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Probing thermality beyond the diagonal
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We investigate the off-diagonal sector of eigenstate thermalization using both local and nonlocal probes
in two-dimensional conformal field theories. A novel analysis of the asymptotics of operator product
expansion coefficients via the modular bootstrap is performed to extract the behavior of the off-diagonal
matrix elements. We also probe this sector using semiclassical heavy-light Virasoro blocks. The results
demonstrate signatures of thermality and confirm the entropic suppression of the off-diagonal elements as
necessitated by the eigenstate thermalization hypothesis.
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I. INTRODUCTION

The interplay of ordering and fluctuations is important to
understand the origin of statistical laws governing phases of
matter. In the thermodynamic limit, these laws begin to
operate and control collective behavior with an accuracy
increasing with the number of degrees of freedom. Most
scenarios involve a coarse graining that gives rise to the
exact statistical laws. The fluctuations are inherently
quantum mechanical, and as we coarse grain over an
increasing number of quantum states, statistical thermody-
namics takes over, and just a few parameters like temper-
ature, pressure, and volume describe the system. This is
especially true if the system possesses a finite energy
density that we can measure. When this happens, we say
that the system under consideration has thermalized.

Thermal states in quantum mechanics are mixed states,
and there is no way that unitary operations can get us from a
pure state to a thermal one. Naturally, this gives rise to an
observable dependent notion of thermalization; i.e., one can
look at the coarse-grained expectation value of an operator,
>, (W|Oly), and try to approximate it with a thermal

expectation value Z()~!Tr[Oe#]. When the operator O
is arbitrary and has support over a certain subregion V, then
the coarse-grained reduced density matrix is well approxi-
mated by the reduced thermal density matrix. Usually, the
quantum states under consideration will have a complicated
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time evolution, and consequently it is interesting to under-
stand how it approaches thermalization at late times.

The eigenstate thermalization hypothesis (ETH) provides
a mechanism (or, strictly speaking, a criterion) for closed
quantum systems to be well described at late times by
thermal equilibrium under unitary evolution [1-3]. The idea
centers around the notion that Hamiltionian time evolution of
eigenstates is trivial and, therefore, finite energy-density
eigenstates are approximately thermal. The statement of the
ETH proposes the following ansatz for the matrix elements
of appropriate few-body observables:

<m|®|n> = Yo (Ein)5m11 + e_S<Edvg)/2f®(Eavg7 a))Rmn-

(1.1)

Here, E,, = (E,, + E,)/2, S(E,,) is the thermal entropy
at the average energy E,,, and = E,, — E,,. The functions
go and fg are smooth functions of their arguments. R,,,
denotes random variables distributed with a zero mean and
unit variance. The connection of this ansatz with statistical
mechanics is through gg (E), which is the statistical mechan-
ics prediction for the operator O at the mean energy E.
Eigenstate thermalization in this manner has been
observed on the lattice for many nonintegrable models,
e.g., Refs. [3—10]. A crucial component of the above ansatz
is the requirement that the off-diagonal elements are expo-
nentially suppressed compared the diagonal ones. The
intuition behind this proposed suppression can be illustrated
as follows [11]. Consider a system in a pure state which
is a generic superposition of the energy -eigenstates,
lw) =>,,Clm). The unitary evolution of an observable
in this state is simply given by

(O(1)) = Z|C| (m|O|m) + Zc*ce

m n,m#n

“E)!{m|O|n).
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The late time average of the above quantity is given by the
diagonal sector alone, ie., (O(1)) =3.,,|C,|*(m|O|m).
The fluctuations are then encoded by the off-diagonal
elements

(0(1)) = (1)) = Y _CinCye'En=E)(m|O|n).

m#n

Let us make a rough estimate on these fluctuations.
For an appropriately normalized pure state built from
a superposition of N eigenstates, we have C,, ~ 1/v/N.
The fluctuation is therefore

(0(1) - [0 ~ Y ——— (mlOln)

m#n
R /NZ

~ T <m|@|n>l);‘p#1i«:l ~ <m|@|n>lypical.

n#m

In the second step, we have used the fact that the average
amplitude of M random phases grows as /M [12]. This
shows that the typical values of the off-diagonal elements
determine the fluctuations at late times. A similar estimate
shows that the typical values of diagonal elements deter-
mine the time-average (O(t)) ~ (m|O|m),y;.,- Therefore,
in order for the fluctuations to be small to allow equili-
briation, a necessary requirement is that the values of
typical off-diagonal matrix elements should be much
smaller than the diagonal ones."

This suppression is also suggested from close relations
between quantum chaos and thermalization. The chaotic
behavior is effectively described by random matrix theory
which also predicts the precise factor of e=5/2 for off-
diagonal elements of Hermitian operators. This suppression
has been verified using numerical simulations in a number of
lattice models [15] (including the Sachdev Ye Kitaev (SYK)
[16,17]). However, there has been a lack of an analytical
handle so far to confirm this prediction. This can be partly
attributed to the lack of integrability in systems with a
random matrix-like behavior. In this work, we take some
steps in this direction by focusing on two-dimensional
conformal field theories (CFTs). In two-dimensional (2D)
CFTs, the validity and related consequences which follow
from (1.1) have been investigated in some works [18-20].

The constraints from modular invariance allow us to
extract features of both the diagonal as well as the off-
diagonal matrix elements. In the CFT parlance, the matrix
elements of local observables are nothing but the OPE

"It is worthwhile to note that there are other candidate
mechanisms trying to explain thermalization unitarily. For
example, there is a theorem proved in [13] that explains thermal-
ization of observables in finite (but large) dimensional Hilbert
spaces. A key assumption in the theorem was shown to be
equivalent to the coarse-grained analogue of (1.1) in [14]; our
result fits in well within this context.

coefficients. The modular bootstrap that we shall perform
uses the two-point function on the torus as the starting
point. We shall show that the off-diagonal elements, when
coarse-grained, are suppressed at least by the factor of
e~5/2, thereby providing evidence to the expectation (1.1)
for a typical matrix element. This analysis is along the lines
of the recent progress on extraction of asymptotics of OPE
coefficients using modular features of correlation func-
tions [21-23]. We shall also utilize statistics of the OPE
coefficients and the inequality between the 1-norm and the
2-norm, to provide a new constraint on the light data of
the CFT.

We also examine the off-diagonal sector using a bilocal
probe of two light operators L(x)L(y). This observable
has been intensely explored by a variety of approaches in
the context of eigenstate thermalization, holography, and
black holes [24-38]. We shall study the off-diagonal
elements of this probe at large central charge using the
monodromy method for conformal blocks. For the natural
choice of perturbation parameters, in the light operator
dimensions, the exchanged operator dimension, and the
difference in dimensions of the heavy primaries (H; and
H,), the off-diagonal conformal blocks display thermal
features. The inverse temperature now is given by f =
L(1204,/c = 1)71/2, where Ay = (Ay, + Ay,)/2. This
is the expected temperature consistent with the ETH ansatz,
similar to the diagonal case [26]. This observable has also
been analyzed beyond the diagonal sector previously [28].
As we shall show, the blocks from the monodromy method
cover a different regime in the parameter space. The
agreement in the large ¢ limit and deviations away from
it will also be seen by comparing with blocks obtained via
the Zamolodchikov recursion relations [39]. A dual holo-
graphic version of these conformal blocks will also be
discussed.

The outline of this paper is as follows. In Sec. II, we
extract the asymptotics of mean-squared OPE coefficients
using modular bootstrap of torus two-point functions. The
asymptotics will be derived for generic states first and then
refined for primaries using properties of torus blocks. In the
following section, Sec. III, we discuss the statistics of our
results and, in particular, use it together with previous
results from Ref. [21] to obtain a constraint on OPE
coefficients involving light excitations. Section IV contains
the analysis of off-diagonal elements of observables
L(x)L(y) using the monodromy method and comparison
to other approaches. We conclude in Sec. V.

II. OFF-DIAGONAL ONE-POINT FUNCTIONS

A. Modular properties of correlation
functions on the torus

Conformal field theories in two-dimensions can be
uniquely specified by their central charge c; their spectrum,
i.e., a set of conformal weights {(h;, h;)} of primaries O;;
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and coefficients C;j; appearing in three-point correlation
functions. The coefficients are also directly related to the
fusion coefficients Ci-‘j, which tell how the field O,
contributes to the operator product expansion of the
primaries O; and O;. Any correlation function can be
constructed in terms of these data. Bootstrapping is a
strategy to gain information about the above data by using
various kinds of consistency relations. The most prominent
bootstrap method comes from constraints imposed by
crossing symmetry of four-point correlation functions on
the sphere, which has led to impressive results in higher-
dimensional CFTs [40-45]. Another type of constraint
special to CFT in two dimensions comes from modular
covariance. Defining CFTs consistently on the torus
implies specific transformation properties of correlation
functions under modular transformations. In particular, the
partition function must be modular invariant, which gives
highly nontrivial constraints on the spectrum. For example,
these allow the ADE classification of minimal models [46]
and also imposes universality of the high-energy density of
states in any (unitary) 2D CFT [47].

1. Setup

Consider a torus specified by the modular parameter z.
All modular transformations, i.e., transformations that lead
to equivalent tori, can be generated by the two trans-
formations

S:r|—>—%, T: 117+ 1. (2.1)
The group of modular transformations is SL(2, Z), and the
most general transformation of the modular parameter is
y-T= f;jrrz We shall be interested in the correlation
function of primary operators on the torus. The operator
is located at the elliptic variable, w, which transforms to

w/(ct + d). Therefore, primaries transform as

005, = [P PE D oy

= (ct+d)(ct+d) Oy - w,y - W)

artb.
ct+d

(2.2)
Two-point correlation functions on the torus are defined as

G(wip, Wia|7) = (O(wy, W) )O(Wy, W5)),
Tr[@) (Wl ) V_Vl )®(W27 WZ)qLO_C/Z“qI:n_C/zﬂ s
(2.3)

with, g = ¢?**. This quantity is doubly periodic in w,.
Note that this is the unnormalized two-point function on the
torus in which we do not divide by the partition function.

Using the definition (2.3) and Eq. (2.2) along with the
fact that the partition function is modular invariant, it can
be seen that the correlator has the following modular
transformation:

G(y-wiay - Wialy - 7)

= (et + d)?(ct 4+ d)*"G(wiy, Win|r).  (2.4)

The torus, T? = S}, x S}, describes a CFT on a spatial
circle L and at finite temperature . The modular parameter
7 = if}/ L is purely imaginary. It follows immediately from
(2.4) that there is a direct relation between the high and
low-temperature behavior of the two-point functions via the
S-modular transformation, which takes 7 — —1/7. In 2D
CFTs, the low-temperature behavior is dictated by the light
spectrum of the theory and allows very good approxima-
tions on various quantities. For example, in case of the
partition function, one can directly relate the asymptotic
density of high-energy states to the energy of the ground
state (Casimir energy), which in turn is determined by the
central charge [47]. In Ref. [21], a similar analysis was
carried out using torus one-point functions of primary
operators. This yielded an average value of three-point
coefficients Cggg, where E labels an operator H with large
dimensionless energy and O denotes a primary operator
which is light compared to H. The average is over all states
with that high energy.2

We shall now apply the modular bootstrap method on the
torus two-point functions. This will lead to an average value
for C%, ., for two high-energy operators H at energy E and

EOFE'
H' at energy E' and some scalar primary operator O.

B. Asymptotics of OPE coefficients

We begin with the thermal two-point function of a
primary operator Q. Without loss of generality, we place
the operators at (0, ¢) and (0,0),

(0(0,1)0(0,0)); = Tr[O(0, 1)O(0, 0)e~PH], (2.5)
where H=2%(Lo+Lo—5). At low temperatures
(L/p — 0), the leading contribution comes from the
vacuum, and this becomes the two-point function on the

cylinder of circumference L, which is completely fixed by
conformal invariance,

(0(0,7)0(0,0)); = Z(5)({0[0(0, 1)0(0,0)[0) + ---)
_ M(_l)_AG(%)ZAQ+O(e—27r/}AX/L)
sin?o (21) ‘

(2.6)

*The analysis was recently generalized for higher-dimensional
CFTs in Ref. [48].
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Since we are considering the unnormalized correlator, we

have the factor of Z(f8) = ¢t. The subleading corrections
are contributions from nonvacuum states which are expo-
nentially suppressed as e+, Here, A, is the conformal
dimension of the lightest operator in the CFT for which the
four-point function (yOOy) is nonzero—this may be a
primary or the lightest descendant of the vacuum.

Using the S-modular transformation of the two point
function on the torus, we are led to the high-temperature

result (f/L — 0)

zlc

(—1)20 (5)200

2.7
sinh?o (21 27)

(0(0,1)0(0,0)), =

The terms represented by the ellipsis are suppressed in
powers of e >"L/F_ Note that in general we consider
complexified time in this text, where periodicity in the
real part corresponds to the thermality of the system (i.e.,
the Kubo-Martin-Schwinger condition) and evolution in
physical time ¢ corresponds to the imaginary paI‘t.3 Hence,
we have 0(0, 1) = €™ 0(0,0)e~"". Expanding the ths of
(2.5) with an insertion of a complete set of states then gives
(w;; =E; - E))

THO()0(0)e ] = Y _(ilO])) (j]0]i)e e FE.

ij

(2.8)

Here, E; is the dimensionless energy (equal to conformal
dimension A)) of the eigenstate |i) which includes all states
of the CFT, both primaries and their descendants. An
integral representation of the above formula is

e PH] /dE/ doJo(E, o)

2w _27f
X eth e~ HE- /12

Tt[0(r)0
(2.9)

where we have introduced the weighted spectral density
(w=E —-E)
Jo(E.w) = Jo(E.E')

= Z|<i|®|j>|26(Ei — E)é(w;; - ),

= S IGI0LPS(E, - E)S(E, - EY).

ij

(2.10)

It is clear that (2.9) has the structure of a Laplace transform
L in A and a Fourier transform F in @ of the weighted
spectral density, i.e.,

e

(0(0,1)0(0,0))5 = e FIL[To(E, )|(p)](1). (2.11)

*This also leads to the additional factor of (—1)~2¢ in (2.7).

The weighted spectral density can then be obtained by
inverting this expression. We get

7

— L F e (0(0,1)0(0,0)),](E, o)

_ 2_71- ZAO/ y+ico dﬁ ﬂE/ ﬁe_ﬁw
L y—ico 270 2
( )AO( )2Aoe3/) 1/2’y

sinh?40 (%’)

_ (4n?/L)* / i df sl pioan,
T(280) /-

ico 27i
x F<A® + iﬂ—w)
2

In the second line, we have switched to the dimension-
less variables, f = 2z8/L and 7 = 2xt/L. The result for the
Fourier transform in the third line follows from Mellin-
Barnes integrals (see e.g., Ref. [49] and Appendix). We
have taken w > 0; therefore, we closed the ¢-contour in the
lower half-plane and hence picked the —ie prescription in
(A2) for the retarded two-point function. Note that the
combination E + w/2 appearing in (2.12) is the aver-
age E,, = (E+E')/2.

To perform the inverse Laplace transform, we may utilize
the saddle-point approximation. Considering just the expo-
nential factor in the integrand (2.12), we find that the saddle
is located at

Jo(E, o)

’ (2.12)

(2.13)

This leads to an “effective temperature”, which is given in
terms of the average (E + w/2) of the dimensionless
energies of the (off-)diagonal states. This thermal feature
is exactly the same as observed earlier for the case of the
two-point function of two light operators [28]. In Ref. [28],
the same parameter was used to perform a uniformization
transformation to calculate (off-)diagonal heavy light
blocks. To justify the saddle-point approximation, we will
evaluate (2.12) by keeping all the factors in the integrand.
In what follows, we will keep w fixed while taking E — oo.
The states with large E are expected to dominate at high
temperatures, # < 1. Hence, setting x = fw, we can do an
expansion around x — 0,

X
[ Ag+i—

Using the integral representation of the modified Bessel
function

2 [Se]

= Z b,x*".

n=0

(2.14)
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z\v 1 7tico 1 2
I(2)= (%) dr =+, 2.15
/(2) <2> 27i /Hoo P (2.15)
one can perform the integral (2.12) within the sum to get
4p2\ 220 ] 1 12 ® ¢ \2e!
E.w) = (— _ E+o_ %
7080 = (7) "ty (o (545 1))
o C - c o
E+———]\) I 4y —(E+=2 == ). 2.1
XZ <2n'a) ( 32 12>> 2’5‘2‘2”<”\/12< 3 12)) (2.16)

Since we are considering only large E asymptotics, we expand the Bessel function for large arguments. At large z,

1,(z) = €*/+/2xz, which in particular is independent of v. This allows us to resum the series to recover the I" functions,
resulting finally in

L\ 2% 12\ 20— (E £)Ao— w/2 2
— E.w) ~|— Lag 1) * E,, F(A +'—> 2.17
(35) ot = () B pte (20 + it 2.17)
Here, p(E) is the asymptotic density of high-energy states given by Cardy’s formula [47]
¢\, —3/4
p(E) ~ 2z <E - E) ) = 2z <E - E) S, (2.18)

Here, S(E) = 4x/%; (E — {5) is the entropy devoid of any logarithmic corrections. The result (2.17) agrees with the saddle-
point result of (2.12). However, since we actually work with a contour integral in the complex plane, we prefer the method

presented. We can now provide the asymptotics of the mean-squared matrix element, |Cgope|*. It can be computed from

2w

To(EE) = S NIOI)S(E, - E)A(E, — ) = (—

280
2) o EE Cror P (2.19)
i.j

where we can use (2.18) only for both E and E’ large. The average here is over all heavy states of the CFT, and we reiterate
that it does not distinguish between primaries and descendants. Therefore, for the leading-order approximation, the mean-

square OPE coefficient can be written as

—5)2072 p(Eyyyg)

2

————  [12\ 2o (E
C / 2 >~ | — ave
| EQE' | ( c )

2
F<A@+iL>
V12E,,./c—1

['(24q)  p(E)p(E') ’
12E,, Aot} 2 2
~ N e SEae ( ag—l) ’ 4F(A@,—kiL) (2.20)
c V12E,/c—1

with Mg = (55)/V2aT'(2Ag). In the final step we have
worked in the approximation, |@| = |E — E'| < E,,, and
also omitted all subleading contributions for large E,y,.
This approximation is justified since the I'-function factor
is peaked around @ = 0. The factor (12E,,/c — 1)Ae*1/4
above can be regarded as a logarithmic correction to the
entropy in the presence of the probe operators. The result
demonstrates that mean-square OPE coefficients of the
above kind are entropically suppressed as e~5(Fwe). The
above equation (2.20) is one of the main results of
this work.

It is worthwhile to interpret the result (2.20) holograph-

ically. The quantity |Cpgg|? provides a measure of the
transition rate of a black hole microstate of energy E’ to
another of energy E along with the emission of a scalar
(dual to the primary 0). The factor of e~ is the probability
of choosing a single black hole microstate, and the
I'function factor is the black hole emission rate for
scalars [50].4

“In the limit of a large central charge and under the assumption
that ETH holds, the three-point coefficient can also be derived
from other holographic methods [51].
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1. Fluctuations and eigenstate thermalization

A measure of fluctuations of the operator O in the
eigenstate |n) can be obtained from the following quantity
(see Ref. [52], Sec. 6, for further details):

Co(t) = (n|0(1)0(0)|n) = (n|O(1)[n) (n|O(0) )

= > |{nlOjm) e,
m#n

) Zeiw,,,,,te—S(Em+w/2) |f®(Em + 0)/2, w)llemn|z'
m#n

(2.21)

The final relation is true only for states which obey the
ETH ansatz (1.1). Moreover, the function fq(E,,, @) is
peaked around @ = 0, and thereby the dominant contribu-
tion to the sum in (2.21) is from the small window of states
within the regime E,, — E, < 1.

The form of the summand (2.21) is clearly consistent with
(2.20) obtained using a modular bootstrap. Concretely, for
|n) being a typical high-energy eigenstate, we can plug in the
asymptotic mean-square average (2.20) for | (n|O|m)|? in the
first line of (2.21). We obtain the final equality which is also
predicted by ETH, i.e., the final relation of (2.21). Notably,
the entropic suppression e~5(E«t®/2) comes out precisely as
expected. The average of the factor |R,,,|> is a constant.
Furthermore, we can read off the function fq(E,y,, ®),

2

|f@(Eavng)|2 = N@ I

(A@ L2 )
VT2Eyg/c—1

(2.22)

This is an explicit verification of the smoothness of the
function fq as conjectured by the ETH ansatz (1.1). It also
agrees with the prediction that this is a function in the
average energy of the in and out states E,, and the
frequency w characterizing the off-diagonal elements. It is
also crucial to observe that the distribution of the matrix
elements with respect to w is not that of a generic Gaussian
ensemble. The distribution is actually that of generalized
hyperbolic secants [53]. This should be contrasted with the
cases where the underlying behavior is believed to be
governed by random matrices [3,15,54,55].

C. Refining asymptotics for primaries

The formula (2.20) is for the averaged matrix elements of
high-energy eigenstates regardless of them being primaries
or descendants. In this subsection, we show that it can be
refined using the torus two-point blocks, leading to a
derivation of the asymptotics of the actual OPE coefficients
indexed by primaries. The analysis covers ¢ > 1 theories
with Virasoro symmetry.

The thermal Euclidean two-point function of light
primaries O located at elliptic coordinates (w,w) and
(0,0) on the torus T? admits the following expansion,
involving a sum only over the exchanged primaries:

= (2”)2AOZ|CA[@A,|2qh"_c/24
ij

qh —c/24 h'fZ”'fQS(z,q)GB(Z, Z])
(2.23)

(O(w, w)0(0))

Here, ¢ = ¢, z = ¢*™", and h;; = h; — h;. The factor
gg(z, g) and its antiholomorphic counterpart are the
two-point torus blocks which encode the contributions
of the descendants of primaries. Note that we have
considered the expansion along the projection channel
as illustrated in Fig. 1. This channel is also referred to
as the s-channel or necklace channel in the literature.
If we had chosen to work with the other channel (called
the r-channel or the OPE channel), coefficients of the
kind |Cgpa,|* would have appeared in the sum above.
As in the previous subsections, we shall work with the
rectangular torus such that ¢ = e™# (setting L = 2z for
convenience), and the locations of the operators are at
(0, 7£) and (0,0).

The two-point torus blocks in the projection channel
have the following form [56,57],

M|N A15M|®( >
anO M;m A |®< )lA >

(4, TIO(1)|N, A;)

Go(q.2)

x B3I (2.24)

P {aslofa)

FIG. 1.
blocks.

Schematic representation of the decomposition of the torus two-point function in the projection/necklace channel using torus
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and similarly for the antiholomorphic part. B; lQ appearing
above are the elements of the inverse Gram matnces of the
exchanged primaries A; ;. All the inner products in the torus
block (2.24) are completely determined by the Virasoro
Ward identities.

We are interested in the high-temperature regime of the
two-point function (2.23), and we specialize to the situation
where the operators O are light. In this regime, the
dominant contribution arises from heavy primaries. We
shall also assume £;; < h;. The torus blocks for the heavy
exchanged primaries have a greatly simplified form. In
order to see this, note that the elements of the inverse
Gram matrices in the regime h;, h;>1 always have
a leading behavior as some inverse power of h;, h;. On
the other hand, the inner products in the numerator,
(A;,P|O(2)|Q.4;), behave as some positive power of /;
for h; > h@s and h; > h;;. It can be seen that only if
M = S and T = N in both inner products in (2.24) we get
an order 1 contribution from the summand. Otherwise,
these get suppressed by inverse powers of /;, h;. The net
effect due to the presence of the inverse Gram matrices is,
therefore, to restrict the dominant contribution to the
“diagonal sector” only,

B

T NEn
npr (4, NIO)IN, Aj)
! (4,/0(1)[A;)

~ (A, N|O(2)|N, A))
(Ail0(z)[A;)

hm QU q,2)

(2.25)

The sum over N is over all possible descendants at each
level n which can be uniquely labeled by partitions of
integers. Retaining just the leading terms (which are
order 1) in the h;, h; — oo limit, merely counts the number
of descendants at each level,

Zp

This is nothing but the character of the primary #; [together
with the prefactor accounted for in (2.23)]. To summarize in
words, the heavy-light regime of the torus blocks can be
approximated by the character of the heavy primarys; i.e.,
the deformations caused by the presence of the light
operators are negligible. This is analogous to the situation
for the lower-point torus block in Refs. [21,58,59]. This can
be checked to a very low order in the g-expansion using the
results of Ref. [57], Appendix.

Using the S-modular transformation of the Dedekind-
eta function, n(—1) = v/=iwy(z), we arrive at the high-
temperature (f — 0) behavior of the following product:

g/

lim Qll q.2) (2.26)

hihj— o0

n(q)’

>This is the reason why we need O to be light. This is unlike
the previous subsection where there was no such restriction.

2
G2(z.q)G1(z. ) = fexp <——ﬁ+ 3ﬁ) (2.27)

The corrections to the above are in inverse powers of #; ;
and additional exponentially suppressed corrections in

g=e*"/P. We are now in a position to define the
weighted spectral density over primaries,

jg(A, a)) = Z |CA,>@AJ-|26(Ai - A)(‘)‘(AJ - Ai - a))
AjLA;

(2.28)

As before, the high-temperature limit of the Euclidean
thermal two-point function is

(e

~ sin%8o (”/),i)

(0(0,1£)0(0,0)), = T, (2.29)

Using (2.27) and (2.29) and the high-energy/high-
temperature version of (2.23), we have

2A0’/ dA/ doJE(A, ®)

x fePA-

—2A¢ 2o
Ay

s1n2A@ ”tE

D eFeto, (2.30)
Next, we analytically continue both sides to Lorentzian
time and follow the same steps as in the previous section to
solve for J& by performing an inverse Fourier transform
followed by the inverse Laplace transform. We keep only
the leading-order contributions for high energies. Our final
result for the weighted spectral density of heavy primaries
then is (with A,y = A +9)

T (B L~ (12

Var(28)5T (285 c_1> P (Bae)

2
/2

12A

x T| Ag +i
~1

avg

We have used the density of heavy primaries [21]

PP(8) = V2r (A ¢ 1‘21>‘24a =)

= \/_ﬂ( = )_Kes”w. (2.31)
Using the latter, we can also write
jS(A, A') = PP(A)PP(A'MCA@A'P, (2-32)
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where |Caga|? now is the mean-squared OPE coefficients
with the average taken over all heavy primaries with
conformal dimension A and A’. The final result of this
section is therefore

c— -1 _1
mz (Aa"g_l_zl)AO : ( = >A@ 4 p—P(Aan)
V27(27)220T(2A6) \¢ — 1 pr(A)p"(A")
2
2
It A+ i—/
L2 A — 1
12A Ao~}
~ P _SP<A8v ) ﬂ — 1
Noe ) < c—1 >
2
2
wlrlag+i—22 || (2.33)
LAy =1

where again the last line is true when || is much smaller
than A,,, and we define N = (27%(27)*°I'(244))~".
The form of the above average is similar to that of (2.20).
The precise shift in the central charge from ¢ to ¢ — 1 has
also been observed in mean heavy-heavy-light OPE coef-
ficient in Ref. [21]. This is possibly related to the fact that
the torus block (2.26) in the heavy limit (or the characters of
primaries in ¢ > 1 Virasoro CFTs, which count the
descendants) is the same as the partition function of the
¢ =1 free boson theory. It would be interesting to derive
the above result holographically, building on some of the
techniques of Refs. [57,59,60].

III. BOUND FROM THE STATISTICS
OF OPE COEFFICIENTS

The results of the previous section using a modular
bootstrap provide statistics of high-energy CFT data. The
expectation values of a randomly chosen probe are largely
dependent on the actual distribution of the quantity of
interest. A good measure for this is the squared variance
o? = (X?) — (X)?, which quantifies how peaked a distri-
bution on a random variable X is around its expectation
value (X). The squared variance is always positive, such
that it follows immediately that our result on the mean-
squared OPE coefficient sets an upper bound for the mean
OPE coefficients of [21]

_ —
(E|O|E') = Cpop < |Crop| < \/|CEOE’|2' (3.1)

Note that the average here is over two sets of heavy

eigenstates which are specified by E and E'. Since |Cpqp|?
is entropically suppressed, so is the variance. The distri-
bution of OPE coefficients Crgy is therefore rather sharply
peaked around its mean value. This justifies the notion of a
typical (approximately almost all) OPE coefficient for
which one gets

CY® 12 TCrom] <\ |Crop P = e— 32
| EOE’|—| E@E’|—\/| E@E" =e 2

(3.2)

This shows that in a 2D CFT typical off-diagonal
OPE coefficients of high-energy eigenstates are at least
suppressed as expected from the ETH ansatz (1.1). Our
considerations here, however, do not allow providing a
lower bound.

If we consider two different heavy states but with
the same energy, i.e., @ =0, the mean-squared OPE
coefficient takes the form

1 (12\%r )\ B T(Ag)?
/ zﬁ— —_— E—— 0 .
ICoy00, " = 75 <> < 12) T(2A0)

(3.3)

Note that the average here includes off-diagonal OPE
coefficients with different states but having the same
energy. This situation is possible since the heavy spectrum
is highly degenerate. To make this clear, we shall slightly
change the notation. The average coming from purely
diagonal entries (i.e., when both the energy and the state are
the same),

> Ol 25(E; — E) = p(E)|Crorl,  (3.4)

1

. 6
is bounded from above as

|Croel” < p(E)|Co,00,
12 203 g€ 203 T(Ag)?
“\ec 12 r2Aq)°
This upper bound is in particular not entropically sup-
pressed. In the diagonal case (energy and state), the mean
OPE coefficient was computed in Ref. [21] from the

modular properties of one-point functions on the torus.
The result is

(3.5)

Croe =
C

where y is the lightest field in the spectrum of the CFT
with C,q, # 0. Note that also in this case (3.1) must
hold, which together with (3.5) is consistent with all
previous assumptions made in this text and in Ref. [21],
in particular with £>> 1 and the unitarity bound, A, > 0.
We can even go further and constrain C,q, when A, is

®This is because p(E)|Co,00, |> contains more states/terms

than |Cpgg|?, namely, the off-diagonal ones corresponding to
different states having the same energy.
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very small. Using (3.1) with (3.5), we arrive at the
following inequality:

< (2)7H () 128, P A
e c ¢ I'(2Ag)
y (E_i>-iesn<1—«/ —ﬁ) f—z(E—l—g).

12

(3.7)

On the rhs, the central charge ¢ and the operator
dimension Ag are fixed by choice, and A, is fixed by
the assumption that y is the lightest field in the spectrum of
the CFT that has nonvanishing OPE coefficient C,q,. The
inequality is true for any large enough E. In fact, the rhs has

a minimum at
e 1= /1 -B% 1 30202
(3.8)

E . =——
12 327%A; ’

which is large for A7 < 55— This implies that if the latter

condition on the dimension of y is met we can constrain the
OPE coefficient C,q, [by plugging in E = E;, in (3.7)]

c\i 12A,\ 205 T(Ag)?
C2, <S8me— | (1-—X£ o
20y~ ”e(lz) ( c ) T(240)

12A
x(l— 1- X)

C
12\i(Ag)? 5
< I
< 471'6( ; ) I(2A0) x A, +0(4A)).

(3.9)

This provides a novel universal constraint on light data of a
CFT. As can be seen, the derivation uses modular bootstrap
and the statistics that follow from it. This is a surprising
byproduct of our analysis.

IV. OFF-DIAGONAL TWO-POINT FUNCTIONS

The analysis of the previous section provides results of
the averaged OPE coefficients which are consistent with the
ETH ansatz. In this section, we shall work with a different
probe and investigate the off-diagonal elements thereof. In
what follows, the results fall under the context of the
stronger form of ETH, which posits that single energy
eigenstates are thermal [61]. The following calculation will,
however, be confined to the large central charge regime.

The perturbative monodromy method can be used to
derive an off-diagonal generalization of the heavy-light
conformal block VP(hH] , th’ h;,c;z) in the large ¢ limit
with all the scaled operator dimensions /; /¢ held fixed and
set hierarchically. The heavy conformal dimensions
(hy,,hy,) are much larger than the light ones (/) and
the exchanged primary (hp). We note that, in a different
regime of parameter space, with hy /c, hy,/c, hy, — hy,,

hp, h; fixed and ¢ — oo, Vp has been obtained from the
global conformal block using a background field method
in Ref. [28].

A. Off-diagonal conformal blocks using
the monodromy method

We consider the correlation function of two heavy and
two light operators. The conformal partial wave expansion
of this correlator is

(Hy(c0)L(x,X)L(y,y)H,(0))
= ZCHIHZPCLLPVP(XJ)’ hi)Vp(%, 5, ki), (4.1)

Here, H, and H, are heavy operators, and, in general,
H, # H,. Here, we choose H; > H, without loss of gen-
erality. Note that by conformal transformations we could
have put the insertions at (x,x,x3,x4) = (0,x, 1, 00).
However, since we would like to make contact with a
holographic interpretation, it turns out to be transparent to
keep the light operators at x and y. We shall fix our
attention to the holomorphic part of the conformal block,
Vp(h;,c;x,y). In the asymptotic heavy limit, the states
correspond to black hole geometry in the bulk where the
backreaction due to light operators is negligible. As
mentioned earlier, the monodromy technique that we use
[24] is valid only in the large central charge limit, while
keeping the ratios €; = 6h;/c fixed. In this limit, the blocks
exponentiate

Vp(x, v, h;) ~ e s/ pleixy), (4.2)
The monodromy method considers a conformal block of
interest with the presence of an auxiliary field y(z) which
has a null state at level 2. The null state condition can be
translated into the differential equation

O2w(z.2;) + T(z.2;)w(z) = 0,

T(z,z,»)zZ{( € 6 ¢

, 4.3
~ | (z—2)? cz—z,} (43)

for y(z, x, y) = (Hi(21)L(z2)L(z3)|p)(p|r(2) H>(24))-
Here, T(z,z;) is the stress-tensor wave function in the
presence of the heavy and light operator insertions. The
strategy is to solve for the function fp in (4.2) by
demanding consistent monodromies of the solutions of
the above differential equation order by order in per-
turbation theory. The perturbative parameters in our case
is in €7, €p, and ey, — ey, = 2e. Thus in addition to the

"For readers interested in a more detailed description of the
method than we present in the present text, we recommend the
nice review in Ref. [24] on it, the general logic of which we
follow.
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exponentiation of block limits, we also work in the
limit when, (ey, +e€p,)/2=€>¢;.€,ep. The ¢; are
accessory parameters, ¢; = J, fp. We also have the behav-
ior T(z) ~ z=* for large z, which imposes the constraints

Zc,- =0, Zcizi —¢; =0, z:c,-zl2 —2¢;z; =0.

1 1 1

(4.4)

These constraints allow us to reexpress the stress-tensor
wave function as

€+e 1 1
Iz =—5+e ((z —ap ' )

(z=v)?
Qe x-y
MR R T M

As mentioned earlier, in the heavy-light limit, € is larger
than other parameters; hence, the zeroth-order homogenous
equation (4.3) is

€

(4.6)

which has two solutions

(0) I+aavg
l//:t =7 2,

where  a,, = V1 -4 = /1 —12(hy, +hy,)/c. The
zeroth-order solution can be used to find the perturbative

solution at the first order, 1//?, using the method of

variation of parameters. This solution comes with a non-

trivial monodromy. If we encricle y/g)(z) around z; = x

and y, then the monodromy matrix, Mgtl), at the first order
should satisfy

M) + det M) = 4n2€2. (4.7)

This equation can be solved for c¢,, which is given by

(€ +er— aavgeL)
xc, = u“ae —
u%e — 1

(€ +ep + age€r)
utwve — 1

\/€2<uaavg —_ 1)2 + u“avge%’agvg
+

utwve — 1

, (4.8)

where we defined u = y/x. Note that in this case we

have two nontrivial accessory parameters, ¢, = 0, fp and

¢y, = 0,fp. The constraints (4.4) yield
YO, fp+x0,fp=2(c+eL). (4.9)

The general solution of the above is

frp=2(e+e€r)logx + g(u). (4.10)
Now, differentiating the above with respect to logux,
we obtain

xOofp =2e+e)—ug().  (411)
This object by definition is just xc,, which is a function
of u (4.8). Therefore, we can now integrate (4.11) to find
g(u). The root in (4.8) and the constant of integration is
fixed so as to yield the expected OPE limit of the
conformal block. Putting together everything, we can
bring the result to the following form (till the linear order
€,€L,€p):
FHHE (3 3) = elog xy + 2¢; log rEmy

aayg—1

Ay (XY) 2
Qavg (xaavg 2+ yave /2)

+ eplog (4.12)

In the diagonal limit ¢ = 0, and the operator locations
x =1 and y — x, the answer reduces to Eq. (2.26) of
Ref. [32]. The conformal block can then be obtained
from the above function by exponentiation (4.2),

daye—1
ity [y ()72
Vp(x,y) = (xy)— 7 {4;?& =y

4(xaavg/2 — yaavg/z) hp
X
a _xaavg/z + y(lavg/z)

2h,

s 4.13
ol *.13)

which is the main result of this section. For a sparse
spectrum of light operators, this result provides an
analytic expression of the smooth function f;; (E,¢),
which appears in the version of the ETH ansatz (1.1)
for the bilocal probe L(x)L(y). We notice that there is a
power law decay (xy) (1 7m)/2 for the off-diagonals.
The full four-point function also appears with the OPE
coefficients C;;,Cy p,,. Here, y is the lightest primary
appearing in the fusion of H; and H, and two L
operators. For a typical state, our estimate of the
Ch,n,, from Sec. II shows the presence of entropic
suppression also in this case. Note that, unlike the
diagonal heavy-light correlator (in a typical holographic
CFT), the dominant contribution is not from the vacuum
block in the off-diagonal case. If the light spectrum is
sufficiently sparse, the dominant contribution to
(H,LLH,) is from the block of the light primary y.
The parameter a,, becomes imaginary when
(hg, + hy,)/2 > c/24. In the bulk dual, this corresponds
to the black hole regime. The conformal block (4.13) then
acquires periodicities akin to thermal correlator. In par-
ticular, the second factor [- - -|*"+ in (4.13) has the form of
[sinh(z#/B)]7>"-, when written in cylinder coordinates.
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Here, f is exactly the same as the saddle, which we found in
the modular bootstrap analysis [Eq. (2.13)]. The frequency
w 18 12€/C = hHl - hHZ'

B. Comparison with other approaches

1. Zamolodchikov recursion

The Virasoro blocks can be computed at any value of
central charge but are not known in closed form [39,62].
Nevertheless, the coefficients of the block in a small cross-
ratio expansion can be determined algorithmically using
Zamolodichikov’s recursion.®

The S-channel (or z — 1) expansion of log Vhp(c, hy,
hy, . hy,.z) can be organized in the following manner:

logVp(c, by, hy,  hy,.z) = (h, —2h;)log(1 - z)

o0

+ Zvn(l - Z)n'

n=0

(4.14)

In the regime of parameter space of the monodromy
analysis, we have the following expansions for the coef-
ficients v,,:

_ th - hHl + hl’
Vo _f’
h, —hy, g, + hy, 3 hy +hy
= hy + (=4
Y VNS t\T6 T 4c P
_|_...7
h[-[2 _hHl hHl +h’H 5 hH +hH
— 2h -~ 1 2\ p
b2 6 + Lt 48+ 4c b
_‘_...7
e — hy, = hy,  9(hy, + hy,) h
3 8 10¢ L
35 T1(hy, + hy,)
20 T T N 4.15
+ <512+ 320c rt (4.15)

Note that the above expansion is obtained by performing
a 1/c expansion first. This is followed by a scaling
h,/c = 6h,/c, hy/c—bh /c and (hy —hy,)/c—
8(hy, — hy,)/c and then an expansion to the linear order
in 6. These coefficients match exactly with those of the
monodromy method (4.13).

It is worthwhile to observe that there are divergences
arising from thermal periodicities in the conformal block
calculated using the monodromy method. This happens for
hy, + hy, > ¢/12 for which a,,, is imaginary. These
divergences are often referred to as forbidden singularities.
As shown in Ref. [63], this is purely an artifact of the large

$This is formally a series in ¢ which is related to the cross-ratio
int _ - K(-2)
T=1
’ K(z) *

zviag=e

central charge limit.” The blocks computed numerically
using the Zamolodchikov recursion relations do not display
these divergences. We have checked that the story is the
same for the off-diagonal blocks.

2. Heavy-light blocks from the background field method

At large central charge, the heavy light conformal block
has also been investigated in the regime in which the
dimensions of the light and intermediate operators and
differences between dimensions of heavy operators held
fixed [28]. This is a different regime in the parameter space
of conformal dimensions from the one covered by the
monodromy method. The monodromy method has the
ratios of the conformal dimensions and the central charge
held fixed. The result of Ref. [28] is

1— Zaavg) h,—=2h;,

Xavg

Vple) = o)t

(hi, = hy,)

Jh,2h,, 1 — 7% |,
2oy, Z)

X, F (hp -
(4.16)

which also probes the off-diagonal sector. It can be shown
to agree with the expansion using the Zamolodchikov
recursion but using a different sequence of limits. One
needs to expand first in sy, h,, and hy — hy, and then
expand in 1/c. This result also remarkably agrees on the
nose with a bulk computation [31].

It is interesting to contrast the block (4.16) with the
monodromy block (4.13). In order to do this, we use the
following Euler identity10 for the hypergeometric factor:

(‘lH hH ) )

1 <h L h,,2h,, 1— Zaa"g

241 ) ) )
p Zaavg P P

ey —hu hy —h
=7 12 22Fl <hp +M7hp72hp’ 1 _Zaavg>.
20y,
Plugging this in (4.16) gives
aave=1 2y
hity=hty Myl 2 1 — z%ve\ Ay
0= () (52
P( ) ( 1— 7% aavg
hy, —h
X 2F1 (hp + (1‘15(171‘[]), hp’ th, 1-—- Zaa\'g> .
avg

(4.17)

°As an intermediate step, there is also a finite ¢ resolution
obtained by resumming the O(h; /c) effects in the monodromy
method [37]. This gives rise to “forbidden branch cuts” that
resolve the forbidden singularities, while still not altering ETH
expectations.

101t reads ,Fila,b,c;z) = (1 - 2) P Fi(c—a,c—b,c;z)
in the original form.
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The factors on the first line precisely agree with the
h,-independent piece of the monodromy block (4.13).
The piece that is dependent on the intermediate conformal
dimension differs. Both the results agree for the diagonal
and vacuum case, hy, = hy, and h, = 0.

3. Holography

The result for the conformal block using the monodromy
method (4.12) can be interpreted in the bulk dual via a
configuration of geodesics on a fixed time slice of the
global AdS; in the presence of a conical singularity at the
origin [32]. The metric is given by

2
a 1
ds? = —% [—dt2+ s—dp* +sin’pdg? |, with
cos?p Uye

g = \/1 = 120y, + ). (4.18)
This is depicted in Fig. 2. The conical-deficit background
can be thought of as created by a heavy scalar with
holomorphic conformal dimension given by the average
of those of hy and hy,. The dual CFT then lives on a
cylinder.

The operators dual to the light scalar L and the one that
labels the block P are shown in Fig. 2 by the green curve
and the blue dotted line, respectively. Both of them
correspond to massive scalar fields, ¢; and ¢p, in the
bulk with mass given by m; = 2\/h;(h; — 1) and sim-
ilarly for mp. The last term in Eq. (4.12) is precisely the
geodesic length of ¢p, while the second term is the

H, + H>

Y

FIG. 2. Geodesic configuration at the AdS; time slice equiv-
alent to the semiclassical Virasoro blocks result (4.13) calculated
using the monodromy method.

geodesic length of ¢; times conformal factors coming
from the transformation from the cylinder to the plane. The
remaining term [i.e., the first one in (4.12)] is the product of
regularized radial geodesic lengths, from the boundary
anchoring points of ¢; to the center.'' In the block, both of
these come weighted with the same power of hy, — hy,.
This is interpreted as yet another bulk massive scalar field,
¢., which is dual to an operator carrying conformal
dimension given by the difference of the dimensions of
the heavy operators.1

V. CONCLUSIONS

In this work, we have estimated the asymptotic behavior
of averaged matrix elements of an arbitrary scalar operator
in the energy eigenbasis in the context of 2D CFTs. The off-
diagonal matrix elements are universal and consistent with
the eigenstate thermalization hypothesis. They dictate
quantum fluctuations and, hence, play a key role in the
investigation of nonequilibrium physics. Our analysis,
which is valid for any positive value of the central charge,
involves a coarse graining over an exponentially large

number of states. The final result for |(E|O|E’)|* for large
E, E' with E — E' small and nonzero is of the form =T,
where S is the entropy at the average energy and I', which is
written in terms of gamma functions, measures the spread
of the fluctuations. We have also found the asymptotics of
actual OPE coefficients corresponding to primaries using
properties of two-point torus blocks. These findings from
the modular bootstrap also provide information that allows
us to investigate late time behavior of thermal two-point
functions on the torus. This can potentially furnish a 2D
CFT analog of a part of the analysis performed for the SYK
model in Ref. [55], Sec. 7.

We then used our results along with results from
Ref. [21] to provide a constraint using positivity of the
variance of diagonal matrix elements. While we were able
to give an upper bound to the variance of the diagonal
matrix elements, it may be possible to find the diagonal
variance itself. This will require the estimation of a
weighted sum of the form Y7} [(E;|A|E;)|*6(E; — E) x
8(E; — E), where the prime indicates that we sum over
nonidentical states which are degenerate in their energies.

In the latter half of this work, we studied off-diagonal
Virasoro blocks of the form (H|LLH,) in the large central
charge limit. The calculation was done using the mono-
dromy method where the conformal dimensions were taken
to be of the order of the central charge. We performed the
calculation with the conformal dimensions of both H; and

"The interested reader can find the computation of these
geodesic lengths in Ref. [36].

If we had instead done perturbation in &y — ahy, with
a € (0, 1), this would be reflected in the monodromy solution
and in the corresponding bulk interpretation as a shift in the
background and in the masses of ¢,.
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H, much larger than those of P (intermediate exchange
operator), L, and the difference in the dimensions of H; and
H,. We obtained the answer for the block till linear order in
hy/c,(hy, —hy,)/c and hp/c. The answer for the blocks
bears some thermal features. Correspondingly, the holo-
graphic interpretation involves geodesics in a conical defect
geometry. The scalar probes forming the geodesic network
have masses proportional to h;, hp, and hy, — hy,. The
conical defect geometry can be analytically continued to a
BTZ black hole geometry of which the temperature is once
again dictated by the average, (hy, + hy,)/2. In this case,
the thermal description emerges, not by coarse graining but
at large central charge, i.e., in the semiclassical limit.

There are various possible generalizations and applica-
tions of this work. It is interesting to look at the off-
diagonal out-of-time ordered correlator of the form
(W(t)VW'(£)V) in a thermal state, when the conformal
dimensions of W and W’ are only slightly different. Upon
following the relevant analytic continuation prescription of
the Euclidean correlator [64], one obtains for the out of
time ordered correlator

(W(t+ iey)V(ies)W(t + i)V (ics)) 5

1 e 2h,
I e
~ ] _ i Ny w! .

-
€12€34

The dual interpretation is that of correlators of the light
scalars dual to V in a shockwave background correspond-
ing to the averaged weight of W and W’. It would be
interesting to investigate further implications of this.
Furthermore, it would be worthwhile to explore a gener-
alization of black hole collapse with a nonuniform dis-
tribution of matter by a continuum version of our
monodromy calculation [65].

If ETH holds approximately in a local theory for all
operators within a subregion A in the excited energy
eigenstate, |y), then the reduced density matrix satisfies

Pl = Trpely) (| = Tryee ™ o e,

where f is determined from (H); = (w|H|y) and H , is the
Hamiltonian restricted to the subregion A. The above
equality can be used to approximately construct the full
Hamiltonian given an eigenstate that satisfies ETH [61,66].
Once the conditions for validity of ETH for CFTs are well
understood, the construction of a chaotic local Hamiltonian
can be potentially possible, with a view toward building
holographic CFTs from the bottom up.

If the conformal field theory has additional conserved
currents, then the ensemble approximating of charged
excited states is the grand canonical ensemble. The modular
properties get modified when there is an additional Kac-
Moody along with the Virasoro as the chiral algebra [67].
This gets reflected in the modular bootstrap analysis of
diagonal OPE coefficients [22] by the appearance of
spectral-flow invariants and Ahranov-Bohm-like phases.
It will be interesting to see how the presence of additional
global symmetries modify the off-diagonal matrix elements
and, in particular, how the fluctuations manifestly depend
on the conserved charges.
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APPENDIX: MELLIN-BARNES INTEGRALS

The following integral is useful for some of the calcu-
lations of this work. For any complex A and B,

i ds (B\* ['(p + q)BPA1
2 (2N r(p—sr _ T ar A
= (A) (p=s)la-+5) =0

(A1)
This is of the form of a Fourier transform of the product of

Gamma functions if A = e™"® = —B~!. A special case of
the inverse of the above relation is

/ ”dte—im,[ 7/ ]
—oo sinh(’;—;j:ie)

oy |2
_ L1y <2_,,> 280-1 o T(Ag + ’%N '
B ['(240)
The =ie prescription is chosen in order to avoid the
singularities along the real ¢ axis.

(A2)
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