Supporting information

A probabilistic network model for structural transitions in biomolecules

Michael Habeck^{1,2,*}, Thach Nguyen²

February 12, 2018

Running times and computational resources

We ran the 94 morphing simulations on a high throughput cluster (HPC)¹ where each node is a lvy-Bridge Intel E5-2670 v2 2.5GHz processor with 64 GB memory. We simulated 5000 Gibbs sampling iterations for each morphing task. To sample a conformational transition, much fewer Gibbs sampling iterations (\sim 200 iterations) are required (see Fig. 3 in manuscript). The running times, memory usage, initial and final RMSD are summarized in Supplementary Table S1.

Transition	Size	CPU	Avg	Initial	Final
	(AA)	time	memory	RMSD	RMSD (Å)
		(s)	(MB)	(Å)	
$1ysy_A \to 2ahm_D$	71	652.87	54.51	7.73	1.01
$2ahm_D \rightarrow 1ysy_A$	71	1243.74	69.78	7.73	0.89
$1szv_A \rightarrow 1vet_B$	91	838.47	71.3	6.31	1.02
$1 \text{vet}_B \rightarrow 1 \text{szv}_A$	91	1784.59	96.32	6.31	0.79
$1I5e_B \rightarrow 1I5b_A$	101	682.32	60.78	6.52	0.52
$1\text{I5b}_\text{A} \rightarrow 1\text{I5e}_\text{B}$	101	808.26	63.72	6.52	0.55
$1wrp_R \to 3wrp_A$	108	706.67	61.33	1.98	0.46
$3wrp_A \rightarrow 1wrp_R$	108	760.08	62.74	1.98	0.53

¹https://www.gwdg.de/application-services/high-performance-computing

$1xfr_A \to 2fjy_A$	123	832.1	73.57	5.27	0.71
$2 fjy_A \rightarrow 1 x fr_A$	123	1775.8	96.86	5.27	0.9
$1e7x_A \rightarrow 1dzs_B$	129	806.11	68.37	3.4	0.69
$1dzs_B \rightarrow 1e7x_A$	129	1064.5	68.9	3.4	0.6
$1cfd_A \rightarrow 1cfc_A$	148	2237.67	120.81	5.21	0.33
$1cfc_A \rightarrow 1cfd_A$	148	2520.83	120.79	5.21	0.34
$1hd2_A \rightarrow 1oc3_C$	158	1086.58	86.92	8.56	0.76
$1\text{oc3_C} \rightarrow 1\text{hd2_A}$	158	1134.79	86.47	8.56	0.73
$2gja_B \to 1rfl_A$	162	2512.23	152.04	8.73	1.03
$1 \text{rfl}_A \rightarrow 2 \text{gja}_B$	162	1103.06	92.05	8.73	1.39
$1r3e_A \rightarrow 1ze1_D$	169	1823.95	154.31	1.53	0.92
$1ze1_D \rightarrow 1r3e_A$	169	2062.04	133.78	1.53	0.96
$1ybj_A \to 1dk0_B$	173	1123.31	93.68	5.64	0.99
$1dk0_B \rightarrow 1ybj_A$	173	2435.46	125.75	5.64	0.88
$1aje_A \rightarrow 1ees_A$	174	2799.43	182.67	6.75	1.24
$1\text{ees}_\text{A} \to 1\text{aje}_\text{A}$	174	2545.91	144.22	6.75	1.51
$1cbu_B \rightarrow 1c9k_B$	180	1165.33	89.65	3.11	0.62
$1c9k_B \rightarrow 1cbu_B$	180	1107.19	91.32	3.11	0.55
$1\text{ex6}_\text{A} \rightarrow 1\text{ex7}_\text{A}$	186	1232.52	96.29	3.64	0.42
$1\text{ex7}_\text{A} \rightarrow 1\text{ex6}_\text{A}$	186	1388.97	96.85	3.64	0.43
$1s2h_A \rightarrow 1go4_D$	190	1315.2	105.79	4.93	1.02
$1go4_D \rightarrow 1s2h_A$	190	3587.34	179.48	4.93	0.93
$1bccE \to 2bccE$	196	1263.48	98.75	7.45	0.63
$2bcc_{-}E \rightarrow 1bcc_{-}E$	196	1227.62	98.75	7.45	0.73
$2rh5_A \rightarrow 2rgx_A$	202	1349.35	104.29	5.85	0.55
$2rgx_A \rightarrow 2rh5_A$	202	1259.65	104.38	5.85	0.54
$4ake_A \rightarrow 1ake_B$	214	1527.12	109.95	7.14	0.56
$1ake_B \rightarrow 4ake_A$	214	1349.17	106.12	7.14	0.63
$1ggg_A \rightarrow 1wdn_A$	220	1624.13	112.31	5.34	0.65
$1wdn_A \rightarrow 1ggg_A$	220	1369.03	109.18	5.34	0.63
$2lao_A \rightarrow 1lst_A$	238	1707.31	115.12	4.7	0.39
$1lst_A \rightarrow 2lao_A$	238	1448.57	114.31	4.7	0.35
$3pjr_A ightarrow 1qhh_B$	261	1813.44	135.3	8.31	0.64

1qhh_B $ ightarrow$ 3pjr_A	261	1929.56	128.72	8.31	0.55
$1urp_D \rightarrow 2dri_A$	271	2292.07	147.4	4.2	0.36
$2dri_A \rightarrow 1urp_D$	271	2096.51	129.76	4.2	0.38
$1ram_B \rightarrow 1lei_A$	273	1916.94	133.83	3.07	0.47
$1\text{lei}_A \rightarrow 1\text{ram}_B$	273	2168.85	132.73	3.07	0.46
$5at1_C \rightarrow 8atc_C$	310	2166.19	146.9	2.36	0.68
$8atc_C \rightarrow 5at1_C$	310	2485.8	145.75	2.36	0.68
$1ckm_A \rightarrow 1ckm_B$	317	2227.09	159.69	3.49	0.52
$1ckm_B \rightarrow 1ckm_A$	317	2115.98	151.3	3.49	0.53
$3dap_B \rightarrow 1dap_A$	320	2228.18	169.47	4.28	0.41
$1dap_A \to 3dap_B$	320	2019.66	146.78	4.28	0.38
$1 eyk_A \rightarrow 1 nuz_A$	327	2283.2	188.2	4.54	0.76
$1nuz_A \rightarrow 1eyk_A$	327	2203.42	150.46	4.54	0.82
$1bp5_B \rightarrow 1a8e_A$	329	2299.09	187.58	6.78	0.45
$1a8e_A \rightarrow 1bp5_B$	329	2289.36	153.91	6.78	0.47
1jqj_A $ ightarrow$ 2pol_A	366	2495.64	204.34	2.05	0.74
$2\text{pol}_\text{A} \to 1jqj_\text{A}$	366	2404.76	169.51	2.05	0.78
$1\text{omp}_A \to 1\text{anf}_A$	370	2606.05	203.76	3.77	0.48
$1anf_A \rightarrow 1omp_A$	370	2503.97	170.32	3.77	0.4
$8adh_A \rightarrow 6adh_B$	374	2514.05	215.74	1.35	0.7
$6adh_B \rightarrow 8adh_A$	374	2545.7	219.51	1.35	0.63
$9aat_A \rightarrow 1ama_A$	401	2735.77	237.72	1.66	0.48
$1ama_A \rightarrow 9aat_A$	401	2814.81	242.44	1.66	0.51
$1ux5_A \rightarrow 1y64_B$	411	2714.49	252.58	10.33	0.73
$1y64_B \rightarrow 1ux5_A$	411	2779.33	257.7	10.33	1.51
$1qf5_A \rightarrow 1hoo_B$	431	3964.11	287.62	2.17	0.68
$1hoo_B \rightarrow 1qf5_A$	431	2952.76	256.8	2.17	0.74
1yyo $ ightarrow$ 1yyw	438	1733.47	114.92	17.46	0.59
1yyw $ ightarrow$ 1yyo	438	1706.23	119.44	17.46	0.56
$1bnc_A \rightarrow 1dv2_B$	452	3130.23	207.14	3.92	0.48
$1dv2_B \rightarrow 1bnc_A$	452	2976.04	274.85	3.92	0.56
$1 \text{rkm}_A \rightarrow 2 \text{rkm}_A$	517	3777.25	298.17	3.08	0.42
$2rkm_A \rightarrow 1rkm_A$	517	3598.92	332.81	3.08	0.38

$1\text{sx4}_{-}\text{G} \rightarrow 1\text{oel}_{-}\text{F}$	524	3478.49	247.78	12.39	0.78
$1oel_F ightarrow 1sx4_G$	524	3296.45	323	12.39	0.83
1hp1_A $ ightarrow$ 1hpu_C	525	3710.32	279.07	10.01	0.41
$1hpu_C \rightarrow 1hp1_A$	525	3356.42	246.47	10.01	0.49
2hmi_A $ ightarrow$ 3hvt_A	556	3664.31	282.81	3.45	1.43
$hvt_A o 2hmi_A$	556	3672.59	266.81	3.45	1.32
1i7d_A $ ightarrow$ 1d6m_A	620	4234.92	299.65	3.4	0.61
$1d6m_A ightarrow 1i7d_A$	620	4207.54	421.49	3.4	0.58
80hm_A $ ightarrow$ 1cu1_B	645	2964.66	195.97	4.49	0.6
$1cu1_B \rightarrow 8ohm_A$	645	2951.66	227.06	4.49	0.6
$1lfg_A \rightarrow 1lfh_A$	691	4814.59	399.16	6.43	0.56
$1lfh_A ightarrow 1lfg_A$	691	4711.94	488.74	6.43	0.58
1qvi_A $ ightarrow$ 1kk8_A	837	5185.55	647.53	27.4	1.14
1kk8_A $ ightarrow$ 1qvi_A	837	5317.37	594.08	27.4	1.89
$1q9x_B ightarrow 1q9y_A$	899	6244.06	764.38	5.43	0.48
$1q9y_A ightarrow 1q9x_B$	899	6323.5	664.86	5.43	0.47
1ih7_A $ ightarrow$ 1ig9_A	903	6169.42	808.31	6.49	0.57
1ig9_A $ ightarrow$ 1ih7_A	903	6303.24	731.22	6.49	0.56
$1su4_A \rightarrow 1iwo_A$	994	6445.33	768.81	13.97	1.15
1iwo_A $ ightarrow$ 1su4_A	994	6445.56	928.44	13.97	1.21

Table S1: running times, memory usage and final RMSD for all 94 morphing simulations.

Figure S1: Forward and reverse transition in adenylate kinase. (A) The forward pathway connecting the open state (blue circle, PDB code 4ake) with the closed state (blue square, PDB code 1ake) is shown in blue, the reverse transition is indicated by cyan arrows. The pathways were projected onto the LID-CORE and NMP-CORE angle. Black circles indicate experimental structures. The blue and cyan circles mark intermediate structures (PDB entries 2ak2 and 2bbw). Panels (B) and (C) show the evolution of the global RMSD during the forward and reverse transition between our generated structures and the intermediate structures from PDB entries 2ak2 and 2bbw.

Detailed analysis of conformational transitions

Because structural transitions follow paths in a very high dimensional space, it is a nontrivial task to compare the transition paths generated by our Gibbs sampling algorithm with other pathways reported in the literature. We projected the transitions onto various reaction coordinates such intra-domain angles as well as principal components. We studied four examples in more detail.

Adenylate kinase

Adenylate kinase (AdK) is a phosphotransferase that catalyzes the reaction converting ATP and AMP into 2 ADP molecules. AdK is composed of three domains: NMP binding domain (residues 30-60), LID (residues 115-160) and the CORE domain (residues 1-

30, 61-114, and 161-214). Figure S1 presents the conformational change between the open (PDB code 4ake, chain A) and the closed state (PDB code 1ake, chain B). This large-scale structural transition can be captured by two intra-domain angles θ_{NMP} and θ_{LID} (Beckstein *et al.*, 2009). The NMP-CORE angle θ_{NMP} is the angle between the centers of mass of two segments L115-V125 and L35-A55 relative to I90-G100 based on C α positions. The LID-CORE angle θ_{LID} is the angle between the centers of mass based on C α positions of segments I179-E185 and V125-L153 relative to L115-V125. The forward and reverse transitions generated by our Gibbs sampler follow different pathways. Visual comparison with the analysis by Seyler et al. (2015) reveals that our transition path is close to the path generated by GOdMD (Sfriso et al., 2013) in that the LID-CORE angle changes first and is followed by a transition in the NMP-CORE angle. Our reverse transition is close to the pathway generated with ANMPathway (Das et al., 2014). Among 45 experimental structures of AdK deposited in the PDB, we identified several structures that are close to our transition paths in angular space. The closest intermediate structures based on global RMSD are PDB entries 2bbw (chain A) and 2ak2 (chain A).

GroEL

To illustrate the transition path between the T state (PDB code 1 oel, chain F) and R" state (PDB code 1 sx4, chain G) in GroEL, we used a reaction coordinate (RC) similar to the one defined by Zheng and Wen (2017). We defined the reaction coordinate RC_S to measure the movement of some domain S as follows:

$$RC_{\rm S} = (\delta X_{\rm S} \delta X_{\rm S,obs}) / |\delta X_{\rm S,obs}|^2 \tag{1}$$

where δX_S is the displacement vector from the center of mass of domain S in the initial structure to the center of mass of domain S in the intermediate structure. Figure S2 shows the movement of the Apical (A) and Intermediate (I) domain relative to the Equatorial (E) domain measured by RC_{AE} and RC_{IE} .

5'-nucleotidase

Escherichia coli 5'-nucleotidase (5'-NTase) is an enzyme composed of an N-terminal domain (residues 26-351) and a C-terminal domain (residues 365-550) that move relative to each other. To elucidate the transition pathway of 5'-NTase, we used two angles

Figure S2: Analysis of the transition path of the T state (green circle) and R" state (yellow square) in GroEL. To visualize the transition, we used two reaction coordinates, RC_{IE} and RC_{AE} , where the A, I, and E domain were defined as in Xu *et al.* (1997) and computed by using equation 1. The black dots indicate experimental structures from the following PDB entries 4aaq (chains B, C), 4ab2 (chains A, B), 4aar (chains B, C), 4aau (chains B, C, J, K), 4pko (chains A, D, L, M), 3wvl (chains G, J), 1pf9 (chains A, D), 1sx4 (chain J), 2eu1 (chain F), 2c7e (chains L, M), 1xck (chain B), 1mnf (chain I).

Figure S3: Transition paths in 5'-nucleotidase mapped onto two angles χ_1 and χ_2 . Experimental structures (colored dots) are taken from PDB entries 1hpu (chains A, B, C, D), 1ho5 (chains A, B), 4wwl, 1oi8 (chains A, B), 2ush (chains A, B), 1oid (chains A, B), 1oie (chain A), 1ush (chain A), 1hp1 (chain A).

 χ_1 (domain opening angle) and χ_2 (tilt angle) defined by Knöfel and Sträter (2001) and Krug *et al.* (2016). Figure S3 shows the evolution of χ_1 and χ_2 during the transition paths generated with our Gibbs sampler and highlights that the generated paths find an experimentally characterized intermediate state (PDB code 10i8). For comparison, we also show the transition path for the forward direction generated with GOdMD by Sfriso *et al.* (2013), which steps through a similar sequence of collective variables (the GOdMD simulation for the reverse direction failed, producing a final structure with an RMSD of ~7 Å to the target).

Ribonuclease III

Ribonuclease III (RNase III) is a ribonuclease that plays an important role in RNA processing. RNase III recognizes and cleaves *ds*RNA at several target locations to create mature RNAs (Gan *et al.*, 2005). We investigated the transition path of RNase III and compared our results with pathways generated by Orellana *et al.* (2016). We used principal component analysis (PCA) to project the transition path onto the first two principal components (PCs).

Figure S4 shows the forward and reverse transition starting from non-catalytic complex (PDB code 1yyo) and targeting the pre-catalytic complex (PDB code 1yyw). The forward transition comes close to the inactive dsRNA-bound state (PDB entries 1yyk, 2nue). The reverse transition comes close to the Mg2+ bound catalytic state (PDB entries 4m30, 4mz2).

Supplementary movies

Our supplementary movies show forward and reverse transitions in cartoon representation generated by Pymol (DeLano, 2002).

- Movies Adk_forward.avi and Adk_reverse.avi show the forward and reverse transition in Adenylate kinase wher NMP, LID and CORE domain are colored in red, green and blue. Structures were superimposed onto the CORE domain.
- Movies Groel_forward.avi and Groel_reverse.avi show the forward and reverse transition in GroEL where the Apical, Intermediate and Equatorial domain are col-

Figure S4: Conformational transition in RNase III starting from the non-catalytic complex (PDB code 1yyo) and targeting the pre-catalytic complex (PDB code 1yyw).

ored in red, green and blue. Structures were superimposed onto the Equatorial domain.

References

- Beckstein, O., Denning, E. J., Perilla, J. R., and Woolf, T. B. (2009). *J. Mol. Biol.*, **394**(1), 160–176.
- Das, A., Gur, M., Cheng, M. H., Jo, S., Bahar, I., and Roux, B. (2014). *PLoS Comput Biol*, **10**(4), e1003521.
- DeLano, W. L. (2002).
- Gan, J., Tropea, J. E., Austin, B. P., Court, D. L., Waugh, D. S., and Ji, X. (2005). *Structure*, **13**(10), 1435–1442.
- Knöfel, T. and Sträter, N. (2001). Journal of molecular biology, 309(1), 255–266.
- Krug, U., Alexander, N. S., Stein, R. A., Keim, A., Mchaourab, H. S., Strater, N., and Meiler, J. (2016). *Structure*, 24(1), 43–56.
- Orellana, L., Yoluk, O., Carrillo, O., Orozco, M., and Lindahl, E. (2016). *Nature communications*, **7**.
- Seyler, S. L., Kumar, A., Thorpe, M. F., and Beckstein, O. (2015). *PLoS Comput Biol*, **11**(10), e1004568.
- Sfriso, P., Emperador, A., Orozco, M., et al. (2013). Bioinformatics, 29(16), 1980-1986.
- Xu, Z., Horwich, A. L., and Sigler, P. B. (1997). Nature, 388(6644), 741-750.

Zheng, W. and Wen, H. (2017). Current Opinion in Structural Biology, 42, 24–30.