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Abstract Two large ensembles are used to quantify the extent to which internal variability can
contribute to long-term changes in El Niño-Southern Oscillation (ENSO) characteristics. We diagnose
changes that are externally forced and distinguish between multi-model simulation results that differ
by chance and those that differ due to different model physics. The range of simulated ENSO amplitude
changes in the large ensemble historical simulations encompasses 90% of the Coupled Model
Intercomparison Project 5 historical simulations and 80% of moderate (RCP4.5) and strong (RCP8.5)
warming scenarios. When considering projected ENSO pattern changes, model differences are also
important. We find that ENSO has high internal variability and that single realizations of a model can
produce very different results to the ensemble mean response. Due to this variability, 30–40 ensemble
members of a single model are needed to robustly compute absolute ENSO variance to a 10% error when
30-year analysis periods are used.

Plain Language Summary The El Niño-Southern Oscillation (ENSO) is the dominant driver
of interannual variability globally, with effects that are felt all over the world. As such it is important to
understand whether ENSO might change in the future or has already changed in the recent past due to
anthropogenic emissions. We show that ENSO strength is highly variable between simulations from a
single model, independent of external forcing. This variability is known as internal variability and occurs due
to the chaotic nature of the climate system. Such variability can cloud our projections of the future when we
have limited model simulations. Here, we demonstrate that <30 simulations of the same model are needed
to robustly estimate ENSO variability. Using the 100 possible futures simulated in the Max Planck Institute
Grand Ensemble (MPI-GE) and 40 possible futures from the Community Earth System Large and Medium
Ensemble Projects (CESM-LE/CESM-ME) we find that ENSO variability is large. Here, this strong variability will
likely mask any possible observed changes, meaning that we are unlikely to be able attribute ENSO changes
the near future to anthropogenic forcing.

1. Introduction

The El Niño-Southern Oscillation (ENSO) is the dominant driver of interannual variability globally and has
effects which are felt in many remote regions of the world. As such it is vital to assess the potential future
changes of ENSO; however, model simulations of future ENSO changes differ widely (Bellenger et al., 2014;
Christensen et al., 2013; Stevenson, 2012). Here we use two large ensembles each with a single climate model,
the Max Planck Institute Grand Ensemble (MPI-GE; Bittner et al., 2016; Stevens, 2015) and the Community Earth
System Large and Medium Ensemble Projects (CESM-LE/CESM-ME; Kay et al., 2015; Sanderson et al., 2015), to
quantify the extent to which internal variability can contribute to long-term changes in ENSO characteristics
and to evaluate forced changes in ENSO projections in both models.

There is little consensus on how ENSO sea surface temperature (SST) may change in a future with increas-
ing greenhouse gas emissions and underlying warming (Bellenger et al., 2014; Collins et al., 2010; Guilyardi
et al., 2012; Ham & Kug, 2016), with large differences found between different Coupled Model Intercomparison
Project 5 (CMIP5) model projections (Collins et al., 2010; Guilyardi et al., 2012). Many studies have addressed
this question (e.g., Cai et al., 2014, 2015; Keupp et al., 2017; Kim et al., 2014; Power et al., 2013; Rashid et al.,
2016; Takahashi et al., 2011; Timmermann, 1999), with robust results indicating a forced change in ENSO found
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Key Points:
• Internal variability explains 90% of the

CMIP5 spread of historical ENSO SST
changes and 80% of the spread under
stronger forcing

• The large internal ENSO variability
means that individual realizations
can show very different changes
compared to the true forced response

• Only with a large ensemble (more
than 30 members) can internal
variability in ENSO projections be
quantified robustly
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in multiple studies, which investigate the effects of precipitation indices rather than SST (Cai et al., 2014, 2015;
Chung & Power, 2016; Power et al., 2017, 2013).

The range of projections of ENSO in the future could be due to differences in model physics, resulting in
different projections from different models. However, the role of internal variability must also be considered,
which occurs due to the chaotic nature of the climate system. Such internal variations can result in different
projections from single ensemble members of the same climate model. Previous studies have highlighted the
importance of internal variability in the climate system (Deser et al., 2012; Marotzke & Forster, 2015; Stevenson,
2012) and demonstrated that for a climate signal to emerge it must overcome the influence of the internal
variations (Hawkins & Sutton, 2009, 2012).

ENSO itself is not only an interannual phenomenon and has been shown to have strong variability on inter-
decadal and decadal time scales (Burgman et al., 2008; Chowdary et al., 2012; Li et al., 2011; Ogata et al., 2013).
For example, Wittenberg (2009) used a 2000-year run of the GFDL CM2.1 model to show highly irregular ENSO
amplitude and period in different multidecadal epochs. This suggests that a large ensemble or a long equili-
brated run of a single model in combination with projections from the same model are needed to investigate
the question of how ENSO changes in the future (Stevenson, 2012; Wittenberg, 2009). In a large ensemble of a
single model the forced changes can be cleanly separated from internal variability, unlike in large multimodel
ensembles such as CMIP5 (Frankcombe et al., 2015).

Internal variability in a changing climate manifests itself through the difference between single ensemble
members of the same climate model. Changes in ENSO have previously been investigated by Zelle et al. (2005)
in a 62-member ensemble of Community Climate System Model version 1.4. They found no discernible change
in ENSO amplitude, period, or spatial patterns in the business-as-usual scenario. However, the authors empha-
sized flaws in the model representation of ENSO that they believed severely limited their results. Zheng et al.
(2018) used the 40-member CESM-LE ensemble, in the RCP8.5 scenario. They showed an ensemble mean
increase in ENSO amplitude from 1.21 (1950–1999) to 1.32∘ C (2046–2095), which is within the internal vari-
ability of the estimated amplitudes (1950–1999) in their study. While Zheng et al. (2018) found variability in
CESM-LE similar to the variability in CMIP5, they recommended that changes in ENSO amplitude should also
be investigated in other large ensembles due to the overestimation of mean ENSO amplitude in the CESM-LE
ensemble.

In this study we compare ENSO amplitude projections from two large ensembles of single climate models
(see section 2) to CMIP5 to assess whether the variations in future projections can be attributed to internal
variability, model differences, or a combination of both factors. We then use the two ensembles to address
whether ENSO will change in the future, beyond the internal variability that we can robustly quantify. Finally,
we address the question of how large an ensemble is needed to capture ENSO variability.

2. Data and Methodology

In this study we use two large ensembles. The first is MPI-GE, which is currently the largest ensemble (100
members) of a state-of-the-art comprehensive climate model (Bittner et al., 2016; Stevens, 2015). The second
large ensemble used in this study is the CESM-LE (Kay et al., 2015); we note that we also use the medium
ensemble CESM-ME for the RCP4.5 scenario (Sanderson et al., 2015), but for ease of description will refer to
the total ensemble of historical, RCP4.5, and RCP8.5 as CESM-LE from this point forward. Model details and an
evaluation of how both models behave in the ENSO region can be found in the supporting information. From
the ensembles, we define the following greenhouse gas forcing regimes and the simulations upon which they
are based.

• No warming: Preindustrial control (2000 years MPI-GE, 1700 years CESM-LE, 1850 radiative conditions, 1
realization).

• Weak warming: Historical (1850–2005, observed radiative forcing, 100 realizations MPI-GE, 1920–2005, 42
realizations CESM-LE)

• Moderate warming: RCP4.5 (2006–2100, RCP4.5 radiative forcing, 100 realizations MPI-GE, 2006–2080, 15
realizations CESM-ME)

• Strong warming: RCP8.5 (2006–2100, RCP8.5 radiative forcing, 100 realizations MPI-GE, 40 realizations
CESM-LE)
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For comparison to the ensemble simulations we create surrogate ensembles from the preindustrial control
simulations. Here nonoverlapping ensembles of length 30 years are created. 30-year analysis periods can be
used given the large size of the ensembles, here the longer scale variability is captured by making compu-
tations across the ensemble-dimension. Due to length restrictions, only 67 nonoverlapping members can be
created for MPI-GE. To create the additional 34 members we randomly resample the preindustrial control. The
30 years for each surrogate ensemble are taken in sequence from the preindustrial control to keep the cor-
rect autocorrelation in the time series. For MPI-GE, a 100 member ensemble is created, while for CESM-LE and
CESM-ME, a 42 member ensemble is created.

An important advantage of using a large ensemble created from a single model is that variability patterns can
be computed over the ensemble-dimension, rather than the traditional time-dimension, that is, computing
an Empirical Orthogonal Function (EOF) across the individual members at each time step. When using the
ensemble-dimension to compute EOFs (EOF-E), all time scales of variability are captured. This means that if the
ensemble is large enough, changes in internal variability over time as captured by EOF-E can be interpreted as
due to the forcing alone. This is not possible when using EOFs computed across the time-dimension (EOF-T),
making EOF-E a powerful method of analysis. We note that when using EOF-E we are unable to distinguish at
which time scales ENSO changes occur as all time scales are captured. This study is the first to demonstrate
this method by computing EOFs for each year of the experiment.

The first two EOF’s are computed first for each ensemble member (EOF-T) for comparison with observations,
where the time-dimension must be used. We then compute the first two EOFs over the ensemble for each year
(EOF-E) to quantify transient changes under multiple forcing regimes. In both cases the patterns are normal-
ized by their own spatial standard deviation, rendering them unitless. The normalization means that pattern
changes are not affected by the ENSO strength and that the principal components can be used to quantify
changes in ENSO strength (standard deviation of the PC time series). Here, we are able to separate changes in
ENSO pattern and strength using this methodology. The true expression of changes in ENSO in the SST fields
can be determined by multiplying the pattern change by the strength change and then adding the two EOF
components.

In this paper we interpret EOF1 and EOF2 (in both time and ensemble-dimension) in the following way, based
on the work of Takahashi et al. (2011). We interpret EOF1, which explains 30–40% of the variability in the
Pacific, as the base pattern for ENSO. EOF2 (7% of the variance) can then be added or subtracted to EOF1 as
in Takahashi et al. (2011) to cause individual events to express themselves differently, contributing to ENSO
diversity. Here, we assess the variability in the Pacific using EOFs computed over the region 30∘S–30∘N and
100∘E–70∘W. To complete this analysis the forced response and the seasonal cycle are removed by subtracting
the ensemble mean from each ensemble member before the EOF is computed. Three observational SST data
sets are also used in this study, namely HadISST (Rayner, 2003), COBE SST (provided by the NOAA/OAR/ESRL
PSD, Boulder, Colorado, United States, from their Web site at https://www.esrl.noaa.gov/psd/), and ERSST.v4
(Smith et al., 2008). For the observational data a second-order polynomial fit is applied over the period
1891–2015 and removed as an approximation for the forced trend.

The standard Niño indices are also used in this analysis. Niño3 is defined as the average of the region 5∘S–5∘N
and 150–90∘W. Niño4 is defined as the average of the region 5∘N–5∘S and 160∘E–150∘W. ENSO amplitude
is taken as the standard deviation of the Niño3 index. We compare the change in ENSO amplitude in the two
large ensembles against the CMIP5 models (a list of the CMIP5 models used in this study can be found in
Table S2) Additionally, we use a CMIP5 subset consisting of four smaller ensembles, EC-EARTH (13 members
for both historical and RCP4.5 and 12 for RCP8.5), GISS-E2-R (18 historical members and 17 RCP4.5 members),
CNRM-CM5 (10 historical members), and CSIRO-Mk3-6-0 (10 members for historical, RCP4.5 and RCP8.5).

3. Separating Internal Variability From Forced Changes

The two large ensembles, MPI-GE and CESM-LE, can be used to assess whether the diversity in projected ENSO
amplitude found in CMIP5 is due to internal variability or differences in the model physics. In Figure 1a we see
that the stars, which illustrate the largest positive and negative amplitude changes for each ensemble, are
as large for both ensembles (red and blue) as for the CMIP5 5th and 95th percentiles (black diamonds). This
strongly suggests that internal variability can explain 90% the CMIP5 diversity in the weak warming regime.
When considering the moderate and strong warming scenarios (RCP4.5 and RCP8.5; Figures 1b and 1c), the
ensembles encompass the 10th and 90th percentiles of the CMIP5 range in projections (black crosses). Here,
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Figure 1. Ensemble mean (solid bars), 0th and 100th percentile (stars), 5th
and 95th percentile (diamonds), 10th and 90th percentiles (crosses) of the
change in Niño3 amplitude (standard deviation of sea surface temperature
in the Niño3 region) compared to the preindustrial control amplitude.
Shown for CMIP5 models (all ensemble members; black, 0th and 100th
percentile for r1i1p1; black circles), MPI-GE (red), CESM-LE (blue), EC-EARTH
(yellow), CSIRO-Mk-3-6-0 (pale blue), GISS-E2-R (green), and CNRM-CM5
(pink). Ensemble sizes can be found in the methods. Shown for (a) Historical
(1975–2005), (b) RCP4.5 scenario (2050–2080), and (c) RCP8.5 scenario
(2050–2080). The preindustrial control amplitude is estimated by taking the
average standard deviation from the last eight independent 30-year periods
of each model’s control run and averaging these. We choose eight periods
to correspond with the shortest preindustrial control simulation from CMIP5.
The error bars show the variability in the preindustrial control. This
variability on the mean estimate is found by using the 2000-year control run
from the MPI-GE and estimating the possible changes in the mean estimate
due to the control simulations being not long enough to capture the
variability of ENSO. The error is the difference between using eight periods
versus the whole control simulation (60 periods).

the ensembles can account for 80% of the CMIP5 diversity, with model
physics responsible for the rest of the differences. Due to the lack of large
ensemble simulations in CMIP5, we are unable to determine whether the
different model physics results in a difference in the individual models
internal variability or ensemble mean forced response.

The circles in Figure 1 demonstrate the range of CMIP5 results that can be
found using just the first (r1i1p1) ensemble member from each model. The
difference between this result and the full model spread clearly demon-
strates the weakness of using a single member from each model of a
multi-model ensemble. Our results differ from Zheng et al. (2018), who
found that internal variability in CESM-LE could explain the CMIP5 model
spread in the RCP.8.5 scenario. This difference is due to the addition of
nine extra CMIP5 models in our comparison and the use of all ensemble
members available rather than just r1i1p1.

The forced change in ENSO amplitude can be identified by computing
the ensemble mean of the ENSO amplitude changes (Figure 1; solid bars).
For CMIP5, MPI-GE, and four smaller ensembles the change in ensemble
mean ENSO amplitude in the weak warming scenario is within the variabil-
ity estimated from the MPI-GE preindustrial control (shown as errorbars),
however, CESM-LE shows an increase in amplitude (Figure 1a). In the mod-
erate and strong warming scenarios both CESM-LE and EC-EARTH show
positive changes, with an increase in the variability of CESM-LE seen only
in the strong warming scenario, while the other ensembles show no sig-
nificant change (Figures 1b and 1c). Here, the best estimate from the
ensembles available is that the forced response of ENSO amplitude in the
Niño3 region to warming is likely zero or positive, but not negative.

4. ENSO Change Under Different Forcing Regimes

We now investigate changes in the ENSO SST patterns under differing
greenhouse gas forcing regimes. We find that in the weak-forcing regime,
there are no significant changes in either EOF1-E or EOF2-E patterns in
MPI-GE (Figures 2e, 2g, 2m, and 2o). In CESM-LE a weak pattern change
in EOF1-E occurs at the end of the weak-forcing regime (Figure 2f ), how-
ever while this change is significant (Figure 2n) it is not meaningful as it
dips back well below the significance threshold after this point. This may
be caused by the ensemble being too small or influences of the Pinatubo
eruption, which has been shown to impact ENSO (e.g., Maher et al., 2015).
Changes in EOF2-E are also seen (Figure 2h), however, the lack of trend
in the pattern correlation for EOF2-E suggests that these changes are
also meaningless, although at some time points the correlation fluctuates
outside the significance bands (Figure 2p).

The strong forcing scenario shows significant pattern changes in EOF1-E
in both large ensembles (MPI-GE, Figures 2i and 2m; CESM-LE, Figures 2j
and 2n); however, the changes oppose each other, demonstrating a dis-
agreement of the two models in projecting this future change. EOF2-E
shows a large significant change in both models (MPI-GE, Figures 2k
and 2o; CESM-LE, Figures 2l and 2p). While the changes in EOF2-E in the

two models exhibit spatial differences, particularly in the equatorial central Pacific, both overall oppose the
EOF2-E mean pattern. This suggests that in a strong warming scenario the canonical and central Pacific ENSO
patterns could become more similar, demonstrating a decrease in ENSO diversity. We note that while these
pattern changes are significant, they will not necessarily occur in a single realization.

To determine whether ENSO itself changes, both the change in EOF pattern and strength (standard deviation
of PC time series) must be quantified. First, we investigate whether observations of ENSO strength, expressed
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Figure 2. EOF-E pattern for the surrogate preindustrial control ensemble for (a) EOF1 MPI-GE, (b) EOF1 CESM-LE, (c) EOF2 MPI-GE, and (d) EOF2 CESM-LE.
Difference in EOF-E patterns and the surrogate preindustrial control pattern for the historical regime (1975–2005) for (e) EOF1 MPI-GE, (f ) EOF1 CESM-LE, (g) EOF2
MPI-GE, and (h) EOF2 CESM-LE and for RCP8.5 (2070–2100) for (i) EOF1 MPI-GE, (j) EOF1 CESM-LE, (k) EOF2 MPI-GE, and (l) EOF2 CESM-LE. Note that the patterns
are normalized by the overall pattern standard deviation, rendering them unitless. A pattern correlation between the mean of the surrogate preindustrial control
ensemble and the EOF-E pattern at each time point is computed to determine significance for the pattern changes. This correlation is shown for (m) EOF1
MPI-GE, (n) EOF1 CESM-LE, (o) EOF2 MPI-GE, and (p) EOF2 CESM-LE. The gray bars show the percentile range when each of the surrogate preindustrial control
member is compared to the mean of the surrogate preindustrial control ensemble. This gives a range of significance levels for the pattern changes.

as EOF-T and ENSO amplitude from the Niño3 and 4 regions fall within the range of internal variations of the

historical simulation for both models, to determine whether there are any forced changes in ENSO seen in

observations. The large range of variability that can be found in a single model is shown in Figures 3a and 3b.

Here, it is clear that the range of model internal variability on 30-year time scales is larger than changes seen

in the observations and that different observation data sets themselves show a range of results. We conclude

that observed changes could be due to internal variability alone and certainly cannot be attributed as forced

changes.

We next investigate ENSO amplitude and strength changes in the weak and strong forcing scenarios

(Figures 3c and 3d). The large range of changes seen in single ensemble members demonstrates the large

internal variability of ENSO and highlights the danger of using single realizations to make ENSO projections.

An advantage of using large ensembles is that the ensemble mean changes can be used to quantify the true

forced changes in ENSO strength (shown in the bold symbols). These changes are small in MPI-GE, however

CESM-LE shows an increase in the strength of both PC1-E and PC2-E in both warming scenarios, with a greater

increase in the strong warming scenario (Figure 3c). Given the accurate quantification of variability, made pos-

sible by the large ensembles, this result can be attributed to model disagreement in the forced response and

calls for further study into why these differences are found.

The combination of the EOF-E pattern and PC-E strength changes is expressed in the Niño amplitudes (ampli-

tudes: Figure 3d, maps: Figure S3). Here, the ensemble mean shows limited changes in MPI-GE, consistent

with the limited pattern changes, with a small increase in the ENSO amplitude in the Niño4 region and a small

decrease in Niño3 region due to the pattern change in the strong warming scenario. We note that north of

these regions MPI-GE shows larger changes. CESM-LE shows an increase in both Niño regions in both the weak

and strong warming scenarios. This is due to an increase in PC-E strength combined with the pattern changes
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Figure 3. (a) ENSO strength (standard deviation of the PC time series) and b) Niño amplitude (standard deviation of the
Niño indices) difference expressed as a percentage of the mean of the period 1945–1975, between the period
1975–2005 and 1945–1975 for the historical scenario and three observational data sets (HadISST, COBE, and ERSST).
These periods were chosen due to the large discrepancies between observational data sets pre-1940. (c) ENSO strength
and (d) Niño amplitude difference expressed as a percentage of the mean of the control between the last 30 years of
each forcing regime (historical 1975–2005, RCP8.5 2070–2100) and the preindustrial control ensemble. The ensemble
means are shown in the large bold symbols. Results are shown for both MPI-GE and CESM-LE.

(Figure 2 consistent with result shown in Figure 1). These results demonstrate how the Niño responses can be
attributed to pattern changes, strength changes, or a combination of the two using the EOF-E approach.

5. How Many Ensemble Members are Enough?

Given that internal variability can explain a large portion of the diversity in CMIP5 projections, we investigate
how many ensemble members are needed to accurately capture ENSO SST variability. To complete this anal-
ysis we can only use MPI-GE because CESM-LE is not large enough (see Figure S4 for a qualitative comparison
with CESM-LE at low ensemble numbers). The errors in the spectral peak should not affect this calculation as
we choose analysis periods of greater than 10 years so that the analysis period is greater than the ENSO period
in the model. We use the variance in the Niño3 and Niño4 indices as proxies for ENSO variability. As there is
little change in the ensemble variance of the indices over the historical period we assume constant variability
throughout the historical period. Figures 4 and 4b show the maximum and minimum estimates of variability
as a function of ensemble size and analysis period. As expected, the error in the variability estimate decreases
both with length of the time period and ensemble size. This result is in agreement with Wittenberg (2009)
who stated that longer periods can be used to compensate for low numbers of ensemble members. We note,
however, that caution needs to be taken using such an approach if the internal variability itself is changing
over time. If the variability itself changes over time, then longer periods cannot be used to compensate for
low numbers of ensemble members, in this case shorter averaging periods and more members must be used.

Figures 4c and 4d show the number of ensemble members needed to be sure that the variability estimate is
within 5%,10%, and 20% of the true variability (here taken as the estimate using 155 years and 100 ensemble
members; this is possible because there is no change in variability in MPI-GE over the historical period). We see
that for a study that wishes to estimate the ENSO variability with a 10% error, 30–40 members are sufficient
for most analysis periods. To get within 5% error, however, much longer analysis periods or larger ensemble
size is needed. Eighty members are needed for the 30-year analysis period, while 30 members are sufficient if
50-year windows are used. This demonstrates that both the methodology and ensemble size are important
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Figure 4. Standardized variance in the Niño3 and Niño4 indices calculated for varying ensemble size and analysis period
(colors) for Max Planck Institute Grand Ensemble. The variance is calculated for the detrended historical simulation. We
then average over the ensemble members. Panels (a) and (b) show the variance found by randomly sampling the
historical ensemble in both the ensemble- and time-dimensions 100 times each (note that resampling is not used).
Panels (c) and (d) show the maximum difference between the real variance and the estimated variance using the
random sampling method. The real variance is taken as the estimate that uses the maximum averaging length and
ensemble size (155 years and 100 members, respectively) to give the closest possible result to the model truth. The
black solid lines show when the estimated variance is within 5%, 10%, and 20% of the real variance.

to obtain a robust estimate of ENSO variability in a model. These numbers are slightly higher for Niño4 than
Niño3. This is likely due to the cold tongue bias that results in higher variability in the Niño4 region and hence
a greater range of possible variance in this region. We note that these results are robust to all forcing scenarios,
however they could be model dependent.

While previous studies have investigated the number of ensemble members needed to detect changes in
ENSO amplitude in a specific scenario (Zheng et al., 2018) we evaluate the number of members needed to
estimate ENSO variance itself. In Figures 4c and 4d we clearly show that minimum of 30–40 members are
needed to obtain a realistic estimate of ENSO variability. This result agrees well with the variability captured
by the six ensembles (Figure 1a), where only the two large ensembles (>40 members) are able to capture 90%
of variability seen in the CMIP5 models in the historical simulation. This also explains why Sun et al. (2018) find
that the CESM Last Millennium Ensemble Project 10 member ensemble can only account for 50% of the CMIP5
historical spread in Niño3 amplitude. In this case their ensemble is too small to fully capture ENSO variance,
although the CMIP5 spread in this study is likely also overestimated due to a lack of detrending before the
standard deviation is calculated.

6. Conclusions

In the historical simulation the 5th and 95th percentiles of the ENSO amplitude changes simulated by CMIP5
are encompassed by the range of changes simulated in MPI-GE and CESM-LE. This means that internal variabil-
ity, as simulated by the two models, can explain 90% the CMIP5 range. In the moderate and strong warming
scenarios, internal variability can account for 80% of this range, with differences in model physics likely respon-
sible for the additional differences. While previous studies have suggested that model differences matter, they
have not been able to accurately estimate internal variability. Here, we can truly demonstrate the role for both
internal variability and model differences.

By using large ensembles, ENSO variability can be robustly quantified. The two large ensembles show limited
consensus in changes in ENSO strength under warming, with an increase in ENSO strength in CESM-LE in
both weak and strong warming scenarios. By contrast, MPI-GE shows limited changes in strength in both
scenarios. The pattern changes also show some disparity, with opposing changes in EOF1-E patterns in the
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strong warming scenario. There is some agreement in the EOF2-E pattern change under strong warming,
where both models simulate a weakening of the EOF2-E pattern suggesting a decrease in ENSO diversity;
however, changes in the central Pacific are of opposite sign. The combined pattern and strength changes
express themselves by showing an increase in both Niño3 and 4 amplitudes in CESM-LE and limited changes
in MPI-GE. In combination with CMIP5 results, this suggests that the forced change in Niño3 and 4 amplitude
under warming is likely to be zero or positive, but not negative, although a large variety of results can occur
in a single realization.

We find that ENSO varies in a single realization from another due to internal variability and conclude that small
ensembles and single realizations cannot be used to investigate ENSO changes. Finally, we find that approx-
imately 30–40 ensemble members of a single model are needed to robustly sample ENSO variance using a
30-year analysis period (<10% error), with larger ensembles or longer analysis periods needed to decrease
the error to below 5%. Here, multi-model ensembles are not the best tool for investigating future changes in
ENSO, because they confuse internal variability and model differences. Large single-model ensembles must
be used instead.
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