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Abstract 50 

Circular dichroism spectroscopy is a highly sensitive, but low-resolution technique to study 51 

the structure of proteins. Combed with molecular modelling and other complementary 52 

techniques, CD spectroscopy can also provide essential information at higher resolution. To 53 

this aim, we introduce a new computational method to calculate the electronic circular 54 

dichroism spectra of proteins from a three dimensional-model structure or structural 55 

ensemble. The method determines the CD spectrum from the average secondary structure 56 

composition of the protein using a pre-calculated set of basis spectra. We derived several 57 

basis spectrum sets obtained from the experimental CD spectra and secondary structure 58 

information of 71 reference proteins and tested the prediction accuracy of these basis 59 

spectrum sets through cross-validation. Furthermore, we investigated how prediction 60 

accuracy is affected by contributions from amino acid side chain groups and protein 61 

flexibility, potential experimental errors of the reference protein spectra, as well as the choice 62 

of the secondary structure classification algorithm and the number of basis spectra. We 63 

compared the predictive power of our method to previous spectrum prediction algorithms  64 

such as DichroCalc and PDB2CD  and found that SESCA predicts the CD spectra with up 65 

to 50% smaller deviation. Our results indicate that SESCA basis sets are robust to 66 

experimental error in the reference spectra, and the choice of the secondary structure 67 

classification algorithm. For over 80% of the globular reference proteins, SESCA basis sets 68 

could accurately predict the experimental spectrum solely from their secondary structure 69 

composition. To improve SESCA predictions for the remaining proteins, we applied 70 

corrections to account for intensity normalization, contributions from the amino side chains, 71 

and conformational flexibility. For globular proteins only intensity scaling improved the 72 

prediction accuracy significantly, but our models indicate that side chain contributions and 73 
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structural flexibility are pivotal for the prediction of shorter peptides and intrinsically 74 

disordered proteins.  75 

Author summary 76 

Proteins are biomolecules that perform almost all of active task in living organisms, and how 77 

they perform these task is defined by their structure. By understanding the structure of 78 

proteins, we can alter and regulate their biological functions, which may lead to many 79 

medical, scientific, and technological advancements. Here we present SESCA, a new method 80 

that allows the assessment, and refinement of protein model structures. SESCA predicts the 81 

expected circular dichroism spectrum of a proposed protein model and compares it to an 82 

experimentally determined CD spectrum, to determine the model quality. CD spectroscopy is 83 

an experimental technique that is very sensitive to the secondary structure of the protein, and 84 

widely used as a quality control in protein chemistry.  85 

We demonstrate that our method can accurately and robustly predict the spectrum of 86 

globular proteins from their secondary structure, which is necessary for a rigorous model 87 

assessment. The SESCA scheme can also address protein flexibility and contributions from 88 

amino acid side chains, which further enhance the accuracy of the method. In addition, this 89 

allows SESCA predictions to target disordered proteins. For these proteins, flexibility is part 90 

of their function, but it also renders their structural characterization much more challenging. 91 

Introduction 92 

Electronic circular dichroism (CD) spectroscopy is a widely applied optical method to study 93 

the structure and structural changes of biomolecules such as proteins, nucleic acids, and 94 

carbohydrates [1]. CD spectroscopy is a very sensitive tool, often used as a quality control of 95 

recombinant proteins or to monitor changes of the protein structure during folding, 96 

aggregation, and binding events. Because of this sensitivity, CD spectroscopy does not 97 
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require large amounts of protein or special labelling and can be readily used in aqueous 98 

solutions. These qualities also render CD spectroscopy a good tool for verifying proposed 99 

structural and mechanistic models for proteins, provided that a direct, quantitative 100 

comparison is possible between the models and the observed spectra. 101 

The CD spectra of proteins in the far ultraviolet (UV) range (180-250 nm) depend 102 

strongly on the backbone conformation, and therefore, on their secondary structure [2–5]. 103 

The main contributor to a protein‟s CD spectrum is the electronic excitation of the partially 104 

delocalized peptide bonds, which form the backbone of the polypeptide chain. Isolated amino 105 

acids, except glycine, also show a CD signal in this wavelength range [6–8].-Therefore, 106 

amino acid side chains contribute to the protein CD spectrum as well, although this 107 

contribution is typically smaller than that of the protein backbone. Since the 1980„s, several 108 

methods have been proposed to quantitatively connect the secondary structure composition of 109 

a protein and its CD spectrum. CD spectra were collected and compiled into data banks and 110 

reference data sets [9,10] to improve and assess the quality of predictions. Two major 111 

categories of methods - spectrum deconvolution and spectrum prediction - were established 112 

to provide quantitative predictions related to CD spectra. Spectrum deconvolution methods 113 

aim at predicting the secondary structure of a protein from its CD spectrum. Spectrum 114 

prediction methods, vice versa, determine the CD spectrum from the structure, often by 115 

quantum mechanics (QM) calculations, or QM-derived parameters (ab initio methods). 116 

Deconvolution of CD spectra is a very convenient method of gaining structural 117 

information on proteins as it requires no special labelling or crystallization, and several 118 

different approaches (e.g. CCA, K2D3, BestSel) have been developed and implemented for it 119 

[11–13]. The measured CD spectrum is decomposed into a linear combination of basis 120 

spectrum components (basis spectra). The basis spectra usually reflect the CD signal of 121 

secondary structure elements, and are derived either from the CD spectra of model peptides 122 
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or from a larger set of reference proteins with known CD spectra and secondary structure 123 

composition. Once derived, they are used to estimate the secondary structure composition of 124 

proteins with unknown structure by fitting a linear combination of basis spectra to the 125 

measured CD spectrum. The main drawback of this approach is the fitting procedure which is 126 

sensitive to experimental error of measured the CD spectrum. In the absence of additional 127 

information, different secondary structure estimates may provide fits of similar quality, which 128 

renders the comparison to model structures difficult. 129 

Ab initio spectrum prediction methods typically require advanced time-dependent QM 130 

or density functional methods [14–16]. The large computational effort limits such 131 

calculations to rather small peptides, especially because the CD signal is sensitive to the 132 

conformation of the molecule as well as the structure and fluctuations of several solvent 133 

shells. A simplified algorithm based on ab initio calculations, called the matrix method [17], 134 

was implemented in the program DichroCalc [18]. DichroCalc can determine the most 135 

important features of the CD spectrum of a protein based on its conformation, albeit with 136 

limited accuracy. Recently, a new empirical spectrum prediction algorithm named PDB2CD 137 

[19] was proposed which combines secondary and tertiary structure information obtained 138 

from a three-dimensional structure of the protein to predict its CD spectrum. PDB2CD is 139 

based on a representative set of globular proteins, where the predicted CD spectrum is 140 

calculated as the weighted average of spectra from structurally similar proteins. By 141 

combining structural and spectral information, this web-based empirical implementation 142 

achieved significantly improved accuracy. 143 

Generalizing this approach here, we developed and cross-validated a semi-empirical 144 

method to predict the CD spectra of proteins from their three dimensional structures using 145 

empirically derived basis spectra. Our approach combines the structural and spectral 146 

information of a reference protein set to systematically derive structure-related basis spectra. 147 
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The basis spectra are then used to predict the CD spectra of proteins based on their three 148 

dimensional structure, or to determine how well proposed structural models agree with the 149 

measured spectrum. This Semi-Empirical Spectrum Calculation Approach (SESCA) is 150 

computationally efficient and allows accurate prediction of protein CD spectra both from a 151 

single protein structure as well as from a set or an ensemble of structures to account for 152 

structural flexibility. We compare the main steps of the SESCA scheme, spectrum 153 

deconvolution, and ab initio spectrum prediction methods in Fig. 1. 154 

In this study, our approach will be evaluated and optimized using multiple, freely 155 

available structure classification algorithms. In addition, we will address the effects of 156 

structural flexibility as well as the contribution of amino acid side chains in the far UV 157 

region. SESCA eliminates the uncertainty of deconvolution based reconstructions, predicts 158 

the experimental CD spectra of globular proteins more accurately than DichroCalc, and 159 

matches the accuracy of PDB2CD. In addition, the increased calculation efficiency gained 160 

from using pre-calculated basis spectra renders SESCA more suitable for calculating the CD 161 

spectra from structural ensembles. This advantage is particularly important for the ensemble 162 

refinement of disordered proteins where model verification by comparison to experimental 163 

observables is crucial. 164 

Theoretical background 165 

2.1 Semi-empirical spectrum calculations 166 

Here, we describe our semi-empirical CD prediction method (Fig. 2), and summarize our 167 

optimization and cross-validation procedure (Fig. 3). We will initially assume that the CD 168 

spectra are mainly determined by the local conformation of the peptide bonds, and 169 

subsequently also consider the effects of the amino acid side chain groups. In each case, the 170 

local backbone conformation will first be grouped into secondary structure elements with 171 

established methods (Fig. 2A) and secondly, these secondary structure elements will be 172 
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combined into broader classes (Fig. 2B) for which basis spectra are determined (Fig. 2C). 173 

The CD spectra of proteins will be calculated from weighted averages of the basis spectra 174 

(Fig. 2D), each reflecting  the CD signal of one of the secondary structure classes averaged 175 

over all other conformational degrees of freedom, such as solvent shell arrangements, side-176 

chain conformers, and local conformational variations of the protein backbone. 177 

 We will derive and assess several basis spectrum sets  henceforth referred to as 178 

“basis sets”  according to the scheme shown in Fig. 3. The secondary structure elements 179 

from five different available secondary structure classification methods will be combined into 180 

classes in two different ways (“hard” and “soft” optimization). The optimal basis spectra 181 

      will be derived for each secondary structure class i, such that the reference CD spectra 182 

      measured for N globular proteins of a reference set are approximated by a weighted 183 

sum of F basis spectra 184 

 185 

       ∑          
 
        (1) 186 

 187 

as accurately, as possible measured by the “fitting” accuracy. The fitting accuracy is 188 

quantified by the average root-mean-squared deviation (RMSD) between the calculated and 189 

experimental reference spectra. For each obtained optimal basis set, cross-validation against 190 

measured CD spectra that have not been used for the optimization will be carried out to 191 

determine its prediction accuracy.  192 

To calculate the coefficients for the basis spectra Cji we  utilize    , the fraction of 193 

residues classified as secondary structure element k in a structural model of protein j. 194 

Grouping secondary structure elements into secondary structure classes i is achieved via an 195 

assignment matrix A={ki}, combining the K secondary structure elements into F structural 196 

classes, such that 197 
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 198 

     ∑        
 
    .      (2) 199 

 200 

This assignment is also subject to optimization, and the constraints on the assignment matrix 201 

separate the hard and soft optimization approaches. In the more conventional hard approach, 202 

each secondary structure element is assigned to exactly one structural class (and, therefore 203 

basis spectrum), indicated by entries “0” and “1” in the assignment matrix (e.g. Fig. 2C). In 204 

the more general soft approach, the secondary structure elements are assigned to multiple 205 

structural classes and the assignment factors    can be any real number.  206 

Combining the above two equations relates the CD spectrum of a protein to its 207 

secondary structure composition 208 

 209 

       ∑ ∑              
 
   

 
   ,    (3) 210 

 211 

such that for N reference proteins j with known CD spectra   
        secondary structure 212 

composition    , and a given assignment ki , the optimal basis spectra       are readily 213 

calculated from minimizing RMSDset, the root-mean-squared deviation  between the 214 

measured spectra and those calculated from the secondary structure   
       , 215 

 216 

        
 

 
 ∑ √∫ [  

           
   

   ]
 

   
    

    
 
   . (4) 217 

 218 

We note that in spectrum deconvolution methods [11,12,20] basis spectra are derived 219 

via the same notion, albeit applied in reverse direction. Whereas in deconvolution methods, 220 

the basis spectrum coefficients are treated as fit parameters which yield the secondary 221 
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structure content (as shown in Fig.1A), in our approach the secondary structure fractions are 222 

extracted from the known structure and combined into the basis spectrum coefficients. By 223 

calculating the spectrum from the structure, our method avoids the (numerically often 224 

unstable) fitting procedure, and rather proceeds by direct comparison to the CD spectrum as 225 

the primary experimental observable (as depicted in Fig. 1B). In this respect it resembles ab 226 

initio methods (shown in Fig. 1C).  227 

We also note that the level of coarse graining of secondary structure information is 228 

given by the assignment matrix ik. Extreme cases are (a) combining all secondary structure 229 

elements provided by the particular secondary structure classification method in use into F=1 230 

class, and (b) into F=K classes. In case (a), only very little (likely too little) information is 231 

retained  typically the -helical content  whereas in the “naive” case (b), the full secondary 232 

structure information is provided with the possible risk of over-fitting. Therefore, subsequent 233 

cross validation is crucial for determining the optimal level of coarse graining.  234 

Finally, we note that the hard combination of secondary structure elements is a special 235 

case of the more general soft combination approach and therefore, one might expect the latter 236 

to yield more accurate calculated spectra for the reference proteins from the same amount of 237 

structural information. Because in the soft optimization approach the assignment factors ki 238 

can adopt any real number without further constraints, eq. 2 yields linear combinations of the 239 

secondary structure fractions    . Hence, each basis spectrum       can be understood as  a 240 

”collective” secondary structure class, such as “0.3 -helical + 0.7 -sheet”. Of course, the 241 

collective secondary structure classes introduce another layer of complexity to the 242 

optimization problem, and therefore increase the chances of over-fitting the basis spectra. 243 

2.2 Basis spectrum optimization: “Hard approach” 244 

For the hard basis set optimization approach (Fig. 3A), our aim was to find basis spectrum 245 

sets that provide the most accurate prediction of protein CD spectra. To trade-off the fitting 246 
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accuracy for reduced over-fitting, we applied a Monte Carlo (MC) approach with a cross-247 

validation, during the search for assignments and the number of basis spectra. To this aim, the 248 

reference protein reference set was divided into two sub-sets. The larger sub-set (training set) 249 

was used to derive the basis spectra, and the basis set accuracy was evaluated by the average 250 

RMSD  of the calculated CD spectra of the smaller sub-set (evaluation set) according to eq. 4. 251 

During each optimization cycle, random changes were applied to the assignment matrix, the 252 

corresponding basis spectra for the given assignment were calculated (described in Section 253 

2.3), and the new assignment was accepted or rejected the change based on its effect on the 254 

obtained basis set accuracy of the evaluation set (RMSDeval). At the end of the optimization, 255 

the five assignments with the lowest RMSDeval and the complete reference set were used to fit 256 

basis spectra and obtain the final optimized basis sets. These basis sets were subsequently 257 

assessed by cross-validation (Fig. 3C) on a protein set not used in the optimization procedure 258 

(cross-validation set) to estimate their prediction accuracy (RMSDcross), and by calculating 259 

their fitting accuracy (RMSDref) on the reference set (Fig. 3D).  260 

 We imposed two constraints on the assignment factors of the hard basis sets: 1) 261 

∑   
 
     , and 2)    {   }. These constraints ensured that the resulting basis spectra 262 

are normalized, and that there are no overlaps between the structural classes the basis spectra 263 

represent, significantly reducing the search space of the MC algorithm.  Initially, the hard 264 

optimization procedures were started from a naïve assignment (F=K) for each classification 265 

method, in which case A is the identity matrix (ki is 1 if i=j and 0 otherwise). However, the 266 

basis sets resulting from the first optimization were used as initial guesses for subsequent 267 

optimization rounds until convergence was reached both for the number of basis spectra and 268 

RMSDeval. 269 
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2.3 Calculation of basis spectra  270 

For a given assignment matrix A, coefficients of the basis spectra Cji are readily calculated 271 

via eq. 2 from the fraction of secondary structure elements Wjk. The basis spectra Bi( ) are 272 

derived using eq. 1 independently for each available wavelength   from a sufficiently large 273 

training set of protein structures and their CD-spectra Sj( ). Because typically the number of 274 

basis spectra F is smaller than the number of available training spectra N (here, F=1…20 and 275 

N=64), eq. 1 represents an over-determined linear equation system. The basis spectra that 276 

minimize the average RMSD between calculated and experimental CD spectra according to 277 

eq. 4, where   
         ∑          

 
   , are obtained via  278 

 279 

                      .   (5) 280 

 281 

We have used matrix notation for the coefficients C = {Cij}  and the vector notation for the 282 

basis spectra b( )={Bi( )}, and CD spectra s( )={Sj( )}, respectively. Figures 2 and S1-S14 283 

show basis spectrum sets that were derived by determining the basis set coefficients for 284 

different assignment and applying eq. 5 on the far UV (175-269 nm) wavelength range 285 

sampled in 1 nm steps, for all 64 proteins in the TR64 set (see section 3.1). 286 

 287 

2.4 Assignment optimization details 288 

In this section, we describe how the changes in the secondary structure element assignment 289 

were evaluated during the MC search. During each hard optimization step, a random change 290 

was introduced to the assignment matrix A, by reassigning one of the secondary structure 291 

elements to another structural class. Then, the basis spectra       were recalculated and the 292 

average deviation (RMSDeval) from the experimental CD spectra was computed for the 293 

evaluation set both before and after the change was applied. If                was larger 294 
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than a randomly generated number between 0 and 1, the new assignment was accepted, 295 

otherwise rejected. In the next optimization step, a new random change was applied to the 296 

last accepted assignment. The acceptance ratio in this notation was controlled by , the 297 

strictness parameter determining how often changes with an unfavourable RMSDeval are 298 

accepted. By default,  = 8.0 was applied to optimizations, which was lowered (down to 1.0) 299 

if the acceptance rate in an optimization dropped below 20%. Accepted assignments with the 300 

lowest five RMSDeval during the MC search were saved and used to calculate the basis 301 

spectra of optimized basis sets.   302 

 The search space for the hard optimization contains F
K
 possible A matrices, where F 303 

is the number of structural classes/basis spectra and K is the number of the secondary 304 

structure elements. For example, assigning five structural elements to three classes defines a 305 

search space of 3
5 

= 243 assignments, whilst 19 structural elements assigned to 10 classes 306 

result in a search space of 10
19

. When optimizing small basis sets with 5-8 secondary 307 

structure elements, a single optimization process with 500 accepted moves was sufficient to 308 

completely explore the search space, often visiting the global optimum of the assignment 309 

space multiple times.  In the case of more than 10 structural elements, several 10000-step 310 

optimizations were started from multiple initial assignments described in Section 3.3. In these 311 

cases, assignments resulting from the initial optimization procedure were used to start new 312 

parallel processes to more effectively explore the search space. To further increase the 313 

efficiency of the hard optimization, important secondary structure elements  such as the -314 

helix and at least one of -strand elements  were assigned to different classes and then 315 

excluded from being reassigned (effectively decreasing K). In addition, if the move resulted 316 

in a more favourable RMSDeval, both structural classes with no assigned secondary structure 317 

elements and the secondary structure elements themselves could be temporarily eliminated 318 

from the basis set. Eliminated classes and secondary structure elements could be reintroduced 319 
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to the basis set through random changes during the same optimization process, and missing 320 

secondary structure elements were reintroduced between subsequent optimization processes 321 

to conserve the normalization of basis spectra. We have performed several optimization 322 

processes for each secondary structure classification method, until the number of basis 323 

spectra in the best optimized basis sets stabilized, and RMSDref values similar to the soft 324 

basis sets of the same basis set size were reached (described below). 325 

2.5 Basis set determination: The “soft approach” 326 

The hard optimization scheme introduced in Sections 2.2-2.4 is limited to a restricted 327 

assignment factor space (   {   }) and, therefore, it should be possible to further improve 328 

the accuracy of reconstructing the CD spectra from the secondary structure information by 329 

removing this limitation. Accordingly, in our more general soft optimization approach, the 330 

assignment factors can be any real number (    ). During the soft optimization, we 331 

simultaneously derived the basis spectra and assignment factors that most accurately 332 

reproduced the CD spectra of the reference protein data set (best fitting accuracy). 333 

Consequently, besides the spectral and structural information of the reference data set, only 334 

the desired number of basis spectra is specified for the soft optimization, and no “internal” 335 

cross-validation is required to trade-off the accuracy of the fit for an improved general 336 

predictive power. To obtain the optimal basis sets, the non-linear equation system defined by 337 

eqs. 3 and 4 has to be solved simultaneously for all wavelengths of each protein spectrum in 338 

the reference data set. In matrix notation, this optimization problem reads as 339 

 340 

||       ||
 
  

     ,  (6) 341 

 342 

where S=(Sjl) and W(=Wjk) are the matrices containing the spectral and structural information 343 

of the reference set, respectively, and the matrix B ={Bil} describes the basis spectra. The 344 
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matrix elements Sjl and Bil are obtained by discretizing the experimental CD spectra       and 345 

basis spectra       at L wavelengths. This optimization problem is solved simultaneously for 346 

the matrices A and B by setting their element-wise matrix derivatives to zero: 347 

 

  
  [                     ]   

                          
 
       (7) 348 

 349 

 

  
  [                     ]   

                          
 
      (8) 350 

 351 

which, yields two coupled non-linear matrix equations 352 

                               (9) 353 

and 354 

                           (10) 355 

Equations 9 and 10 are solved iteratively, starting from a random generated matrix A 356 

(            ) to obtain an initial B via eq. 10, which is inserted into eq. 9 to obtain an 357 

improved A, repeated until convergence. A summary of the soft optimization scheme is 358 

shown in Fig. 3B 359 

This soft optimization procedure was systematically repeated for each secondary 360 

structure classification method K times to obtain optimized basis sets with 1-K basis spectra 361 

(K being the number of secondary structure elements in the classification method). These 362 

series of basis sets determine the best fitting accuracy as the function basis set size and 363 

secondary structure classification. For each optimization procedure, the convergence criterion 364 

was to reach less than Y = 0.0001 x 10
3
 deg cm

2
/dmol change between iterations in the 365 

average RMSD of the CD spectra calculated for the reference set (RMSDref). 366 
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2.6 Spectral component analysis 367 

The overall accuracy of our method is limited by two factors, first, the information content of 368 

the secondary structure composition, and second, the applicability of linear combinations of 369 

basis spectra in approximating the experimental CD spectra. The first factor was addressed by 370 

our soft optimization approach (section 2.5). The second factor determines an upper limit for 371 

the fitting accuracy (lowest RMSDref) given a set of reference CD spectra and the number of 372 

used basis spectra. To this aim, we carried out a principal component analysis (PCA) on CD 373 

spectra of the SP175 reference set (see Section 3.1). PCA is a mathematical method to 374 

describe a (multidimensional) data set of N members by a basis set of N orthogonal principal 375 

component (PC) vectors. How much the data points differ from the average of the set (the 376 

variance of the data set) along a PC vector is quantified by its eigenvalue. It is possible to 377 

describe a data set with just a few (F) PC vectors of the highest eigenvalues (dimensionality 378 

reduction) [21], which  by construction  retains the maximum possible variance of the data 379 

set, and consequently, provides the reconstruction with the smallest possible deviation. Here, 380 

we used PCA to describe the reference CD spectra (a set of L dimensional data points) by 381 

basis sets constructed from 1-10 PC vectors of the highest eigenvalues. The basis spectrum 382 

coefficients (Cij) of the protein j for these basis sets were defined as the projection of the CD 383 

spectrum along the particular PC vector i (described in Section 3.5). Figure 4 shows the first 384 

ten principal components with highest eigenvalues, the fitting accuracy (Ri) of 385 

reconstructions for selected CD spectra, as well as the SP175 protein set on average. Note 386 

that this analysis is based solely on CD spectra of the reference data set, and does not account 387 

for any possible source of inaccuracy related to structure, secondary structure calculations, or 388 

scaling errors within the reference set. 389 

 390 
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Materials and Methods 391 

3.1 Structures and CD spectra used for calibration 392 

To derive and assess the required basis sets for our CD spectrum calculation method, several 393 

protein data sets were compiled of which both the CD spectra and the structure of the proteins 394 

were experimentally determined. We used seven protein data sets throughout this study, for 395 

which comprehensive lists are provided in supplementary materials (Tables S1-S3).  396 

The protein data set SP175 (Table S1) was the standard reference set to determine 397 

basis sets derived only from secondary structure information. It also represented globular 398 

proteins, e.g. during the principal component analysis of protein CD spectra, as was used to 399 

determine the fitting accuracy of all SESCA basis sets. This data set is comprised of 71 400 

globular protein structures and their corresponding CD spectra, assembled  by Lees et al. [10] 401 

such that its secondary structure distribution reflects that of the full collection of proteins in 402 

the protein databank [22] (PDB). In addition, the proteins for SP175 were selected according 403 

to the following criteria: 1) high resolution PDB structure available (average resolution 404 

1.9 Å), 2) high quality CD spectrum available (wavelength range 175-269 nm), 3) the set 405 

represents the major protein folds as defined by the CATH [23] database, 4) the set covers 406 

proteins with diverse secondary structure compositions.  407 

The SP175 data set was divided into two sub-sets for the hard optimization approach, 408 

a larger training set for calculating the basis spectra, and smaller evaluation set for testing the 409 

predictive power of basis set. The second protein set termed TR64 is comprised of 64 410 

proteins, was the standard training set for the hard basis spectrum optimization approach. The 411 

third data set is labelled EV9 (Table S2), and was used as the standard evaluation set for the 412 

hard basis spectrum optimization. The EV9 set consists of nine proteins, seven of which were 413 

part of SP175, and two additional proteins with a -sheet architecture. The evaluation set was 414 

selected such, that it contains three -helical proteins, three -sheet containing proteins, and 415 
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three proteins with an / fold.  In addition, the proteins of the evaluation set did not contain 416 

gaps in the structure, and had to be small enough for visual inspections and quick evaluation 417 

during basis set optimizations.  418 

The fourth protein set was used for cross-validation to assess the prediction accuracy 419 

of both the hard and soft basis sets (Fig 3). The cross-validation set (Table S3)  labelled TS8 420 

for test set  contains eight globular proteins, which were not part of the previously 421 

mentioned data sets. The proteins of the TS8 set were selected from a set of 22 proteins, 422 

previously used to determine basis spectrum sets for CD spectrum deconvolution [24]. The 423 

CD spectra were obtained from an example spectrum set provided for the deconvolution 424 

algorithm CCA by Hollósi et. al. [12], whilst their crystallographic structures (crystal 425 

structures) were retrieved from the PDB [22]. The globular proteins of the TS8 set had 426 

slightly truncated spectra (178-260 nm) compared to the SP175 proteins. The crystal 427 

structures did not contain any gaps or missing residues, and had an average resolution of 428 

1.7 Å.  429 

The fifth data set  labelled as GXG20  consists of the CD spectra and structural 430 

ensembles of 20 short peptides with the consensus sequence of Ac-GXG-NH2 (X stands for 431 

any amino acid). This reference set was used to estimate the contribution of amino acid side 432 

chains in a protein environment. The CD spectra of these peptides were recorded on the AU-433 

CD beam line at the ASTRID2 synchrotron radiation source in Aarhus Denmark, under 434 

similar conditions (298 K, in 50 mM NaF solution with Na2HPO4 buffer, pH = 7.1) within the 435 

wavelength range of 178-300 nm. Peptide concentrations (0.5-2.0 mg/ml) were determined 436 

based on the light absorption at 214 nm [25] and, when possible, at 280 nm (for GYG and 437 

GWG). The structural ensembles for each peptide were generated using a 10 s long 438 

molecular dynamics simulation (recorded at every 2 ns) using the GROMACS simulation 439 

package [26] (version 5.06) and the Charmm 36M [27] parameter set with explicit TIP3P 440 
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water modified for the force field. The simulations were performed under periodic boundary 441 

conditions on 298 K, with Na
+
 and Cl

-
 ions appropriate for a 50 mM ionic strength and 442 

protonation states dominant at pH = 7. The size of the simulation box was chosen such to 443 

keep ~2 nm distance between any solute atom and the box boundaries, resulting in a 444 

simulation box of ~5500 atoms.  445 

There were two more data sets that were used to derive mixed basis sets which 446 

include both backbone (secondary structure) and side chain related basis spectra. The sixth 447 

protein set is a sub-set of the SP175 reference set, containing 59 globular proteins that 448 

provide a wide variation secondary structure contents, designated as GP59 (globular protein 449 

set). The 12 proteins excluded from the SP175 set to form the GP59 set were hard to predict 450 

by several spectrum prediction algorithms (see section 5.1) and may have hindered the 451 

determination of side chain basis spectra. The seventh data set contained all 20 peptides of 452 

the GXG20 data set and the 59 proteins of the GP59 data set, resulting in a mixed polypeptide 453 

set with 79 entries (designated as MP79). The MP79 set was used as a reference set to derive 454 

the average contribution of side chain groups, as well as our mixed basis sets. 455 

In addition to the protein data sets to derive and cross-validate basis sets, we prepared 456 

a system to probe the effects of conformational dynamics has on the quality of predicted CD 457 

spectra described in Section 5.2. The chosen system was the complex of CBP-NCBD and 458 

P53-AD2, two disordered protein domains which form an ordered crystallisable complex. 459 

These protein domains were produced by the company Karebay using solid state peptide 460 

synthesis, and the CD spectrum of their 1:1 molar ration complex was measured under the 461 

same conditions as described for the peptides of the GXG20 data set. Three structural models 462 

were prepared for the P53/CBP complex based on an NMR solution structure obtained from 463 

the protein data bank (PDB code 2L14). The three models included the original NMR bundle 464 

with 20 conformations, the first extracted conformation of the bundle, and a structural 465 
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ensemble obtained from a molecular dynamics simulation. The details of the simulation were 466 

similar to those described for the peptides of GXG20 reference set, except that the Charmm 467 

22* parameter set [28] was used instead of the Charmm 36M, and the simulation box 468 

contained ~82 000 atoms. The simulation was started using the first conformation of the 469 

NMR bundle, and protein conformations were recorded after every 10 ns throughout a 10 us 470 

long simulation trajectory, resulting in an ensemble of 1000 conformations. 471 

CD spectra in all data sets were converted to Mean Residue Ellipticity (MRE). The 472 

CD spectra themselves as well as the deviation between the experimental and calculated 473 

spectra in this work are shown in the units of 10
3
 degree*cm

2
/dmol, abbreviated as kMRE. 474 

Prior to the analysis, crystallographic water, non-standard residues, and cofactors were 475 

removed from the crystal structures of the data sets. Residue numbers and chain codes were 476 

relabelled to ensure compatibility with the analysis software. For all entries of the reference 477 

protein sets, the amino acid composition and secondary structure contents were determined 478 

(section 3.2). Additionally, CD spectra of globular proteins of the reference sets were also 479 

calculated by Dichrocalc and PDB2CD software. A principal component analysis was 480 

performed on CD spectra of the SP175 data set to determine the number of necessary spectral 481 

components and to probe correlations between the principal components, secondary structure 482 

elements and amino acid composition (see sections 3.5 and 3.6).  483 

3.2 Secondary structure determination 484 

The secondary structure of proteins comprising the data sets described in section 3.1 was 485 

determined from the protein structure using the algorithms DSSP (Dictionary of Secondary 486 

Structure for Proteins) [29] as well as DISICL (DIhedral based Segment Identification and 487 

CLassification) [30] and an in-house algorithm HbSS (Hydrogen-bond based Secondary 488 

Structure). DSSP is an algorithm based on identifying secondary structure elements based on 489 

their distinctive backbone hydrogen-bonding patterns. DSSP classifies each amino acid in the 490 
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protein as one of the eight secondary structure elements shown in Table S4. The DISICL 491 

algorithm classifies tetra-peptide segments of the protein based on two (,) backbone 492 

dihedral angle pairs. The detailed DISICL (DS_det) library contains nineteen secondary 493 

structure elements, which are grouped into eight broader secondary structure classes in the 494 

simplified DISICL library (DS_sim). Table S5 lists the detailed and simplified DISICL 495 

secondary structure elements. The HbSS algorithm was used to distinguish between parallel 496 

and antiparallel -strands (Fig. S15), determined based on backbone hydrogen bonding 497 

patterns. In addition, HbSS determined helical and turn-based secondary structure elements 498 

(listed in Table S6) similarly to DSSP. Furthermore, the HbSS classification was also 499 

extended (HBSS_ext) based on the -strand twist to determine the amount of left-handed, 500 

relaxed (non-twisted) and right-handed -strands as described in Ref [31] with boundaries of 501 

0 and 23, respectively, for both parallel and anti-parallel strand arrangements. This 502 

extended structural classification is directly comparable to the estimates of the deconvolution 503 

algorithm BestSel (Table S7). For comparison, the secondary structure content of each 504 

protein was estimated from their CD-spectrum using the deconvolution algorithms SELCON 505 

[20] and BestSel [11]. These estimates were also included in the spectral component analysis 506 

(section 2.6). 507 

3.3 Initial basis sets 508 

Three deconvolution basis sets (Figs. S16-S18) were used to assess the applicability of our 509 

method without extensive optimization. The first basis set (Set_Perczel-1) was derived by 510 

Hollósi and Perczel [12] and contains five basis spectra (-helix. -strand, Turn type I/III, 511 

unordered, and other contributions). The second basis set, determined by Shreerama and 512 

Woody (Set_Sreer-1) [32], contains six basis spectra (regular helix, irregular helix, regular 513 

strand, irregular strand, poly-proline helix, and disordered). Finally, the third basis set 514 

(Set_BestSel-1) was derived for the BESTSEL program by Micsonai and Kardos [11], with 515 
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eight basis spectra (regular helix, irregular helix, left-handed anti-parallel, relaxed anti-516 

parallel, and right-handed anti parallel -strands, parallel -strand, turn structures, and 517 

others). For each of these basis spectra, secondary structure elements from the structure 518 

classification algorithms (DSSP and DISICL for the first two and DISICL and HbSS for the 519 

third) were assigned based on the description of the basis set in their original publications. 520 

Once the assignment was complete, the CD spectra for the proteins of the TS8, EV9, TR64 521 

and SP175 sets were calculated using the secondary structure content of their crystal structure 522 

and were compared to the experimental spectra.  523 

Furthermore, we derived naive basis sets for the classification algorithms (Figs. S1-524 

S5) DSSP (Set_DSSP-F), simplified and detailed DISICL (Set_DS-simF and Set_DS-detF, 525 

respectively), normal and extended HbSS (Set_HBSS-F and Set_HBSS-E) and the 526 

deconvolution algorithm BESTSEL (Set_Bestsel-der). These basis sets contained one basis 527 

spectrum for each of the algorithm‟s secondary structure elements, and the SP175 data set 528 

was used as a reference set to calculate their basis spectra. These basis sets were used as 529 

initial guesses for the hard and soft optimization procedures.  530 

3.4 Spectrum prediction quality 531 

We determined the basis set quality based on the average accuracy of the calculated spectra 532 

(RMSDset) for the proteins of the TS8 cross-validation set (RMSDcross) and the SP175 533 

reference set (RMSDref). However, it was necessary to assess the quality of the calculated 534 

spectra for individual proteins as well. The RMSD of a single calculated spectrum of protein j 535 

(Rj) was determined as the root-mean-square deviation between a spectrum calculated from 536 

the structure (   
    ) and the experimental CD spectrum (Sjl) 537 

 538 

    √
 

 
 ∑ (   

         )
  

   .   (11) 539 

 540 
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 The indices j (1…N) denote the protein, whist l (1…L) denote the wavelength of the 541 

discretized spectra. By comparing Rj  of a protein to the RMSDset, it was possible to identify 542 

the proteins whose the CD spectra are hard to predict using a given methodology. In addition, 543 

the standard error of the mean RMSD (       ) was determined as          
 

√ 
, where   544 

is the standard deviation of Rj within the data set. 545 

3.5 Principal Component Analysis of CD spectra 546 

We performed a PCA on the CD spectra of the SP175 protein reference set, treating each 547 

spectrum as an L dimensional vector (where L is the number of wavelengths). The resulting 548 

PC vectors were described by the matrix V={Vpl}, where the indices p (1….P) and l (1….L) 549 

stand for the principal component (in order of their eigenvalue) and wavelength, respectively. 550 

In our case, each vrp row vector of the matrix V is one of the discretized PC vectors. The 551 

spectra of a reference protein data set were reconstructed using the first P={1-10} principal 552 

components 553 

 554 

       
     ∑        

 
   ,  (13) 555 

 556 

where Sjl is the circular dichroism of the j
th

 reconstructed protein spectrum at the wavelength 557 

l, Cjp is the projection of that spectrum along the PC vector p, Vpl and   
    are the value of 558 

the PC vector and the average CD signal of the data set at wavelength l, respectively. The 559 

projection of spectrum j along the principal component p can be calculated by taking the 560 

scalar product of the normalized spectrum and the PC vector 561 

 562 

                      .  (14) 563 

 564 

The vector      {  
   } is the averaged CD spectrum of the data set. 565 
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 The projections along the PC vectors are analogous to the basis spectrum coefficients. 566 

Therefore, Pearson correlation (Rpearson) between the secondary structure composition, amino 567 

acid composition, and the projections were calculated for the proteins in the SP175 reference 568 

set to estimate the importance of these structural descriptors in calculating the CD spectra. 569 

The pearson correlation between these descriptors were calculated according to 570 

 571 

         
∑     ̅       ̅ 

√∑     ̅     √∑(    ̅)
 
,  (15) 572 

where    and    are either the fraction of an amino acid, the fraction of amino acids classified 573 

as a secondary structure element, or the projection of the CD spectrum along a principal 574 

component for the protein j, whilst  ̅ and  ̅are the calculated averages for the whole 575 

reference set. 576 

3.6 Side chain contributions 577 

To assess the contribution of amino acid side chains, we assumed that the two main 578 

contributors to the CD spectra of proteins are the secondary structure and the chromophores 579 

of the amino-acid side chains, with no coupling between the side chains and the rest of the 580 

protein. This assumption allows the calculation of a backbone independent side-chain 581 

correction baseline. The side chain baseline of a protein was determined by the weighted 582 

average of the individual side-chain CD signals, where the weighing factor was the 583 

corresponding amino acid content for the protein (similarly to eq. 1).  584 

The individual side-chain contributions were estimated from the CD spectra of the 585 

MP79 reference set. First, the secondary structure contributions were calculated using an 586 

initial basis set (either DS5-4, DS-dT, DSSP-1 or DSSP-T, see the Sup. Mat. for further 587 

details on these basis sets) and subtracted from the experimental spectra. Then, the 588 

“secondary-structure-free” CD spectra and the amino acid composition of the proteins and 589 
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peptides were used to derive one basis spectrum for each amino acid side chain. We also 590 

derived basis sets with more simplified representations of the side chain contributions. These 591 

mixed basis sets were derived from the MP79 reference set in three steps. First, the secondary 592 

structure contributions were calculated and subtracted from the CD spectra. Second, basis 593 

spectra for the side chains were derived and optimized using the amino acid composition and 594 

the secondary-structure free CD spectra of the reference proteins. Third, the side chain 595 

contributions were calculated and subtracted from the experimental CD spectra, and these 596 

“side-chain free” CD spectra were used to re-optimize the basis spectra for backbone 597 

contributions (secondary structure). 598 

The optimization of the side chain and backbone basis spectra was performed by the 599 

hard optimization scheme separately (as described in section 2.4) with the following 600 

modifications. Before the optimization, the MP79 reference set was separated into six sub-601 

sets (each containing 13 or 14 proteins). In each optimization step, after the secondary 602 

structure elements / amino acids were grouped and assigned to basis spectra, one of the MP79 603 

sub-sets was designated as the evaluation set, whilst the rest of the reference proteins were 604 

used to derive the basis spectra (as a training set). The derived basis spectra were used to 605 

calculate the CD spectra of the evaluation set. This process was repeated six times such that 606 

each of the sub-sets was predicted once from the rest of the MP79 reference set. After 607 

calculating each of the evaluation sub-sets, their RMSD was averaged and used as RMSDeval 608 

to determine if the assignment is accepted or rejected. The optimization process was 609 

continued until 250 - 5000 accepted moves were reached (depending on the basis set size), 610 

with the five best assignments recorded for further use. The recorded assignments were 611 

recalculated from the full MP79 reference set. These finalized basis spectra were used to 612 

predict the “secondary-structure free” or “side chain free” CD spectra of the TS8 protein set 613 

as cross validation. The combination of side chain and backbone basis spectra that predicted 614 
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the TS8 protein set with lowest RMSDcross were combined into mixed basis sets. These mixed 615 

basis sets were used to calculate the CD spectra of the SP175, GXG20, GP59, and TS8 data 616 

sets, so that they can be compared with initial the basis sets, PDB2CD, DichroCalc, and 617 

BestSel algorithms. 618 

 619 

Results and Discussion 620 

We present our results in two sections. Section 4 is focused on the optimization and 621 

assessment of our semi-empirical spectrum calculation approach, SESCA. In Section 5, we 622 

compare the impact of different contributions on the CD spectra of our reference proteins, in 623 

order to identify the largest sources of discrepancies, which might support further 624 

improvements.  625 

4. Secondary structure based CD calculations 626 

We derive the optimal basis spectra required for our semi-empirical spectrum calculations, 627 

using the SP175 reference set including the CD spectra and secondary structure classification 628 

of 71 proteins. To assess the average accuracy of SESCA predictions, we proceeded in three 629 

steps. First, we applied a principal component analysis (PCA) to determine the best 630 

achievable accuracy at which the CD spectra can be described using basis sets of a given size. 631 

Second, we used our soft optimization approach to derive basis sets to optimally reproduce 632 

the CD spectra of reference proteins from their secondary structure information. Third, we 633 

derived basis sets optimized for prediction accuracy using the hard optimization approach and 634 

assessed the predictive power of the obtained basis sets through cross validation using the 635 

TS8 data set. In addition, we compared SESCA with other published CD prediction methods, 636 

and assessed the sensitivity of our basis sets with respect to the secondary structure 637 

composition. 638 
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4.1 Estimate of best possible accuracy 639 

As the main determinants of the accuracy, we considered the number of used basis spectra, 640 

the experimental error, both on the structure and the CD spectrum level, as well as the 641 

secondary structure classification method applied for spectrum calculation. We quantified the 642 

best possible accuracy of our basis sets by the fitting accuracy (RMSDref), the RMSDset 643 

calculated for the reference set used to derive the basis set. For a new protein with a crystal 644 

structure of similar quality, the RMSD of the predicted CD spectrum is expected to be larger 645 

than the fitting accuracy.  646 

We first determined the best achievable accuracy for a given number of basis spectra 647 

(Fig. 4). To this end, basis spectra were calculated as eigenvectors of a PCA of the SP175 648 

reference CD spectra, which by construction minimize the RMSD to the reference spectra as 649 

described in Section 3.5. In Fig. 4A the first ten obtained PCA basis spectra are illustrated. In 650 

line with previous results [13,16,33], the first two PCA basis spectra are similar to the CD 651 

spectrum of purely -helical and -sheet proteins, and represent already about 94% of the 652 

variance within the spectra of the reference data set. As the sorted eigenvalues (Fig. 4B) 653 

suggest, only a few basis spectra should be required to achieve good to very high accuracy. 654 

Indeed, almost 99% of the variance of the SP175 CD spectra are represented by only the first 655 

five basis spectra, and the first ten basis spectra essentially describe the full data set. This 656 

expectation is confirmed by the reconstruction of the -amylase precursor spectrum (#3 of 657 

the SP175) shown in Fig. 4C, which corresponds to using one to ten PCA basis spectra. For 658 

this spectrum already the first three basis spectra allow a good reconstruction with an average 659 

RMSD of 2.105 kMRE units (10
3
 deg*cm

2
/dmol), and using more than six or seven basis 660 

spectra essentially recovers the reference spectrum. For comparison, the average spectrum 661 

(brown curve) is shown, corresponding to using no basis spectra at all, which serves as a 662 

lower limit of how well the spectra can be 'predicted' without any information. The table in 663 
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Fig. 4D quantifies the changes in fitting accuracy for three sample spectra, taken from 664 

representative proteins of the three main structure classes (-helical, -sheet, and mixed /) 665 

and also provides the average RMSD for all 71 spectrum reconstructions (RMSD_ref). For 666 

RMSD_ref a rapid decrease from an initial 6.395 to 1.335 kMRE units is observed for using 667 

the first three components, followed by a more gradual decrease from 0.955 to 0.182 for 668 

using up to ten components.  669 

Depending on the desired accuracy, these results suggest that three to eight basis 670 

spectra should be used to construct highly accurate basis sets. Further in this study, we will 671 

use the deviations 0.237 kMRE and 6.395 kMRE obtained for eight and zero basis spectra, 672 

respectively, as an estimate for the 'best' and 'worst' achievable accuracy using all structural 673 

information but a limited set of up to eight basis spectra. The actual achievable accuracy is 674 

reduced by the fact that only limited structural information is contained in the secondary 675 

structure and by potential experimental error.  676 

4.2 Accuracy limits of the secondary structure based CD 677 

spectrum prediction 678 

After determining the best possible accuracy by PCA, we probed the accuracy CD spectrum 679 

calculations based on the limited structural information given by the secondary structure 680 

composition. To this end, we determined the secondary structure composition from the 681 

reference structures obtained by X-ray crystallography using five secondary structure 682 

classification methods (DSSP, DS_det, DS_sim, HbSS and HbSS_ext) described in Section 683 

3.2. For each of the secondary structure classification methods, various basis sets were 684 

derived and their fitting accuracy was tested. 685 

 The fitting accuracy (RMSDref) of our basis sets is shown as the function of used basis 686 

spectra (basis set size) in Fig. 5A. We compared the optimized soft (solid lines) and hard 687 

(crosses) basis sets – coloured according to the underlying structure classification method – 688 

to the best possible fitting accuracy from the PCA basis sets (depicted as a dotted line). The 689 
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more general soft basis sets were optimized for the lowest possible RMSDref and represent 690 

the best fitting accuracy achievable with the limited structural information provided by the 691 

secondary structure classification algorithms.  692 

For all five classification algorithms, the fitting accuracy of soft basis sets improves 693 

monotonously with the increasing basis set size. However, the gain in accuracy above six to 694 

eight basis spectra becomes increasingly smaller, and converges to values between 3.7 (for 695 

HbSS) and 2.8 (DS_det) kMRE units depending on the classification method. Notably, the 696 

best fitting accuracy of 2.8 kMRE is achieved for basis sets based on the DS_det 697 

classification method (blue), underscoring the trend that better fits are achieved with more 698 

fine grained secondary structure classification schemes. In comparison, the best possible 699 

fitting accuracy outlined by the PCA basis set converges to 0.17 kMRE. These trends indicate 700 

that predicting the CD spectra exclusively from the secondary structure of the protein crystal 701 

structure is possible, but imposes a significant limitation on the accuracy of the calculated 702 

spectra (~3.2 kMRE). This limitation is further influenced ( 0.5 kMRE) by the secondary 703 

structure classification scheme. 704 

 In addition, Fig. 5A shows that the hard basis sets with three to eight basis spectra 705 

converged to fitting accuracies of 3.2 - 3.8 kMRE, which are comparable to the limits set by 706 

the soft basis sets of the same size and classification method (2.8 - 3.7 kMRE). As expected, 707 

the two optimization methods yield basis sets of the same fitting accuracy if the number of 708 

secondary structure elements in the classification is equal to the number of basis spectra 709 

(F=K). These results indicate that the basis sets obtained by the hard optimization method 710 

accurately reconstruct the reference CD spectra, despite the additional restraints used during 711 

the optimization to improve the prediction accuracy. 712 
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4.3 Cross-validation of the prediction accuracy 713 

We assessed the prediction accuracy of the optimized basis sets by cross validation. 714 

To this end we used each of these basis sets to calculate the CD spectra for the TS8 cross-715 

validation set, comprising eight selected proteins with high quality CD spectra (between 178 - 716 

260 nm), and high resolution crystal structures (< 2.5 Å). The prediction accuracy of each 717 

basis set was determined by computing the average RMSD between the calculated and 718 

measured CD spectra of the cross validation set (RMSDcross). 719 

Figure 5B shows the obtained RMSDcross for our basis sets: hard basis sets are 720 

depicted as crosses and soft basis set series as solid lines, coloured according to the 721 

underlying classification algorithm. The resulting prediction accuracies show different trends 722 

compared to the fitting accuracies calculated for the SP175 reference spectra (Fig. 5A), and 723 

they allow us to determine whether or not the results were influenced by over-fitting to the 724 

experimental error of the reference data set.  725 

 The TS8 CD spectra calculated from our soft basis sets (solid lines on Fig. 5B) show 726 

the best prediction accuracy between 2-6 basis spectra (depending on the classification 727 

algorithm). Including additional basis spectra into our basis sets results in larger deviations 728 

from the experimental CD spectra, although the decrease in accuracy for more than eight 729 

basis spectra is small. Additionally, the trend that classification methods with more secondary 730 

structure elements yield smaller RMSDs, as depicted in Fig. 5A, is not observed in Fig. 5B. 731 

Instead, classification algorithms with eight or less secondary structure elements (DSSP (8), 732 

DS_sim (8), and HbSS (7)) are the most suitable for predicting the CD spectra with soft basis 733 

sets. In contrast, the prediction accuracy of soft basis sets based on more fine-grained 734 

classification methods (namely DS_det (19, extended turn definitions) and HbSS_ext (11, 735 

extended -sheet classification)) were markedly worse than their respective fitting accuracy, 736 

as seen from the 1.2 and 0.9 kMRE larger average RMSD of the cross validation (compared 737 

to the SP175 results). Unexpectedly, for some basis sets  particularly those based on DSSP 738 
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 their prediction accuracy was better than their fitting accuracy, which we attribute to the 739 

higher average quality of crystal structures in the cross-validation data set. 740 

The restraints and „internal cross-validation‟ during the evaluation step applied during 741 

the hard optimization scheme significantly reduced over-fitting in most of our hard basis sets 742 

(crosses in Fig. 5B), and produced basis with prediction accuracies of 3.034, 3.124, 3.042, 743 

and 3.288 kMRE units for the DSSP (DSSP-1), DS_sim (DS3-1), DS_det (DS6-1) and 744 

HbSS_ext (HBSS-3) classification algorithms, respectively. These basis sets  regardless of 745 

the underlying classification algorithm – consist of three to eight basis spectra (again, in line 746 

with the PCA results), and predict the CD spectra of the SP175 reference set with a 747 

comparable accuracy. These common features suggest that our hard basis sets indeed 748 

minimized the over-fitting to reference proteins, and reached the best prediction accuracies 749 

possible based on the experimental information of the reference data set.  750 

4.4 Performance comparison 751 

Above, we derived SESCA basis sets and reported the estimated fitting and prediction 752 

accuracy of our semi-empirical CD calculation scheme. We use these accuracy values to 753 

compare SESCA with other available CD calculation methods, DichroCalc, and PDB2CD. 754 

For this comparison, we also calculated the CD spectra of the SP175 and TS8 proteins from 755 

their crystallographic structures using both DichroCalc and PDB2CD. We emphasize that 756 

these algorithms represent different approaches of quantitative predictions based on CD 757 

spectroscopy. Note that PD2CD was also developed based on the SP175 reference protein 758 

set, thus our proteins sets provide an even ground for a comparison to SESCA, while 759 

DichroCalc  being an ab initio spectrum calculation method  was not parametrized to 760 

reproduce any particular protein reference set.  761 

Dichrocalc is a heuristic ab initio CD spectrum calculation algorithm that predicts a spectrum 762 

from the protein conformation using QM derived parameters. The average RMSD-s of CD 763 
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spectra predicted by DichroCalc were 6.095 and 6.124 kMRE units for the SP175 and TS8 764 

data sets (indicated by the red dashed lines in Figs 5A and 5B), respectively. Note that as 765 

expected, the average accuracy of DichroCalc was similar for both datasets (no over-fitting), 766 

however, this accuracy was close to the PCA determined RMSD limit of a predictive method 767 

(6.4 kMRE). This indicates that DichroCalc can only determine the most prominent spectral 768 

features and likely sacrificed some of the accuracy of typical ab initio methods to be 769 

applicable for proteins. 770 

PDB2CD (RMSDset values shown as brown dashed lines in Fig. 5) is a purely 771 

empirical method, which calculates the CD spectrum of a target protein by selecting 772 

structurally similar reference proteins based on secondary and tertiary structure information, 773 

and taking the weighted average of their spectrum. For the SP175 reference set PDB2CD was 774 

markedly more accurate (RMSDref 2.395 kMRE) than any of the SESCA basis sets, or 775 

DichroCalc. However, in contrast to DichroCalc and most of hard SESCA basis sets, the 776 

prediction accuracy of PDB2CD (RMSDcross 4.725 kMRE) was significantly worse than its 777 

fitting accuracy. These results suggest that PDB2CD has similar or less predictive power 778 

compared to our SESCA basis sets (RMSDcross 3.0 - 3.9 kMRE), and may suffer from over-779 

fitting to the SP175 reference set. This outcome was in contrast with the results of the cross-780 

validation performed by Mavridis et al. [19] which showed very similar fitting and prediction 781 

accuracies for PDB2CD. Therefore, we performed a second cross validation using the same 782 

14 protein structures, on which both the SESCA basis sets and PDB2CD achieved and 783 

RMSDset of ~3.8 kMRE units, whilst Dichrocalc performed somewhat worse (5.6 kMRE). 784 

We also found that four of the best eight cases where PDB2CD predicted a very accurate 785 

spectrum were -crystallin proteins with a very similar fold, all of which were part of the 786 

SP175 reference set as well, although with a different crystal structure. 787 
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In Fig. 6 we present a comparison between the CD spectra calculated by three SESCA 788 

hard basis sets, DichroCalc, and PDB2CD for selected proteins: one -helical, one -sheet, 789 

and one / protein, in Figs. 6D - 6F, respectively. Although the number and shape of the 790 

basis spectra can differ significantly (Figs. 6A - 6C) depending on the assignment and 791 

classification method, the figure illustrates that the best performing SESCA basis sets often 792 

yield very similar calculated spectra. The calculated CD spectra from different spectrum 793 

prediction methods often have a comparable average RMSD for the same protein, and all 794 

correctly reproduce the overall shape of the experimental CD spectrum. 795 

As an additional technical remark, we would like to highlight the speed advantage of 796 

the SESCA approach over PDB2CD and DichroCalc. We tested the speed of the algorithms 797 

by providing a single conformation for a protein of average size (490 amino acids) in PDB 798 

format, and measuring the time to receive the CD spectrum. While it took PDB2CD and 799 

DichroCalc servers nineteen and eight minutes respectively  queuing time not included  to 800 

predict a CD spectrum, SESCA predicted the spectrum in 0.3 seconds using the DSSP 801 

classification, and determined the average CD spectrum of an ensemble of 1000 802 

conformations of the same protein just under five minutes. This three orders of magnitude 803 

difference in the calculation speed is due to the relatively simple geometric terms required for 804 

determining the secondary structure composition and the pre-calculation of basis sets in the 805 

SESCA scheme. The speed advantage in CD predictions may be particularly important for 806 

the iterative refinement of structural ensembles, an approach often used in the modelling of 807 

intrinsically disordered proteins. 808 

4.5 Sensitivity to changes in secondary structure 809 

We quantified the prediction accuracy of SESCA basis sets, PDB2CD, and Dichrocalc, based 810 

on the average deviation (RMSD) from experimental CD spectra. In the following, we 811 

estimate the sensitivity of this metric with respect to changes in the secondary structure 812 
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composition. For this purpose, we selected a very simple basis set (DS-dT) with only three 813 

basis spectra (-helix, -strand, and coil) and three reference proteins which were predicted 814 

accurately by this basis set (alkaline phosphatase RMSD: 0.61 kMRE, met-myoglobin 815 

RMSD: 1.77 kMRE, and prealbumin RMD: 2.38 kMRE). We systematically altered the 816 

secondary structure information of these reference proteins to see how the RMSD of the 817 

resulting calculated spectrum is affected. Our results in Fig. 7A show an almost prefect linear 818 

dependence between the RMSD of the calculated spectrum and the deviation from the ideal 819 

secondary structure composition, with slightly different slopes (m) for -helix to coil (A->C), 820 

-helix to -strand (A->B) and -strand to coil (B->C) deviations. The ideal secondary 821 

structure composition in this context is the composition with the lowest RMSD from the 822 

experimental spectrum, which was identical to the secondary structure composition of the 823 

crystal structure in the case of alkaline phosphatase. For met-myoglobin and prealbumin, the 824 

ideal structure composition was a slightly altered secondary structure composition (A->C -825 

4 %, and B->C +8 %, respectively). 826 

The Table in Fig. 7 shows the expected error in the secondary structure composition 827 

of our model structure at a given RMSD between the calculated and experimental spectra. 828 

For example, if we obtained a calculated spectrum which differs from the experimental CD 829 

spectrum by 0.6 kMRE units, the secondary structure composition of our model should be 830 

within 2.5% of the true secondary structure composition. If the protein does not contain -831 

strands, however, the real composition should be within 2%, since the RMSD is more 832 

sensitive to A->C deviations. Applying the same calculations to the prediction accuracy of 833 

our best basis sets (RMSD ~3.1 kMRE), we can claim that the secondary structure 834 

composition of crystal structures of the cross-validation set is within 10 – 15 % from the 835 

secondary structure that best describes the CD spectrum (depending on the particular 836 

protein).  837 
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Using the same principles enabled us to assess the quality of the crystal structures of 838 

the SP175 proteins as models to predict the CD spectrum.. The RMSD distribution of CD 839 

spectra predicted by the DS-dT basis set for all proteins in the reference set is shown in Fig. 840 

7B. We found two reference proteins with an RMSD less than 1.2 kMRE, which would mean 841 

an excellent agreement with the CD spectrum, and less than 5 % deviation in the secondary 842 

structure composition (SS). There were 14 proteins in the SP175 set with a good agreement 843 

between the CD spectrum and crystal structure (RMSD: 1.2 - 2.4 kMRE, SS less than 844 

10 %), 27 proteins with average agreement (RMSD: 2.4 - 3.6 kMRE, SS less than 15 %), 11 845 

proteins with poor agreement (RMSD: 3.6 - 4.8 kMRE, SS less than 20 %), and 17 proteins 846 

with very poor agreement (RMSD: larger than 4.8 kMRE and SS likely more than 20 %). 847 

The presence of 17 proteins with quite large RMSDs suggests that either the 848 

secondary structure composition of these proteins change significantly upon crystallization, 849 

or that additional factors affect the CD spectra of the reference proteins. In the next sections, 850 

we investigate several potential sources of such deviations, in order to identify potential 851 

routes for improving the accuracy of CD spectrum calculations.  852 

4.6 Estimating the accuracy from solution structures 853 

The analysis presented in Section 4.5 shows that even for proteins whose CD spectrum was 854 

predicted very accurately from their crystal structure, the secondary structure composition 855 

obtained from the structure did not necessarily provide an optimal description of the CD 856 

spectrum. So far in our study, we assumed that the crystal structure accurately reflects the 857 

protein structure under CD measurement conditions. This is of course not necessarily true, as 858 

the crystal structure typically reflects the minimum-energy conformation of the protein at low 859 

temperatures (~70 K), while the CD spectrum is usually measured near room temperature 860 

(~300 K) in aqueous solution, where larger fluctuations and structural heterogeneity are 861 

expected. This difference in structure and dynamics will likely result in differences of the 862 
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average secondary structure composition and contribute to the RMSD between the measured 863 

and predicted CD spectra in our protein sets. In this section, we will estimate the difference 864 

between the average crystal and solution structures of our reference proteins, as well as its 865 

impact on the average accuracy of CD spectrum predictions. 866 

 A straightforward way to address the above mentioned problem would be to 867 

determine the solution structure of proteins using an independent method (such as NMR), and 868 

compare their secondary structure composition to those obtained from crystal structures. 869 

However, NMR solution structures are not available for most of the reference proteins used 870 

in this study. Therefore, we estimated the secondary structure compositions of the average 871 

solution structure from the CD spectrum of the reference proteins by using the well-872 

established spectrum deconvolution method BestSel [11]. This algorithm was also trained on 873 

the SP175 protein set and provides detailed secondary structure predictions with eight 874 

structural elements (details in Section 3.3) with a particular focus on the structure of -sheets. 875 

The secondary structure composition of the crystal structures were obtained by HbSS_ext 876 

classification method (described in Section 3.2), because it shares the detailed -sheet 877 

classification with BestSel, based on the parity and local twist of the -strands. 878 

We obtained the secondary structure composition from both methods for the proteins 879 

of the SP175 reference set, as well as the TS8 cross-validation set, then computed and 880 

compared the average compositions to quantify the differences. Compared to the crystal 881 

structures, the estimated secondary structure composition of the solution structures showed 882 

lower average -helix content (-4.9% for SP175 and -7.7 % for TS8) and a higher -strand 883 

content (+7.7 % for SP175 and 7.9 % for TS8) for both data sets. These average differences 884 

in the secondary structure composition would translate to an average RMSD of up to 2.0 885 

kMRE units according to sensitivity of SESCA predictions shown in Fig. 7. This is more than 886 

half of the 3.6 kMRE average deviation of the predicted CD spectra based on the optimized 887 
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SESCA basis sets, suggesting that the difference between solution and crystal structures is 888 

one of the major sources of error for SESCA predictions. 889 

To provide a more direct comparison to the spectrum prediction methods discussed in 890 

this study, we used eq. 5 to derive a specialized SESCA basis set (BestSel_der) that 891 

reconstructed the CD spectra from the BestSel secondary structure compositions. This basis 892 

set indeed yielded good fits (RMSDref 2.931 kMRE) to the SP175 spectra, and even better 893 

ones to the TS8 spectra (RMSDcross 1.828 KMRE). Next, we compared the average RMSD of 894 

the CD spectra predicted by the BestSel _der basis set with the accuracy of hard SESCA basis 895 

sets listed in Table S8. The HBSS-3 basis set was the most accurate from those based on the 896 

HbSS_ext algorithm (RMSDref 3.754 kMRE and RMSDcross 3.288 kMRE), it‟s fitting and 897 

prediction accuracies are 0.8 and 1.5 KMRE units worse than what BestSel_der achieved on 898 

the same proteins. The difference between the average accuracy of the BestSel_der and 899 

HBSS-3 is smaller than expected for the proteins of SP175 reference set. However, 900 

BestSel_der reconstructed most of the SP175 spectra more accurately, except for seven 901 

proteins with exceptionally large RMSDs between their measured and calculated CD spectra. 902 

These proteins were also poorly predicted by the HBSS-3 algorithm, but their presence 903 

reduced the average difference between the RMSDref of the two basis sets. The improved 904 

accuracy for the rest of reference proteins agrees well with the estimated difference in the 905 

average secondary structure composition between the solution and crystal structures of the 906 

data sets, and thus confirms its impact on the accuracy of SESCA predictions.  907 

Interestingly, the basis spectrum of the right-handed anti-parallel -strand secondary 908 

structure element (Anti3 in Fig 6A) in BestSel_der showed a distinctive negative peak around 909 

195 nm, as is typical for random coil proteins. This secondary structure element was also the 910 

most populated one (10 %) among the -strand elements in the SP175 reference set, whereas 911 

HbSS_ext classified only 5 % of the residues as such. The 5 % overestimation of this 912 
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particular secondary structure element indicates that the difference between the solution and 913 

crystal structures is most likely due to the higher occurrence of unfolded/disordered residues 914 

in solution, rather than due to the larger fraction of -strands. 915 

From the above results we conclude that the secondary structure composition of a 916 

globular protein in aqueous solution may differ by 5 - 10 % from its composition in crystal 917 

structures, and that this difference contributes up to 2.0 kMRE to the RMSD of the CD 918 

spectra predicted from the crystal structures of the proteins in our study. Furthermore, for 919 

several proteins of the SP175 reference set, the CD spectra were predicted with relatively 920 

poor accuracy even from the ideal secondary structure composition. This points to either 921 

problems related to the measured CD spectra of these proteins, or to strong contributions to 922 

the spectrum that cannot be predicted through the secondary structure composition. We will 923 

investigate these possibilities in the following sections. 924 

5. Improving the CD prediction accuracy 925 

In section 4, we derived several SESCA basis sets to predict the CD spectra of globular 926 

proteins and determined that their best achieved prediction accuracy is 3.0  0.6 kMRE. In 927 

this section, we focus on whether the prediction accuracy of our basis sets can be improved 928 

by changing the reference protein set. First, we consider how the “hard-to-predict” CD 929 

spectra in our reference set influence the robustness of SESCA predictions. Then, we 930 

determine if replacing crystal structures with structural ensembles can improve the accuracy 931 

of the predicted spectra. Finally, we expand the reference set with a series of short peptides 932 

and include the amino acid composition into the basis set determination process. 933 

5.1 Potential measurement errors of the reference set 934 

The RMSD distribution shown in Fig. 7B suggests that the CD spectra of certain proteins in 935 

the SP175 data set are hard to predict based on their respective crystal structure. In this 936 

section we will identify these proteins and assess their effect on the SESCA basis sets. To this 937 
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end, we calculated a method-independent mean RMSD (  
    ) for each protein as the 938 

average accuracy of six different prediction methods: four SESCA basis sets (DSSP-1, 939 

HBSS-3, DS5-4, DS-dT) as well as PDB2CD and the BestSel reconstruction basis set 940 

(BestSel_der). This method-independent   
     value and the standard deviation (   or 941 

scatter) of the individual RMSDs of the predicted spectra were calculated for the SP175 and 942 

TS8 proteins, and were averaged over the data sets to obtain mean fitting and prediction 943 

accuracies. The method-independent mean RMSD (       
    ) and scatter (    

    ) were 944 

similar for the SP175 (       
     = 3.3 kMRE,     

     = 0.9 kMRE) and TS8 data sets 945 

(         
     = 3.2 kMRE,       

     =1.2 kMRE). We considered proteins difficult to predict, if 946 

their   
     value were larger than the mean RMSD and scatter of the TS8 cross-validation 947 

set combined (         
            

     = 4.4 kMRE).  948 

Figure 8A shows   
     of the calculated spectra for each of the 71 proteins of the 949 

SP175 data set. As can be seen, 12 proteins (annotated in grey) show marked deviations from 950 

the mean prediction accuracy and, hence, were classified as difficult to predict based on their 951 

secondary structure. Closer inspection of these 12 proteins (average   
     ~6.0 kMRE) 952 

shows that in many cases the peak positions and relative peak heights were similar, but the 953 

absolute intensity of the experimental spectra differed significantly from that of the calculated 954 

spectra. 955 

 Therefore, we applied scaling factors to the experimental spectra of all 12 proteins 956 

which minimize the deviation from the calculated spectra. Indeed, as can be seen from Fig. 957 

8B, for eight proteins (marked, magenta) scaling factors between 0.3 and 1.5 improved the 958 

agreement with the calculated spectrum on average to 3.1 kMRE units. The largest 959 

improvement (more than 12 kMRE) was observed for Subtilisin Carlsberg (SP175/67) shown 960 

in Fig. 8C. For the other five hard-to-predict proteins, such as Jacalin (SP175/41) shown in 961 

Fig. 8D, the shape of experimental and calculated spectra differed significantly and a simple 962 
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scaling factor did not yield a good agreement between the two. In addition, when we applied 963 

the same procedure to the TS8 data set, we found that Hemerythrin (TS8/1) was also difficult 964 

to predict (  
                               ), but a scaling factor of 1.3 greatly 965 

improved the RMSD of its predicted spectra (to   
     = 3.3              0.6 kMRE).  966 

To assess how much these outlier proteins affect the accuracy of our CD spectrum 967 

calculations, we removed them from the SP175 data set and recalculated the SESCA basis 968 

sets with the remaining 59 proteins. As shown by the black and dark blue lines in Fig. 9A, the 969 

resulting mean RMSD of the modified reference set improved from 3.3 to 2.7 kMRE units, 970 

whereas the mean prediction accuracy of the basis sets shown in Fig. 9B was reduced slightly 971 

(by 0.03 kMRE) due to changes in the basis spectra of rarely occurring secondary structure 972 

classes. These results demonstrate that the prediction accuracy of our basis sets is robust with 973 

respect to the presence of the hard-to-predict proteins, although the shape of some basis 974 

spectra is sensitive to the changes in the reference set, especially if the average occurrence of 975 

its structural elements is below 1%.  976 

Because the above results suggest that inaccurate normalization of the experimental 977 

spectra may generally limit the accuracy of our CD spectrum calculations, we also applied 978 

scaling factors to the experimental spectra of all proteins in the SP175 and TS8 data sets. As 979 

expected and shown in Fig. 9 (light blue lines), the mean RMSDs improved markedly for 980 

both data sets, from 3.3 to 2.2 and from 3.4 to 2.5 kMRE units, respectively.  981 

These observations suggest that the main source of the normalization problems is the 982 

inaccurately determined soluble protein concentration during the CD measurements. Protein 983 

precipitation and aggregation may both affect the soluble protein concentrations in the 984 

measurement cell, which are difficult to account for experimentally. If the applied scaling 985 

factors indeed indicate errors of the assumed soluble protein concentrations, it would usually 986 
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translate to errors up to 30 % between the assumed and actual protein concentrations, with a 987 

few exceptions as large as 60 % within the SP175 data set. 988 

5.2 The impact of conformational flexibility on model quality 989 

As discussed in Section 4.6, the crystal structure of a protein may differ from its solution 990 

structure both in terms of average structure as well as structure fluctuations and 991 

heterogeneity. We also proposed that these effects may alter the average secondary structure 992 

composition of proteins, and that therefore, the neglect of these fluctuations in our models 993 

reduced the accuracy of our CD spectrum predictions. In this section we test this possibility 994 

by analysing how conformational flexibility affects the average secondary structure of a 995 

model protein and the accuracy of predicted macroscopic observables such as CD spectra and 996 

NMR chemical shifts. 997 

To this aim, we chose a highly flexible protein complex formed by the two disordered 998 

protein domains P53-AD2 and CBP-NCBD. These domains form an ordered complex for 999 

which we obtained three structural models that all describe average structure, but differ in the 1000 

level of the conformational flexibility. The models are based on the P53/CBP complex 1001 

structure determined by NMR spectroscopy and deposited in the protein databank by Lee et 1002 

al. (PDB code 2L14). This model contained a bundle of 20 protein conformations, which 1003 

fulfil the NMR distance restraints in an aqueous solution. For all these structure models, we 1004 

calculated average secondary structure, CD spectra, and NMR chemical shifts, and compared 1005 

them to the respective experimental values.  1006 

The three structural models of the P53/CBP complex to probe the effect of the 1007 

conformational fluctuations are depicted in Fig. 10A. In an ascending order of conformational 1008 

flexibility, the first model was the first conformation of the NMR bundle, with no explicit 1009 

information on conformational fluctuations. This model mimicked the minimum-energy 1010 

conformation of a crystallographic structure („Cryst‟). The second model was the full NMR 1011 
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bundle with 20 conformations, which described conformational fluctuation near the 1012 

minimum-energy structure. The third model was a structural ensemble of 1000 1013 

conformations, obtained from a molecular dynamics (MD) simulation described in Section 1014 

3.1. The MD ensemble explored the conformational dynamics and fluctuations of the system 1015 

further away from the average, to describe the average protein structure in an aqueous 1016 

solution at room temperature.  1017 

First, we analysed the differences in the secondary structure composition of the three 1018 

models. A summary over secondary structure composition of each structural model is shown 1019 

below their cartoon representation in Fig. 10A. As the figure shows, the model Cryst was the 1020 

most structured of the NMR conformations and 49 % of its residues were -helical. In the 1021 

case of the NMR model the termini of domains were more flexible, which lead to a slightly 1022 

lower average helix content of 47 %. Although no -sheets appeared in these models, a low 1023 

percentage amino acids adopted a local conformation typical for an extended -strand at the 1024 

termini of the two protein domains.  1025 

The P53/CBP complex was very dynamic during the MD simulations. The two 1026 

domains remained strongly bound during the simulation, but the conformational fluctuations 1027 

resulted in a 38 % average helix content. In addition, while total -strand content decreased 1028 

slightly in the MD model compared to the NMR bundle, 2.8 % of the residues in the MD 1029 

model was in a regular -strand conformation, and established the hydrogen bonds to form 1030 

two short -sheets which appeared with ~15 % probability in the MD ensemble. These short 1031 

 sheets connected the N-terminus of CBP-NCBD with residues 25-27 of P53-AD2, and the 1032 

two termini P53-AD2.  1033 

In line with our expectations, the added conformational flexbility of the MD ensemble 1034 

indeed changed the average secondary structure composition of the P53/CBP complex by up 1035 

to 15 % compared to the Crys model it was started from. To show that these changes 1036 
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improved the quality of the structure model, we predicted the CD spectrum from all three 1037 

models using several optimized SESCA basis sets (DSSP-1, DS5-4, and DS-dT), and 1038 

compared them with a high-quality synchrotron radition CD spectrum of the P53/CBP 1039 

complex. 1040 

Figure 10B shows a comparison between the measured CD spectrum of the P5/CBP 1041 

complex, and the CD spectra which were predicted from the three structural models by the 1042 

DSSP-1 basis set. The lower average helix content in the MD ensemble was also reflected in 1043 

the predicted CD spectra of this model (red line in Fig. 10B), as it shows a less pronounced 1044 

positive peak at 192 nm, typical for -helical proteins. Comparison of the spectra shows that 1045 

this decreased helix content of the MD ensemble agrees better with the recorded CD 1046 

spectrum (RMSD: 3.1 kMRE), than either the original NMR bundle (RMSD: 5.4 kMRE) or 1047 

the single-conformation model (RMSD: 6.0 kMRE). The RMSD values clearly show that the 1048 

Cryst and NMR models are rather poor representations of the secondary structure, whilst the 1049 

MD ensemble reflects the average structure composition much better. However, the RMSD 1050 

of its predicted spectrum is still not better than that of the average globular protein model 1051 

with no conformational flexibility (3.0  0.6 kMRE). We speculate that this relatively large 1052 

RMSD of MD model is due to the missing slower conformational dynamics of the protein. 1053 

These conformation fluctuations may decrease the average helix content further, but are not 1054 

captured during a 10 s long simulation trajectory. This speculation is also in line with the 1055 

ideal secondary structure composition estimated by BestSel based on the measured CD 1056 

spectrum, which predicted a 29 % average helix content. 1057 

To avoid possible biases from inaccurate normalization, we also applied scaling 1058 

factors to fit the intensity of the experimental spectrum to each of the predicted spectra. The 1059 

scaling factors (1.519, 1.463, and 1.244 for Cryst, NMR and MD, respectively) highlight the 1060 

differences between the shapes of the predicted spectra, but did not change their RMSD 1061 
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order. The MD ensemble reproduced the scaled experimental spectrum most accurately 1062 

(RMSD: 2.4 kMRE), followed by NMR bundle (RMSD: 3.9 kMRE), and the single-1063 

conformation model (RMSD: 4.2 kMRE). Similar trends were obtained, when the CD spectra 1064 

were predicted using other optimized SESCA basis sets - such as DS5-4 and DS-dT - as well, 1065 

underlining the conclusion that the most flexible MD ensemble is best in line with the CD 1066 

spectrum. 1067 

From this trend we conclude that the use of structural ensembles to include protein 1068 

conformational flexibility improves the accuracy of our CD spectrum calculations for the 1069 

P53/CBP complex substantially (by ~3.0 kMRE). This protein complex was chosen because 1070 

dynamics was expected to be important for its average structure, and consequently the impact 1071 

of conformational flexibility on typically less flexible globular proteins is likely to be smaller 1072 

(between 1.0 and 2.0 kMRE), but still significant.  1073 

To assess whether or not inclusion of conformational flexibility generally improves 1074 

not only the accuracy of the calculated CD spectra, but also the quality of the structure model, 1075 

we compared our structural models to the experimental chemical shifts from the original 1076 

NMR measurements (obtained from biological magnetic resonance databank, entry no. 1077 

17073). We computed the backbone chemical shifts (including those for the N, C C, C, HN, 1078 

and H atoms) for the three models using the chemical shift predictor Sparta+ [34]. Figure 1079 

10C shows the comparison between the experimental and calculated C secondary chemical 1080 

shifts. Secondary chemical shift values are corrected for the average random coil chemical 1081 

shift of the amino acid, and therefore indicative of the local protein (secondary) structure. A 1082 

sequence of large positive secondary C shifts indicates a high propensity for -helix in that 1083 

region, whilst a sequence of large negative values shows a preference towards -strands. The 1084 

overall agreement between the measured and predicted chemical shifts was quantified the 1085 

through average RMSD of their secondary chemical shift profiles.  1086 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/279752doi: bioRxiv preprint first posted online Mar. 9, 2018; 

http://dx.doi.org/10.1101/279752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44 

 

The comparison in Fig. 10C also revealed that the RMSD of the MD ensemble 1087 

chemical shift (1.057 ppm) was lower than that of the NMR bundle (1.385 ppm) or the 1088 

single-conformation model (1.419 ppm). This trend is expected, and is also in line with 1089 

RMSD of the predicted CD spectra. The same trends were observed for the average RMSD of 1090 

all backbone chemical shifts as well, which again suggests that our conclusions about the 1091 

effects of conformational flexibility are robust. 1092 

The chemical shifts also provide information on where the secondary structure 1093 

elements are located along the protein sequence. The C chemical shifts predicted from our 1094 

models agree well with the experimental chemical shifts on the position of the helical 1095 

regions, but significantly overestimate the helix propensities, especially for the C-terminal 1096 

helix of CBP-NCBD, and the helical regions in P53-AD2. These regions are also the ones 1097 

where the average secondary structure composition is considerably less helical in the MD 1098 

ensemble than the other two models. Additionally, the residues of the short -sheets observed 1099 

only in the MD model possess some of the largest negative C secondary chemical shifts of 1100 

the experimental profile, suggesting that presence of these -sheets also contribute to the 1101 

lower average RMSD of the MD model. 1102 

In summary, both the predicted CD spectra and chemical shifts suggested a clear 1103 

trend: the MD ensemble model which includes conformation dynamics in aqueous solutions 1104 

most accurately reproduced all considered experimental observables. In contrast, the crystal 1105 

model, which ignores structure fluctuations, is the least accurate. The example of the 1106 

P53/CBP complex presented above strongly supports our previous conclusions, that including 1107 

conformational flexibility improves our structural models, which in turn allow more accurate 1108 

predictions of CD spectra as well as other experimental observables (such as NMR chemical 1109 

shifts).  1110 
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5.3 Side chain CD spectrum calculations 1111 

Comparison of the best achievable prediction accuracy (Section 4.1) with the much lower 1112 

accuracy achievable based solely on the secondary structure composition (Section 4.2) 1113 

suggests that including additional information should improve the CD spectrum calculations. 1114 

Amino acid side chain groups are the second most common type of chromophores in 1115 

proteins. Side chain contributions are also considered as optional corrections in DichroCalc, 1116 

and some deconvolution basis sets have side chain related basis spectra [5]. Here, we will 1117 

therefore attempt to determine the contribution of side chain groups to the protein CD spectra 1118 

in the far-UV range, and include those contributions into the SESCA scheme to improve the 1119 

prediction accuracy of our method. 1120 

To determine how much the side chains contribute to the CD spectra of the SP175 1121 

reference set, we analysed the correlations between the principal components describing the 1122 

shape of the CD spectra (see Section 2.6) and the occurrence of amino acids and secondary 1123 

structure elements in the  reference proteins. To this aim, we calculated the Pearson 1124 

correlation coefficients between the projections of the first ten PC vectors (details in Section 1125 

3.5), the amino acid composition of the proteins, as well as the secondary structure 1126 

compositions determined by the BestSel, DISICL, DSSP and HBSS algorithms. 1127 

Table 1 shows those structural properties which correlate most strongly with the 1128 

principal components (PCs) of the CD spectra. As can be seen, the first three principal 1129 

components involve mainly secondary structure elements: PC 1  which accounts for over 1130 

80 % of the spectral variance of the reference set  was very strongly correlated (Rpearson 1131 

~0.9) to the presence of -helices in the protein structure, whilst PC 2 and 3 are moderately 1132 

correlated to -strand and turn structures. However, PCs 4, 6, 9, and 10 correlate more 1133 

strongly with the presence of amino acids than secondary structure elements. Since these 1134 

principal components describe ~3 % of the spectral variance, one would expect a somewhat 1135 
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smaller but still notable contribution from side chain groups. In addition, the most commonly 1136 

considered correction to CD spectra are associated with the aromatic side chains of 1137 

tryptophan, phenyl-alanine, and tyrosine because these amino acids have the strongest CD 1138 

signals in isolation. Our analysis also suggests that amino acid side chains with weaker CD 1139 

activity, particularly arginine, histidine, cysteine and serine, may also contribute significantly 1140 

to the CD spectra.  1141 

To also include the amino acid side chains into our SESCA predictions, we assumed 1142 

that their average contribution is not strongly affected by couplings to the local structure of 1143 

the protein backbone, or by the adjacent side chains. This assumption allowed us to assign 1144 

one SESCA basis spectrum to each side chain, and to determine the average contribution of 1145 

side chains from the amino acid composition of the protein sequence.  1146 

Our first attempt was to use measured CD spectra of isolated natural amino acids to 1147 

estimate the contribution of amino acid side chains. The amino acid CD spectra (except for 1148 

glycine) were measured by Nisihno et al [35]. at neutral, acidic and basic pH. We used the 1149 

CD spectra at neutral pH (7.0) shown in Fig. 11A as a basis set to calculate side chain 1150 

dependent baseline corrections similarly to eq. 1, with weighing coefficients for the basis 1151 

spectra proportional to the fraction of amino acids in the protein sequence. The calculated 1152 

baselines were then subtracted from the CD spectra of proteins in the SP175 and TS8 data 1153 

sets, and the side-chain corrected data sets were used to derive and cross-validate basis sets 1154 

based on the “pure” secondary structure contributions. This procedure, however, resulted in 1155 

basis sets with lower prediction accuracies in all cases, when they were compared to non-1156 

corrected basis sets with the same assignment. This observation suggests that the average 1157 

contribution of side chain groups may differ significantly from the CD signal of isolated 1158 

amino acid when they are attached to a polypeptide chain in a protein. 1159 
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To test this hypothesis, and to obtain improved side chain signals more representative 1160 

for a polypeptide environment, we prepared a new reference set of twenty short tri-peptides 1161 

(designated as the GXG20 set), each consisting of the same capped backbone, and one of 1162 

twenty side chain groups („X‟) of the natural amino acids.  1163 

As shown in Fig. S19, the CD spectra of the GXG20 peptide set differ substantially 1164 

from one another, despite the fact that the peptides were too short to form the hydrogen bonds 1165 

required for stable -helices and -sheets, and therefore mostly adopted a random coil 1166 

structure. We therefore assumed that the spectra of these peptides are largely defined by their 1167 

side chain group, and although the spectra differed considerably from the CD spectra shown 1168 

in Fig. 11A, the influence of the phenyl-alanine tyrosine, tryptophan, and histidine side 1169 

chains is indeed remarkably strong in both cases. The GXG20 spectra indicate that aromatic 1170 

side groups  and particularly phenyl-alanine and tyrosine  have strong positive 1171 

contributions to the CD spectra, which differs from the signals of other side chains. The CD 1172 

spectrum of the GAG peptide, on the other hand, shows the largest negative peak at ~195 nm, 1173 

similar to CD signal that is associated with a random coil protein, whereas the CD signal of 1174 

the GGG peptide – in the absence of a chirality centre – is very weak. 1175 

We derived the average contribution of side chain groups to the CD signal of proteins 1176 

as described in Section 3.6 from a new mixed reference set (MP79), which included 59 1177 

globular proteins of the SP175 reference set and the 20 tri-peptides of the GXG20 set. The 1178 

resulting “pure” side chain basis spectra shown in Fig. 11B are very similar for the same 1179 

amino acid regardless which secondary structure basis set was used to derive them. The pure 1180 

basis spectra are significantly larger than the CD spectra of the independent amino acids (Fig 1181 

11A), and confirm the large contributions of the phenyl-alanine and tyrosine side chains. In 1182 

addition, the basis spectra show moderate contributions from the amino acid side groups of 1183 

asparagine, aspartate, glutamate, histidine, leucine, serine, and tryptophan, while the side 1184 
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chains of other amino acids such as glycine, valine, isoleucine and threonine had weaker CD 1185 

signals. 1186 

Finally, we quantified the effects of the derived side chain contributions on the 1187 

prediction accuracy of SESCA basis sets. Using the derived side chain contributions as our 1188 

basis set, the side chain dependent baselines were calculated once again and subtracted from 1189 

CD spectra of the SP175 and TS8 data sets. Then, the basis spectra of our optimized basis 1190 

sets were recalculated and the accuracy of the basis sets were cross-validated using the side-1191 

chain corrected CD spectra. Including the side chain contributions of the twenty amino acids 1192 

now resulted in small improvement in the prediction accuracy (RMSDcross) on the order of 1193 

~0.05 kMRE units, compared to the secondary-structure-only basis sets. This improvement is 1194 

almost an order of magnitude smaller than expected, based on our correlation analysis. This 1195 

result is particularly surprising in the light of the large contributions of the individual amino 1196 

acid side chains to the protein CD spectra. In the following section we will therefore ask if 1197 

and how the contributions of side chains to the CD spectra can be described even more 1198 

accurately. 1199 

5.4 Combining side chain and backbone contribution 1200 

To that aim we hypothesized that one of the reasons for the limited success might be over-1201 

fitting. Indeed, we used twenty independent basis spectra to describe the contribution of side 1202 

chain groups to the protein CD spectra, whilst the PCA analysis (Section 5.3) showed that 1203 

already four basis spectra represent these 20 contributions quite accurately. To avoid such 1204 

over-fitting, we applied optimization schemes to obtain basis spectra for both the secondary 1205 

structure of the protein backbone and side-chain contributions, and then combined them in an 1206 

optimal “mixed” basis set.  1207 

To this aim, we used the hard optimization scheme in a three-stage process (described 1208 

in Section 3.6) to reduce the number of required basis spectra and – hopefully – to improve 1209 
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the prediction accuracy. In this protocol, the side chain basis spectra were optimized first, 1210 

followed by an independent optimization of secondary structure-based backbone basis spectra 1211 

(including the secondary structure assignments). The resulting optimized basis sets (examples 1212 

shown in Figs. S20-S23) typically included 3 - 6 backbone basis spectra and 4 - 7 side chain 1213 

basis spectra, with one or two basis spectra representing the positive CD signals of the 1214 

aromatic residues.  1215 

Figure 12A compares the average RMSDs achieved by optimized basis sets with and 1216 

without side chain contributions. The comparison shows small improvements (>0.2 kMRE) 1217 

in the quality of the calculated spectra for both the cross-validation (TS8) and the globular 1218 

reference (SP175) proteins. This improvement persisted when both side-chain corrections and 1219 

scaling (described in section 5.1) were applied, further reducing RMSDset for cross-validation 1220 

proteins from 2.6 kMRE to 2.4 kMRE units. The relatively small influence of the side groups 1221 

is now more in line with the PCA analysis of the SP175 spectra (Fig. 4 and Table 1), which 1222 

suggests that over 95% of the spectral variance is mainly associated with the backbone 1223 

secondary structure. On the other hand, the RMSDset calculated for the GXG20 peptides 1224 

shows significant improvements from side chain corrections (from > 5.5 kMRE to < 3.5 1225 

kMRE), because their CD spectrum is largely defined by the side chain signals.  1226 

Figures 12B and 12C show the backbone and side chain basis spectra of an optimized 1227 

basis set (DSSP-dT1SC), respectively. Clearly, the strength of the CD signals is comparable 1228 

between the basis spectra of side chain groups and secondary structure elements. This 1229 

observation is again unexpected, as the influence of backbone basis spectra on the accuracy 1230 

of CD spectrum predictions is twentyfold larger. To explain the smaller impact of the side 1231 

chain basis spectra on globular proteins, we calculated the total contribution of the side chain 1232 

basis spectra to the calculated CD spectra for each of the SP175 proteins (Fig. 12D). These 1233 

contributions typically vary between -5 and +5 kMRE units, depending on the protein and the 1234 
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wavelength, thus amounted to approximately one tenth of the total contribution from the 1235 

protein backbone. 1236 

Closer analysis revealed mainly three reasons that combine to produce this 1237 

unexpected outcome. First, the side chain basis spectra have opposite signs and therefore 1238 

partially cancel out in the total side-chain contributions. Second, the amino acid compositions 1239 

of the globular proteins in our reference sets are rather similar, which further decrease the 1240 

variance of the already small total contributions. Third, the secondary structure contents 1241 

correlate with the amino acid composition (in our reference set, Pearson correlations 1242 

coefficients between 0.2 and 0.6 were calculated) such that part of the side chain information 1243 

is already encoded within the secondary structure information.  1244 

One possible reason for the cancellation of side chain basis spectra may be that the 1245 

side chain contributions strongly depend on their environment, and an averaged side-chain 1246 

signal cannot accurately represent the actual contribution of buried and solvent accessible 1247 

side chains or side chains in different protonation states. Accordingly, one would expect more 1248 

accurate CD spectrum predictions, if the different relevant side chain signals were identified 1249 

and separated from each other. This possibility, however, will not be further explored in this 1250 

study.  1251 

As a side note, the correlation between the amino acid composition and the backbone 1252 

secondary structure can be exploited to predict the CD spectrum even in the absence of a 1253 

structural model. Relying on the strong amino acid preferences of the secondary structure 1254 

elements, we used the hard optimization scheme to derive “amino-acid only” basis sets, 1255 

which predict the CD spectra of proteins using only the amino acid composition of their 1256 

sequence. These basis sets (marked by the type “Seq” in Table S8) achieved fitting accuracies 1257 

between 3.9 - 4.7 kMRE units on the SP175 reference proteins and their prediction accuracies 1258 

on the TS8 proteins amounted to 5.1 - 6.2 kMRE depending on the amino acid grouping. 1259 
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Although the accuracy of structure-based spectrum predictions is better as expected, the 1260 

RMSDcrosss of sequence-based basis sets shows they retain some predictive power. 1261 

The above mentioned three factors combined such that the predictive power of our 1262 

mixed basis sets improved only moderately beyond the accuracy achieved by using 1263 

secondary-structure exclusive basis sets. Of course, the limited impact of side chain 1264 

contributions to CD spectra of globular proteins also underlines the robustness of the 1265 

secondary-structure based SESCA predictions. Including the side chain corrections will 1266 

certainly be helpful in certain cases, but in our view not essential for the accurate prediction 1267 

of most globular protein CD spectra. 1268 

In contrast, the example of the GXG20 peptides also suggests that for small or 1269 

disordered peptides, mixed basis sets  including the side chain contributions  can be pivotal 1270 

for the accurate prediction of their CD spectra. This may be particularly true for proteins with 1271 

unusual amino acid compositions such as the low complexity regions and sequence repeats 1272 

often found in intrinsically disordered proteins. Because disordered proteins rarely form 1273 

stable -helices or -strands, the backbone contributions to their CD spectra are less 1274 

pronounced than for globular proteins. Moreover, most of the amino acid side chains in IDPs 1275 

are solvent accessible and, therefore, their average CD signals may more closely resemble 1276 

those of the GXG20 peptides. 1277 

Conclusions 1278 

In this study we presented a new semi-empirical spectrum calculation approach (SESCA) to 1279 

predict the electronic circular dichroism (CD) spectra of globular proteins from their model 1280 

structures. We derived basis spectrum sets which can be used to predict the CD spectrum of a 1281 

chosen protein from the secondary structure composition determined by various structure 1282 

classification algorithms (including DSSP, DISICL, and HbSS), to render the method more 1283 

versatile and broadly applicable.  1284 
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The basis spectra were derived and optimized using a reference set consisting of 71 1285 

globular proteins; then the prediction accuracy of the basis sets was determined by cross-1286 

validation on a second, non-overlapping set of eight selected proteins, covering a broad range 1287 

of secondary structure contents. The experimental CD spectra of these proteins were 1288 

predicted with an average root-mean-squared deviation (RMSD) as small as of 3.0  0.6 x 1289 

10
3
 degreecm

2
/dmol in mean residue ellipticity units or 0.9  0.2 M

-1
cm

-1
 in  units. This 1290 

deviation is on average 50 % smaller than what is achieved by the best currently available 1291 

algorithm (PDB2CD average deviation ~4.7 x 10
3
 degreecm

2
/dmol).  1292 

Our analysis of the optimized basis sets have shown that the accuracy of the CD 1293 

predictions does not depend strongly on the underlying secondary structure classification 1294 

method. In contrast, is strongly dependent on the number basis spectra in the basis set. Our 1295 

results suggest that 3 - 8 basis spectra which describe the backbone structure of the protein 1296 

provide the optimal trade-off between model complexity and possible over-fitting to our 1297 

reference data, and thus allow the most accurate prediction of the protein CD spectrum.  1298 

We attempted to further improve the accuracy of SESCA predictions by including 1299 

basis spectra into our basis sets which reflect the average contribution amino acid side chain 1300 

groups. Unexpectedly, for globular proteins the inclusion of side chain information did not 1301 

markedly improve the accuracy of the predicted CD spectra. This finding is particularly 1302 

surprising because the side chain CD signals, in the context of the proteins and peptides 1303 

investigated, were significantly larger than the CD spectra of the isolated amino acids. 1304 

Apparently, prediction methods based purely on the secondary structure are rather robust 1305 

against the variation of side chain contributions, due to the cancellation of side chain signals, 1306 

similarity of the amino acid composition, and correlations between the presence of amino 1307 

acids and the structure of the protein backbone. In summary, although side chain 1308 

contributions can be neglected for the CD calculation of the typical globular protein, we 1309 
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expect markedly improve the spectrum prediction accuracy for short peptides, and possibly 1310 

disordered proteins. For these molecules the inclusion of 4 - 7 side chain basis spectra may 1311 

provide the optimum of spectrum prediction accuracy.  1312 

Analysis of deviations between calculated and experimental spectra of the reference 1313 

proteins showed that ~15 % of the predicted globular protein CD spectra agree rather poorly 1314 

with the measured spectra.  The main source of these deviations seems to be the uncertainty 1315 

in the intensity of the experimental CD signal, most likely due to the often challenging 1316 

concentration-dependent normalization of the CD spectra. By scaling the experimental CD 1317 

spectra, the average RMSD of both the TS8 cross-validation set and the SP175 reference 1318 

protein sets were reduced to below 2.6 x 10
3
 degreecm

2
/dmol. Although this scaling had a 1319 

large impact on the RMSD of individual ”hard-to-predict” proteins, SESCA basis sets turned 1320 

out to be robust to the presence of these proteins in the reference set.  1321 

Due to the simple secondary structure calculations and the pre-calculation of basis 1322 

sets, SESCA can be efficiently applied to rather large structural ensembles. This allows us to 1323 

account for the conformational flexibility of a protein when calculating its CD spectrum. 1324 

Indeed, for the test case studied here, including conformational flexibility of the protein, as 1325 

obtained from an extended molecular dynamics trajectory, considerably improved the 1326 

accuracy of the calculated CD spectrum. Whether this encouraging result is true in general is 1327 

an interesting question which will be addressed in a separate study.  1328 

By exploiting the high sensitivity of CD spectra to the average secondary structure of 1329 

proteins, SESCA basis sets can be used for evaluating and improving protein structural 1330 

models in biology and biophysics. As our example of the P53/CBP complex demonstrated, 1331 

the accuracy of CD predictions, the inclusion of conformational flexibility, and the robustness 1332 

of the secondary structure based CD predictions enables SESCA basis sets to target not only 1333 
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the average structures of globular proteins, but also their structural flexibility and 1334 

heterogeneity.  1335 

Furthermore, by accounting for both flexibility and side chain contributions, SESCA 1336 

basis sets may be particularly helpful in modelling intrinsically disordered protein (IDP) 1337 

ensembles, as they can provide information about the transient secondary structure patterns of 1338 

these molecules. These biologically highly relevant molecules are notoriously hard to 1339 

characterize, and also the modelling of IDP ensembles based on experimental input is 1340 

particularly challenging. 1341 

A python implementation of our semi-empirical CD calculation method SESCA, as 1342 

well as basis sets and tools compatible with the secondary structure classification algorithms 1343 

DISICL and DSSP are publicly available online: http://www.mpibpc.mpg.de/sesca. 1344 
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Figures: 1447 

 1448 

 1449 

 1450 

 1451 
Figure 1: Schemes to compare a protein structure with its circular dichroism spectrum. Green 1452 

rectangles represent experimental data, brown, blue, and purple fields are related to spectrum 1453 

deconvolution, semi-empirical- and ab initio spectrum calculation, respectively. During 1454 

spectrum deconvolution (panel A), the secondary structure is estimated from the CD 1455 

spectrum and calculated from the structure independently, then compared on the secondary 1456 

structure level. In contrast, during the semi empirical (Panel B) and ab initio (Panel C) 1457 

prediction methods a CD spectrum is computed from the structure and compared directly to 1458 

the experimentally observable spectrum.  1459 

 1460 

 1461 
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 1463 

 1464 

 1465 
Figure 2: Semi-empirical CD spectrum calculation scheme. Panel A shows the cartoon 1466 

representation and secondary structure composition of Lysozyme (pdb code: 4lzt), coloured 1467 

according to the structural elements of the simplified DISICL library. The Secondary 1468 

structure information is translated into a theoretical CD spectrum by a basis set (Map_DS3-1469 

1), consisting of an assignment matrix (panel B) and a set of basis spectra (panel C). Panel D 1470 

shows the CD spectrum (dashed line) calculated as the weighted average of basis spectra. The 1471 

secondary structure composition and assignment matrix determine the basis spectrum 1472 

coefficients (Ci, on panel D) for weighing the basis spectra. The deviation between the 1473 

experimental (solid line in panel D) and calculated (dashed line) CD spectrum (R:) is shown 1474 

in mean residue ellipticity units (10
3
 degree*cm

2
/dmol). The table displays the ID (k) and 1475 

abbreviation of the secondary structure element, the name and ID (i) of the basis spectra, and 1476 

the assignments matrix of structure coefficients (  ) connecting them. The basis spectra are 1477 

shown as coloured lines in Panel C, and the same colour coding is used in Panel D to display 1478 

their coefficients. 1479 

 1480 

1481 
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 1482 

 1483 

 1484 
Figure 3: Basis set optimization and assessment schemes. The basis sets (shown in red) are 1485 

derived and optimized either though the hard or the soft optimization approach, using the 1486 

same reference set of proteins, including the secondary structure information (   ) and CD 1487 

spectra (  
   

   ) of each protein. During the hard optimization (panel A) the reference set 1488 

was divided into a training set (dark green) and an evaluation set (light green) to perform an 1489 

“internal” cross validation during the search for optimal assignments. The undivided 1490 

reference set (shown as grey boxes and arrows) was used during the soft optimization (panel 1491 

B) as well as at the end of the hard optimization to calculate basis spectra for the best 1492 

assignments. The same undivided reference set was used to assess the fitting accuracy (panel 1493 

D) of the optimized basis set (regardless of the optimization method), where CD spectra 1494 

calculated from the structural information were compared with the experimental CD spectra 1495 

of the reference proteins. In contrast, during the assessment of the prediction accuracy (panel 1496 

C), a different set of proteins (shown in dark red) were used for cross-validating the 1497 

predictive power of the optimized basis sets. 1498 

 1499 
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 1502 

 1503 

 1504 
Figure 4: Principal component analysis of the SP175 protein CD spectra. A) graphical 1505 

representation of the first 10 principal component vectors sorted by their contribution to the 1506 

spectral variance. B) Eigenvalue, contribution to variance, and cumulative contribution to the 1507 

spectral variance for the same PC vectors. C) Reconstruction of the CD spectrum of -1508 

amylase (Aamy) by its projection on the first 0-10 PC vectors. The original spectrum is 1509 

shown in black, the average spectrum of SP 175 data set is shown in brown. The 1510 

reconstructed spectra are shown as coloured dashed lines. D) RMSD between the 1511 

reconstruction of three selected proteins  -amylase, carbonic anhydrase I (Cah1), and 1512 

Concanavalin A (Cona)  and their original CD spectrum as function of PC vectors used. The 1513 

column SP175 av. shows average RMSD for all 71 proteins in the data set. 1514 

 1515 
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 1517 

 1518 
 1519 

Figure 5: Basis set performance on globular proteins. The panels show the basis set accuracy 1520 

for A) the reference set for globular proteins (SP175), and B) a small independent set of 1521 

globular proteins used for cross-validation (TS8). The average deviation between the CD 1522 

spectra calculated by a basis set and experimental CD spectra (RMSD) is shown as the 1523 

function of the number of basis spectra in the respective basis set. Series of basis sets derived 1524 

using the soft basis set optimization approach are shown as solid lines coloured according to 1525 

the underlying secondary structure classification method. Basis sets derived using the hard 1526 

optimization approach are shown as crosses also coloured according to the underlying 1527 

secondary structure classification. The average deviation of published CD prediction 1528 

algorithms DichroCalc and P2CD are shown as red and brown horizontal dashed lines, 1529 

respectively. The highest limit of fitting accuracy defined by PCA basis sets is shown as a 1530 

black dotted line in panel A. The numbers in brackets behind the secondary structutre 1531 

classification methods (DSSP, DS_sim, DS_det, HbSS, HbSS_ext) denote the number 1532 

structural elements of the classification. 1533 
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 1536 

 1537 
Figure 6: Basis spectrum sets, experimental and calculated CD spectra of selected proteins. 1538 

The basis spectra of three high-accuracy basis sets with nine, six, and four components is 1539 

shown in panels A - C, respectively. Panels D - F show the experimental (solid black line) 1540 

and calculated CD spectra of human serum albumin, lysozyme, and tumor necrosis factor , 1541 

respectively. The accuracy of the CD spectra calculated from these  basis sets  was compared 1542 

with  spectra from two competing algorithms Dichrocalc and PDB2CD. The average RMSD 1543 

(R:) from the experimental spectrum is displayed in the corresponding colour. All RMSD 1544 

values are in 10
3
 deg*cm

2
/dmol (kMRE) units.  1545 
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 1548 

 1549 
Figure 7: Linear correlations between the deviation of the calculated and expeirmental CD 1550 

spectra and the deviation from the ideal secondary structure composition. The table displays 1551 

the slope (m) and the square of the Pearson correlation coeffcient (R
2
) of the fitted linear 1552 

functions that connect the deviation from the experimental CD spectra (RMSD) to the 1553 

deviation in secondary structure (SS) for -helix to coil (A->C), -helix to -strand (A->B) 1554 

and -strand to coil (B->C) type deviations. A) The linear fitting functions obtained from 1555 

systematically altering the secondary structure composition of three selected proteins. B) The 1556 

RMSD distribution of predicted spectra of the SP175 reference proteins, calculated with the 1557 

SESCA basis set DS-dT. The vertical lines on the plot indicate the average RMSD (solid) and 1558 

the standard deviation (dashed) of the predicted spectra for the TS8 cross validation set. The 1559 

right side of the Table was used to estimate the maximal deviation in the secondary structure 1560 

composition between the crystal structure and the ideal solution structure of the protein, 1561 

based on the RMSD of its predicted spectrum. 1562 
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 1565 

 1566 
 1567 

Figure 8: Analysis of the spectrum prediction quality for the proteins of the SP175 data set. 1568 

A) Mean deviation (RMSD) between the experimental CD spectra and spectra calculated by 1569 

six different CD prediction methods (described Section 5.3)). The grey line in the Figure 1570 

represents the average RMSD of the TS8 cross-validation set, and the dashed lines show 1571 

standard deviation from that mean of the six RMSDs. Twelve hard-to-predict proteins with 1572 

unusually large mean RMSD are highlighted by grey arrows. B) Mean RMSD of twelve 1573 

hard-to predict proteins before (RMSDexp) and after (RMSDfit) the experimental spectra were 1574 

rescaled, as well as the  scaling factors yielding the lowest RMSD. Proteins for which scaling 1575 

could yield a significantly better agreement with the calculated spectra are marked with 1576 

magenta. C) Example protein 1: significant RMSD improvement by scaling the experimental 1577 

CD spectrum and D) Example protein 2:  where scaling could not improve the RMSD 1578 

significantly.  For panels C and D the experimental CD spectrum is shown as a solid black 1579 

line, the rescaled experimental spectrum is shown as a dotted black line, and the spectrum 1580 

calculated by the basis set DS5-4 is shown as a red dashed line. The name and index number 1581 

of the protein is shown on the top of the panel, while the unscaled (R_exp) and scaled (R_fit) 1582 

RMSD of the DS5-4 spectrum in kMRE units is shown on the bottom. 1583 
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 1586 

 1587 
Figure 9: Changes in the mean fitting accuracy (Panel A) and prediction accuracy (Panel B). 1588 

The method independent mean RMSDs (shown as dashed lines) for the SP175 and TS8 data 1589 

sets were calculated as the average RMSDset of six spectrum prediction methods (crosses) 1590 

including PDB2CD, four optimized SESCA basis sets of different sizes and underlying 1591 

classification schemes (DS-dT, DSSP-1, HBSS-3 and DS5-4), and the BestSel reconstruction 1592 

basis set. The accuracy calculated for the original unmodified data sets are shown in black, 1593 

whilst the accuracies calculated after the removal of hard-to-predict proteins from the SP175 1594 

reference set and recalculation of the SESCA basis spectra are shown in dark blue. The cyan 1595 

accuracies were obtained by applying scaling factors to the experimental spectra of both data 1596 

sets to account for normalization problems. 1597 
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* 1599 

 1600 

 1601 
Figure 10: The impact of conformational flexibility: Comparison between measured 1602 

experimental observables and the same observables calculated from three structural models 1603 

including different levels of protein dynamics. Panel A shows the three structural models: one 1604 

model with no conformational flexibility, consisting of a single structure (Cryst), one model 1605 

with limited flexibility, consisting of a bundle 20 structures from NMR (NMR, PDB code 1606 

2L14), and one highly flexible model with 1000 structures obtained from an MD simulation 1607 

(MD, 100 are shown). The line at bottom of panel A shows the average secondary structure 1608 

composition of the models where A, B, and C abbreviates fractions of -helices, -strands, 1609 

Coil structures, respectively. Panels B and C depict the comparison for the calculated CD 1610 

spectra and C secondary chemical shifts of the P53-CBP complex, respectively. The 1611 

measured experimental observables on panels B and C are shown as black solid lines, 1612 

calculated observables are shown in different colours according to the underlying model. The 1613 

RMSD (R: ) from the experimental observable is also shown in the corresponding colour.  1614 
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 1618 

 1619 
Figure 11: Circular dichroism contribution of amino acid side chains. A) Experimentally 1620 

measured CD spectra for natural amino acids at pH = 7.0 adapted from Nishino et. al. [35]. 1621 

B) Calculated side chain contributions for each amino acid side chain, derived from the CD 1622 

spectra of 59 globular proteins and the 20 Ac-GXG-NH2 peptides. The (basis) spectra are 1623 

colour coded according to the amino acid side chain groups they represent. 1624 
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 1629 
Figure 12: Comparison of backbone and side chain contributions. A) Comparison between 1630 

selected basis sets with and without side chain corrections. The legends denote the name of 1631 

the basis set followed by the number of backbone and side chain basis spectra in brackets. 1632 

The accuracy (RMSDset) of the basis sets achieved on the globular protein (GP59) and short 1633 

peptide (GXG20) sub-sets of their training set, as well as the accuracy for the full SP175 1634 

reference set and the TS8 cross-validation set. B) Backbone and C) side chain basis spectra of 1635 

the basis set DSSP-dT1SC. The amino acids assigned to the side chain basis spectra are 1636 

abbriviated with on-letter codes. D) Combined side chain contributions of the basis set DSSP-1637 

dT1SC for the SP175 reference set. The scale of side chain contributions was changed for 1638 

better visibility. 1639 
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Tables: 1642 
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Table 1: Correlation analysis of the spectral components. The six best correlated structural 1646 

properties are listed for each of the first principal components of the SP175 CD spectra. The 1647 

table displays the abbreviated code of the structural property (Prop), the Pearson correlation 1648 

score (Corr.) between the projections of the PC vector, and the coefficients of the structural 1649 

property (the fraction of secondary structure element or amino acid in a protein), the type and 1650 

a short description of the structural property. The type (in parenthesis) defines the source 1651 

algorithm for secondary structure elements (DSSP, HbSS, DISICL or BestSel algorithms) 1652 

and (AA) for amino acids. The short description shows if the secondary structure element is 1653 

either associated with -helix, irregular helix (Helix), -strand or turn structures 1654 

PC1 Corr. Prop Desc. PC6 Corr. Prop Desc. 

1 0.921 Hel1 (Best)  -helix 1 0.201 SER (AA) Amino A. 

2 0.906 Hel1 (SEL)  -helix 2 0.163 CYS (AA) Amino A. 

3 0.9 ALH (DISICL)  -helix 3 0.138 RHA (HbSS) Strand 

4 0.898 Hel (DISICL)  -helix 4 0.157 Hel2 (Best) Helix 

5 0.892 4H (DSSP)  -helix 5 0.126 Hel1 (SEL)  -helix 

6 0.891 4H (HbSS)  -helix 6 0.116 ALH (DISICL)  -helix 

PC2 Corr. Prop Desc. PC7 Corr. Prop Desc. 

1 0.532 EBS (DISICL)  -strand 1 0.285 RHP (HbSS)  -strand 

2 0.513 Anti1 (BEST)  -strand 2 0.274 BSP (HbSS)  -strand 

3 0.444 NBA (HbSS)  -strand 3 0.25 Para (Best)  -strand 

4 0.418 Anti2 (Best)  -strand 4 0.23 Turn (Sel) Turn 

5 0.395 BS (HbSS)  -strand 5 0.205 Bend (DSSP) Turn 

6 0.352 HIS (AA) Amino A. 6 0.169 GXT (DISICL) Turn 

PC3 Corr. Prop Desc. PC8 Corr. Prop Desc. 

1 0.31 BS (HbSS)  -strand 1 0.386 3H (DSSP) Helix 

2 0.299 SCH (DISICL) Turn 2 0.344 3H (HbSS) Helix 

3 0.254 NBS (DISICL)  -strand 3 0.3 5H (HbSS) Helix 

4 0.23 Bend (DSSP) Turn 4 0.273 HC (DISICL) Turn 

5 0.216 NBA (HbSS)  -strand 5 0.253 MET (AA) Amino A. 

6 0.205 THR (AA) Amino A. 6 0.139 Other (Best) Turn 

PC4 Corr. Prop Desc. PC9 Corr. Prop Desc. 

1 0.471 ARG (AA) Amino A. 1 0.223  ASP (AA) Amino A. 

2 0.397 LHH (DISICL) Turn 2 0.202 3H(HbSS)  Helix. 

3 0.306 Anti2 (Best)  -strand 3 0.192 GLU (AA) Amino A 

4 0.293 NBA (HbSS)  -strand 4 0.152 ILE (AA) Amino A. 

5 0.299 SCH (DISICL) Turn 5 0.152 3H (DSSP) Helix 

6 0.272 LHT (DISICL) Turn 6 0.126 PIH (DISICL) Helix 

PC5 Corr. Prop Desc. PC10 Corr. Prop Desc. 

1 0.394 3HT( DISICL) Helix 1 0.214 PHE (AA) Amino A. 

2 0.376 3H (DISICL) Helix 2 0.15 TRP (AA) Amino A. 

3 0.33 3H (DSSP) Helix 3 0.14 SER (AA) Amino A. 

4 0.321 3H (HbSS) Helix 4 0.133 RHA (HbSS)  -strand 

5 0.296 Cys (AA) Amino A. 5 0.116 Bend (DSSP) Turn 

6 0.294 Hel2 (SEL) Helix 6 0.102 LHT (DISICL) Turn 
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