
— Description: quaternion matrix.
— Type: 4 x 4 array
e SU2_matrix
— Description: complex quaternion matrix; element of
SU(2).
— Type: 2 X 2 array
e su2_coefficients
— Description: su(2) generator coeflicients onto Pauli
matrices (o1, 02, and o3).
— Type: 3 x 1 array
e quaternion_vector
— Description: quaternion vector.
— Type: 4 x 1 array
® type
— Description: point group operation type (unity, ro-
tation, inversion, or roto-inversion).
— Type: string
e ctau
— Description: internal translation component in
cartesian coordinates (“fgroup” and “sgroup”
only).
— Type: 3 X 1 array
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e ftau
— Description: internal translation component in frac-
tional coordinates (“fgroup” and “sgroup” only).
— Type: 3 X 1 array
e ctrasl
— Description: lattice translation component in carte-
sian coordinates (“sgroup” only).
— Type: 3 X 1 array
e ftrasl
— Description: lattice translation component in frac-
tional coordinates (“sgroup” only).
— Type: 3 X 1 array

The iatom object contains:
e inequivalent_atoms
— Description: symmetrically distinct atom indices.
— Type: array
e equivalent_atoms
— Description: groupings of symmetrically equivalent
atom indices.
— Type: 2D array

edata output.
e lattice_parameters
— Description: lattice parameters in
Angstroms and degrees (a, b, ¢, o, 3,7).
— Type: 6 X 1 array
— Similar to:
¢ FINDSYM: Lattice parameters, a, b, c, alpha,
beta, gamma:
¢ Platon: first six fields in the line containing CELL
lattice_parameters_Bohr_deg
— Description: lattice parameters in units of Bohr and
degrees (a, b, c, a, 58,7).
— Type: 6 x 1 array
e volume
— Description: real space cell volume.
— Type: float
— Similar to:
o Platon: last field in the line containing CELL.
e c_over_a
— Description: ratio of ¢ and a lattice parameters.
— Type: float
e Bravais_lattice_type
— Description: Bravais lattice of the crystal (“FCC”,
“BCC”, “CUB”, “HEX”, “RHL”, etc.).
— Type: string
e Bravais_lattice_variation_type
— Description: lattice variation type of the crystal in
the AFLOW standard [4].
— Type: string
e Bravais_lattice_system
— Description: Bravais lattice of the crystal.
— Type: string
— Similar to:
o Platon: CrystalSystem column in Cell Lattice
table.
e Pearson_symbol

units  of



— Description: Pearson symbol of the crystal.
— Type: string
crystal_family
— Description: crystal family.
— Type: string
crystal_system
— Description: crystal system.
— Type: string
e point_group_Hermann_Mauguin
— Description: Hermann-Mauguin symbol correspond-
ing to the point group of the crystal.
— Type: string
— Similar to:
o Spglib: SpglibDataset.pointgroup_symbol.
e point_group_Schoenflies
— Description: Schonflies symbol for the point group
of the crystal.
— Type: string
e point_group_orbifold
— Description: orbifold of the point group.
— Type: string
e point_group_type
— Description: point group type of the crystal.
— Type: string
e point_group_order
— Description: number of point group operations de-
scribing the crystal.
— Type: int
point_group_structure
— Description: point group structure of the crystal.
— Type: string
Laue
— Description: Laue symbol of the crystal.
— Type: string
— Similar to:
¢ Platon: field after the line containing Laue.
crystal_class
— Description: crystal class.
— Type: string
space_group_number
— Description: space group number.
— Type: int
— Similar to:
o Spglib: SpglibDataset.spacegroup_number.
o FINDSYM: field after line containing
_symmetry_Int_Tables_number.
o Platon: field after line containing No (number).
space_group_Hermann_Mauguin
— Description: Hermann-Mauguin space group label.
— Type: string
— Similar to:
o Spglib: SpglibDataset.International_symbol.
o FINDSYM: field after line containing
_symmetry_space_group_name_H-M.
¢ Platon: field after line
Space Group H-M.
space_group_Hall
— Description: Hall space group label.

containing

21

— Type: string
— Similar to:
¢ Spglib: SpglibDataset.hall_symbol.
o FINDSYM: field after line containing
_space_group.reference_setting.
¢ Platon: field after line
Space group - Hall.

containing

e space_group_Schoenflies

— Description: Schonflies space group label.
— Type: string
— Similar to:
o Spglib: Spg_get_schoenflies.
o FINDSYM: second field after line containing
Space Group.
o Platon: field after line containing Schoenflies.

e setting ITC

— Description: ITC setting of conventional cell
(AFLOW-SYM defaults to the first setting that ap-
pears in the ITC and the hexagonal setting for rhom-
bohedral systems).

— Type: int

— Similar to:

o Spglib: SpglibDataset.choice.

e origin_ITC

— Description: corresponding origin shift of the crystal
to align with the ITC representation.

— Type: 3 X 1 array

— Similar to:
o Spglib: SpglibDataset.choice.
o FINDSYM: field after line containing Origin at.
¢ Platon: field after line  containing

Origin Shifted to.

e general_position_ITC

— Description: general Wyckoff position (x,y, z) as in-
dicated by the ITC.
— Type: 2D array
— Similar to:
o FINDSYM: field after line containing
_space_group_symop_operation_xyz.
¢ Platon: in the Symmetry Operation(s) table.

e Wyckoff_positions

— Description: indicates the Wyckof, letter, multiplic-
ity, site symmetry, position (3 x 1 array), and atom
name.

— Type: array of objects

— Similar to:

o Spglib:  get_symmetry_dataset.wyckoffs (let-
ters only).
o FINDSYM: in the loop with _atom prefix.

e Bravais_lattice_lattice_type

— Description: Bravais lattice of the lattice.
— Type: string

e Bravais_lattice_lattice_variation_type

— Description: lattice variation type of the lattice in
the AFLOW standard [4].
— Type: string

e Bravais_lattice_lattice_system

— Description: Bravais lattice system of the lattice.



— Type: string

Bravais_superlattice_lattice_type

— Description: Bravais lattice of the superlattice.

— Type: string

Bravais_superlattice_lattice_variation_type

— Description: lattice variation type of the superlattice
in the AFLOW standard [4].

— Type: string

Bravais_superlattice_lattice_system

— Description: Bravais lattice system of the superlat-
tice.

— Type: string

Pearson_symbol_superlattice

— Description: Pearson symbol of the superlattice.

— Type: string

reciprocal_lattice_vectors

— Description: reciprocal lattice vectors.

— Type: 3 X 3 array

reciprocal_lattice_parameters

— Description: reciprocal lattice
(a7b7 caaaﬁf}/)'

— Type: 6 x 1 array

reciprocal_volume

— Description: reciprocal cell volume.

— Type: float

reciprocal_lattice_type

— Description: Bravais lattice of the reciprocal lattice
(((FCC”’ LGBCC”’ “C‘JU]B”7 LLHEX”’ LGRHLﬂ, etC.).

— Type: string

reciprocal_lattice_variation_type

— Description: lattice variation type of the reciprocal
lattice in the AFLOW standard [4].

— Type: string

reciprocal_lattice_system

— Description: lattice system of the reciprocal lattice.

— Type: string

standard_primitive_structure

— Description: AFLOW standard primitive crystal
structure representation.

— Type: structure object

standard_conventional_structure

— Description: AFLOW standard conventional crystal
structure representation.

— Type: structure object

wyccar

— Description: ITC conventional crystal structure rep-

parameters
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resentation.

— Type: structure object

— Similar to:
o Spglib: Spg_standardize_cell(to_primitive=0).
o FINDSYM: after Space Group line.

The structure object lists the following information
regarding the crystal structure:
e title
— Description: geometry file title.
— Type: string
e scale
— Description: scaling factor of lattice vectors.
— Type: float
e lattice
— Description: row-space representation of lattice vec-
tors (a, b, c).
— Type: 3 x 3 array floats
e species
— Description: list of atomic species in crystal.
— Type: array of strings
e number_each_type
— Description: number of atoms for each distinct
atomic species.
— Type: array of ints
e coordinates_type
— Description: indicates the coordinate representation
(“cartesian” or “direct”).
— Type: string
e atoms
— Description: atom information.
— Type: array of atom objects

where the atom object contains,
® name
— Description: atomic species name.
— Type: string
® occupancy
— Description: site occupancy.
— Type: float
e position
— Description: cartesian or fractional coordinate.
— Type: 3 x 1 array

sgdata output. The output from this function is a sub-
set of edata containing the space group and Wyckoff po-
sition information.
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