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Abstract We present possible observing scenarios for the Advanced LIGO, Advanced
Virgo and KAGRA gravitational-wave detectors over the next decade, with the in-
tention of providing information to the astronomy community to facilitate planning
for multi-messenger astronomy with gravitational waves. We estimate the sensitivity
of the network to transient gravitational-wave signals, and study the capability of
the network to determine the sky location of the source. We report our findings for
gravitational-wave transients, with particular focus on gravitational-wave signals from
the inspiral of binary neutron star systems, which are the most promising targets for
multi-messenger astronomy. The ability to localize the sources of the detected signals
depends on the geographical distribution of the detectors and their relative sensitivity,
and 90% credible regions can be as large as thousands of square degrees when only
two sensitive detectors are operational. Determining the sky position of a significant
fraction of detected signals to areas of 5 – 20 deg2 requires at least three detectors of
sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth.
When all detectors, including KAGRA and the third LIGO detector in India, reach
design sensitivity, a significant fraction of gravitational-wave signals will be localized
to a few square degrees by gravitational-wave observations alone.
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1 Introduction

Advanced LIGO (aLIGO; Harry 2010; Aasi et al 2015a), Advanced Virgo (AdV;
Acernese et al 2009; Accadia et al 2012; Acernese et al 2015) and KAGRA (Somiya
2012; Aso et al 2013) are kilometer-scale gravitational-wave (GW) detectors that
are sensitive to GWs with frequencies of ∼ 20 – 2000 Hz.1 The era of GW astron-
omy began with the detection of GW150914 (Abbott et al 2016k), a signal from
the coalescence of a binary black hole (BBH); the first confirmed multi-messenger
counterpart to a GW observation came with GW170817 (Abbott et al 2017a), a signal
from a binary neutron star (BNS) coalescence which was accompanied by detections
across the electromagnetic spectrum (Abbott et al 2017k). In this article, we describe
the currently projected schedule, sensitivity, and sky-localization accuracy for the
GW-detector network. We discuss the past and future planned sequence of observing
runs (designated O1, O2, O3, etc.) and the prospects for multi-messenger astronomy.

The purpose of this article is to provide information to the astronomy community
to assist in the formulation of plans for forthcoming GW observations. In particular,
we intend this article to provide the information required for assessing the features of
programs for joint observation of GW events using electromagnetic, neutrino, or other
facilities (e.g., Abbott et al 2016i; Adrian-Martinez et al 2016; Albert et al 2017c;
Abbott et al 2017k).

The full science of ground-based GW detectors is broad (Abbott et al 2016j),
and is not covered in this article. We concentrate solely on candidate GW transient
signals. We place particular emphasis on the coalescence of BNS systems, which are
the GW source for which electromagnetic follow-up is most promising (Metzger and

1LIGO is short for Laser Interferometer Gravitational-Wave Observatory. KAGRA is named after
the Japanese word for traditional sacred music and dance for the gods kagura; the name has a secondary
meaning as an abbreviation for KAmioka GRavitational-wave Antenna. Virgo is not an acronym, and is not
written in all caps.



Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 3

Berger 2012; Patricelli et al 2016; Paschalidis 2017; Rosswog et al 2017; Metzger
2017). However, we also mention BBHs, as they are the most commonly detected
source (Abbott et al 2016d, 2017g). No electromagnetic emission is expected for
vacuum BBH mergers (Centrella et al 2010), but is possible if there is surrounding
material (Schnittman 2013), for example, remnants of mass lost from the parent
star (Perna et al 2016; Janiuk et al 2017) or if the binary was embedded in a circumbi-
nary disc or a common envelope (Bartos et al 2017; Woosley 2016; Stone et al 2017).
For more general introductory articles on GW generation, detection and astrophysics,
we point readers to Blanchet (2014); Pitkin et al (2011); Sathyaprakash and Schutz
(2009).

Although our collaborations have amassed a great deal of experience with GW
detectors and analysis, it is still difficult to make predictions for both improvements
in search methods and for the rate of progress for detectors which are not yet fully
installed or operational. The scenarios of detector sensitivity evolution and observing
times given here should not be considered as fixed or firm commitments.

As the detectors’ construction and commissioning progress, we intend to release
updated versions of this article. This is the third version of the article, written to
coincide with the close of the second observing run (O2) of the advanced-detector era.
Changes with respect to the previous version (Aasi et al 2016) are given in Appendix A.
Progress has been made in the commissioning of the detectors. We include projections
for KAGRA for the first time; we also include results from the first observing run (O1)
and currently available results from O2.

2 Commissioning and observing phases

We divide the development of the GW observatories into three components:

Construction includes the installation and testing of the detectors. This phase ends
with acceptance of the detectors. Acceptance means that the interferometers can
lock for periods of hours: light is resonant in the arms of the interferometer with
no guaranteed GW sensitivity. Construction incorporates several short engineering
runs with no astrophysical output as the detectors progress towards acceptance. The
aLIGO construction project ended in March 2015. The construction of AdV was
completed at the end of 2016. KAGRA will be operational in its full configuration
by early 2019.

Commissioning improves the detectors’ performance with the goal of reaching the
design sensitivity. Engineering runs in the commissioning phase allow us to
understand our detectors and analyses in an observational mode; these are not
intended to produce astrophysical results, but that does not preclude the possibility
of this happening.2 Rather than proceeding directly to design sensitivity before
making astrophysical observations, commissioning is interleaved with observing
runs.

2The detection of GW150914 occurred in the engineering run ER8 immediately preceding the formal
start of O1.
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Observing runs begin when the detectors have reached (and can stably maintain) a
significantly improved sensitivity compared with previous operation. Observing
runs will produce astrophysical results, direct detections from some GW sources
and upper limits on the rates or energetics of others. During the first two observing
runs (O1 and O2), exchange of GW candidates with partners outside the LIGO
Scientific Collaboration (LSC) and the Virgo Collaboration was governed by
memoranda of understanding (MOUs; Abadie et al 2012d; Aasi et al 2013b). From
the start of the third observing run (O3), all GW event candidates identified with
high confidence will be released immediately to the full astronomical community.
KAGRA will become a part of the global network with full data sharing, once
sensitivities comparable with aLIGO and AdV are achieved.

The progress in sensitivity as a function of time will influence the duration of the
observing runs that we plan at any stage. Commissioning is a complex process which
involves both scheduled improvements to the detectors and tackling unexpected new
problems. While our experience makes us cautiously optimistic regarding the schedule
for the advanced detectors, we are targeting an order of magnitude improvement in
sensitivity relative to the previous generation of detectors over a wider frequency band.
Consequently, it is not possible to make concrete predictions for sensitivity or duty
cycle as a function of time. We can, however, use our experience as a guide to plausible
scenarios for the detector operational states that will allow us to reach the desired
sensitivity. Unexpected problems could slow down the commissioning, but there is
also the possibility that progress may happen faster than predicted here. The schedule
of commissioning phases and observation runs will be driven by a cost–benefit analysis
of the time required to make significant sensitivity improvements. More information
on event rates could also change the schedule and duration of runs.

In Sect. 2.1 we present the commissioning plans for the aLIGO, AdV and KAGRA
detectors. A summary of expected observing runs is in Sect. 2.2.

2.1 Commissioning and observing roadmap

The anticipated strain sensitivity evolution for aLIGO, AdV and KAGRA is shown
in Fig. 1. As a standard figure of merit for detector sensitivity, we use the range, the
volume- and orientation-averaged distance at which a compact binary coalescence
consisting of a particular mass gives a matched filter signal-to-noise ratio (SNR) of
8 in a single detector (Finn and Chernoff 1993). We define Vz as the orientation-
averaged spacetime volume surveyed per unit detector time; for a population with a
constant comoving source-frame rate density, Vz multiplied by the rate density gives
the detection rate of those sources by the particular detector. We define the range
R as the distance for which (4π/3)R3 = Vz. In Table 1 we present values of R for
different detector networks and binary sources. For further insight into the range, and a
discussion of additional quantities such as the median and average distances to sources,
please see Chen et al (2017). The BNS ranges, assuming two 1.4M� neutron stars, for
the various stages of the expected evolution are provided in Fig. 1, and the BNS and
BBH ranges are quoted in Table 1.
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Fig. 1 Regions of aLIGO (top left), AdV (top right) and KAGRA (bottom) target strain sensitivities as a
function of frequency. The binary neutron star (BNS) range, the average distance to which these signals
could be detected, is given in megaparsec. Current notions of the progression of sensitivity are given for
early, mid and late commissioning phases, as well as the design sensitivity target and the BNS-optimized
sensitivity. While both dates and sensitivity curves are subject to change, the overall progression represents
our best current estimates.

There are currently two operational aLIGO detectors (Aasi et al 2015a). The
original plan called for three identical 4-km interferometers, two at Hanford (H1 and
H2) and one at Livingston (L1). In 2011, the LIGO Lab and IndIGO consortium
in India proposed installing one of the aLIGO Hanford detectors (H2) at a new
observatory in India (LIGO-India; Iyer et al 2011). In early 2015, LIGO Laboratory
placed the H2 interferometer in long-term storage for use in India. The Government
of India granted in-principle approval to LIGO-India in February 2016.

The first observations with aLIGO have been made. O1 formally began 18 Septem-
ber 2015 and ended 12 January 2016; however, data from the surrounding engineering
periods were of sufficient quality to be included in the analysis, and hence the first
observations span 12 September 2015 to 19 January 2016. The run involved the H1 and
L1 detectors; the detectors were not at full design sensitivity (Abbott et al 2016g). We
aimed for a BNS range of 40 – 80 Mpc for both instruments (see Fig. 1), and achieved
a 60 – 80 Mpc range. Subsequent observing runs have increasing duration and sen-
sitivity. O2 began 30 November 2016, transitioning from the preceding engineering
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Table 1 Plausible target detector sensitivities. The different phases match those in Fig. 1. We quote the
range, the average distance to which a signal could be detected, for a 1.4M�+1.4M� binary neutron star
(BNS) system and a 30M�+30M� binary black hole (BBH) system.

LIGO Virgo KAGRA

BNS BBH BNS BBH BNS BBH
range/Mpc range/Mpc range/Mpc range/Mpc range/Mpc range/Mpc

Early 40 – 80 415 – 775 20 – 65 220 – 615 8 – 25 80 – 250
Mid 80 – 120 775 – 1110 65 – 85 615 – 790 25 – 40 250 – 405
Late 120 – 170 1110 – 1490 65 – 115 610 – 1030 40 – 140 405 – 1270
Design 190 1640 125 1130 140 1270

run which began at the end of October, and ended 25 August 2017. The achieved
sensitivity across the run was typically in the range 60 – 100 Mpc (Abbott et al 2017g).
Several improvements to the aLIGO detectors will be performed between O2 and O3,
including further mitigation of technical noises, increase of laser power delivered to
the interferometer, and installation of a squeezed vacuum source. Assuming that no
unexpected obstacles are encountered, the aLIGO detectors are expected to achieve a
190 Mpc BNS range by 2020. After the first observing runs, it might be desirable to
optimize the detector sensitivity for a specific class of astrophysical signals, such as
BNSs. The BNS range may then become 210 Mpc. The sensitivity for each of these
stages is shown in Fig. 1.

The H2 detector will be installed in India once the LIGO-India Observatory is
completed, and will be configured to be identical to the H1 and L1 detectors. We refer
to the detector in this state as I1 (rather than H2). Operation at the same level as the
H1 and L1 detectors is anticipated for no earlier than 2024.

The AdV interferometer (V1; Accadia et al 2012) officially joined O2 on 1 August
2017. We aimed for an early step with sensitivity corresponding to a BNS range of
20 – 65 Mpc; however, AdV used steel wires to suspend the test masses, instead of
fused silica fibers. This limited the highest possible BNS range in O2 to 40 – 60 Mpc;
the BNS range achieved was 25 – 30 Mpc. Fused silica fibers will be reinstalled
between O2 and O3. Other improvements such as reduction of technical noises, laser
power increase and installation of a squeezed vacuum source will also be performed,
bringing the AdV BNS range to 65 – 85 Mpc in 2018 – 2019. A configuration upgrade
at this point will allow the range to increase to approximately 65 – 115 Mpc in 2020.
The design sensitivity, with a BNS range of 125 Mpc, is anticipated circa 2021. The
corresponding BNS-optimized range would be 140 Mpc. The sensitivity curves for
the various AdV configurations are shown in Fig. 1.

The KAGRA detector (K1; Somiya 2012; Aso et al 2013) is located at the Kamioka
underground site. The first operation of a detector in an initial configuration with a
simple Michelson interferometer occurred in March 2016 (Akutsu et al 2018). The
detector is now being upgraded to its baseline design configuration. Initial operation at
room temperature is expected in 2018. Subsequently, the detector will be cryogenically
cooled to reduce thermal noise. Early cryogenic observations may come in 2019 –
2020 with a range of 8 – 25 Mpc. Since sensitivity will lag behind that of aLIGO and
AdV, observing runs are planned to be short to allow commissioning to proceed as
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quickly as possible; longer observing runs may begin when the detector nears design
sensitivity of 140 Mpc. The exact timing of observations has yet to be decided, but it is
currently intended to have a three-month observing run in early 2020, and a six-month
run at the start of 2021. The sensitivity curves for the various KAGRA commissioning
stages are shown in Fig. 1.

GEO 600 (Lück et al 2010; Dooley et al 2016) will continue to operate as a GW
detector beyond O3 as techniques for improving the sensitivity at high frequency are
investigated (Affeldt et al 2014). At its current sensitivity, it is unlikely to contribute to
detections, but with a deliberate focus on high frequency narrow band sensitivity at a
few kilohertz, GEO 600 may contribute to the understanding of BNS merger physics,
as well as sky localization for such systems, by around 2021. In the meantime, it will
continue observing with frequent commissioning and instrument science investigations
related to detuned signal recycling and novel applications of squeezed light, as well as
increasing the circulating power and levels of applied squeezing (Abadie et al 2011;
Grote et al 2013; Aasi et al 2013a; Brown et al 2017).

Finally, further upgrades to the LIGO and Virgo detectors, within their existing
facilities (e.g., Hild et al 2012; Miller et al 2015; Aasi et al 2015c) as well as future
third-generation observatories, for example, the Einstein Telescope (Punturo et al 2010;
Hild et al 2011; Sathyaprakash et al 2012) or Cosmic Explorer (Abbott et al 2017e), are
envisioned in the future. It is also possible that for some sources, there could be multi-
band gravitational-wave observations, where detection with a space-borne detector
like the Laser Interferometer Space Antenna (LISA; Amaro-Seoane et al 2012, 2013)
could provide early warning and sky localization (Sesana 2016), as well as additional
information on system parameters (Vitale 2016), formation mechanisms (Nishizawa
et al 2016a,b; Breivik et al 2016) and tests of general relativity (Barausse et al 2016).
These potential future developments are beyond the scope of this paper.

2.2 Past and envisioned observing schedule

Keeping in mind the important caveats about commissioning affecting the scheduling
and length of observing runs, the following are plausible scenarios for the operation
of the ground-based GW detector network over the next decade:

2015 – 2016 (O1) A four-month run (12 September 2015 – 19 January 2016) with the
two-detector H1L1 network at early aLIGO sensitivity (60 – 80 Mpc BNS range).
This is now complete.

2016 – 2017 (O2) A nine-month run with H1L1, joined by V1 for the final month.
O2 began on 30 November 2016, with AdV joining 1 August 2017 and ended on
25 August 2017. The expected aLIGO range was 80 – 120 Mpc, and the achieved
range was in the region of 60 – 100 Mpc; the expected AdV range was 20 – 65 Mpc,
and the initial range was 25 – 30 Mpc.

2018 – 2019 (O3) A year-long run with H1L1 at 120 – 170 Mpc and with V1 at 65 –
85 Mpc beginning about a year after the end of O2.

2020+ Three-detector network with H1L1 at full sensitivity of 190 Mpc and V1 at
65 – 115 Mpc, later increasing to design sensitivity of 125 Mpc.



8 KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

Virgo

 2015 2016 2017 2018 2019 2020 2021 2022 2023

KAGRA

 
60-80 
Mpc

Early Mid Late Design

60-100 
Mpc

O2 O3O1

O3

190 
Mpc

125 
Mpc

140 
Mpc

O2

120-170 
Mpc

 
25-30 
Mpc

 
65-85 
Mpc

 
65-115 

Mpc

 
25-40 
Mpc

 
40-140 

Mpc

LIGO

Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with the expected sensitivities given
by the data in Fig. 1 for future runs, and the achieved sensitivities in O1 and in O2. There is significant
uncertainty in the start and end times of planned the observing runs, especially for those further in the future,
and these could move forward or backwards relative to what is shown above. The plan is summarised in
Sect. 2.2.

2024+ H1L1V1K1I1 network at full sensitivity (aLIGO at 190 Mpc, AdV at 125 Mpc
and KAGRA at 140 Mpc). Including more detectors improves sky localization (Kli-
menko et al 2011; Veitch et al 2012; Nissanke et al 2013; Rodriguez et al 2014;
Pankow et al 2018) as well as the fraction of coincident observational time. 2024
is the earliest time we imagine LIGO-India could be operational.

This timeline is summarized in Fig. 2; we do not include observing runs with LIGO-
India yet, as these are still to be decided. Additionally, GEO 600 will continue ob-
serving, with frequent commissioning breaks, during this period. The observational
implications of these scenarios are discussed in Sect. 4.

3 Searches for gravitational-wave transients

Data from GW detectors are searched for many types of possible signals (Abbott
et al 2017j). Here we focus on signals from compact binary coalescences (CBCs)
and on generic transient or burst signals. CBCs include BNS, neutron star–black
hole (NS–BH) and BBH systems.

Observational results of searches for transient signals are reported in Abbott et al
(2016f,d,l, 2017c, 2016q, 2017l,g,h,i,a). The O1 results include two clear detections
GW150914 (Abbott et al 2016k) and GW151226 (Abbott et al 2016h), and a lower
significance candidate LVT151012 (Abbott et al 2016f,d). All three originate from
BBH coalescences (Abbott et al 2016m,d). No other transient sources have been
identified in O1 (Abbott et al 2016q, 2017c,m). The first results of O2 have been
announced: GW170104 (Abbott et al 2017g), GW170608 (Abbott et al 2017h) and
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GW170814 (Abbott et al 2017i) are from BBH coalescences, and GW170817 (Abbott
et al 2017a) is the first detection of a BNS coalescence.

Using our observation of GW170817, we calculate that the merger rate density
has a 90% credible range of 320 – 4740 Gpc−3 yr−1 (Abbott et al 2017a). This initial
estimate assumes that neutron star masses are uniformly distributed between 1M�
and 2M� and their dimensionless spins are less than 0.4. Compatible estimates for
the merger rate were derived from the rate of electromagnetic transients similar to
the counterpart of GW170817 (Siebert et al 2017; Kasliwal et al 2017; Smartt et al
2017; Yang et al 2017; Zhang et al 2018). Complementary rate estimation based
upon astrophysical population models and observations of Galactic BNS systems (e.g.,
Abadie et al 2010b; Kim et al 2013; Dominik et al 2015; Vangioni et al 2016; de Mink
and Belczynski 2015; Eldridge et al 2017; Belczynski et al 2017; Kruckow et al 2018)
remains an active are of research.

While the rates per unit volume of NS–BH and BBH mergers are expected to be
lower than for BNSs, the distance to which they can be observed is larger. Conse-
quently, the predicted observable rates are comparable (Abadie et al 2010b; Rodriguez
et al 2015; Abbott et al 2016c; Li et al 2017). From our observations of BBHs, we infer
that their rate of mergers is in the range ∼ 1.2×10−8 – 2.13×10−7 Mpc−3 yr−1 (Ab-
bott et al 2017g). The non-detection of NS–BHs in O1 allows us to place a 90% upper
limit of the merger rate of 3.6×10−6 Mpc−3 yr−1, assuming 1.4M�+5M� binaries
with isotropically distributed spins (Abbott et al 2016q); the upper limit on the rate
decreases for higher mass black holes. Expected detection rates for other transient
sources are lower and/or less well constrained.

For the purpose of detection, the gravitational waveform from the inspiral phase
of a BNS coalescence is well modeled and matched filtering can be used to search for
signals (Lindblom et al 2008; Buonanno et al 2009; Brown et al 2012; Read et al 2013;
Abbott et al 2016f; Harry et al 2016). For systems containing black holes, or in which
the component spin is significant, uncertainties in the waveform model can reduce
the sensitivity of the search (Nitz et al 2013; Harry et al 2014; Dal Canton et al 2015;
Taracchini et al 2014; Pan et al 2014; Schmidt et al 2015; Khan et al 2016; Bustillo
et al 2017).

Searches for bursts make few assumptions on the signal morphology, using time–
frequency decompositions to identify statistically significant excess-power transients
in the data. Burst searches generally perform best for short-duration signals (. 1 s),
although search development remains an area of active research (e.g., Klimenko et al
2008; Sutton et al 2010; Chassande-Mottin et al 2010; Thrane et al 2011; Adams et al
2013; Thrane and Coughlin 2013; Cornish and Littenberg 2015; Thrane et al 2015;
Kanner et al 2016); their astrophysical targets include core-collapse supernovae, mag-
netar flares, BBH coalescences, cosmic string cusps, and, possibly, as-yet-unknown
systems.

In the era of advanced detectors, we are searching in near real-time for CBC and
burst signals for the purpose of rapidly identifying event candidates. A prompt notice
of a potential GW transient can enable follow-up observations in the electromagnetic
spectrum.

A first follow-up program including low-latency analysis, event candidate selection,
position reconstruction and the sending of alerts to several observing partners (optical,
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X-ray, and radio) was implemented and exercised during the 2009 – 2010 LIGO–Virgo
science run (Abadie et al 2012c,b; Evans et al 2012). Latencies of less than 1 h were
achieved.

In the present follow-up program, the LSC and Virgo distribute the times and
sky localizations using the Gamma-ray Coordinates Network (GCN) system, widely
used in the astronomical community for the multiwavelength follow-up of gamma-ray
bursts.3 Messages are sent as machine-readable GCN Notices and as prose GCN Cir-
culars, and astronomers communicate the results of observations using GCN Circulars.
A shared infrastructure, including a database of results, allows observing partners to
announce, coordinate and visualize the coverage of their observations.4

Prior to O1, 74 teams signed MOUs to participate in the electromagnetic follow-up
program, and for the first event candidate later confirmed as GW150914, 63 were op-
erational and covered the full electromagnetic spectrum (Abbott et al 2016i,n). For the
first observations with the advanced detectors, thorough checks were performed before
alerts were released, resulting in latencies much greater than 1 h. We expect this latency
to be improved in the future as we gain experience with the instruments, and aim for
automatic alerts being sent out with only a few minutes latency; continued checks may
lead to retractions of some of these low-latency alerts. In the case of GW150914, 25
teams responded to the GW alert and operated ground- and space-based instruments
spanning 19 orders of magnitude in electromagnetic wavelength (Soares-Santos et al
2016; Annis et al 2016; Connaughton et al 2016; Ackermann et al 2016; Savchenko
et al 2016; Kasliwal et al 2016; Palliyaguru et al 2016; Hurley et al 2016; Morokuma
et al 2016; Copperwheat et al 2016; Lipunov et al 2017a; Kawai et al 2017; Smartt
et al 2016b,b; Evans et al 2016c; Diaz et al 2016; Brocato et al 2017). Analyses of
archival data were also performed (Troja et al 2016; Tavani et al 2016). No significant
electromagnetic counterpart and no afterglow emission was found in optical, ultravio-
let, X-rays, or GeV gamma rays. The weak transient found in Fermi-GBM data 0.4 s
after GW150914 (Connaughton et al 2016; Bagoly et al 2016) was not confirmed by
other instruments like INTEGRAL SPI-ACS (Savchenko et al 2016), AGILE (Tavani
et al 2016) or any other experiments of the InterPlanetary Network (Hurley et al 2016).
Models have been proposed to tentatively explain electromagnetic emission from
BBHs, but there is no clear favorite as yet (Loeb 2016; Woosley 2016; Perna et al
2016; Janiuk et al 2017; Bartos et al 2017; Stone et al 2017; Li et al 2016; Yamazaki
et al 2016; Ryan and MacFadyen 2017; Murase et al 2016; Morsony et al 2016; Dai
et al 2017; Lyutikov 2016; de Mink and King 2017). There was no significant neutrino
emission temporally and spatially coincident with the event, and all detected neutrino
candidates are consistent with the background (Adrian-Martinez et al 2016; Gando
et al 2016; Aab et al 2016; Abe et al 2016; Agostini et al 2017).

3Details of the GCN are available from gcn.gsfc.nasa.gov, and archives of messages for
GW150914 (gcn.gsfc.nasa.gov/other/G184098.gcn3), LVT151012 (gcn.gsfc.nasa.gov/other/G197392.gcn3),
GW151226 (gcn.gsfc.nasa.gov/other/G211117.gcn3), GW170104 (gcn.gsfc.nasa.gov/other/G268556.gcn3),
GW170608 (gcn.gsfc.nasa.gov/other/G288732.gcn3), GW170814 (gcn.gsfc.nasa.gov/other/G297595.gcn3)
and GW170817 (gcn.gsfc.nasa.gov/other/G298048.gcn3) are now publicly available.

4More information about the follow-up program is available at gw-
astronomy.org/wiki/LV EM/TechInfo.

http://gcn.gsfc.nasa.gov/
http://gcn.gsfc.nasa.gov/other/G184098.gcn3
http://gcn.gsfc.nasa.gov/other/G197392.gcn3
http://gcn.gsfc.nasa.gov/other/G211117.gcn3
https://gcn.gsfc.nasa.gov/other/G268556.gcn3
http://gcn.gsfc.nasa.gov/other/G288732.gcn3
http://gcn.gsfc.nasa.gov/other/G297595.gcn3
http://gcn.gsfc.nasa.gov/other/G298048.gcn3
https://gw-astronomy.org/wiki/LV_EM/TechInfo
https://gw-astronomy.org/wiki/LV_EM/TechInfo
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Similar follow-up campaigns have been performed for subsequent BBHs.3

LVT151012 was only identified in an offline search (Abbott et al 2016f), as an online
CBC search for BBHs was not running at the time. Nevertheless, some searching
of archival data has been done, and no confident electromagnetic counterpart has
been found (Racusin et al 2017). GW151226 was identified by a low-latency online
search (Abbott et al 2016h) and a variety of teams followed up; no electromagnetic
counterpart has been reported (Cowperthwaite et al 2016; Smartt et al 2016a; Cop-
perwheat et al 2016; Racusin et al 2017; Evans et al 2016b; Adriani et al 2016;
Palliyaguru et al 2016; Yoshida et al 2017; Serino et al 2017; Brocato et al 2017). No
significant neutrino counterpart was found in coincidence with either LVT151012 or
GW151226 (Albert et al 2017c; Gando et al 2016; Aab et al 2016; Abe et al 2016;
Agostini et al 2017). For GW170104 (Abbott et al 2017g), a Circular with initial
localization was sent in under 7 h; no confirmed electromagnetic or neutrino counter-
part has been reported (Bhalerao et al 2017; Verrecchia et al 2017; Corsi et al 2017;
Stalder et al 2017; Goldstein et al 2017b; Agostini et al 2017; Savchenko et al 2017b;
Albert et al 2017a).3 Identification of GW170608 was delayed due to maintenance
work being undertaken at Hanford at the time of the event (Abbott et al 2017h), but a
Circular was still issued within 14 h.3 No conclusive counterpart has yet been reported.
GW170814 was the first event to be confidently detected by Virgo and the inclusion
of the third detector significantly improved the localization for this event (Abbott et al
2017i). A Circular and initial sky localization was issued in under 2 h.3 No counterpart
has been reported so far (Arcavi et al 2017b). A lack of counterparts is unsurprising
given our current understanding of BBHs.

GW170817 was the first GW transient for which a firm electromagnetic counterpart
was discovered (Abbott et al 2017k). On 2017 August 17 12:41:06 UTC, Fermi-
GBM triggered on a short GRB, GRB 170817A (Goldstein et al 2017a), and a GCN
was sent after 14 s. About 6 min later, a GW trigger was identified; the signal was
consistent with a BNS coalescence (Abbott et al 2017a) occurring ∼ 1.7 s before
GRB 170817A (Abbott et al 2017f), and a GCN was issued at 13:08:16 UTC.3 A three-
detector GW localization was issued within 11 h of detection. An extensive observing
campaign was launched, leading to the discovery of the bright transient AT 2017gfo by
the One-Meter, Two-Hemisphere team with the 1-m Swope Telescope (Coulter et al
2017), and confirmed by other teams within an hour (Soares-Santos et al 2017; Valenti
et al 2017; Arcavi et al 2017a; Tanvir et al 2017; Lipunov et al 2017b). Subsequent
infrared–ultraviolet observations targeted the transient and measured its brightness
and spectrum, revealing a red-ward evolution (e.g., Villar et al 2017). X-ray (Troja
et al 2017; Margutti et al 2017; Haggard et al 2017; Ruan et al 2018; Pooley et al
2017; D’Avanzo et al 2018) and radio (Hallinan et al 2017; Alexander et al 2017;
Mooley et al 2018) afterglows were discovered at the position of the transient after
∼ 9 day and ∼ 16 day respectively; these were later joined by observation of the
optical afterglow (Lyman et al 2018; Margutti et al 2018). Follow-up observations did
not reveal any neutrino (Albert et al 2017b) or high-energy gamma-ray (Abdalla et al
2017) emission at the position of AT 2017gfo. These multimessenger observations
support the hypothesis that GW170817 came from a BNS coalescence, which was
the source of the short GRB 170817A (Goldstein et al 2017a; Savchenko et al 2017a)
and a kilonova powered by the radioactive decay of r-process nuclei produced in the
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collision (Pian et al 2017; McCully et al 2017; Smartt et al 2017; Chornock et al 2017;
Nicholl et al 2017; Shappee et al 2017).

The multimessenger observations for GW170817 allow for different studies rang-
ing from astrophysics to fundamental physics and cosmology. The GW and gamma-ray
data show that the BNS coalescence and the short gamma-ray are associated (Abbott
et al 2017f). The time delay of ∼ 1.7 s between GW170817 and GRB 170817A places
a constraint on the size and bulk Lorentz factor of the emitting region; furthermore,
this delay constrains the difference between the speed of light and the speed of gravity,
places new bounds on the violation of Lorentz invariance, and tests the equivalence
principle by constraining the Shapiro delay between gravitational and electromag-
netic radiation (Abbott et al 2017f). These results limit the range of potential viable
alternative theories of gravity (e.g., Creminelli and Vernizzi 2017; Sakstein and Jain
2017; Ezquiaga and Zumalacárregui 2017; Boran et al 2018; Baker et al 2017; Arai
and Nishizawa 2017). GWs can be used as standard sirens for cosmological mea-
surements (Schutz 1986). Combining the inferred GW distance with the redshift of
the host galaxy NGC 4993, it was possible to infer the Hubble constant (Abbott et al
2017b); the result is in agreement with the values determined from supernova (Riess
et al 2016) and cosmic microwave background measurements (Ade et al 2016).

Increased detection confidence, improved sky localization, and identification of
host galaxy and redshift are just some of the benefits of joint GW–electromagnetic
observations. With this in mind, we focus on two points of particular relevance for
follow-up of GW events: the source localization afforded by a GW network as well
as the relationship between signal significance, or false alarm rate (FAR), and source
localization.

3.1 Detection and false alarm rates

Detection pipelines search the data looking for signal-like features. Candidate trig-
gers flagged by a pipeline are assigned a detection statistic to quantify how signal-
like they are. For CBC searches, this involves matching a bank of waveform tem-
plates (Sathyaprakash and Dhurandhar 1991; Owen 1996; Owen and Sathyaprakash
1999; Babak et al 2006; Cokelaer 2007; Prix 2007; Harry et al 2009; Ajith et al 2014;
Brown et al 2012; Capano et al 2016; Dal Canton and Harry 2017) to the data (Abbott
et al 2016f,d); for burst searches, requirements on waveform morphology are relaxed,
but coherence of the signal in multiple detectors is required (Abbott et al 2016l, 2017c).
The detection statistic is used to rank candidates; we assess significance by comparing
results with those from an estimated background distribution of noise triggers. It is
difficult to theoretically model the behaviour of non-Gaussian noise, and therefore the
distribution must be estimated from the data (Abadie et al 2010a; Babak et al 2013;
Abadie et al 2012a; Abbott et al 2016b; Capano et al 2017; Messick et al 2017; Abbott
et al 2016f,d,l, 2017c; Nitz et al 2017). From the background noise distribution we
can map a value of the detection statistic to a FAR, the expected rate of triggers with
detection statistics equal to or greater than that value, assuming that the data contain
no signals. While each pipeline has its own detection statistic, they all compute a FAR,
making it easy to compare results. The FAR, combined with the observation time, may
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then be used to calculate a p value, the probability of there being at least one noise
trigger with a FAR this small or smaller in the observed time.5 As the FAR or p value
of a trigger decreases, it becomes more significant, and more likely to be a genuine
astrophysical signal.

The rate of noise triggers above a given SNR depends critically upon the data
quality of the advanced detectors; non-stationary transients or glitches (Aasi et al
2012, 2015b; Abbott et al 2016e) produce an elevated background of loud triggers.
Over 200,000 auxiliary channels record data on instrumental and environmental con-
ditions (Effler et al 2015; Abbott et al 2016e). These channels act as witnesses of
disturbances that may couple into the GW channel. An intensive study of the data
quality is used to veto stretches of acquired data ranging from seconds to hours in
duration. When a significant problem with the data is identified or a known instrumen-
tal issue affects the searches’ background, the contaminated data are removed from
the analysis data set. Our experience to date is that this removes a small percentage
of the data; for example, in O1 vetoes removed less than 5% of the coincident data
from the CBC analysis, with a single intermittent instrumental problem accounting for
4.65% of that total (Abbott et al 2016e,d, 2017c, 2018). For low-mass CBC searches,
the waveforms are well modeled, and signal consistency tests reduce the background
significantly (Allen 2005; Cannon et al 2015; Usman et al 2016). For burst sources
which are not well modeled, or which spend only a short time in the detectors’ sensi-
tive band, it is more difficult to distinguish between the signal and a glitch, and so a
reduction of the FAR comes at a higher cost in terms of reduced detection efficiency
(or live-time if more vetoes are used).

Search pipelines are run both online, analysing data as soon as they are available in
order to provide low-latency alerts of interesting triggers, and offline, taking advantage
of improved calibration of the data and additional information regarding data quality.
In Fig. 3, we show the offline transient search results for O1.6

For CBC, we show the cumulative number of triggers at a given FAR for two
pipelines: PyCBC (Dal Canton et al 2014; Usman et al 2016) and GstLAL (Cannon
et al 2012; Privitera et al 2014; Messick et al 2017). In the O2 analysis, PyCBC
uses an improved detection statistic (Nitz et al 2017). GW150914, LVT151012 and
GW151226 are visible in both the GstLAL and PyCBC results (Abbott et al 2016f,d)
shown in Fig. 3.

For bursts, we show distributions for COHERENT WAVE BURST (CWB; Klimenko
et al 2016, 2008), Omicron–LALINFERENCEBURST (OLIB; Lynch et al 2017) and
BAYESWAVE (Cornish and Littenberg 2015; Littenberg and Cornish 2015). The
CWB analysis is split into two frequency bands, above and below 1024 Hz. The

5The p value is distinct from the probability that a trigger is not a real astrophysical GW signal. The p
value assumes that the data contain no signals, whereas the probability of there being a GW must include
the hypothesis that there is an astrophysical signal. To calculate the probability that a trigger is a real signal
(or not) requires an extra layer of inference, folding in both our knowledge of the distribution of triggers,
assumptions about the signal distribution (such as that sources are uniformly distributed in volume), and
knowledge and assumptions about the merger rate per unit volume for a class of sources. A method for
doing this is described in Abbott et al (2016p,o,d).

6Strain data from published probable events in O1 and O2 are publicly available from the LIGO Open
Science Center losc.ligo.org (Vallisneri et al 2015). Full data from O1 are also available, and data from
other observing runs will be added in the future.

https://losc.ligo.org
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Fig. 3 Offline transient search results for the first observing run: the cumulative number of triggers with
false alarm rates (FARs) smaller than the abscissa value. The dashed line shows the expected noise-only
distribution, and the dotted lines show the 90% confidence interval assuming no signals. Potential signals are
identified by having smaller FARs than expected. The plots are truncated at a minimum FAR of 10−2 yr−1.
Left: Compact binary coalescence search results (Abbott et al 2016d,q). We show results from two search
algorithms, GstLAL (Cannon et al 2012; Privitera et al 2014; Messick et al 2017) and PyCBC (Dal Canton
et al 2014; Usman et al 2016). The most significant triggers for both are LVT151012, GW151226 and
GW150914; GW150914 and GW151226 have FARs less than 10−2 yr−1. Right: Burst search results (Abbott
et al 2017c). We show results from three search algorithms, COHERENT WAVE BURST (CWB; Klimenko
et al 2016, 2008), Omicron–LALINFERENCEBURST (OLIB; Lynch et al 2017) and BAYESWAVE follow-up
of CWB (CWB+BW; Kanner et al 2016). All three found GW150914 (the only CWB trigger above the
BAYESWAVE follow-up threshold) with a FAR less than 10−2 yr−1. GW151226 and LVT151012 fall below
the burst search’s detection threshold.

OLIB search is split into two bins, based upon the quality factor Q of the sine–
Gaussian it uses to model the signal; no triggers were identified by the low-Q search.
BAYESWAVE is run as a follow-up to triggers identified by CWB (Kanner et al 2016),
and hence is not completely independent. GW150914 was identified by all three search
algorithms (Abbott et al 2016l, 2017c).

For CBC signals, we conservatively estimate that a network SNR threshold of
ρc ' 12 is required for a FAR below∼ 10−2 yr−1 in the advanced-detector era (Abadie
et al 2012f; Aasi et al 2016; Berry et al 2015). A combined SNR of 12 corresponds to
a single-detector SNR of 8.5 in each of two detectors, or 7 in each of three detectors
(assuming an orientation and sky location for which the detectors have equal sensitiv-
ity). The exact threshold will depend upon data quality in each observing run as well
as the mass of the source; in O1, we found that the threshold SNR was lower, around
10.

3.2 Localization

Following the detection of a GW transient posterior probability distributions for the
position are constructed following a Bayesian framework (Veitch et al 2015; Cornish
and Littenberg 2015; Singer and Price 2016; Abbott et al 2016m), with information
for the sky localization coming from the time of arrival, plus the phase and amplitude
of the GW.
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An intuitive understanding of localization can be gained by considering triangula-
tion using the observed time delays between sites (Fairhurst 2009, 2011). The effective
single-site timing accuracy is approximately

σt =
1

2πρσ f
, (1)

where ρ is the SNR in the given detector and σ f is the effective bandwidth of the
signal in the detector, typically of order 100 Hz. Thus a typical timing accuracy is on
the order of 10−4 s (about 1/100 of the 10 ms light travel time between sites). This
sets the localization scale. The simple model of Eq. (1) ignores many other relevant
issues such as information from the signal amplitudes and phases across the detector
network, uncertainty in the emitted gravitational waveform, instrumental calibration
accuracies, and correlation of sky location with other binary parameters (Fairhurst
2009; Vitale and Zanolin 2011; Vitale et al 2012; Nissanke et al 2011; Veitch et al
2012; Nissanke et al 2013; Singer et al 2014; Berry et al 2015; Singer and Price 2016;
Fairhurst 2017). While many of these affect the measurement of the time of arrival in
individual detectors, such factors are largely common between two similar detectors,
so the time difference between the two detectors is relatively uncorrelated with these
additional parameters.

The timing-triangulation approach underestimates how well a source can be lo-
calized, since it does not include all the relevant information. Its predictions can be
improved by introducing the requirement of phase and amplitude consistency between
detectors (Grover et al 2014; Fairhurst 2017): it always performs poorly for a two-
detector network, but, with the inclusion of phase coherence, can provide an estimate
for the average performance of a three-detector network (Berry et al 2015).

Source localization using only timing for a two-site network yields an annulus on
the sky; see Fig. 4. Additional information such as signal amplitude and phase, and
precession effects resolve this to only parts of the annulus, but even then sources will
only be localized to regions of hundreds to thousands of square degrees (Singer et al
2014; Berry et al 2015). An example of a two-detector BNS localization is shown in
Fig. 5. The posterior probability distribution is primarily distributed along a ring, but
this ring is broken, such that there are clear maxima.

For three detectors, the time delays restrict the source to two sky regions which
are mirror images with respect to the plane passing through the three sites. It is often
possible to eliminate one of these regions by requiring consistent amplitudes in all
detectors (Fairhurst 2017). For signals just above the detection threshold, this typically
yields regions with areas of several tens to hundreds of square degrees. If there is
significant difference in sensitivity between detectors, the source is less well localized
and we may be left with the majority of the annulus on the sky determined by the
two most sensitive detectors. With four or more detectors, timing information alone is
sufficient to localize to a single sky region, and the additional baselines help to limit
the region to under 10 deg2 for some signals.

From Eq. (1), it follows that the linear size of the localization ellipse scales
inversely with the SNR of the signal and the frequency bandwidth of the signal in the
detector (Berry et al 2015). For GWs that sweep across the band of the detector, such
as CBC signals, the effective bandwidth is∼ 100 Hz, determined by the most sensitive



16 KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

H

L

V

S

S ′
HL

HL

HV
HV

LV

LV

Fig. 4 Source localization by timing triangulation for the aLIGO–AdV network. The locations of the three
detectors are indicated by black dots, with LIGO Hanford labeled H, LIGO Livingston as L, and Virgo as
V. The locus of constant time delay (with associated timing uncertainty) between two detectors forms an
annulus on the sky concentric about the baseline between the two sites (labeled by the two detectors). For
three detectors, these annuli may intersect in two locations. One is centered on the true source direction (S),
while the other (S′) is its mirror image with respect to the geometrical plane passing through the three sites.
For four or more detectors there is a unique intersection region of all of the annuli. Figure adapted from
Chatterji et al (2006).
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Fig. 5 Posterior probability density for sky location for an example simulated binary neutron star coales-
cence observed with a two-detector network. Left: Localization produced by the low-latency BAYESTAR
code (Singer et al 2014; Singer and Price 2016). Right: Localization produced by the higher-latency (neglect-
ing spin) LALINFERENCE (Veitch et al 2015), which also produces posterior estimates for other parameters.
These algorithms are discussed in Sect. 3.2.1, and agreement between them shows that the low-latency
localization is comparable to the one produced by the higher-latency pipelines. The star indicates the true
source location. The source is at a distance of 266 Mpc and has a network signal-to-noise ratio of ρc = 13.2
using a noise curve appropriate for the first aLIGO run (O1, see Sect. 4.1). The plot is a Mollweide projection
in geographic coordinates. Figure reproduced from Berry et al (2015); further mock sky localizations for the
first two observing runs can be found at www.ligo.org/scientists/first2years/ for binary neutron star signals
and www.ligo.org/scientists/burst-first2years/ for burst signals.

frequencies of the detector. Higher mass CBC systems merge at lower frequencies
and so have a smaller effective bandwidth. For burst transients, the bandwidth σ f
depends on the specific signal. For example, GWs emitted by various processes in
core-collapse supernovae are anticipated to have relatively large bandwidths, between
150 Hz and 500 Hz (Dimmelmeier et al 2008; Ott 2009; Yakunin et al 2010; Ott et al
2011), largely independent of detector configuration. By contrast, the sky localization

http://www.ligo.org/scientists/first2years/
http://www.ligo.org/scientists/burst-first2years/
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region for narrowband burst signals may consist of multiple disconnected regions
and exhibit fringing features; see, for example, Klimenko et al (2011); Abadie et al
(2012c); Essick et al (2015).

In addition to localizing sources on the sky, for CBC signals it is possible to
provide distance estimates, since the waveform amplitude is inversely proportional
to the luminosity distance (Veitch et al 2015; Abbott et al 2016m). Uncertainty in
distance measurement is dominated by the degeneracy with the binary’s inclination,
which also determines the signal amplitude (Cutler and Flanagan 1994; Nissanke et al
2010; Aasi et al 2013c). The degeneracy could be broken by observing with more
non co-aligned detectors (Veitch et al 2012; Rodriguez et al 2014), or if precession
of the orbital plane is observed (Vecchio 2004; van der Sluys et al 2008; Vitale et al
2014), but this is not expected for slowly spinning BNS (Farr et al 2016). Distance
information can further aid the hunt for counterparts, particularly if the the localization
can be used together with galaxy catalogs (Nissanke et al 2013; Hanna et al 2014; Fan
et al 2014; Blackburn et al 2015; Singer et al 2016a).

Some GW searches are triggered by electromagnetic observations, and in these
cases some localization information is known a priori. For example, in GW searches
triggered by gamma-ray bursts (Abadie et al 2012e; Aasi et al 2014c,b; Abbott et al
2017l), the triggering space-based telescope provides a localization. The coincident
observation of GW170817 (Abbott et al 2017a) and GRB 170817A (Goldstein et al
2017a; Savchenko et al 2017a) confirms that BNS mergers are a progenitor for short
gamma-ray bursts (Abbott et al 2017f), and therefore that gamma-ray bursts are inter-
esting targets for triggered GW searches. Other possible targets for these externally-
triggered GW searches could be electromagnetic or neutrino emission from Galactic
core-collapse supernovae. It is therefore of great scientific value to have telescopes
capable of observing the high-energy spectrum operating during the advanced-detector
era (and beyond). Furthermore, the rapid identification of a GW counterpart to such
a trigger could prompt further spectroscopic studies and longer, deeper follow-up in
different wavelengths that may not always be done in response to gamma-ray bursts (cf.
Abbott et al 2017k). This is particularly important for gamma-ray bursts with larger
sky localization uncertainties, such as those reported by the Fermi-GBM, which are
not followed up as frequently as bursts reported by Swift or Fermi-LAT; in the case of
GW170817, the LIGO–Virgo localization was tighter than the localization from Fermi-
GBM and INTEGRAL (Abbott et al 2017f; Goldstein et al 2017a; Savchenko et al
2017a) and also showed that the source was nearby (40+8

−14 Mpc; Abbott et al 2017a),
making it a prime target for further follow-up. All GW data are stored permanently, so
that it is possible to perform retroactive analyses at any time.

3.2.1 Localization of binary neutron star coalescences

Providing prompt localizations for GW signals helps to maximise the chance that
electromagnetic observatories can catch a counterpart. Localizations are produced at
several different latencies, with updates coming from more computationally expensive
algorithms that refine our understanding of the source.

For CBC signals, rapid localization is performed using BAYESTAR (Singer and
Price 2016), a Bayesian parameter-estimation code that computes source location
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using output from the detection pipeline. It can produce sky localizations (as in Fig. 5)
with latencies of only a few seconds. A similar approach to low-latency localization
has been separately developed by Chen and Holz (2015), which find results consistent
with BAYESTAR. BAYESTAR can also provide distance estimates (Singer et al 2016a).
These can be easily communicated as an additional component of the sky localization:
for each line of sight, the distance posterior probability is approximated as a Gaussian
multiplied by the distance squared (Singer et al 2016a,b).7 Results from BAYESTAR
are shared at low latency for prompt follow-up efforts.

At higher latency, CBC parameter estimation is performed using the stochastic
sampling algorithms of LALINFERENCE (Veitch et al 2015). LALINFERENCE con-
structs posterior probability distributions for system parameters, not just location like
BAYESTAR, but also mass, orientation, etc. (Aasi et al 2013c; Abbott et al 2016m), by
matching GW templates to the detector strain (Cutler and Flanagan 1994; Jaranowski
and Królak 2012). Computing these waveforms is computationally expensive; this
expense increases as the detectors’ low-frequency sensitivity improves and wave-
forms must be computed down to lower frequencies. The quickest LALINFERENCE
BNS follow-up is computed using waveforms that do not include the full effects of
component spins (Singer et al 2014; Berry et al 2015; Abbott et al 2017g), local-
izations can then be reported with latency of hours to a couple of days. Parameter
estimation is then performed using more accurate waveform approximates, those that
include fuller effects of spin precession and the effects of tidal distortions of neutron
stars (Farr et al 2016; Abbott et al 2016a, 2017g,a). Provided that BNSs are slowly
spinning (Mandel and O’Shaughnessy 2010), the restrictions on the spins should cause
negligible difference between the mid-latency LALINFERENCE and the high-latency
fully spinning LALINFERENCE localizations (Farr et al 2016). Methods of reducing
the computational cost are actively being investigated (e.g., Canizares et al 2013;
Pürrer 2014; Canizares et al 2015; Smith et al 2016; Vinciguerra et al 2017).

Sky localization results from an astrophysically motivated population of BNS
signals, assuming a detection threshold of a SNR of 12, are shown in Fig. 6 (Singer
et al 2014; Berry et al 2015). Results are quantified using the 90% credible region
CR0.9, the smallest area enclosing 90% of the total posterior probability, and the
searched area A∗, the area of the smallest credible region that encompasses the true
position (Sidery et al 2014): CR0.9 gives the area of the sky that must be covered to
expect a 90% chance of including the source location, and A∗ gives the area that would
be viewed before the true location is found using the given sky localization. Results
from both the low-latency BAYESTAR and mid-latency LALINFERENCE analyses are
shown. These are discussed further in Sects. 4.1 and 4.2. The two-detector localizations
are slightly poorer in O2 than in O1. This is because although the detectors improve
in sensitivity at every frequency, with the assumed noise curves the BNS signal
bandwidth is lower in O2 for a given SNR because of enhanced sensitivity at low
frequencies (Singer et al 2014). Sky localization improves with the expansion of the
detector network (Schutz 2011; Klimenko et al 2011; Veitch et al 2012; Rodriguez
et al 2014; Gaebel and Veitch 2017; Pankow et al 2018).

7A data release of example three-dimension localizations in this format, constructed using results from
BAYESTAR and LALINFERENCE for BNS signals, is available from dcc.ligo.org/P1500071/public/html.

http://dcc.ligo.org/P1500071/public/html
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The results in Fig. 6 show there is negligible difference between the low-latency
BAYESTAR and the LALINFERENCE analyses if the BNS signal is loud enough to
produce a trigger in all detectors. However, when the signal is sub-threshold in one,
LALINFERENCE could give a more precise localization, as it still uses strain data from
the non-triggered detector (Singer et al 2014; Singer and Price 2016). In preparation
for the start of joint three-detector observations in O2, the online CBC pipelines and
BAYESTAR have been enhanced to capture and make use of sub-threshold signals in all
detectors. Consequently, there should be negligible difference between the low-latency
BAYESTAR and LALINFERENCE localizations even for events that register weakly
in one or more detectors. This was the case for GW170817, where both analyses
produced a 90% credible area of ∼ 30 deg2 (Abbott et al 2017a).
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Fig. 6 Anticipated binary neutron star sky localization during the first two observing runs (top: O1, see
Sect. 4.1; bottom: O2, see Sect. 4.2). Detector sensitivities were taken to be in the middle of the early (for
aLIGO in O1 and AdV in O2) and mid (for aLIGO in O2) bands of Fig. 1. The plots show the cumulative
fractions of events with sky-localization areas smaller than the abscissa value. Left: Sky area of 90%
credible region CRBNS

0.9 , the (smallest) area enclosing 90% of the total posterior probability. Right: Searched
area ABNS

∗ , the area of the smallest credible region containing the true position. Results are shown for the
low-latency BAYESTAR (Singer and Price 2016) and higher-latency (neglecting spin) LALINFERENCE (LI;
Veitch et al 2015) codes. The O2 results are divided into those where two detectors (2-det) are operating
in coincidence, and those where three detectors (3-det) are operating: assuming a duty cycle of 70 – 75%
for each instrument, the two-detector network would be operating for 42 – 44% of the total time and the
three-detector network 34 – 42% of the time. The shaded areas indicate the 68% confidence intervals on the
cumulative distributions. A detection threshold of a signal-to-noise ratio of 12 is used and results are taken
from Berry et al (2015); Singer et al (2014).
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For the BNS signals from the sky-localization studies, the average fractional
distance uncertainty, defined as the posterior standard deviation divided by the mean,
is ∼ 0.25 – 0.30 (Berry et al 2015; Farr et al 2016).

LALINFERENCE also has the ability to include the effects of the detectors’ cal-
ibration uncertainty on parameter estimation (Abbott et al 2016m,d). Calibration is
refined as additional measurements are taken, hence sky localization can improve
as uncertainty is reduced. Initial results for GW150914 assumed a calibration uncer-
tainty of 10% for the amplitude of the GW strain and 10 deg for its phase (Abbott
et al 2017d). Incorporating this calibration uncertainty into the analysis, the 90%
credible area was 610 deg2 (Abbott et al 2016m). By the end of O1, the calibration
uncertainty had been improved, such that the 90% credible area was 230 deg2 (Ab-
bott et al 2016d). If the detectors were assumed to be perfectly calibrated, such that
calibration uncertainty could be ignored, the 90% credible area would be 150 deg2.
Sky localization is particularly sensitive to calibration uncertainty and distance is less
affected. For GW150914, the initial distance estimate was 410+160

−180 Mpc (Abbott et al
2016m), the estimate at the end of the run was 420+150

−180 Mpc, and the equivalent result
without calibration uncertainty was 420+140

−170 Mpc (Abbott et al 2016d). The effects of
calibration uncertainty depend upon the signal’s SNR, bandwidth and position of the
source relative to the detectors. For GW151226, LVT151012 and GW170104, there is
negligible difference between the sky areas or distances with and without calibration
uncertainty using the final calibration uncertainties (Abbott et al 2016d, 2017g).

3.2.2 Localization of bursts

Sky localizations are also produced for burst triggers and distributed for follow up.
The lowest latency burst sky localizations are produced as part of the CWB detection
pipeline (Klimenko et al 2008, 2016). Sky localizations are produced using a con-
strained likelihood algorithm that coherently combines data from all the detectors.
The CWB sky localizations are calculated with a latency of a few minutes; following
detection, further parameter-estimation codes analyze the data.

At higher latency, burst signals are analyzed by LALINFERENCEBURST (LIB), a
stochastic sampling algorithm similar to the LALINFERENCE code used to reconstruct
CBC signals (Veitch et al 2015), and BAYESWAVE, a reversible jump Markov-chain
Monte Carlo algorithm that models both signals and glitches (Cornish and Littenberg
2015). LIB uses sine–Gaussian waveforms (in place of the CBC templates used by
LALINFERENCE), and can produce sky localizations in a few hours. BAYESWAVE
uses a variable number of sine–Gaussian wavelets to model a signal and glitches while
also fitting for the noise spectrum using BAYESLINE (Littenberg and Cornish 2015);
it produces sky localizations with a latency of a few days.

The sky-localization performance of burst algorithms depends upon the type
of signal. Studies of burst localization using BAYESWAVE in the first year of the
advanced-detector era, and using CWB and LIB in the first two years have been
completed in Bécsy et al (2016) and Essick et al (2015), respectively. These assumed
sensitivities in the middle of the early band for aLIGO in O1, and in the middle of the
mid band for aLIGO and the early band for AdV in O2. Sky localization was quantified
by the searched area. For the CWB and LIB pipelines an approximate FAR threshold
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of 1 yr−1 was used to select events; BAYESWAVE was run as a follow-up to triggers
identified by CWB (Kanner et al 2016), and sky localization was only performed on
triggers also detected by BAYESWAVE (and not classified as noise or a glitch). The
median localization was shown to be ∼ 100 – 200 deg2 for a two-detector network in
O1 and ∼ 60 – 110 deg2 for a three-detector network in O2, with the localization and
relative performance of the algorithms depending upon the waveform morphology.
Results for Gaussian, sine–Gaussian, broadband white-noise and BBH waveforms are
shown in Fig. 7 (for the two-detector O1 network and the three-detector O2 network,
cf. Fig. 6). The variety of waveform morphologies reflect the range of waveforms that
could be detected in a burst search (Abadie et al 2012c).
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Fig. 7 Simulated sky localization for Gaussian (G; top left), sine–Gaussian (SG; top right), broadband
white-noise (WN; bottom left) and binary black hole (BBH; bottom right) bursts during the first two
observing runs (O1, see Sect. 4.1, and O2, see Sect. 4.2). The plots show the cumulative fractions of events
with searched areas A∗ smaller than the abscissa value. Results are shown for the low-latency COHERENT
WAVEBURST (CWB; Klimenko et al 2005, 2008, 2016), and higher-latency LALINFERENCEBURST (LIB;
Veitch et al 2015) and BAYESWAVE (Cornish and Littenberg 2015) codes. The O2 results consider only a
three-detector (3-det) network; assuming an instrument duty cycle of 70 – 75%, this would be operational 34 –
42% of the time. The BAYESWAVE results are only for O1 and include only events that could be detected by
the code. The shaded areas indicate the 68% confidence intervals on the cumulative distributions. A detection
threshold of a false alarm rate of approximately 1 yr−1 is used for CWB and LIB, and BAYESWAVE is run
as a follow-up for CWB triggers. Results are taken from Essick et al (2015) and Bécsy et al (2016).
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A high mass BBH, like GW150914 (Abbott et al 2016k), could be detected by
both burst and CBC analyses. In this case, we expect that the CBC localization, which
makes use of the additional information available from constraining signals to match
waveform templates, is more accurate than the burst localization (cf. Vitale et al 2016).

4 Observing scenarios

In this section we estimate the sensitivity, possible number of detections, and localiza-
tion capability for each of the observing runs laid out in Sect. 2.2. We discuss each
future observing run in turn and also summarize the results in Table 3.

In the following, we estimate the expected number of BNS coalescence detec-
tions using the inferred 90% credible range for the BNS source rate density, 320 –
4740 Gpc−3 yr−1 (Abbott et al 2017a). Given the detectors’ noise spectral densities,
the ρc detection threshold can be converted into the (source sky-location and orienta-
tion averaged) BNS sensitive detection range RBNS (Abadie et al 2010b, 2012g). From
this, the BNS source rate density can be converted into an estimate of the number
of expected detected events; this estimate carries the large error on the source rate
density. Similar estimates may be made for NS–BH binaries using the fact that the
NS–BH range is approximately a factor of 1.6 larger than the BNS range,8 though the
uncertainty in the NS–BH source rate density is slightly larger (Abadie et al 2010b).
We assume a nominal ρc threshold of 12, at which the expected FAR is ∼ 10−2 yr−1.
However, such a stringent threshold may not be appropriate for selecting candidate
triggers for electromagnetic follow-up. For example, selecting CBC candidates at
thresholds corresponding to a higher background rate of 1 yr−1 (100 yr−1) would
increase the number of true signals subject to electromagnetic follow-up by about
30% (90%). The area localization for these low-threshold signals is, on average, only
fractionally worse than for the high-threshold population—by approximately 20%
(60%). The localization of NS–BH signals is expected to be similar to that of BNS
signals.

For typical burst sources, the gravitational waveform is not well known. However,
the performance of burst searches is largely independent of the detailed waveform
morphology (Abadie et al 2012a; Essick et al 2015), allowing us to quote an approxi-
mate sensitive range determined by the total energy EGW emitted in GWs, the central
frequency f0 of the burst, the detector noise spectrum S( f ), and the single-detector
SNR threshold ρdet (Sutton 2013),

Rburst '
[

G
2π2c3

EGW

S( f0) f 2
0 ρ2

det

]1/2

. (2)

In this article, we quote ranges using EGW = 10−2 M�c2 and f0 = 150 Hz; EGW =
10−2 M�c2 is an optimistic value for GW emission from stellar collapse (e.g., Abadie
et al 2012e); the uncertainty in EGW means that the quoted burst ranges are more
uncertain than their BNS counterparts. We use a single-detector SNR threshold of 8,
corresponding to a typical network SNR of ∼ 12.

8This assumes a black hole mass of 5M�.
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Table 2 Percentage of time during the first observing run that the LIGO detectors spent in different
operating modes as entered by the on-duty operator. Since several factors may influence detector operation
at any given time, there is a certain subjectivity to the assignments. Maintenance includes a planned 4-h
weekly period (∼ 2.4% of the total). Coincident operation of the detectors occurred ∼ 43% of the time.

Detector Hanford Livingston

Operating mode % Observing 64.6 57.4
Locking 17.9 16.1
Environmental 9.7 19.8
Maintenance 4.4 4.9
Commissioning 2.9 1.6
Planned engineering 0.1 0.0
Other 0.4 0.4

The run durations discussed below are in calendar time. In O1, the H1–L1 network
had a duty factor of approximately 43%. Table 2 illustrates how the up time for each
detector was impacted by various activities or the environment. The two biggest non-
observing categories for each detector are Locking and Environmental. Locking refers
to the amount of time spent in bringing the interferometers from an uncontrolled state
to their lowest noise configuration (Staley et al 2014). Environmental effects include
earthquakes, wind and the microseism noise arising from ocean storms (Effler et al
2015; Abbott et al 2016e). The latter two effects have seasonal variation, with the
prevalence of storms being higher during the winter months. L1 has a greater sensitivity
to microseism noise and to earthquakes than H1 mainly due to the local geophysical
environment (Daw et al 2004). During O1, L1 lost over twice as much observing
time to earthquakes, microseism noise and wind than did H1. While we can expect
some improvement in duty factors from operating during non-winter months, we can
continue to expect at least a 10% impact on operating time from environmental effects.
Adding in maintenance, both planned and unplanned, and time spent in locking we
currently expect duty factors of at most 70 – 75% for each instrument during extended
runs. Assuming downtime periods are uncorrelated among detectors, this means that
all detectors in a three-detector network will be operating in coincidence approximately
34 – 42% of the time, and at least two detectors will be operating for 78 – 84% of the
time. For a four-detector network, three or more detectors will be operational around
65 – 74% of the time, and for a five-detector network, three of more detectors will
be operating for 84 – 90% of the time. Our estimates for the expected number of
detections and the fraction of sources localized account for these duty cycles. The
downtime periods are sometimes correlated between detectors, for example, planned
maintenance periods are often coordinated, and so these coincidence times may be
conservative estimates. The number of detections also account for the uncertainty in
the detector sensitive ranges as indicated in Fig. 1, but do not include any cosmological
evolution of the merger rate.
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4.1 2015 – 2016 run (O1): aLIGO

This was the first advanced-detector observing run, lasting four months, starting 12
September 2015 and ending 19 January 2016.

The aLIGO sensitivity was expected to be similar to the early band in Fig. 1, with
a BNS range of 40 – 80 Mpc, and a burst range of 40 – 60 Mpc for EGW = 10−2 M�c2.
The achieved sensitivity was at the better end of this span, with a BNS range of ∼
60 – 80 Mpc.

The O1 BNS search volume was ∼ 2×105 Mpc3 yr, and the dominant source of
uncertainty on this value is the calibration of the detectors (Abbott et al 2016q). The
search volume is VzT , where Vz = (4π/3)R3 is the time-averaged volume surveyed
and T is the observing time incorporating the effects of the detectors’ duty cycles.
We would therefore expect 0.05 – 1 BNS detections. No BNS detections were made,
consistent with these expectations (Abbott et al 2016q).

With the two-detector H1–L1 network any detected events are unlikely to be well
localized. A full parameter-estimation study using realistic detector noise and an
astrophysically-motivated source catalog has been completed for 2015 – 2016 (Berry
et al 2015).9 This used a noise curve in the middle of the early range shown in Fig. 1—
the early curve specified in Barsotti and Fritschel (2012). The distribution of results is
shown in Fig. 6. In Table 3, we present results calculated using BAYESTAR (Singer
and Price 2016) for a population of BNS signals, assuming an SNR threshold of 12;
the results agree with those of Berry et al (2015). The median 90% credible region
for is 460 – 530 deg2; the searched area ABNS

∗ is smaller than 20 deg2 for 14 – 17% of
events and smaller than 5 deg2 in 4 – 6%.

Equivalent (but not directly comparable) results for bursts are found in Essick et al
(2015). Specific results depend upon the waveform morphology used, but the median
searched area is∼ 1 – 2 times larger than for BNS signals; part of this difference is due
to the burst study using a less-stringent FAR threshold of ∼ 1 yr−1. The distribution
of searched areas for four waveform morphologies are shown in Fig. 7.

The localizations of GW150914, GW151226 and LVT151012 exhibit the charac-
teristic broken arc for a two-detector network (Abbott et al 2016i,d). The 90% credible
regions are 230 deg2, 850 deg2 and 1600 deg2 respectively (Abbott et al 2016d). The
sky localization for a CBC signal consistent with the properties of GW150914 is
shown in Fig. 8. This shows the localization with the two-detector O1 network as well
as with other detector network configurations (Gaebel and Veitch 2017).

The poor localization from a two-detector network makes follow-up challenging.
The electromagnetic follow-up effort for GW150914 is described in Abbott et al
(2016i,n), and the search for coincident neutrinos is described in Adrian-Martinez et al
(2016); Albert et al (2017c).

9This study used noise from the sixth science run of initial LIGO, recolored to the expected O1
sensitivity curve. The source catalog, as well as the analysis pipeline, is shared with Singer et al (2014).
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Fig. 8 Sky localization of a signal with parameters consistent with those for GW150914. The lines enclose
the 90% credible regions with different detector networks. Dark blue is for the O1 two-detector network;
light blue is for the same Hanford–Livingston network at design sensitivity; red is for the three-detector
network including Virgo, with all detectors at early sensitivity, similar to what was expected for O2, and
black is for the three detector network at design sensitivity. The plot is an orthographic projection with right
ascension measured in hours and declination measured in degrees. Results taken from Gaebel and Veitch
(2017).

4.2 2016 – 2017 run (O2): aLIGO joined by AdV

This was an approximately nine-month run with three detectors for the second part
of the run. The aLIGO performance was expected to be similar to the mid band in
Fig. 1, with a BNS range of 80 – 120 Mpc, and a burst range of 60 – 75 Mpc for
EGW = 10−2 M�c2: the achieved BNS range is towards the lower part of this band,
around 60 – 100 Mpc (Abbott et al 2017g). The AdV range was anticipated to be
within the early band in Fig. 1, approximately 20 – 65 Mpc for BNS and 20 – 40 Mpc
for bursts. On 1 August 2017, AdV joined O2 with a BNS range of 25 – 30 Mpc.

The potential improvement in sky localization from the addition of a third detector
is illustrated in Fig. 8.

Anticipated BNS sky localization for 2016 – 2017 (in addition to 2015 – 2016)
was investigated in Singer et al (2014). This assumed a noise curve which lies in the
middle of the mid range in Fig. 1 for aLIGO—the mid curve specified in Barsotti
and Fritschel (2012)—and the geometric mean of the upper and lower bounds of
the mid region in Fig. 1 for AdV. The distribution of results is shown in Fig. 6. In
Table 3, we give results for an astrophysically-motivated BNS population, with an
SNR threshold of 12, assuming a three-detector network with each detector having an
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individual duty cycle of 70 – 75%. The results are calculated using BAYESTAR. The
median 90% credible region is 230 – 320 deg2, and 7 – 13% of events are expected
to have CRBNS

0.9 smaller than 20 deg2. The searched area is smaller than 20 deg2 for
33 – 41% of events and smaller than 5 deg2 for 16 – 21%. The burst study (Essick
et al 2015) gives approximately equivalent results, producing median searched areas a
factor of ∼ 2 – 3 larger than the BNS results; these results are shown in Fig. 7.

GW170104 (Abbott et al 2017g) and GW170608 (Abbott et al 2017h) were
detected prior to Virgo joining O2. Therefore, like the O1 events, they have large 90%
credible areas of 1200 deg2 and 860 deg2 respectively. The addition of Virgo made a
significant impact for GW170814 (Abbott et al 2017i) and GW170817 (Abbott et al
2017a). For GW170814, the initial BAYESTAR 90% credible area is reduced from
1160 deg2 to 100 deg2 with the addition of Virgo, and the final LALINFERENCE
three-detector localization is 60 deg2. For GW170817, the initial BAYESTAR 90%
credible area is reduced from 190 deg2 to 31 deg2 with the addition of Virgo, and
the final LALINFERENCE three-detector localization is 28 deg2. The inclusion of
the third detector to the network enhances localization whether or not it detects the
signal, provided that it could detect the signal, as the observed amplitude constrains
the source position. As a result of being observed with a three-detector network, and
its high SNR, GW170817 has the best GW localization to date.

GW170817 is the first GW signal to have a confirmed electromagnetic counterpart.
The discoveries associated with this detection are highlighted in Sect. 3. An overview
of the extensive multi-messenger observations accompanying GW170817 is given in
Abbott et al (2017k).

4.3 2018 – 2019 run (O3): aLIGO 120 – 170 Mpc, AdV 65 – 85 Mpc

This is envisioned to be a year long run with three detectors. The aLIGO and AdV
sensitivities will be similar to the late and mid bands of Fig. 1 respectively, with
BNS ranges of 120 – 170 Mpc and 65 – 85 Mpc, and burst ranges of 75 – 90 Mpc
and 40 – 50 Mpc for EGW = 10−2 M�c2. This gives an expected update 1 – 50 BNS
detections. Both the range and the typical sky localization should increase relative
to the 2016 – 2017 run. Table 3 gives BAYESTAR localizations assuming detector
sensitivities which are the geometric means of the upper and lower bounds of the
relevant bands in Fig. 1. The median 90% credible region is 120 – 180 deg2, and
12 – 21% of events are expected to have CRBNS

0.9 smaller than 20 deg2.

4.4 2020+ runs: aLIGO 190 Mpc, AdV 65 – 125 Mpc

At this point we anticipate extended runs with the detectors at or near design sensitivity.
The aLIGO detectors are expected to have a sensitivity curve similar to the design
curve of Fig. 1. AdV may be operating similarly to the late band, eventually reaching
the design sensitivity circa 2021. Potential localization for a GW150914-like BBH
signal is shown in Fig. 8. The fraction of signals localized to areas of a few square
degrees is increased compared to previous runs. This is due to the much larger detector
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bandwidths, particularly for AdV, as well as the increased sensitivity of the network;
see Fig. 1.

4.5 2024+ runs: aLIGO (including LIGO-India) 190 Mpc, AdV 125 Mpc, KAGRA
140 Mpc

The five-site network incorporating LIGO-India at design sensitivity would have both
improved sensitivity and better localization capabilities. The per-year BNS search
volume increases giving an expected 11 – 180 BNS detections annually. The addition
of more detector sites leads to good source localization over the whole sky (Schutz
2011; Veitch et al 2012; Nissanke et al 2013; Rodriguez et al 2014). Table 3 gives
BAYESTAR localizations for an astrophysical population of BNSs, assuming design
sensitivity and a 70 – 75% duty cycle for each detector. The median 90% credible
region is 9 – 12 deg2, 65 – 73% of events are expected to have CRBNS

0.9 smaller than
20 deg2, and the searched area is less than 20 deg2 for 87 – 90%.

5 Conclusions

We have presented possible observing scenarios for the Advanced LIGO, Advanced
Virgo and KAGRA network of GW detectors, with emphasis on the expected sensitivi-
ties and sky-localization accuracies. This network began operation in September 2015
with the two LIGO detectors. Virgo joined the network in August 2017, dramatically
improving sky localization. With a four- or five-site detector network at design sensi-
tivity, we may expect a significant fraction of GW signals to be localized to within a
few square degrees by GW observations alone.

The first BBH detection was made promptly after the start of observations in
September 2015; they are the most commonly detected GW source, but are not
a promising target for multi-messenger observations. GW detections will become
more common as the sensitivity of the network improves. The first BNS coalescence
was detected in August 2017. This was accompanied by observations across the
electromagnetic spectrum (Abbott et al 2017k). Multi-messenger observations of
BNSs provide new insights into binary evolution, nuclear physics, cosmology and
gravitational physics.

Optimizing the multi-messenger follow-up and source identification is an outstand-
ing research topic (e.g., Abadie et al 2012b; Aasi et al 2014a; Kasliwal and Nissanke
2014; Singer et al 2014; Cannon et al 2012; Evans et al 2016a; Gehrels et al 2016;
Ghosh et al 2016; Chan et al 2017; Rana et al 2017; Salafia et al 2017; Patricelli et al
2018). Triggering of focused searches in GW data by electromagnetically-detected
events can also help in recovering otherwise hidden GW signals (Aasi et al 2014c).
Multi-messenger follow-up of GW candidates may help confirm GW candidates that
would not be confidently identified from GW observations alone. However, such
follow-ups need to deal with large position uncertainties, with areas of many tens to
thousands of square degrees. This is likely to remain the situation until late in the
decade.
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Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with the
Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the detectors’
commissioning progress. Ranges reflect the uncertainty in the detector noise spectra shown in Fig. 1. The
burst ranges assume standard-candle emission of 10−2 M�c2 in gravitational waves at 150 Hz and scale as
E1/2

GW, so it is greater for more energetic sources (such as binary black holes). The binary neutron star (BNS)
localization is characterized by the size of the 90% credible region (CR) and the searched area. These are
calculated by running the BAYESTAR rapid sky-localization code (Singer and Price 2016) on a Monte
Carlo sample of simulated signals, assuming senisivity curves in the middle of the plausible ranges (the
geometric means of the upper and lower bounds). The variation in the localization reflects both the variation
in duty cycle between 70% and 75% as well as Monte Carlo statistical uncertainty. The estimated number of
BNS detections uses the actual ranges for 2015 – 2016 and 2017 – 2018, and the expected range otherwise;
future runs assume a 70 – 75% duty cycle for each instrument. The BNS detection numbers also account for
the uncertainty in the BNS source rate density (Abbott et al 2017a). Estimated BNS detection numbers and
localization estimates are computed assuming a signal-to-noise ratio greater than ∼ 12. Burst localizations
are expected to be broadly similar to those derived from timing triangulation, but vary depending on the
signal bandwidth; the median burst searched area (with a false alarm rate of ∼ 1 yr−1) may be a factor of
∼ 2 – 3 larger than the values quoted for BNS signals (Essick et al 2015). No burst detection numbers are
given, since the source rates are currently unknown. Localization numbers for 2016 – 2017 include Virgo,
and do not take into account that Virgo only joined the observations for the latter part the run. The 2024+
scenario includes LIGO-India at design sensitivity.

Epoch 2015 – 2016 2016 – 2017 2018 – 2019 2020+ 2024+

Planned run duration 4 months 9 months 12 months (per year) (per year)

Expected burst range/Mpc LIGO 40 – 60 60 – 75 75 – 90 105 105
Virgo — 20 – 40 40 – 50 40 – 70 80
KAGRA — — — — 100

Expected BNS range/Mpc LIGO 40 – 80 80 – 120 120 – 170 190 190
Virgo — 20 – 65 65 – 85 65 – 115 125
KAGRA — — — — 140

Achieved BNS range/Mpc LIGO 60 – 80 60 – 100 — — —
Virgo — 25 – 30 — — —
KAGRA — — — — —

Estimated BNS detections 0.05 – 1 0.2 – 4.5 1 – 50 4 – 80 11 – 180

Actual BNS detections 0 1 — — —

90% CR % within 5 deg2 < 1 1 – 5 1 – 4 3 – 7 23 – 30
20 deg2 < 1 7 – 14 12 – 21 14 – 22 65 – 73

Median/deg2 460 – 530 230 – 320 120 – 180 110 – 180 9 – 12

Searched area % within 5 deg2 4 – 6 15 – 21 20 – 26 23 – 29 62 – 67
20 deg2 14 – 17 33 – 41 42 – 50 44 – 52 87 – 90

The purpose of this article is to provide information to the astronomy community
to facilitate planning for multi-messenger astronomy with advanced GW detectors.
While the scenarios described here are our best current projections, they will evolve
as detector installation and commissioning progress. We will therefore update this
article regularly.
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A Changes between versions

Since publication of the previous version (Aasi et al 2016), several updates to the
document have been made. The most significant changes are the inclusion of details
regarding KAGRA, and results from O1 and O2, including GW170817, the first
detection with a unambiguous multi-messenger counterpart (Abbott et al 2017k). The
key differences are outlined below.

A.1 Updates to detector commissioning

The plausible detector scenarios remain largely unchanged, but details of O1 and O2
have been updated. Specific updates to the detector scenarios are:

1. The addition of KAGRA to Figs. 1 and 2.
2. Table 1 has been added which includes BNS ranges and 30M�+30M� BBH

ranges.
3. The O1 sensitivity has been updated following the completion of the run (12

September 2015 – 19 January 2016). We believed that the O1 BNS range would
plausibly be 40 – 80 Mpc, and the actual range was 60 – 80 Mpc.

4. The formal transition to O2 was 30 November 2016, and the run ended 25 August
2017. The run is approximately nine calendar months in duration, but includes a
two-week break at the end of December and a three-week commissioning break in
May. The achieved aLIGO BNS range was approximately 60 – 100 Mpc (Abbott
et al 2017g).

5. The AdV detector officially joined the O2 run on 1 August 2017. The achieved
AdV BNS range was approximately 25 – 30 Mpc.

6. As a consequence of the extended O2 run, the start of O3 is now expected to be in
2018, approximately a year after the end of O2. O3 is now planned to be a year in
duration.

7. Figure 2 has been updated to show the current planned timeline.
8. Based on our experience in O1 and O2, we have revised our predicted duty cycles,

we believe that single-detector duty cycles of 70% – 75% for extended runs are
more realistic than the previous value of 80%.

9. We have updated the final observing scenario, the 2024+ case, to be a five-detector
network including KAGRA.

10. Progress has been made towards establishing LIGO-India, with the the Indian
government granting in-principle approval; however, it is still too early to give
a definite timeline for the observing schedule. 2024 is the earliest we imagine it
could be operational.

11. Some of the BNS ranges associated with different observing scenarios have
changed as a result of using an updated calculation, including cosmological correc-
tions. For all cosmological calculations, we assume a flat cosmology with Hubble
parameter H0 = 67.9 kms−1 Mpc−1, and density parameters Ωm = 0.3065 and
ΩΛ = 0.6935 (Ade et al 2016). The sensitivity curves themselves have not been
modified. Ranges are rounded to the nearest megaparsec below 15 Mpc, rounded
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to the nearest 5 Mpc between 15 Mpc and 1000 Mpc, and to the nearest 10 Mpc
above 1000 Mpc.

A.2 Updates to data analysis

In addition to the progress made with regards to the detectors, there have also been
significant advances from analysing the data. We now include results from O1 (Abbott
et al 2016d,q, 2017c) and initial results from O2; these include the first detections
of BBH and BNS systems (Abbott et al 2016k,h,d, 2017g,h,i,a). Multi-messenger
searches for counterparts to these detections are described in Abbott et al (2016i,n);
Adrian-Martinez et al (2016); Albert et al (2017c); Abbott et al (2017k). Specific
updates that have been made are:

1. Figure 3 has been updated to include O1 results; the surrounding text has been
updated to discuss the detection pipelines used in O1 (Abbott et al 2016f,d,l,
2017c).

2. Results using the BAYESWAVE algorithm (Bécsy et al 2016), appropriate for O1,
have been included in Fig. 7.

3. Figure 8 shows a sky localization, created using current parameter-estimation tech-
niques, illustrating how localization improves for different network configurations
for a GW150914-like signal (Gaebel and Veitch 2017).

4. Table 3 now includes numbers summarising results from O1 and the new 2024+
scenario including KAGRA. Sky localization numbers for are now calculated
using BAYESTAR (Singer and Price 2016) for all epochs.

5. BNS merger rates have been updated following the observation of GW170817.
The post-detection range is 320 – 4740 Gpc−3 yr−1 (Abbott et al 2017a), consistent
with the previous expectation of 10 – 104 Gpc−3 yr−1 (Abadie et al 2010b).

We defer describing the full results of O2 until a future update.
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I. Kowalska,72 D. B. Kozak,1 C. Krämer,10 V. Kringel,10 B. Krishnan,10 A. Królak,133,134

G. Kuehn,10 P. Kumar,106 Rahul Kumar,115 Rakesh Kumar,98 L. Kuo,84 K. Kuroda,35

A. Kutynia,133 Y. Kuwahara,24 B. D. Lackey,36,44 M. Landry,46 R. N. Lang,19

J. Lange,116 B. Lantz,49 R. K. Lanza,12 A. Lartaux-Vollard,28 P. D. Lasky,135

M. Laxen,7 A. Lazzarini,1 C. Lazzaro,51 P. Leaci,90,33 S. Leavey,45 E. O. Lebigot,37

C. H. Lee,129 H. K. Lee,136 H. M. Lee,130 H. W. Lee,127 K. Lee,45 J. Lehmann,10

A. Lenon,39,40 M. Leonardi,101,102 J. R. Leong,10 N. Leroy,28 N. Letendre,8 Y. Levin,135

T. G. F. Li,137 A. Libson,12 T. B. Littenberg,138 J. Liu,62 N. A. Lockerbie,120

A. L. Lombardi,54 L. T. London,104 J. E. Lord,44 M. Lorenzini,14,15 V. Loriette,139

M. Lormand,7 G. Losurdo,22 J. D. Lough,10,20 C. O. Lousto,116 G. Lovelace,27

H. Lück,20,10 A. P. Lundgren,10 R. Lynch,12 Y. Ma,61 S. Macfoy,60 B. Machenschalk,10

M. MacInnis,12 D. M. Macleod,2 F. Magaña-Sandoval,44 E. Majorana,33 I. Maksimovic,139

V. Malvezzi,31,15 N. Man,64 V. Mandic,140 V. Mangano,45 S. Mano,141 G. L. Mansell,23

M. Manske,19 M. Mantovani,43 F. Marchesoni,142,42 M. Marchio,18 F. Marion,8

S. Márka,48 Z. Márka,48 A. S. Markosyan,49 E. Maros,1 F. Martelli,67,68 L. Martellini,64

I. W. Martin,45 D. V. Martynov,12 K. Mason,12 A. Masserot,8 T. J. Massinger,1

M. Masso-Reid,45 S. Mastrogiovanni,90,33 F. Matichard,12,1 L. Matone,48 N. Matsumoto,143

F. Matsushima,103 N. Mavalvala,12 N. Mazumder,66 R. McCarthy,46 D. E. McClelland,23

S. McCormick,7 C. McGrath,19 S. C. McGuire,144 G. McIntyre,1 J. McIver,1

D. J. McManus,23 T. McRae,23 S. T. McWilliams,39,40 D. Meacher,64,83 G. D. Meadors,36,10

J. Meidam,11 A. Melatos,145 G. Mendell,46 D. Mendoza-Gandara,10 R. A. Mercer,19

E. L. Merilh,46 M. Merzougui,64 S. Meshkov,1 C. Messenger,45 C. Messick,83

R. Metzdorff,70 P. M. Meyers,140 F. Mezzani,33,90 H. Miao,55 C. Michel,75 Y. Michimura,24

H. Middleton,55 E. E. Mikhailov,146 L. Milano,77,5 A. L. Miller,6,90,33 A. Miller,94

B. B. Miller,94 J. Miller,12 M. Millhouse,93 Y. Minenkov,15 J. Ming,36 S. Mirshekari,147

C. Mishra,17 V. P. Mitrofanov,59 G. Mitselmakher,6 R. Mittleman,12 O. Miyakawa,35

A. Miyamoto,122 T. Miyamoto,35 S. Miyoki,35 A. Moggi,22 M. Mohan,43 S. R. P. Mohapatra,12

M. Montani,67,68 B. C. Moore,105 C. J. Moore,89 D. Moraru,46 G. Moreno,46

W. Morii,148 S. Morisaki,25 Y. Moriwaki,103 S. R. Morriss,96 B. Mours,8 C. M. Mow-
Lowry,55 G. Mueller,6 A. W. Muir,104 Arunava Mukherjee,17 D. Mukherjee,19

S. Mukherjee,96 N. Mukund,16 A. Mullavey,7 J. Munch,79 E. A. M. Muniz,27

P. G. Murray,45 A. Mytidis,6 S. Nagano,149 K. Nakamura,18 T. Nakamura,150

H. Nakano,150 Masaya Nakano,103 Masayuki Nakano,35 K. Nakao,122 K. Napier,54

I. Nardecchia,31,15 T. Narikawa,122 L. Naticchioni,90,33 G. Nelemans,63,11 T. J. N. Nelson,7

M. Neri,56,57 M. Nery,10 A. Neunzert,114 J. M. Newport,3 G. Newton‡,45 T. T. Nguyen,23

W.-T. Ni,151,152 A. B. Nielsen,10 S. Nissanke,63,11 A. Nitz,10 A. Noack,10 F. Nocera,43

D. Nolting,7 M. E. N. Normandin,96 L. K. Nuttall,44 J. Oberling,46 E. Ochsner,19

E. Oelker,12 G. H. Ogin,153 J. J. Oh,126 S. H. Oh,126 M. Ohashi,35 N. Ohishi,18

M. Ohkawa,154 F. Ohme,104,10 K. Okutomi,155 M. Oliver,95 K. Ono,35 Y. Ono,103

K. Oohara,156 P. Oppermann,10 Richard J. Oram,7 B. O’Reilly,7 R. O’Shaughnessy,116

D. J. Ottaway,79 H. Overmier,7 B. J. Owen,81 A. E. Pace,83 J. Page,138 A. Pai,109

S. A. Pai,58 J. R. Palamos,69 O. Palashov,124 C. Palomba,33 A. Pal-Singh,32

H. Pan,84 C. Pankow,94 F. Pannarale,104 B. C. Pant,58 F. Paoletti,43,22 A. Paoli,43

M. A. Papa,36,19,10 H. R. Paris,49 W. Parker,7 D. Pascucci,45 A. Pasqualetti,43



Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 49

R. Passaquieti,21,22 D. Passuello,22 B. Patricelli,21,22 B. L. Pearlstone,45 M. Pedraza,1

R. Pedurand,75,157 L. Pekowsky,44 A. Pele,7 F.E. Peña Arellano,18 S. Penn,158

C. J. Perez,46 A. Perreca,1 L. M. Perri,94 H. P. Pfeiffer,106 M. Phelps,45 O. J. Piccinni,90,33

M. Pichot,64 F. Piergiovanni,67,68 V. Pierro,9 G. Pillant,43 L. Pinard,75 I. M. Pinto,9

M. Pitkin,45 M. Poe,19 R. Poggiani,21,22 P. Popolizio,43 A. Post,10 J. Powell,45

J. Prasad,16 J. W. W. Pratt,111 V. Predoi,104 T. Prestegard,140,19 M. Prijatelj,10,43

M. Principe,9 S. Privitera,36 G. A. Prodi,101,102 L. G. Prokhorov,59 O. Puncken,10

M. Punturo,42 P. Puppo,33 M. Pürrer,36 H. Qi,19 J. Qin,62 S. Qiu,135 V. Quetschke,96

E. A. Quintero,1 R. Quitzow-James,69 F. J. Raab,46 D. S. Rabeling,23 H. Radkins,46

P. Raffai,52 S. Raja,58 C. Rajan,58 M. Rakhmanov,96 P. Rapagnani,90,33 V. Raymond,36

M. Razzano,21,22 V. Re,31 J. Read,27 T. Regimbau,64 L. Rei,57 S. Reid,60 D. H. Reitze,1,6

H. Rew,146 S. D. Reyes,44 E. Rhoades,111 F. Ricci,90,33 K. Riles,114 M. Rizzo,116

N. A. Robertson,1,45 R. Robie,45 F. Robinet,28 A. Rocchi,15 L. Rolland,8 J. G. Rollins,1

V. J. Roma,69 R. Romano,4,5 J. H. Romie,7 D. Rosińska,159,53 S. Rowan,45 A. Rüdiger,10
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