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Supplementary Information: 

S1 Calculation of basis spectra  
The basis spectra Bi() are derived using eq. 1 independently for each available wavelength  

from a sufficiently large training set of protein structures and their CD-spectra Sj(). Because 

typically the number of basis spectra F is smaller than the number of available training spectra N 

(here, F=1…20 and N=64), eq. 1 represents an over-determined linear equation system. The 

basis spectra that minimize the average RMSD between calculated and measured CD spectra 

according to eq. 2, where   
    ()   ∑       ()

 
   , are obtained via  

 

 ()   (    )       ().   (S1) 

 

We have used matrix notation for the coefficients C = {Cij} and the vector notation for the basis 

spectra b()={Bi()}, and CD spectra s()={Sj()}, respectively. Figures S26-S30 show basis 

spectrum sets that were derived by determining the basis spectra for each secondary structure 

(SS) element in structure classification protocol. This was done by taking the fraction of amino 

acids in the protein classified to be in structural element i as Cij and applying eq. S1 on the far 

UV (175-269 nm) wavelength range sampled in 1 nm steps, for all 64 proteins in the TR64 set 

(see section 3.1). 

 

S2 Basis set determination: the ‘Hard approach’ 
For the hard basis set optimization approach (Fig. S1A), our aim was to find basis spectrum sets 

that provide the most accurate prediction of protein CD spectra. To trade-off some of the fitting 

accuracy for reduced overfitting, we applied a Monte Carlo (MC) approach with a cross-

validation, during the search for the optimal assignments and number of basis spectra. To this 

aim, the protein reference set was divided into two subsets. The larger subset (training set) was 

used to derive the basis spectra, and the basis set accuracy was evaluated by the average RMSD  

of the calculated CD spectra of the smaller subset (evaluation set) according to eq. 2. During 

each optimization cycle, random changes were applied to the assignment matrix, the 

corresponding basis spectra for the given assignment were calculated (described in Section S1), 

and the new assignment was accepted or rejected based on its effect on the obtained basis set 

accuracy of the evaluation set (RMSDeval). At the end of the optimization, the five assignments 

with the lowest RMSDeval were recorded and the complete reference set was used to fit the basis 

spectra and obtain the final optimized basis sets.  

We imposed two constraints on the assignment factors of the hard basis sets: 1) 

∑    
 
     , and 2)     *   +. These constraints ensured that the resulting basis spectra are 

normalized, that there are no overlaps between the structural classes the basis spectra represent, 

and significantly reduced the search space of the MC algorithm.  Initially, the hard optimization 

procedures were started from a naïve assignment (F=K) for each classification protocol, in which 

case A is the identity matrix ( ki is 1 if i=j and 0 otherwise). However, the basis sets resulting 

from the first optimization were used as initial guesses for subsequent optimization rounds until 

convergence was reached both for the number of basis spectra and RMSDeval. 
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Figure S1: Basis set optimization and assessment schemes. The basis sets (shown in red) are 

derived and optimized either though the hard or the soft optimization approach, using the same 

reference set of proteins, including the SS information (   ) and CD spectra (  
   
()) of each 

protein. During the hard optimization (panel A) the reference set was divided into a training set 

(dark green) and an evaluation set (light green) to perform an ‘internal’ cross validation during 

the search for optimal assignments. The undivided reference set (shown as grey boxes and 

arrows) was used during the soft optimization (panel B) as well as at the end of the hard 

optimization to calculate basis spectra for the best assignments. The same undivided reference 

set was used to assess the fitting accuracy (panel D) of the optimized basis set (regardless of the 

optimization method). In contrast, during the assessment of the prediction accuracy (panel C), a 

different set of proteins (shown in dark red) were used for cross-validating the predictive power 

of the optimized basis sets. 

 

During each hard optimization step, a random change was introduced to the assignment matrix 

A, by reassigning one of the SS elements to another structural class. Then, the basis spectra 

  () were recalculated and the average deviation (RMSDeval) from the experimental CD spectra 

was computed for the evaluation set both before and after the change was applied. If 

    (         ) was larger than a randomly generated number between 0 and 1, the new 

assignment was accepted, otherwise rejected. In the next optimization step, a new random 

change was applied to the last accepted assignment. The acceptance ratio in this notation was 

controlled by  , the strictness parameter determining how often changes with an unfavourable 

RMSDeval are accepted. By default,   = 8.0 was applied to optimizations, which was lowered 

(down to 1.0) if the acceptance rate in an optimization dropped below 20%. Accepted 
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assignments with the lowest five RMSDeval during the MC search were saved and used to 

calculate the basis spectra of optimized basis sets.  

We note that the level of coarse graining for the SS information is given by the 

assignment matrix  ik. Extreme cases are (a) combining all SS elements provided by the 

particular SS classification protocol in use into F=1 class, and (b) into F=K classes. In case (a), 

only very little (likely too little) information is retained  typically the  -helical content  

whereas in the ‘naive’ case (b), the full SS information is provided with the possible risk of 

overfitting. Therefore, subsequent cross validation is crucial for determining the optimal level of 

coarse graining.  

 The search space for the hard optimization contains F
K
 possible A matrices, where F is 

the number of structural classes/basis spectra and K is the number of the SS elements. For 

example, assigning five structural elements to three classes defines a search space of 3
5 

= 243 

assignments, whilst 19 structural elements assigned to 10 classes result in a search space of 10
19

. 

When optimizing small basis sets with 5-8 SS elements, a single optimization process with 500 

accepted moves was usually sufficient to completely explore the search space, often visiting the 

global optimum of the assignment space multiple times. In the case of more than 10 structural 

elements, several 10000-step optimizations were started from multiple initial assignments 

described below. In these cases, assignments resulting from the initial optimization procedure 

were used to start new parallel processes to more effectively explore the search space. To further 

increase the efficiency of the hard optimization, important SS elements  such as the  -helix and 

at least one of  -strand elements  were assigned to different classes and then excluded from 

being reassigned (effectively decreasing K). In addition, if the move resulted in a more 

favourable RMSDeval, both structural classes with no assigned SS elements and the SS elements 

themselves could be temporarily eliminated from the basis set. Eliminated classes and SS 

elements could be reintroduced to the basis set through random changes during the same 

optimization process, and missing SS elements were reintroduced between subsequent 

optimization processes to conserve the normalization of basis spectra. We have performed 

several optimization processes for each SS classification protocol, until the number of basis 

spectra in the best optimized basis sets stabilized, and RMSDref values similar to the soft basis 

sets of the same basis set size were reached (described in Section S4). 

 

Addendum: Initial basis sets. Three deconvolution basis sets (Figs. S23-S25) were used to 

assess the applicability of our method without extensive optimization. The first basis set was 

determined by Sreerama and Woody (Set_Sreer-1) 
1
, contains six basis spectra (regular helix, 

irregular helix, regular strand, irregular strand, poly-proline helix, and disordered). ). The second 

basis set, (Set_Perczel-1) was derived by Hollósi and Perczel 
2
 and contains five basis spectra 

( -helix.  -strand, Turn type I/III, unordered, and other contributions). Finally, the third basis set 

(Set_BestSel-2) was derived for the BeStSel program by Micsonai and Kardos 
3
, with eight basis 

spectra (regular helix, irregular helix, left-handed anti-parallel, relaxed anti-parallel, and right-

handed anti parallel  -strands, parallel  -strand, turn structures, and others). For each of these 

basis spectra, SS elements from the structure classification algorithms (DSSP and DISICL for the 

first two and DISICL and HbSS for the third) were assigned based on the description of the basis 

set in their original publications. Once the assignment was complete, the CD spectra for the 

proteins of the TS8, EV9, TR64 and SP175 sets were calculated using the SS content of their 

crystal structure and were compared to the experimental spectra.  
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Furthermore, we derived naive basis sets for the classification algorithms (Figs. S26-S30) DSSP 

(Set_DSSP-F), simplified and detailed DISICL (Set_DS-simF and Set_DS-detF, respectively), 

normal and extended HbSS (Set_HBSS-F and Set_HBSS-E) and the deconvolution algorithm 

BeStSel (Set_Bestsel-der, Fig. S31). These basis sets contained one basis spectrum for each of 

the algorithm’s SS elements, and the SP175 data set was used as a reference set to calculate their 

basis spectra. These basis sets were used as initial guesses for the hard and soft optimization 

procedures.  

S3 Calculating side-chain contributions 
The individual side-chain contributions were estimated from the CD spectra of the MP79 

reference set. First, the SS contributions were calculated using four optimized basis sets (DS5-4, 

DS-dT, DSSP-1 or DSSP-T, see the Table S8 for further details on these basis sets). Then, the 

resulting predicted contributions were averaged and subtracted from the rescaled (see Section 

5.2) measured CD spectra. These ‘secondary-structure-free’ CD spectra were used in eq. S1 with 

the amino acid (AA) composition of the proteins and peptides as coefficients to derive one basis 

spectrum for each AA side chain. We also derived basis sets with more simplified 

representations of the side-chain contributions. These ‘mixed basis sets’ were derived from the 

MP79 reference set in three steps. First, the SS contributions were calculated and subtracted from 

the CD spectra. Second, basis spectra for the side chains were derived and optimized using the 

AA composition and the secondary-structure free CD spectra of the reference proteins. Third, the 

side-chain contributions were calculated and subtracted from the experimental CD spectra, and 

the resulting ‘side-chain free’ CD spectra were used to recalculate the basis spectra for the SS-

dependent backbone contributions. 

The optimization of the side-chain and backbone basis spectra was performed by the hard 

optimization scheme separately with the following modifications. Before the optimization, the 

MP79 reference set was separated into six subsets (each containing 13 or 14 proteins). In each 

optimization step, after the SS elements / AAs were grouped and assigned to basis spectra, one of 

the MP79 subsets was designated as the evaluation set, whilst the rest of the reference proteins 

were used to derive the basis spectra (as a training set). The derived basis spectra were used to 

calculate the CD spectra of the evaluation set. This process was repeated six times such that each 

of the subsets was predicted once from the rest of the MP79 reference set. After calculating each 

of the evaluation subsets, their RMSD was averaged and used as RMSDeval to determine if the 

assignment is accepted or rejected. The optimization process was continued until 250 - 5000 

accepted moves were reached (depending on the basis set size), with the five best assignments 

recorded for further use. Basis spectra for the recorded assignments were recalculated from the 

full MP79 reference set. These finalized basis spectra were used to predict the ‘secondary-

structure free’ or ‘side-chain free’ CD spectra of the TS8 protein set as cross validation. The 

combination of side-chain and backbone basis spectra that predicted the TS8 protein set with 

lowest RMSDcross were combined into mixed basis sets. Then, mixed basis sets were used to 

calculate the CD spectra of the SP175, GXG20, GP59, and TS8 data sets, so that they can be 

compared with the SS-only optimized basis sets, and predictions from PDB2CD and DichroCalc. 

We note that the measured CD spectra of the GXG peptides were normalized for the number of 

amino acids (three) as usual, but they were not rescaled based on the predicted spectra from 

backbone-only basis sets. The scaling factors were omitted because the GXG spectra were 

mostly determined by their side chain contributions these basis sets still lacked. 
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S4 Basis set determination: The ‘soft approach’ 
The hard optimization scheme introduced above is limited to a restricted assignment factor space 

(    *   +) and, therefore, it should be possible to further improve the accuracy of 

reconstructing the CD spectra from the SS information by removing this limitation. Accordingly, 

in our more general soft optimization approach, the assignment factors can be any real number 

(     ). During the soft optimization, we simultaneously derived the basis spectra and 

assignment factors that most accurately reproduced the CD spectra of the reference protein data 

set (best fitting accuracy). Consequently, besides the spectral and structural information of the 

reference data set, only the desired number of basis spectra is specified for the soft optimization, 

and no ‘internal’ cross-validation is required to trade-off the accuracy of the fit for an improved 

general predictive power. To obtain the optimal basis sets, the non-linear equation system 

defined by eq. 4 has to be solved simultaneously for all wavelengths of each protein spectrum in 

the reference data set. In matrix notation, this optimization problem is 

 

||       ||
 
  

    ,  (S2) 

 

where S=Sjl and W=Wjk are the matrices containing the spectral and structural information 

of the reference set, respectively, and the matrix B ={Bil} describes the basis spectra. The matrix 

elements Sjl and Bil are obtained by discretizing the experimental CD spectra   () and basis 

spectra   () at L wavelengths. This optimization problem is solved simultaneously for the 

matrices A and B by setting their element-wise matrix derivatives to zero: 

 
 

  
  ,(       )   (       )-   

                          
 
       (S3) 

 

 

  
  ,(       )   (       )-   

                          
 
     (S4) 

 

which, yields two coupled non-linear matrix equations 

 

  (    )           (    )      (S5) 

and 

   (         )             (S6) 
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Equations S5 and S6 are solved iteratively, starting from a random generated matrix A (    
         ) to obtain an initial B via eq. S6, which is inserted into eq. S5 to obtain an improved 

A, repeated until convergence. A summary of the soft optimization scheme is shown in Fig. S1. 

This soft optimization procedure was systematically repeated for each SS classification protocol 

K times to obtain optimized basis sets with 1-K basis spectra (K being the number of SS 

elements in the classification protocol). These series of basis sets determine the best fitting 

accuracy as the function basis set size and SS classification. For each optimization procedure, the 

convergence criterion was to reach less than RMSDfit  = 0.0001 x 10
3
 deg cm

2
/dmol change 

between iterations. 

Finally, we note that the hard combination of SS elements is a special case of the more 

general soft combination approach and therefore, one might expect the latter to yield more 

accurate calculated spectra for the reference proteins from the same amount of structural 

information. Because in the soft optimization approach the assignment factors  ki can adopt any 

real number without further constraints, eq. 3 yields linear combinations of the SS fractions    . 

Hence, each basis spectrum   () can be understood as a ‘collective’ SS class, such as ‘0.3  -

helical + 0.7  -sheet’. Of course, the collective SS classes introduce another layer of complexity 

to the optimization problem, and therefore increase the chances of overfitting the basis spectra. 

 

S5 The analysis of spectral components  
The overall accuracy of our method is limited by two factors, first, the information content of the 

SS composition, and second, the applicability of linear combinations of basis spectra in 

approximating the experimental CD spectra. The first factor was addressed by our soft 

optimization approach (Section S4). The second factor determines an upper limit for the fitting 

accuracy (lowest RMSDfit) given a set of reference CD spectra and the number of basis spectra 

used. To this end, we carried out a principal component analysis (PCA) on CD spectra of the 

SP175 reference set (see Section 3.1). PCA is a mathematical method to describe a 

(multidimensional) data set of N members by a basis set of N orthogonal principal component 

(PC) vectors. How much the data points differ from the average of the set (the variance of the 

data set) along a PC vector is quantified by its eigenvalue. It is possible to describe a data set 

with just a few (F) PC vectors of the highest eigenvalues (dimensionality reduction)
32

, which  

by construction  retains the maximum possible variance of the data set, and consequently, 

provides the reconstruction with the smallest possible deviation. Here, we used PCA to describe 

the reference CD spectra (a set of L dimensional data points) by basis sets constructed from 1-10 

PC vectors of the highest eigenvalues. The basis spectrum coefficients (Cij) of the protein j for 

these basis sets were defined as the projection of the CD spectrum along the particular PC vector 

i (described below). Note that this analysis is based solely on CD spectra of the reference data 

set, and does not account for any possible source of inaccuracy related to structure, SS 

calculations, or scaling errors within the reference set. 

During the reconstruction, the PC vectors obtained from PCA were described by the matrix 

V={Vpl}, where the indices p (1….P) and l (1….L) stand for the principal component (in order 

of their eigenvalue) and wavelength, respectively. In our case, each vrp row vector of the matrix 

V is one of the discretized PC vectors. The spectra of a reference protein data set were 

reconstructed using the first P={1-10} principal components 
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     ∑        

 
   ,  (S7) 

 

where Sjl is the circular dichroism of the j
th

 reconstructed protein spectrum at the wavelength l, 

Cjp is the projection of that spectrum along the PC vector p, Vpl and   
    are the value of the PC 

vector and the average CD signal of the data set at wavelength l, respectively. The projection of 

spectrum j along the principal component p can be calculated by taking the scalar product of the 

normalized spectrum and the PC vector 

 

     (      
   )      .  (S8) 

 

The vector      *  
   + is the averaged CD spectrum of the data set. 

 The projections along the PC vectors are analogous to the basis spectrum coefficients. 

Therefore, Pearson correlation (Rpearson) between the SS composition, AA composition, and the 

projections were calculated for the proteins in the SP175 reference set to estimate the importance 

of these structural descriptors in calculating the CD spectra. The Pearson correlation between 

these descriptors were calculated according to 

 

         
∑(    ̅) (    ̅)

√∑(    ̅)
    √∑(    ̅)

 
,  (S9) 

where    and    are either the fraction of an AA, the fraction of residues classified as a SS 

element, or the projection of the CD spectrum along a principal component for the protein j, 

whilst  ̅ and  ̅are the calculated averages for the whole reference set. 

 

S6 Describing the error of CD spectrum predictions 
Here, we separate the errors of our CD spectrum predictions into an error term that depends on 

the SS composition of the underlying protein structural model (SS-dependent error), and an SS-

independent error term that results from inaccuracies of the prediction method itself. This 

separation allows us to determine the typical prediction error of SESCA basis sets, and to 

estimate the error of the underlying structural model based on the accuracy of its predicted CD 

spectrum.  

To this end, we assume that the true SS composition of the solution structure is described by 

the coefficients    
 . The CD spectrum predicted from this correct composition deviates slightly 

from the experimental spectrum (quantified by      
 ), due to inaccuracies in our basis spectra 

(   ), unaccounted contributions to the CD spectrum (e.g. from co-factors and side chains), and 

potential measurement errors of the spectrum itself. After accounting for all the errors 

independent of the SS composition at every wavelength (   ) the experimentally measured CD 

spectrum is expressed as 
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  ∑    
    

           .     (S10) 

 

If we predict the measured CD spectrum from a structural model with the SS composition    , 

the RMSD of the predicted spectrum (   
      ∑        

 
   ) will be  

 

       
√∑ .   

   
    

    /
 

 
   

 
 √

∑ (          )
  

   

 
,   (S11) 

 

where     ∑        
 
    describes the SS-dependent error of the predicted spectrum at 

wavelength l,        
      is the structural model’s error in the coefficient of SS-class i, and 

    is the CD intensity of for the basis spectrum of SS-class i at wavelength l.  

Equation S11 can be rewritten using vector notation, considering the total error of the 

predicted spectrum for protein j at each wavelength l to be described by the vector  ⃗⃗    ⃗⃗⃗   ⃗⃗ . 

Here,  ⃗⃗⃗   {              } is the wavelength vector containing SS-dependent error terms, 

whereas  ⃗⃗   {              } is the wavelength vector of the SS-independent error terms 

for protein j, respectively. We note that the lengths of these vectors are connected via | ⃗⃗ |
 
 

 | ⃗⃗⃗ |
 
  | ⃗⃗ |

 
   | ⃗⃗⃗ |  | ⃗⃗ |      , where      is the angle between the vectors  ⃗⃗⃗  and  ⃗⃗ . 

Because       is the average root-mean-squared deviation from the measured spectrum, 

     
   

 

 
 | ⃗⃗ |

 
. Combining these two equations,       is written as 

 

     
     

        
             

       ,  (S12) 

 

where     
| ⃗⃗⃗ |

√ 
 √

∑    
 
   

 

 
 is the average SS-dependent error, and      

   
| ⃗⃗ |

√ 
 √

∑    
 
   

 

 
 

is the average SS-independent error. We also note that      
  is equal to the RMSD of the 

spectrum predicted from the correct SS composition (   
 ).  

Equation S12 allows us to separate the SS-dependent error from the SS-independent error, and 

to quantify the error in the SS composition of any protein model based on       of its predicted 

spectrum. To this end, we introduce the total error in the model’s secondary structure 
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composition as      ∑ |   |  
 
   , which is equal to the (minimum) fraction of residues in 

the protein model with incorrect SS classification. We note that any misclassified residue in the 

model causes a positive (in its current class) and a negative (in its supposed class) error in the 

coefficients, and thus, the sum of |   | was divided by two to obtain    . The SS-dependent 

error at wavelength l can be written as      (∑
       

   

 
   )     , where     gives the 

magnitude of the structural model’s error, and the ratios 
   

   
 describe how     is distributed 

between the coefficients of the SS classes. This allows one to express the proportionality 

between the SS-dependent error and the total model error as  

 

   (√
 

 
 ∑ (∑

       

   

 
   )

 
 
   )              .  (S13) 

Note that, for all structural models with the same 
   

   
 ratios, the SS-dependent error will be a 

linear function of    . Combining eqs. S12 and S13 results in a second order equation which 

can be solved for     to express the error in the structural model 

 

     
√     

        
   (       )

  
  

     
      

  
.   (S15) 

 

Equation S15 shows that, for a given   ,      , and      
  value     will be the largest if 

the two error vectors are anti-parallel (       ), in which case     (           
 ) 

  , and smallest if the error vectors are parallel (      ), resulting in     (      

     
 )   . However, if the SS-independent error contains only random noise and no 

systematic errors, the two error terms should be statistically independent and       . In this 

case, eq. S15 is simplified to     √     
        

     , which approaches a linear 

function              for      
        

  .  

The obtained equations for the three special cases (     *       + will be used in 

Section S8 to determine the best estimate for     assuming that the SS-dependent and SS-

independent errors of the predicted spectrum are statistically independent (      ), but 

providing the upper and lower bounds for the total model error if the assumption is incorrect. 

 

S7 CD spectrum deconvolution  
Spectrum deconvolution is a method to decompose a measured CD spectrum of a target protein 

into a linear combination of basis spectra (see eq. 1 in the main text). This procedure is often 

used to determine the SS composition (   ) that best describes the solution structure of a target 

protein. For a given set of basis spectra (   ), the SS composition that fits the spectrum best 

minimizes the average deviation (RMSDj) between the decomposed (   
     ∑         

 
   ) and 

the measured spectrum (   
   

). Therefore, to find the optimal     we minimized the function 
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 (   )  √
 

 
∑ .   

   
 ∑        

 
   /

 
 
        |  ∑    

 
   |       ∑  (   )

 
   ,  

 (S16) 

 

where the first term is the RMSD of the decomposed spectrum, whilst the second and third terms 

ensure that     add up to 1 and remain positive, respectively. Note that  1 and  2 are constant 

Lagrange multipliers in this equation, whereas the function  (   )        if the coefficient is 

negative and 0 otherwise.  

Our minimizations were carried out using an adaptive simplex minimizer (Nelder-Mead) 
4
 

algorithm from the scientific python package. The minimizations were continued until 5000 

iterations or until the convergence criterion  (   )    
     was reached. To find the global 

RMSD minimum of our reference proteins, first 10 minimizations were started from random 

initial SS compositions, and minimization result with the lowest RMSD was taken. If none of 

minimizations reached convergence for a protein, a second round of 50 minimizations with 

50 000 iterations were launched. If still no minimum was found, then a single, 50 000 step 

minimization was started from the SS composition of the proteins crystal structure, and the SS 

composition with the lowest RMSD found was used as the best one. 

 

S8 Deriving error models for structure validation 
Here, we provide and test error models that estimate the total error (   ) in the SS composition 

(   ) of a protein structural model based on the error (RMSDj) of its predicted CD spectrum. The 

equations described in Section S6 allow one to exactly calculate     from      , provided 

that we know the parameters   ,      
 , and     . In summary,    is the slope that connects 

the average SS-dependent error (  ) of the predicted spectrum with the error of the structural 

model    ,      
  describes the average SS-independent error of the predicted spectrum, and 

     describes the non-additivity between the two error terms.  

Unfortunately to calculate these parameters, knowing the correct SS composition (   
 ) of 

protein j under the conditions CD spectrum (which is used for validating the structural model) 

was measured is essential. Because    
  is typically unknown, we determine average parameters 

that allow the estimation of     as accurately as possible.  

To determine the best     estimation method we 1) approximate    
  and      

  for each 

reference protein of the SP175 set by spectrum deconvolution (see Section S7), 2) compute 

      and     (compared to    
 ) for each reference structure in the SP175 set using several 

basis sets, 3) fit the parameters for the     estimation (described below) to the obtained       

and     values, 4) evaluate the error models by comparing the estimated     to the     

obtained from deconvolution, and 5) determine the error margins for our estimated     values.  

We note that if the measured CD spectrum and the basis set contain no severe systematic 

errors,      
  is the minimum of the RMSD(   ) landscape. In the deconvolution algorithm 

described in Section S7 we approximate    
  and      

  for the SP175 reference proteins by 

minimizing       as function of    . We used the differences between the approximated    
  and 
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    of the reference structures to compute     for the SP175 proteins, and after predicting the 

reference spectra from    , to obtain 71       vs.     values for several basis sets. 

For each of these basis sets the resulting data points in      
2
 vs.    

2
 space were fitted 

with three equations given in the Fig. S2 (bottom) using orthogonal distance regression 
5
 (ODR). 

These equations  derived from eq. S15 (Section S6) using different assumptions  yielded 

similar fit parameters within the estimated uncertainties (     ), including a fitted value of 

    
 
 = 0±10

-5
 for equation C, which resulted in eqs. B and C giving virtually identical 

solutions for all tested basis sets. For simplicity, in the table in Fig. S2 we only show fit 

parameters obtained from eq. B for each basis set, and used for our final error model.  

Next, as illustrated in Fig S2 (left) for the DS-dT basis set, we compare the estimated    
    

values (solid colored lines) with the correct     values (black cross symbols) to determine the 

best estimate. To quantify the goodness of the fits, we computed    ∑ .   
   

   

   
    /

 

 (   ), where N=71 is the number of reference proteins, and P={1,2,3} is the 

number of fit parameters for eqs. A, B, and C, respectively. The obtained average    values 

indicate that eq. A describes the SP175 reference set slightly better than eqs. B and C do. 

Additionally, eqs. B and C do not yield real solutions    
    for           , in which cases 

   
      is assumed. This limitation further increases the average deviation between the real 

and estimated     as shown by the tabulated     √
 

 
∑ (       

   )  
    values in Fig. 

S2. Therefore, we chose the best estimate to be    
               for our error models. 

Finally, we defined two error margins for    
   . The more narrow error margin (purple dashed 

line) is defined by the average error of the best estimate as    
       , and contains 73% of 

the data points on average. The broader error margin (green dashed line) is defined based on eq. 

S15, assuming the fitted average    and      
  parameters (mf and Rf, respectively), and strong 

correlations between the error terms (        ). In this case the upper and lower bounds of 

   
    are    

  
 (      (     )) (     ) and    

    (      (     )) 

(     ), and contain ~94% of reference proteins on average. 
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Figure S2: Comparison between three different estimates for the total error in the SS 

composition (   ) of protein structural models. The estimation of     is based on the 

deviation (     ) between the measured CD spectrum and spectrum predicted from the 

structural model. The error estimates (A-C) with three functional forms (at the bottom) were 

fitted to the SP175 reference proteins shown as black cross symbols on the left side of the figure. 

The best estimates (shown as solid lines) with estimated error margins (shown as dashed lines, 

see section S8) are also displayed for the DS-dT basis set. Obtained fit parameters 

(           ), goodness of fit measures (     ) and the percentage of data points 

contained within the selected error margins (Bounds) for four tested basis sets (DS-dT, DSSP-1, 

HBSS-3, DS5-4) are listed in the table (to the right). 
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S9 Determining the difficulty of CD spectrum predictions 
To quantify the difficulty of predicting the CD spectrum of each reference protein j in our data 

sets (SP175 and TS8) from its structural model, we computed the mean error of CD spectrum 

predictions (     
    ) for protein each j. As described in Section 3.6,      

     were 

determined by calculating CD spectra using six different prediction methods and averaging the 

deviations between the measured CD spectrum and the predicted spectra at every wavelength. 

We also determined the normal range of      
     by calculating the average (       

    ) 

and standard deviation of theses values scatter (    ) for our reference sets. We found that these 

values were similar for the SP175 (       
     = 3.3 kMRE,     = 1.1 kMRE) and TS8 data sets 

(         
     = 3.2 kMRE,       =1.3 kMRE). As shown in Fig. S3A, we considered proteins as 

outliers, and therefore, particularly difficult to predict, if their      
     value was larger than 

         
            

     = 4.5 kMRE. 

Next, we tested if the large      
     values of the outliers  listed in Fig. S3B  can be 

explained based on two potential sources of error, namely inaccuracy of the used structural 

models, and the inaccurate normalization of the measured spectrum intensities (identified in 

Sections 5.1 and 5.2, respectively).  

First we accounted for the inaccurate normalization of the reference CD spectra by rescaling 

the intensities to match the intensity of the predictions (see Section 5.2). Scaling the measured 

spectra decreased the mean RMSD of the outlier proteins (henceforth the OP13 set) significantly 

from 6.2 kMRE to 3.6 kMRE), but also decreased          
     to 2.7 kMRE, and        to 0.7 

kMRE, thus lowering the threshold of what is considered an outlier to 3.4 kMRE. Despite the 

lower RMSD threshold, intensity scaling reduced      
     for five of the thirteen proteins 

(colored blue in Fig. S3) by so much that they were no longer considered as outliers, including 

the reference protein with the largest RMSD; Subtilisin Carlsberg (SP175/67, spectra shown in 

Fig. S3C). Then, the rescaled CD spectra were subjected to deconvolution using the four SESCA 

basis sets (Section 3.6) to estimate and account for errors in the SS composition (   
    ) of 

the reference structures. Calculating the CD spectra from the ideal SS composition further 

reduced both         
     to 2.1 kMRE and the threshold RMSD to 2.0 kMRE. In addition, it 

indicated that for two outliers (in magenta)  Avidin (SP175/8) and Glutamate dehydrogenase 

(SP175/34)  the above average      
     is due to the combination of inaccurate spectrum 

normalization and model inaccuracies. 

For the remaining six outlier proteins (in red)      
     was reduced but remained above the 

normal range even after deconvolution, thus intensity scaling and model inaccuracies are not 

sufficient to explain the poor agreement between the measured and predicted spectra. To further 

investigate the reasons behind the poor prediction accuracy of the remaining six outliers, we 

included contributions from the AA side chains, by calculating the CD spectra using four mixed 

basis sets (DS-dTSC3, DSSP-1SC3, HBSS-3SC1, and DS5-4SC1) Side-chain corrections 

eliminated two more proteins  Jacalin (SP175/41) shown in Fig S3D and Carbonic anhydrase 

(SP175/14)  from the list of outliers, reducing      
     of the predicted spectra by ~1.0 

kMRE in both cases.  

Closer inspection of the reference structures also revealed some common features that allowed 

us to speculate on possible reasons behind their poor obtained RMSD values. Four out of six 
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outlier structures include Zn
2+

 or Fe
2+

 ions coordinated to histidine, glutamate, and aspartate side 

chains. These coordination centers likely have their own contribution to the CD spectrum, which 

is not accounted for in our predictions, and increases      
     for these proteins. 

Additionally, five out of six outlier proteins proteins  except for hemerythrin (TS8/1)  have an 

unusually high fraction of turn structures, which is represented in a very coarse-grained way in 

our smaller optimized basis sets. Indeed, when the spectra were deconvolved using the DS5-

4SC1 basis set which has three basis spectra dedicated to these structures       for four of the 

six  except for hemerythrin and insulin (SP175/40)  proteins were in the normal range. 

 

 

Figure S3: Outliers of the SP175 and TS8 reference data sets. A) Reference proteins sorted by 

the mean deviation (     
    ) between their measured reference CD spectrum and spectra 

calculated from their reference structure. Proteins were selected as outliers if their      
     

are by more than one standard deviation (dashed purple lines) larger than the mean prediction 

accuracy (         
    , purple solid line) of the TS8 set. To determine the problem with the 

outliers their measured spectrum was scaled to match the predicted spectra, then deconvolved to 

find the SS composition that fits the spectrum best. B) List of the mean RMSD values for the 

thirteen outliers in the two data sets, including their set and ID number,      
     before 
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corrections (no corr), after scaling (scaled), and subsequent deconvolution (deconv), along with 

the used scaling factor (   
    ), and the calculated SS error of the structural model (   

    ). 

Outlier proteins in the figure are colored blue if their large RMSD is mostly due to incorrect 

intensity scaling, magenta if it is due to scaling combined with model inaccuracies, and red 

otherwise. C) Example protein 1: significant RMSD improvement by scaling the experimental 

CD spectrum and D) Example protein 2: where scaling could not improve the RMSD 

significantly. For panels C and D the experimental CD spectrum is shown as a solid black line, 

the rescaled experimental spectrum is shown as a solid brown line, and the spectrum calculated 

by the SESCA basis set DS5-4 is shown as a black dashed line. The name and ID number of the 

protein is shown on the top of the panel, while the RMSDs for the predicted spectra in kMRE 

units are shown on the bottom in black and brown respectively. 

 

S10 Amino acid side-chain contributions in the far UV range 
We derived the average contribution of side-chain groups to the CD signal of proteins as 

described in Section S3 from a new mixed reference set (MP79), which included 59 globular 

proteins of the SP175 reference set and a set of 20 tri-peptides designated as GXG20 set (where 

‘X’ stands for one of the twenty natural AAs). As shown in Fig. S4A, the CD spectra of the 

GXG20 peptide set differ substantially from one another, despite the fact that the peptides were 

too short to form the hydrogen bonds required for stable  -helices and  -sheets, and therefore 

mostly adopted a random coil structure. We therefore assumed that the spectra of these peptides 

are largely defined by their single side-chain group. The GXG20 spectra already indicate that 

aromatic side groups  and particularly phenyl-alanine and tyrosine  have strong positive 

contributions to the CD spectra, which differs from the signals of other side chains. The CD 

spectrum of the GAG peptide, on the other hand, shows the largest negative peak at ~195 nm, 

similar to CD signal that is associated with a random coil protein, whereas the CD signal of the 

GGG peptide – in the absence of a chirality center – is very weak. 
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Figure S4: Circular dichroism contribution of AA side chains. A) Experimentally measured CD 

spectra measured at neutral pH for the 20 Ac-GXG-NH2 peptides (GXG20). B) Calculated side-

chain contributions for each AA side chain, derived from the SS composition and CD spectra of 

59 globular proteins and the GXG20 peptides. The (CD/basis) spectra are color coded according 

to the AA side-chain groups they represent. 

 

The pure basis spectra we derived from MP79 reference set (Fig S4B) are significantly larger 

than the CD spectra of the independent AAs (due to the normalization for the number of 

residues), and confirm the large contributions of the phenyl-alanine and tyrosine side chains. In 

addition, the basis spectra show moderate contributions from the AA side groups of asparagine, 

aspartate, glutamate, histidine, serine, and tryptophan, while the side chains of other AAs such as 

valine, isoleucine, and threonine had weaker CD signals. 

We note that the GXG20 CD spectra differed considerably from the spectra of isolated 

amino acids measured by Nisihno et al 
6
. at neutral, acidic and basic pH. In Fig. S32 we compare 

the two sets of CD spectra at neutral pH (7.0), where  despite the differences  the strongest 

signals were observed for phenyl-alanine, tyrosine, tryptophan. We also note that no reducing 

agent was added to GCG peptide during its CD measurements, and cysteine oxidation states 

(particularly cysteines forming disulfide bonds) were not considered separately. 

S11 Analysis of the PCA basis sets 
We determined the best achievable accuracy for a given number of basis spectra from basis sets 

that were constructed from the eigenvectors of a PCA of the SP175 reference CD spectra as 

described in Section S5. The first ten obtained PCA basis spectra are illustrated in Fig. S5A. In 

line with previous results 
7–9

, the first two PCA basis spectra are similar to the CD spectrum of 

purely  -helical and  -sheet proteins, and represent already about 94% of the variance within the 

spectra of the reference data set. As the sorted eigenvalues (Fig. S5B) suggest, only a few basis 

spectra should be required to achieve good to very high accuracy. Indeed, almost 99% of the 

variance of the SP175 CD spectra are represented by only the first five basis spectra, and the first 

ten basis spectra essentially describe the full data set. This expectation is confirmed in Fig. S5C, 

showing the reconstruction of the  -amylase precursor spectrum (SP175/3) using one to ten PCA 

basis spectra. For this spectrum already the first three basis spectra allow a good reconstruction 

with an average RMSD of 2.105 kMRE units (10
3
 deg*cm

2
/dmol), and using more than six or 

seven basis spectra essentially recovers the reference spectrum. For comparison, the average 

spectrum is shown in brown, corresponding to using no basis spectra at all, and serving as a 

lower limit of how well the spectra can be 'predicted' without any information. The table in Fig. 

S5D quantifies the changes in fitting accuracy for three sample spectra, taken from representative 

proteins of the three main structure classes ( -helical,  -sheet, and mixed  / ) and also provides 

the average RMSD for all 71 spectrum reconstructions (RMSD_ref). 
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Figure S5: Principal component analysis of the SP175 protein CD spectra. A) graphical 

representation of the first 10 principal component vectors sorted by their contribution to the 

spectral variance. B) Eigenvalue, contribution to variance, and cumulative contribution to the 

spectral variance for the same PC vectors. C) Reconstruction of the CD spectrum of  -amylase 

(Aamy) by its projection on the first 0-10 PC vectors. The original spectrum is shown in black, 

the average spectrum of SP 175 data set is shown in brown. The reconstructed spectra are shown 

as colored dashed lines. D) RMSD between the reconstruction of three selected proteins   -

amylase, carbonic anhydrase I (Cah1), and Concanavalin A (Cona)  and their original CD 

spectrum as function of PC vectors used. The column SP175 av. shows average RMSD for all 71 

proteins in the data set. 

 

To determine how much the SS elements and side chains contribute to the variance of CD 

spectra in the SP175 reference set, we also analyzed the correlations between the principal 

components describing the shape of the CD spectra (see Section S5) and the occurrence of AAs 

and SS elements in the  reference proteins. To this aim, we calculated the Pearson correlation 

coefficients between the projections of the first ten PC vectors, the AA composition of the 

proteins, as well as the SS compositions determined by the BeStSel, DISICL, DSSP and HBSS 

algorithms. 

Table S11 shows those structural properties which correlate most strongly with the 

principal components (PCs) of the CD spectra. As can be seen, the first three principal 

components involve mainly SS elements: PC 1  which accounts for over 80% of the spectral 

variance of the reference set  was very strongly correlated (Rpearson ~0.9) to the presence of  -

helices in the protein structure, whilst PC 2 and 3 are moderately correlated to  -strand and turn 

structures. However, PCs 4, 6, 9, and 10 correlate more strongly with the presence of AAs than 

SS elements. Since these principal components describe ~3% of the spectral variance, one would 

expect a somewhat smaller but still notable contribution from side-chain groups. In addition, the 

most commonly considered correction to CD spectra are associated with the aromatic side chains 

of tryptophan, phenyl-alanine, and tyrosine because these AAs have the strongest CD signals in 
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isolation. Our analysis also suggests that AA side chains with weaker CD activity, particularly 

arginine, histidine, cysteine and serine, may also contribute significantly to the CD spectra. 

 

S12 Model validation for the P53/CBP complex 
The quality of the structure models was determined through cross-validation by predicting the 

NMR chemical shifts from both structural models (NMR and MD) and then comparing the 

results to the experimental chemical shifts from the original NMR measurements (obtained from 

biological magnetic resonance databank, entry no. 17073). We computed the backbone chemical 

shifts (including those for the N, C  C , C, HN, and H  atoms) using the chemical shift predictor 

Sparta+ 
10

. Figure S6A shows the comparison between the experimental and calculated C  

secondary chemical shifts. Secondary chemical shift values are corrected for the average random 

coil chemical shift of the AA, and therefore indicative of the local protein (secondary) structure. 

A sequence of large positive secondary C  shifts indicates a high propensity for  -helix in that 

region, whilst a sequence of large negative values shows a preference towards  -strands or 

extended structures. The overall agreement between the measured and predicted chemical shifts 

was quantified the through average RMSD of their secondary chemical shift profiles.  

The comparison in Fig. S6A also revealed that the RMSD of the MD ensemble C  chemical 

shifts (1.06 ppm) was lower than that of the NMR bundle (1.39 ppm). The same trends were 

observed for the average RMSD of all backbone chemical shifts as well. The C  chemical shifts 

also indicate that our models agree well with the experimental chemical shifts on the position of 

the helical regions, but overestimate the helix propensities, especially for the C-terminal helix of 

CBP-NCBD, and the helical regions in P53-AD2. These regions are also the ones where the 

average SS composition is considerably less helical in the MD ensemble than in the NMR 

bundle. Additionally, the residues of the short  -sheets observed only in the MD model possess 

some of the largest negative C  secondary chemical shifts of the experimental profile, suggesting 

that presence of these  -sheets also contribute to the lower average RMSD of the MD model. 
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Figure S6: Model validation by comparison to experimental observables. The measured  

observables (experiment) were compared to the same observables calculated from two structural 

models (NMR and MD). Panels of the figure show the comparison of A) the C  secondary 

chemical shifts and B) the CD spectra, respectively. The measured observables are shown as 

black solid lines, calculated observables are shown in different colors according to the 

underlying model. The dashed spectrum in B) shows the prediction from the ideal SS 

composition determined by spectrum deconvolution (Dec). The average RMSD from the 

experimental observable (in ppm and mean residue ellipticity units, respectively) for each model 

is shown in the corresponding color. The CD spectra in B) were calculated using the DS-dTSC3 

basis set, and include side-chain corrections. 

 

We also analyzed the differences in the SS composition of the two models. A summary over SS 

composition of each structural model is shown below their cartoon representation in Fig. 8A. As 

the figure shows, about 47% of the residues in the NMR are in an  -helical conformation. 

Although no  -sheets appeared in this model, a low percentage AAs adopted a local 

conformation typical for an extended  -strand at the termini of the two protein domains.  

The P53/CBP complex was very dynamic during the MD simulations. The two domains 

remained strongly bound during the simulation, but the conformational fluctuations resulted in a 

38% average  -helix content. In addition, while the total  -strand content decreased slightly in 

the MD model compared to the NMR bundle, 2.8% of the residues in the MD model was in a 

regular  -strand conformation, and established the hydrogen bonds to form two short  -sheets 

which appeared with ~15% probability in the ensemble. These short   sheets connected the N-

terminus of CBP-NCBD with residues 25-27 of P53-AD2, and the two termini P53-AD2. 

Predicting CD spectra from these SS compositions (Fig. S6B) suggested similar trends observed 

for the C  secondary chemical shifts, whereas deconvolution of the measured CD spectrum 

indicated an ideal SS composition that is 8-10% less helical than that of the MD model. 
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Additional Supplementary Tables: 
 

Table S1: The SP175 dataset. Identification number (ID), abbreviation (short code), protein 

databank (pdb) code, protein circular dichroism databank (pcddb) code, and name for each of the 

proteins in the dataset is provided, as well as number residues (size) and resolution (resol.) of the 

model structure. For further details see ref. 
11

. Entries marked by plus signs in the ID sections 

(and highlighted in red) were part of the SP175 dataset, but not part of the TR64 dataset, whilst 

entries marked by stars (and highlighted in blue) were part SP175 but not part of the GP59 

dataset 
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ID short code structure CD spectrum Protein Size   resol. 
number abbrev. pdb code pcddb code Name (res) (A) 

1 Aldo 1ado CD0000001 Aldolase 1452 1.90 

2 alkp 1ed9 CD0000002  Alkalnie phosphatase 898 1.75 

3* aamy 1vjs CD0000003  Alpha amylase prec 469 1.70 

4 abun 1hc9 CD0000004  Alpha-bungarotoxin 173 1.80 

5 actp 5cha CD0000005  Alpha Chymotrypsin 474 1.67 

6 actn 2cga CD0000006  Alpha chymotrypsinogen 490 1.80 

7* ptib 5pti CD0000007  Pancreatic trypsin inhibitor (bov.) 58 1.00 

8* avdn 1rav CD0000008  Avidin (recombinant) 248 2.20 

9 bamy 1fa2 CD0000009  Beta amylase (sweet potato) 498 2.30 

10 bglc 1bgl CD0000010  Beta galactosidase 8168 2.50 

11 blac 1b8e CD0000011  Beta lactoglobulin (bovine) 152 1.95 

12 cphy 1ha7 CD0000012  C-phycocyanin 3996 2.20 

13 calm 1lin CD0000013  Calmodulin 146 2.00 

14* cah1 1hcb CD0000014  Carbonic anhydrase I 258 1.60 

15 cah2 1v9e CD0000015  Carbonic anhydrase II (bovine) 518 1.95 

16* carp 5cpa CD0000016  Carboxypeptidase 307 1.54 

17 ecat 1dgf CD0000017  Erythrocyte catalase (human) 1998 1.50 

18 cerp 1kcw CD0000018  Ceruloplasmin (human) 1017 3.00 

19 cits 2cts CD0000019  Citrate synthase 437 2.00 

20+ cona 1nls CD0000020  Concanavalin A 237 0.94 

21+ cytc 1hrc CD0000021  Cytochrome C (horrse heart) 104 1.90 

22 bbcr 2bb2 CD0000022  Beta b2 crystallin (bovine) 176 2.10 

23 gbcr 4gcr CD0000023  Gamma b crystallin (bovine) 174 1.47 

24 gdcr 1elp CD0000024  Gamma d crystalline 346 1.95 

25 gecr 1m8u CD0000025  Gamma e crystallin (bovine) 173 1.65 

26 gscr 1ha4 CD0000026  Gamma S crystallin C-term (human) 174 2.40 

27 gdc2 1hk0 CD0000027  Gamma d crystallin (human) 173 1.25 

28 dqd1 1qfe CD0000028  Dehydroquinate dehydratase I (S. Thypi) 504 2.10 

29 dqd2 2dhq CD0000029  Dehydroquinate dehydratase I (M. Tuber) 136 2.00 

30 dna1 3dni CD0000030  Dnase I 258 2.00 

31 pela 3est CD0000031  Pancreatic elastase 229 1.65 

32* fesf 2fdn CD0000032  2[4Fe-4S] ferredoxin 55 0.94 

33 glco 1cf3 CD0000033  Glucose oxidase 581 1.90 

34* gldh 3mw9 CD0000034  Glutamate dehydrogenase (bovine) 3009 2.40 
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Table S1: The SP175 dataset (cont.) 

 

ID short code structure CD spectrum Protein  Size  resol. 
number abbrev. pdb code pcddb code Name  (res)  (A) 

35 glps 1gpb CD0000035  Glycogen phosphorylase 823 1.90 

36 hadh 1bn6 CD0000036  Haloalkaene dehalogenase 291 1.50 

37+ hglb 1hda CD0000037  Hemoglobin (human) 572 2.20 

38 hsa1 1n5u CD0000038  Serum Albumin (human) 583 1.90 

39 igg2 1igt CD0000039  Immunglobulin G2a (mouse) 1300 2.80 

40* hins 1trz CD0000040  Insulin A&C (human) 102 1.60 

41* jaca 1ku8 CD0000041  Jacalin 596 1.75 

42 lacf 1blf CD0000042  Lactoferrin (bovine) 685 2.80 

43 lect 1les CD0000043  Lectin (lentil) 458 1.90 

44 lept 1ax8 CD0000044  Leptin E100 (human) 130 2.40 

45+ lysm 193l CD0000045  Lysozime (hen, egg-white) 129 1.33 

46 moll 1mol CD0000046  Mollein 188 1.70 

47 mmyo 1ymb CD0000047  Metmyoglobin 153 1.90 

48+ Mglb 1a6m CD0000048  Myoglobin (oxy) 151 1.00 

49* Nmra 1k6j CD0000049  Nmra trans. Regulator 634 1.80 

50 Oalb 1ova CD0000050  Ovalbumin 1446 1.95 

51 Otrn 1dot CD0000051  Ovotransferrin (duck) 686 2.35 

52+ Papn 1ppn CD0000052  Papain (papaya) 212 1.60 

53 lec2 1ofs CD0000053  Lectin (pea) 460 1.80 

54 Plyc 1air CD0000054  Pectate lyase C 352 2.20 

55 Peps 2psg CD0000055  Pepsinogen 326 1.80 

56* pox1 7atj CD0000056  Peroxydase C1A (horse-raddish) 305 1.47 

57 Pgmu 3pmg CD0000057  Phosphoglucomuatse (rabbit) 1120 2.40 

58 Pgkn 3pgk CD0000058  Phosphoglycerate kinase 415 2.50 

59 pla2 1une CD0000059  Phospholipase A2 (bovine) 123 1.50 

60 Pemt 1hnn CD0000060  Phenylethanolamine N-methyltransferase 528 2.40 

61 Pkin 1a49 CD0000061  Pyruvate kinase 4152 2.10 

62 Rhod 1rhs CD0000062  rhodanase (sulphur-subst, bovine) 292 1.36 

63+ Rnas 3rn3 CD0000063  Ribonuclase A (bovine) 124 1.45 

64 Rubr 1r0i CD0000064  Rubredoxin (Cadmium subs) 53 1.50 

65 tpi2 1ba7 CD0000065  Trypsin inhibitor (soy bean) 334 2.50 

66 Stvn 1stp CD0000066  Streptavidin 121 2.60 

67* subc 1scd CD0000067  Subtilisin Carlsberg (crosslinked) 247 2.30 

68 cttp 1cgj CD0000068 Chmyotrypsinogen A + Trypsin inhibitor 301 2.30 

69 thau 1thw CD0000069  Thaumatin 207 1.75 

70 tpis 7tim CD0000070  Triosephosphate isomerase 494 1.90 

71 ubqn 1ubi CD0000071  ubiquitin (human) 76 1.80 
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Table S2: The TS8 globular protein cross -validation protein set Identification number (ID), 

abbreviation (short code), RSCB protein databank (pdb) code, circular dichroism filename, and 

name for each of the proteins in the dataset is provided, as well as number residues (size) and 

resolution (resol.) of the model structure. The CD spectra of this dataset were extracted from the 

globular protein training set provided with the CCA deconvolution program of Hollósi et al. See 

ref.
2
 for further details. 

 

ID short code structure CD spectrum Protein Size (res) resol. 

number abbreviation pdb code short code Name (res) (A) 

1 Hmrt 4xpx CD_HMRT.dat Hemerythrin 130 1.03 

2 Azu 5azu CD_AZU.dat Azurin 512 1.90 

3 Pral 2pab CD_PRAL.dat Prealbumin 228 1.80 

4 Ldh 6ldh CD_LDH.dat Lactate dehydrogenase 329 2.00 

5 Thml 8tln CD_THML.dat Thermolysin 318 1.60 

6 Gpd 3gpd CD_GPP.dat Phosphate dehydrogenase 668 3.5 

7 Subn 1sbt CD_SUBN.dat Subtilisin novo 275 2.50 

8 Tnf 2tnf CD_TNF.dat Tumor necrosis factor alpha 444 1.40 
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Table S3: The EV9 evaluation protein dataset. Identification number (ID), abbreviation (short 

code), RSCB protein databank (pdb) code, circular dichroism filename, and name for each of the 

proteins in the dataset is provided, as well as number residues (size) and resolution (resol.) of the 

model structure. The CD spectra of this dataset were extracted from the globular protein training 

set provided with the CCA deconvolution program of Hollósi et al. See ref. 
2
 for further details.  

 

ID short code structure CD spectrum Protein Size (res) resol. 

number abbreviation pdb code short code name (res) (A) 

1 mglb 1vxf CD_MGLB.out Myoglobin 153 1.70 

2 hglb 2mhb CD_HGLB.out Hemoglobin 287 2.00 

3 cytc 5cyt CD_CYTC.out Cytochrome C 103 1.50 

4 lysm 4lzt CD_LYSM.out Lysozyme 129 0.95 

5 papn 9pap CD_PAPN.out Papain 211 1.65 

6 rnas 1rbx CD_RNAS.out Ribonuclease A 124 1.69 

7 bnjn 1rei CD_BNJN.out Benes-Jones peptide 214 2.00 

8 cona 1nls CD_CONA.out Concanvallin A 237 0.94 

9 suds 1sxn CD_SUDS.out Superoxide dismutase 302 1.90 
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Table S4: Secondary structure elements recognized by the structure classification algorithm 

DSSP (see ref 
12

). DSSP recognizes SS elements based on backbone hydrogen bond patterns. 

Note that the 4-Helix class represents the regular  -helix, while 3-Helix and 5-Helix is 

associated with the distorted 310- and -helices, respectively. 

DSSP secondary structure classes 

Struct. Element K Abbr. 

4-Helix 1 4H 

Beta-Strand 2 BS 

3-Helix 3 3H 

5-Helix 4 5H 

Beta-Bridge 5 BB 

Bend 6 BE 

Turn 7 TU 

Unclassified 8 UC 
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Table S5: Secondary structure elements recognized by the structure classification algorithm 

DISICL (see ref 
13

). DISICL recognizes SS elements based on backbone dihedral angles in short 

segments of the protein, to provide a better resolution on loop- and turn structures.  

 

Detailed DISICL classes Simplified DISICL classes 

Struct. Element K Abbr. Struct. Element abbr. i 

  -Helix 1 ALH Helical HEL 1 

 -Helix 2 PIH Helical HEL 1 

Helix-Cap 3 HC Helical HEL 1 

extended  -Strand 4 EBS   -Strand BS 2 

normal  -Strand 5 NBS   -Strand BS 2 

 -Cap 6 BC   -Strand BS 2 

Turn type 2 7 TII   -Turn BT 3 

Turn type 8 8 TVIII   -Turn BT 3 

Turn type 1 9 TI 3-Helical Turn 3HT 4 

310 Helix 10 3H 3-Helical Turn 3HT 4 

Turn-Cap 11 TC 3-Helical Turn 3HT 4 

Poly-proline Helical 12 PP Irregular b IRB 5 

Bulge 13 Bu Irregular b IRB 5 

Left-handed Helix 14 LHH Left-Handed Turns LHT 6 

Left-handed Turn II 15 LTII Left-Handed Turns LHT 6 

Haripin 2:2 16 HP Other Tight Turns OTT 7 

-Turn 17 GXT Other Tight Turns OTT 7 

Schellmann-Turn 18 SCH Other Tight Turns OTT 7 

Unclassified 19 UC Unclassified UC 8 
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Table S6: Secondary structure elements recognized by the structure classification algorithm 

HbSS. This algorithm recognizes SS elements based on backbone hydrogen bond patterns, 

similarly to DSSP. In addition, it can identify parallel and anti-parallel  -strands (see Fig. S2), 

and further distinguish strand handedness (based on  -strand twist angles) to be more 

comparable to BeStSel algorithm (see ref 
3
). 

Extended HbSS classes HbSS secondary structure classes 

Struct. Element K Abbr. Struct. Element K Abbr. 

  -Helix 1 4H   -Helix 1 4H 

3/10Helix 2 3H 3/10Helix 2 3H 

 -Helix 3 5H  -Helix 3 5H 

Left-twist. parallel   4 LHP Parallel  -strand 4 BSP 

Non-twist. parallel   5 NBP Parallel  -strand 4 BSP 

Right-twist. parallel   6 RHP Parallel  -strand 4 BSP 

Left-twist. anti-par.   7 LHA Anti-par.  -strand 5 BSA 

Non-twist. anti-par.   8 NBA Anti-par.  -strand 5 BSA 

Right-twist. anti-par.   9 RHA Anti-par.  -strand 5 BSA 

H-bonded Turn 10 TU H-bonded Turn 6 TU 

Unclassified 11 UNC Unclassified 7 UNC 
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Table S7: Secondary structure elements recognized by the CD deconvolution algorithm BeStSel 

(see ref 
3
). This deconvolution basis set was derived from the SP175 set, to provide a better 

resolution on  -strand SS elements. Note that the ’Irregular Helix’ class is associated with the 

distorted ends of a regular  -helix, and the classical 310-helix was assigned to the ’Other’ class 

 

BeStSel deconvolution basis spectra 

Struct. Element k Abbr. 

  -Helix 1 Helix1 

 Irregular Helix 2 Helix2 

 Left-twist anti-par.   3 LHA 

 Relaxed anti-par.   4 NBA 

 Right-twist anti-par.   5 RHA 

 Parallel  -strand 6 NBP 

 Turns 7 Turn 

 Other 8 Other 
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Table S8: Calculated accuracy of top-ranking optimized basis sets based on protein SS 

composition. The table shows the name of the basis set, the number of basis spectra (size), the 

average root mean square deviation (RMSD) between the experimental and calculated CD 

spectra for four protein reference sets (SP175, TR64, EV9, TS8). Basis sets in the table were 

derived using SP175 set and cross-validated on the TS8 set. The type section describes the 

underlying SS classification protocol used to derive the basis set (DS_sim, DS_det, Dssp, HBSS, 

or HBSS_ext, see Section 3.4 for details).  

 

Basis spectrum set RMSDset (kMRE) 

Name Type size SP175 TR64 EV9 TS8  

DS3-1 DS_sim 5 3.804 3.93 2.998 3.396 

DS3-3 DS_sim 4 3.823 3.921 3.262 3.455 

DS5-4 DS_det 6 3.657 3.764 2.582 3.475 

DS6-1 DS_det 6 3.441 3.525 3.402 3.422 

DS-dT* DS_det 3 3.899 4.007 3.131 3.146 

DSSP-1* Dssp 4 3.985 4.104 3.175 2.992 

DSSP-T Dssp 3 4.024 4.138 3.274 3.008 

HBSS-2 HBSS_ext 6 3.924 3.979 3.603 3.66 

HBSS-3* HBSS_ext 5 3.982 4.028 3.75 3.295 

HBSS-4 HBSS 4 4.104 4.206 3.421 3.622 

DS_simF DS_simI 8 
3.655 3.777 3.19 3.487 

DS_detF DS_detI 19 2.922 2.959 3.896 4.148 

DSSP-F DsspI 8 3.75 3.806 3.4 3.038 

HBSS-E HBSS_extI 11 3.919 3.971 3.591 3.64 

HBSS-F HBSSI 7 3.568 3.648 3.221 4.272 

Sreer-1 DS_detD 6 7.614 7.573 6.916 5.154 

Perczel-1 DS_detD 5 4.717 4.88 3.562 4.416 

Perczel-2 DsspD 5 4.819 4.947 3.69 3.405 

 

*: most predictive basis set found for a given classification algorithm.  

D
: basis spectra were determined by deconvolution methods previously, and not computed in this 

study. 

 
I
: non-optimized initial basis sets. 
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Table S9: Calculated accuracy for other CD spectrum prediction methods, and mixed basis sets. 

The table shows the name of the basis set or method, the number of number of backbone and 

side-chain basis spectra (size), the average root mean square deviation (RMSD) between the 

experimental and calculated CD spectra for four reference sets (MP79, GXG20, SP175, and 

TS8). ). Basis sets in the table were derived using MP79 set and cross-validated on the TS8 set. 

The type section describes the underlying structure classification protocol for basis sets (DS_det, 

DSSP, or HbSS_ext) complemented by SC for side-chain corrections. For other methods: Best 

denotes a basis set is based on SS predicted from the CD spectra by the BeStSel algorithm, 

corresponds to the RMSD using perfect structural models. MatM stands for direct spectrum 

calculation with the matrix method, whereas SVM abbreviates an empirical spectrum calculation 

based on support vector machine techniques.  

Basis spectrum set RMSDset (kMRE) 

Name Type size MP79 GXG20 SP175 TS8 

DichroCalc MatMC ----- ----- ----- 6.692 5.568 

PDB2CD SVMC,S ----- ----- ----- 2.413 3.938 

Bestsel_der BestS 8+0 2.998 4.354 3.08 1.828 

DS-dTSC3 DS_det+SC 3+4 3.048 2.402 3.925 2.951 

DS5-4SC1 DS_det+SC 6+6 2.9 3.095 3.762 2.817 

DS6-1SC1 DS_det+SC 6+6 2.804 2.876 3.575 2.907 

DSSP-1SC3 DSSP+SC 4+6 3.247 3.39 4.052 2.849 

DSSP-TSC1 DSSP+SC 3+6 3.33 3.495 4.128 2.901 

HBSS-3SC1 HbSS_ext+SC 5+4 3.18 3.433 4.014 3.109 

HBSS-3SCF HbSS_ext+SC 5+20 2.837 3.376 3.969 3.263 

 

S
: method trained on the SP175 reference set.  

C
: competing method. 
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Table S10: The TS14 protein dataset. Identification number (ID), abbreviation (short code), 

RSCB protein databank (pdb) code, protein circular dichroism databank filename, and name for 

each of the proteins in the dataset is provided, as well as number residues (size) and resolution 

(resol.) of the model structure. The CD spectra of this dataset were used to repeat the cross-

validation performed by Mavridis et al. See ref. 
14

 for further details.  
 

 

ID short code structure CD spectrum Protein Size  resol. 

number abbrev. pdb code  short code Name (res) (A) 

1 a1at 1qlp CD0003891000 Alpha-1-antitrypsin 394 2.0 

2 atr3 1sr5 CD0003889000 Antithrombin-III 689 3.1 

3 bcr2 1ytq CD0003670000 Beta-crystallin B2 181 1.7 

4 bcr3 1bd7 CD0003672000 Beta-crystallin B2 347 2.78 

5 Bcr4 1oki CD0003668000 Beta-crystallin B1 366 1.4 

6 bcry 1a7h CD0003669000 Gamma-crystallin S 172 2.56 

7 bmgl 2yxf CD0003894000 Beta-2-microglobulin 99 1.13 

8 cxcn 2ccm CD0004676000 Calexcitin 386 1.8 

9 ectn 1ecz CD0003896000 Ecotin 284 2.68 

10 hutp 1q5u CD0003897000 human dUTPase 390 2.0 

11 ipdh 2y3z CD0003898000 3-isopropylmalate dehydrogenase 351 1.8 

12 magl 4acq CD0003893000 Alpha-2-macroglobulin 5132 4.3 

13 npta 2zxe CD0001180000 Na/K transporting ATPase 1296 2.4 

14 sctx 4kyp CD0004244000 Beta-scorpion toxin 290 1.7 
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Table S11: Correlation analysis of the spectral components.  

 

PC1 Corr. Prop Desc. PC6 Corr. Prop Desc. 

1 0.921 Hel1 (Best)   -helix 1 0.201 SER (AA) Amino A. 

2 0.906 Hel1 (SEL)   -helix 2 0.163 CYS (AA) Amino A. 

3 0.9 ALH (DISICL)   -helix 3 0.138 RHA (HbSS) Strand 

4 0.898 Hel (DISICL)   -helix 4 0.157 Hel2 (Best) Helix 

5 0.892 4H (DSSP)   -helix 5 0.126 Hel1 (SEL)   -helix 

6 0.891 4H (HbSS)   -helix 6 0.116 ALH (DISICL)   -helix 

PC2 Corr. Prop Desc. PC7 Corr. Prop Desc. 

1 0.532 EBS (DISICL)   -strand 1 0.285 RHP (HbSS)   -strand 

2 0.513 Anti1 (Best)   -strand 2 0.274 BSP (HbSS)   -strand 

3 0.444 NBA (HbSS)   -strand 3 0.25 Para (Best)   -strand 

4 0.418 Anti2 (Best)   -strand 4 0.23 Turn (Sel) Turn 

5 0.395 BS (HbSS)   -strand 5 0.205 Bend (DSSP) Turn 

6 0.352 HIS (AA) Amino A. 6 0.169 GXT (DISICL) Turn 

PC3 Corr. Prop Desc. PC8 Corr. Prop Desc. 

1 0.31 BS (HbSS)   -strand 1 0.386 3H (DSSP) Helix 

2 0.299 SCH (DISICL) Turn 2 0.344 3H (HbSS) Helix 

3 0.254 NBS (DISICL)   -strand 3 0.3 5H (HbSS) Helix 

4 0.23 Bend (DSSP) Turn 4 0.273 HC (DISICL) Turn 

5 0.216 NBA (HbSS)   -strand 5 0.253 MET (AA) Amino A. 

6 0.205 THR (AA) Amino A. 6 0.139 Other (Best) Turn 

PC4 Corr. Prop Desc. PC9 Corr. Prop Desc. 

1 0.471 ARG (AA) Amino A. 1 0.223  ASP (AA) Amino A. 

2 0.397 LHH (DISICL) Turn 2 0.202 3H(HbSS)  Helix. 

3 0.306 Anti2 (Best)   -strand 3 0.192 GLU (AA) Amino A 

4 0.293 NBA (HbSS)   -strand 4 0.152 ILE (AA) Amino A. 

5 0.299 SCH (DISICL) Turn 5 0.152 3H (DSSP) Helix 

6 0.272 LHT (DISICL) Turn 6 0.126 PIH (DISICL) Helix 

PC5 Corr. Prop Desc. PC10 Corr. Prop Desc. 

1 0.394 3HT( DISICL) Helix 1 0.214 PHE (AA) Amino A. 

2 0.376 3H (DISICL) Helix 2 0.15 TRP (AA) Amino A. 

3 0.33 3H (DSSP) Helix 3 0.14 SER (AA) Amino A. 

4 0.321 3H (HbSS) Helix 4 0.133 RHA (HbSS)   -strand 

5 0.296 Cys (AA) Amino A. 5 0.116 Bend (DSSP) Turn 

6 0.294 Hel2 (SEL) Helix 6 0.102 LHT (DISICL) Turn 
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The six best correlated structural properties are listed for each of the first ten principal 

components of the SP175 CD spectra. The table displays the abbreviated code of the structural 

property (Prop), the Pearson correlation score (Corr.) between the projections of the PC vector, 

and the coefficients of the structural property (the fraction of SS element or AA in a protein), as 

well as the type and a short description of the structural property. The type (in parenthesis) 

defines the source algorithm for SS elements (DSSP, HbSS, DISICL or BeStSel algorithms) and 

(AA) stands for amino acids. The short description shows if a SS element is either associated 

with  -helix, irregular helix (Helix),  -strand or turn structures. 
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Additional Supplementary Figures: 
 

 

 

Figure S7: Definition of parallel and anti-parallel hydrogen bonding for the algorithm HbSS. 

The indicated AAs relative to the hydrogen bonded pair i and j are identified as a parallel or anti-

parallel  -sheet, if hydrogen bonds indicated at the bottom are present. The arrows denote a 

hydrogen bond between N-H donor group on the left side and the C=O acceptor group on right 

side.  
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Figure S8: Assignment (left) and basis spectra (right) for the basis set DSSP-T. Secondary 

structure elements for the assignment are abbreviated according to Table S4. 
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Figure S9: Assignment (left) and basis spectra (right) for the basis set DSSP-1. Secondary 

structure elements for the assignment are abbreviated according to Table S4. 
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Figure S10: Assignment (left) and basis spectra (right) for the basis set DS3-3. Secondary 

structure elements for the assignment are abbreviated according to Table S5. 
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Figure S11: Assignment (left) and basis spectra (right) for the basis set DS-dT. Secondary 

structure elements for the assignment are abbreviated according to Table S5. 
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Figure S12: Assignment (left) and basis spectra (right) for the basis set DS5-4. Secondary 

structure elements for the assignment are abbreviated according to Table S5. 
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Figure S13: Assignment (left) and basis spectra (right) for the basis set DS6-1. Secondary 

structure elements for the assignment are abbreviated according to Table S5. 
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Figure S14: Assignment (left) and basis spectra (right) for the basis set HBSS-4. Secondary 

structure elements for the assignment are abbreviated according to Table S6. 
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Figure S15: Assignment (left) and basis spectra (right) for the basis set HBSS-3. Secondary 

structure elements for the assignment are abbreviated according to Table S6. 
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Figure S16: Calibration of the total model error. To estimate the error in the SS composition of 

structural models (   ) based on the error of their predicted CD spectrum (     ), first CD 

spectra is predicted from the SS composition of reference structures, and ideal SS compositions 

are predicted (via deconvolution) from the available reference CD spectra for each protein j. 

Then, the reference spectra and SS compositions are compared to the predicted ones to obtain 

      vs.     pairs for each protein, which are fitted with an error model during an error 

calibration step (Section S8). The resulting error model can be used to estimate     from CD 

predictions using the same basis spectra. 
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Figure S17: Assignment (left) and basis spectra (right) for the mixed basis set DS-dTSC3. The 

backbone and side-chain related basis spectra are shown on the top and bottom, respectively. 

Secondary structure elements for the assignment are abbreviated according to Table S5. 
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Figure S18: Assignment (left) and basis spectra (right) for the mixed basis set DS6-1SC1. The 

backbone and side-chain related basis spectra are shown on the top and bottom, respectively. 

Secondary structure elements for the assignment are abbreviated according to Table S5. 
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Figure S19: Assignment (left) and basis spectra (right) for the mixed basis set DS5-4SC1. The 

backbone and side-chain related basis spectra are shown on the top and bottom, respectively. 

Secondary structure elements for the assignment are abbreviated according to Table S5. 
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Figure S20: Assignment (left) and basis spectra (right) for the mixed basis set DSSP-1SC3. The 

backbone and side-chain related basis spectra are shown on the top and bottom, respectively. 

Secondary structure elements for the assignment are abbreviated according to Table S4. 

 

 

 



 49 

 

 

 

Figure S21: Assignment (left) and basis spectra (right) for the mixed basis set HBSS-3SC1. The 

backbone and side-chain related basis spectra are shown on the top and bottom, respectively. 

Secondary structure elements for the assignment are abbreviated according to Table S6. 
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Figure S22: Assignment (left) and basis spectra (right) for the mixed basis set HBSS-3SCF. The 

backbone and side-chain related basis spectra are shown on the top and bottom, respectively. 

Secondary structure elements for the assignment are abbreviated according to Table S6. 
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Figure S23: Assignment (left) and basis spectra (right) for the adapted basis set Sreer-1. 

Secondary structure elements for the assignment are abbreviated according to Table S5. 
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Figure S24: Assignment (left) and basis spectra (right) for the adapted basis set Preczel-2. 

Secondary structure elements for the assignment are abbreviated according to Table S4. 
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Figure S25: Assignment (left) and basis spectra (right) for the adapted basis set Bestsel-2. 

Derived previously by Micsonai et al. 
3
 Secondary structure elements for the assignment are 

abbreviated according to Table S6. 
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Figure S26: Derived initial basis spectra for the structure classification HbSS, basic 

classification library. 
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Figure S27: Derived initial basis spectra for the structure classification algorithm HbSS, 

extended library (HbSS_ext). 
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Figure S28: Derived initial basis spectra for the structure classification DSSP. 
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Figure S29: Derived initial basis spectra for the structure classification DISICL, simplified 

classification library (DS_sim). 
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Figure S30: Derived initial basis spectra for the structure classification DISICL, detailed 

classification library (DS_det). 
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Figure S31: derived basis spectra for the Bestsel_der basis set. This basis set was derived from 

the measured CD spectra and estimated secondary structure compositions of the SP175 set, as 

predicted by the BeStSel deconvolution algorithm. Note that BeStSel estimates were obtained 

using the BeStSel web application (bestsel.elte.hu) by uploading the SP175 and TS8 CD spectra, 

and fitting basis spectra to the 175-250 nm wavelength range.   
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Figure S32: Comparison between the CD spectra of A) isolated natural amino acids and B) of 

Ac-GXG-NH2 peptides (X being any amino acid).. 
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