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Abstract—One of the main challenges in X-mode reflectometry
is the correct determination of the group delay measurement
used for density profile reconstruction. The X-mode upper cut
off group delay measurement can be used to reconstruct the
electron density profiles from the near zero density. However,
due to the broad operational conditions of experimental fusion
devices, the start of the upper cut off region can occur at any
probing frequency. The first fringe of the interference signal
measured by reflectometry, that corresponds to the start of the
upper cut off reflection is used together with the magnetic field
profile to determine vacuum distance between the reflectometer
antenna and the start of the plasma. An incorrect estimation
of the first fringe probing frequency not only introduces a
radial error but also a group delay error, affecting the shape
of the resulting density profile. In this work we present the new
developments in the automatic first fringe estimation required
for the reliable reconstruction of density profiles, used in the
multichannel X-mode density profile reflectometry diagnostic
recently installed on ASDEX Upgrade. An improved algorithm
to estimate and track the frequency of the first fringe along a
discharge is introduced. Tests show that it is able to correctly
determine the first fringe for most discharges. However, for a
number of unanticipated cases, the algorithm provides jitter and
imprecise results, introducing errors in the reconstructed density
profiles. We also present a novel neural network approach for
the first time for the estimation of the first fringe frequency. A
comprehensive training set was carefully selected by experienced
reflectometry diagnosticians and used to train the neural network
model using the open source software libraries TensorFlow and
Keras. The resulting neural network is able to provide more
precise first fringe estimations than the previous algorithm.
The reconstructed density profiles, using both algorithms, are
presented and compared.

Index Terms—X-mode reflectometry, first fringe estimation,
first cut off reflection, neural networks

I. INTRODUCTION

A new multichannel X-mode reflectometry diagnostic to
measure the edge electron density profiles was recently in-
stalled on ASDEX Upgrade. This diagnostic has three channels
embedded in the ICRF antenna to probe the facing edge
plasma at the top, middle and bottom poloidal regions of the
radiating surface [1]. It aims to contribute to ICRF operation
studies, such as the study of ICRF power coupling to the
plasma [2], which require millimeter resolution in the radial
density profile.

In reflectometry, the electron density profile is reconstructed
from the group delay measurements of probing waves with
varying frequency after reflection at the corresponding plasma
density cut off layers [3]. X-mode propagation in magnetized
plasmas is characterized by two cut off regions that depend
on the local plasma density and magnetic field. The use of
the upper cut off region, and the knowledge of the imposed
magnetic field profile along the line of sight, allow for the
measurement of density profiles from the edge density up to
the core.

A probing wave is launched from the magnetic low field side
of the vessel, propagating through a small vacuum distance,
and through the plasma up to a reflection layer. The cut off
frequency, at which the wave is reflected back to the receiving
antenna, depends on the local electron density and magnetic
values. The upper (fuc) and lower (flc) cut off frequencies are
determined by:

fuc =

√
f2pe +

f2ce
4

+
fce
2
, (1)

flc =

√
f2pe +

f2ce
4

− fce
2
, (2)

where f2pe (r) = ne (r) e
2/ (4πε0me) is the electron plasma

frequency, dependent on the electron density ne, and
fce (r) = eB (r) / (2πme) is the electron cyclotron frequency,
dependent on the local magnetic field B.

Density profile reconstruction depends on the correctness
of the magnetic field profile estimation, the group delay mea-
surement and the method of reconstruction. In our procedure,
the magnetic field information is provided by the equilibrium
codes on ASDEX Upgrade and the reconstruction method is
described in [3]. The probing frequency at which the first
reflection occurs is called the First Fringe (FF) frequency
and indicates the start of the group delay measurement of
the X-mode upper cut off reflection. This first reflection
occurs when the plasma electron density is ne ≈ 0, and
when the propagating wave’s frequency matches the local
electron cyclotron frequency limit f = f+ce, as determined
from (1). The group delay measurement starts at this FF
frequency and is proportional to the beat frequency of the
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Fig. 1. Influence of small FF estimation shifts in resulting density profile.
Left top and middle are the acquired raw signal and resulting group delay
spectrogram. Bottom is the radial profile of the electron cyclotron frequency
along the line of sight with origin at the launching antenna’s mouth. On the
right are the reconstructed density profiles corresponding to the group delay
measurements starting at each of the FF frequencies indicated on the left.

acquired signal divided by the probing frequency variation rate
τg = fb (dt/df).

The FF frequency together with the knowledge of the mag-
netic field profile are used to determine the vacuum distance
between the launching antenna and the start of the plasma.
Errors in the vacuum distance estimation result in radial shifts
of the reconstructed plasma density profile, along the line of
sight of the antenna. In addition, the incorrect determination of
the propagation group delay affects the density profile shape,
as the error is integrated along the profile reconstruction

Figure 1 shows three possible FF estimations and their
respective processed density profiles. The FF frequencies have
a spacing of 200 MHz, which result in density profile radial
variations of up to 9.5 mm. This indicates that a relatively
small error in FF estimation (up to ±3 probing frequency
points of the spectrogram, or less than 1% of the probing
bandwidth) may result in large radial shifts of the density
profile. It is important to note that probing frequency resolution
depends on the spectrogram window (214 samples correspond
to a 2 GHz window) and step (10 samples, around 93.5 MHz
per step) parameters, determined for best group delay deter-
mination performance.

In this work we present the new developments introduced
in the determination of group delay measurement in the ICRF
embedded reflectometer on ASDEX Upgrade. We first intro-
duce the difficulties involved in the development of automatic
X-mode upper cut off first fringe estimation algorithms able
to robustly operate in all operational conditions. We describe
the ampfilt algorithm, which is based on existing published
algorithms and capable of determining the FF frequency even
in the presence of lower cut off reflection signal. We finally
introduce a novel neural network approach to estimate the FF
frequency from the group delay spectrogram aiming to provide
better FF estimation performance than previous estimation
methods. The errors produced by both estimation methods
are evaluated over a large experimental dataset validated by
experienced human diagnosticians. The performance of both
approaches is also evaluated by comparing the precision of
their FF estimation evolution over a complete discharge and

by comparing the reconstructed density profiles

II. AUTOMATIC ESTIMATION OF THE X-MODE FIRST
FRINGE FREQUENCY

In the ideal scenario for X-mode upper cut off measure-
ments, there is no plasma reflection signal up to first upper cut
off, where the signal amplitude distinctly increases. This can
be observed in Figure 2 (left), where the acquired raw signal
and resulting spectrograms for different operational conditions
of the diagnostic on ASDEX Upgrade are shown.

The probing frequency at which the signal amplitude’s
gradient suddenly increases can be interpreted as the FF
frequency and the start of the upper cut off plasma reflection.
This approach has been used in many different devices such
as DIII-D [4], Tore Supra [5], EAST [6]. Amplitude based
methods require a high dynamic range of the diagnostic
measurement and assume that the plasma reflection signal
power is consistently higher than other reflections, such as
back wall reflection, spurious noise or lower cut off reflection.

More advanced techniques, such as the ones used at JET
[7], Alcator C-Mod [8], DIII-D [9], contemplate both the
frequency response and amplitude of the reflectometry signal.
Such approaches provide additional reliability by ignoring
broadband spurious signals that may occur before the expected
reflection signal at the plasma edge.

The FF search range may be reduced by using the magnetic
field profile along the line of sight of the antenna, provided by
the magnetic equilibrium. Considering that the probing waves
propagate along the line of sight with origin at launching
reflectometry antennas, and assuming that there is no plasma
behind the antennas, since these are embedded behind the
ICRF antenna limiters, then the first upper cut off plasma
reflection must occur somewhere along this line of sight
where the probing wave frequency matches the local electron
cyclotron frequency (fFF ≈ fce(rFF )). As the magnetic field
increases along the line of sight, then fFF must be higher
than the cyclotron frequency at the origin of the line of sight
fwall and lower than fsep, the cyclotron frequency at the
separatrix position (rsep, which is also obtained from the
magnetic equilibrium), where the plasma must exist.

In the analysis of the reflectometry raw data presented in
previous work [10], we showed how the increase of the plasma
core electron density results in a lower cut off reflection
appearing into the 40-68 GHz probing frequency window. The
typical group delay measurements in such high plasma core
density conditions can be observed in Figure 2 (right). The
consistently high amplitude of the lower cut off reflection
signal typically breaks amplitude-based FF estimation algo-
rithms, which can not easily distinguish between upper and
lower cut off regions. Over half of the plasma discharges at
ASDEX Upgrade acquired during the commissioning phase of
the diagnostic in 2016 meet the high core density conditions
for the appearance of this lower cut off reflection in the 40-
68 GHz probing window sometime during the discharge. For
this reason, it is crucial that any FF estimation algorithm be
robust enough to estimate the FF in both the simpler upper
cut off conditions but also in the scenarios with presence of
both upper and lower cut off reflections.
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Fig. 2. Different typical X-mode reflectometry group delay spectrogram
measurements with only upper cut off (left) and both upper and lower cut
off (right). The latter is a typical result for high core density plasmas.
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Fig. 3. FF estimation steps using the ampfilt algorithm for a reflectometry
raw signal with only X-mode upper cut off reflection.

III. AMPFILT FF ESTIMATION ALGORITHM

In the development of the new X-mode density profile re-
flectometry diagnostic we implemented the ampfilt algorithm,
adapted from the first fringe estimation algorithm from DIII-D
presented in [9].

In this algorithm, a rough FF frequency frough is esti-
mated from the highest amplitude gradient in the bounded
[fwall, fsep] range. The average frequency of the reflectometry
interference signal in the range [frough, fsep] is calculated
and a bandpass filter around this frequency filters the original
signal. The FF is then taken at the frequency for which
the filtered signal amplitude rises above a certain threshold.
Figure 3 shows the sequence of the ampfilt algorithm and a
good estimation of the FF frequency in a scenario with only
X-mode upper cut off reflection.

In addition, the ampfilt algorithm detects if there is a lower
cut off reflection signal and switches to a second FF estimation
procedure. The presence of the lower cut off refelction is
detected when the average signal amplitude to the left of fwall

is above 0.8 times the average signal amplitude to the right of
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Fig. 4. FF estimation steps using the ampfilt algorithm for a reflectometry
raw signal of a high core density plasma, resulting in both X-mode upper and
lower cut off reflections.

fsep. In theory, the FF reflection occurs immediately after the
absorption layer where ne = 0 and f = fce. In this vicinity
above the cut off, the probing wave is slowed down resulting in
a high group delay measurement. In the presence of the lower
cut off, the reflection beat frequency signals are consistent on
both sides of FF and the FF is estimated to occur around the
peak of the beat frequency, where the signal amplitude is also
low. In Figure 4 the ampfilt estimates the FF frequency in a
high core electron density plasma resulting in the presence of
a lower cut off reflection in the probing window. As seen, the
FF estimation coincides with an fb peak and a dip in reflection
signal amplitude.

The ampfilt algorithm provides a reliable FF estimation
in most situations. However, the algorithm may have large
unexpected variation of the FF frequency estimation for con-
secutive measurements in a discharge that are not correlated
to any known plasma event or noise source. This estimation
imprecision results in sporadic radial shifts of the recon-
structed density profiles, which do not correspond to real
profile features. These erroneous density profiles must then
be detected and removed.

IV. NEURAL NETWORK FOR FIRST FRINGE ESTIMATION

Generally, an experienced human diagnostician analysing
the different group delay spectrograms can detect certain
patterns that give hints on where the start location of the upper
cut off reflection might be. These may be combinations of
frequency peak evolution, amplitude dynamics and knowledge
of the fwall and fsep probing frequency delimiters. However,
translating these cues into discriminating rules and program-
ming these into explicit algorithms is not an easy task due to
the effects of the broad range of operational conditions has
on measured signals, such as magnetic field, plasma electron
density, noise due to different heating power sources, etc.

Neural networks (NN) are computational methods used
ubiquitously in machine learning systems. These networks
consist of several layers of neurons, interconnected by
weighted links, that can be trained to mimic the pattern
recognition procedures of humans. These techniques are used
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to recognize objects, classify images, transcribe and translate
speech, provide accurate web search results, make financial
market predictions, etc [11].

With the increasing popularity of machine learning, several
tools to create, train and use neural network models, have been
created. Google has open sourced its versatile TensorFlow [12]
tool to express machine learning algorithms. Keras [13], [14]
is a deep learning Python library interface that can work with
the TensorFlow or other machine learning backends. These
open source initiatives greatly reduce the barrier to entry
and eased the learning curve needed to implement machine
learning techniques in new fields of application.

Neural networks models have also been used in fusion
research to replace existing computationally complex recon-
struction algorithms. A well trained NN model may be capable
of reproducing the same results as an explicit algorithm, within
acceptable accuracies, while sometimes being faster to com-
pute than their original counterparts. NN applications in fusion
research include the tomographic reconstruction of bolometry
data [15], real-time plasma impurity monitoring [16] and real-
time evaluation and reconstruction of reflectometry density
profiles for plasma position control [17], [18]. In addition, the
pattern recognition capabilities of neural networks have also
been used to classify and predict tokamak disruptions [19],
[20].

We present a new neural network approach aimed to im-
prove the precision of the first fringe frequency estimation,
when compared with the ampfilt algorithm, by mimicking
the pattern recognition of human diagnosticians looking at
reflectometry spectrogram results. The supervised training of
the NN uses a large comprehensive training dataset. This
training dataset was created by experienced X-mode reflec-
tometry diagnosticians using experimental data acquired by
the ICRF embedded X-mode reflectometer during the 2016
ASDEX Upgrade campaign.

A. Creation of the training dataset

The first essential step to create a neural network, and train
it using supervised learning, is to create a large dataset of train
and test cases with good enough variability so that the trained
NN is capable of predicting the correct answer in most cases.
A total of 695 discharges were acquired with the new X-mode
reflectometry diagnostic during the 2016 ASDEX Upgrade
campaign. The distribution of these discharges depending on
their magnetic field and core electron density operational
parameters is shown in Figure 5.

The lower and upper magnetic field limits indicate the
operational limits of the reflectometry diagnostic to observe
the start of the upper cut off region inside the 40-68 GHz
probing frequency band. Most discharges on ASDEX Upgrade
have a magnetic field of around 2.5 T. A higher core plasma
electron density indicates that the lower cut off reflection may
also appear inside the probing band window sometime during
the discharge. The core density threshold curve (dashed curve
in Figure 5) indicates discharges where the lower cut off
reflection signal appears in the probing band and interferes
with the upper cut off reflection signal.
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Fig. 5. Distribution of the plasma discharges depending on their magnetic
field and core electron density acquired during the 2016 ASDEX Upgrade
campaign.

The training dataset consists of the raw data, operational
conditions and the selected first fringe frequency of 2209 raw
individual reflectometry acquisitions. These individual cases
were selected from 47 distinct discharges dispersed along the
measurable operational range (represented by × in Figure 5).
A graphical tool was developed to plot the raw data, group
delay spectrogram and relevant information such as signal
amplitude, fwall and fsep, aiding the diagnostician in selecting
the correct FF frequency. It is important to note that the NN is
trained to be as good as the experienced diagnostician, which,
nevertheless, result in a certain degree of uncertainty. The
training cases were also selected with different heating powers
(14.2% of the cases occurring with ICRH power, 56.6% with
ECRH and 34.3% with NBI), during ELM events (2.6% of
the cases) and with lower cut off reflection inside the probing
window (24.5%).

B. Preprocessing and extending the dataset

The dataset contains the raw data, time and magnetic infor-
mation and estimated ”true” FF values for each of the 2209
cases. The NN interprets the calculated spectrogram data and
estimates the corresponding FF frequencies from it. Prediction
performance can be increased by defining a region of interest
(ROI) around the expected FF position and retaining only this
data as input to the NN. In a first step, the spectrogram data
is restricted to the 0-25 MHz beat frequency region, since
there is no useful reflection data outside this range, by design,
even though the total spectrogram spans ±100 MHz. Then, the
search region of interest (ROI) is delimited by fwall and fsep,
within which the FF must be located, as shown in Figure 6.
The data outside the ROI is zeroed out, resulting in the
preprocessed input spectrogram image shown in Figure 7. The
true FF frequency value is discretized into a one-hot vector1

with 1120 possible discrete values between 40 GHz and
64 GHz (signal quality decreases above 64 GHz), resulting in
21 MHz FF frequency resolution versus the original 93.5 MHz
probing frequency resolution of the spectrogram. There is a
trade off between acceptable discretization resolution and FF
coverage of the training dataset. A higher resolution would
require a larger, more comprehensive training set.

1A one-hot vector is a sequential vector with 1 at the single position
corresponding to the true value and 0s in the remaining positions.
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Fig. 6. Raw X-mode reflectometry spectrogram data with both upper and
lower cut off reflection data. Horizontal lines are the considered upper and
lower beat frequency limits . Vertical lines are the fwall, true fFF and fsep.

Fig. 7. Preprocessed 2D spectrogram image used as input for the neural
network and respective true FF location

The neural network performance is inherently dependent
on the quality and size of the training dataset. NN predictions
are limited to the trained cases and our sparse dataset does
not cover all the possible discretized FF values. This sparsity
increases prediction error for inadequately trained FF cases.
A broader training set is required to improve prediction
performance.

Thus, the existing preprocessed dataset was extended by
assuming that the spectrogram signatures in the ROI are
similar for FF frequencies close to each other. Since the
spectrogram data outside the ROI is zeroed out, the ROI may
be shifted sideways and assume that it corresponds to a new
case where the FF is equally shifted. Using these assumptions
we were able to create an extended dataset by shifting each
of the original dataset case several times within its ±1 GHz
vicinity (each spectrogram window spans 2 GHz). The dataset
was extended from 2209 to 112 659 total new cases, providing
a much better FF coverage.

C. Definition and training of the neural network model

In our approach, a 2D convolutional neural network model
interprets the spectrogram data to determine the start of
the upper cut off reflection in a similar way to a human
diagnostician. This network receives the input data represented
in Figure 7 and outputs the likelihood distribution of the FF
along the 1120 discrete FF values. The highest probability is
then assumed as the first fringe frequency.

The neural network model was defined using the Keras
Python library and trained with the TensorFlow backend. The
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Fig. 8. Mean and standard deviation distribution error of the ampfilt algorithm
using the known sparse dataset.

input layer of the neural network model is a 2D convolutional
layer with 127x268 input grid shape, 50 5x5 filters, rectified
linear unit (ReLu) activation and stride 3. A 2x2 pooling
layer was used to down sample the data which was then
flattened. Then there is a fully-connected (FC) layer with ReLu
activation and 1024 elements, followed by the output FC layer
with sigmoid activation and 1120 output shape. The network
was compiled and trained using a categorical cross entropy
loss function and Adam optimization [21].

In order to correctly validate the neural network training
and prevent over fitting to the training data, it is necessary to
separate the dataset into training and validation subsets. This
was achieved by randomly splitting 90% of the dataset for
training and the remaining for validation, keeping the same
FF distribution in both datasets.

V. EXPERIMENTAL RESULTS

Here we analyse the ampfilt and neural network based FF
estimation algorithms over the dataset of known FF values.
The differences in FF coverage and the errors of the sparse
and extended datasets are explained. We then use the both
algorithms to estimate the FF frequency along the same
discharge and compare the reconstructed density profiles.

A. Analysis of the ampfilt estimation performance

The ampfilt was tested using the sparse dataset created for
the training of the neural network. The FF frequency was
estimated for all the cases and the errors were produced cal-
culating the difference to the corresponding registered dataset
FF value. The error distribution is obtained by discretizing
the FF frequency axis into a smaller number of bins and and
calculating the average and standard deviation errors within
these bins. The mean and standard deviation error distribution
of the ampfilt algorithm are shown in Figure 8. Over the whole
range, the ampfilt algorithm has FF estimation error average of
-80 MHz and a standard deviation of 790 MHz. However, error
peaks of over 1 GHz may also occur, consequently resulting
in large radial and shape errors of the density profile. The
small average negative error bias is considered a systematic
error specific to this dataset and is not compensated since it
falls within ±1 point of the spectrogram probing frequency
resolution.
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Fig. 9. First fringe distribution of the sparse dataset used to train the neural
network and resulting error distribution.
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Fig. 10. First fringe distribution of the extended dataset used to train the final
neural network and resulting error distribution.

B. Analysis of the neural network training and estimation

The FF frequency distributions of the sparse and extended
datasets are represented in Figure 9 (top) and Figure 10 (top),
respectively. As can be observed, the sparse dataset does
not contain all of the possible FF frequency values, while
the extended dataset provides data for the a much better FF
coverage.

Two neural network models were trained using the training
subsets of the sparse and extended datasets. The corresponding
errors were calculated using the more comprehensive extended
validation subset (10% of the extended dataset). The sparse
and extended NN FF estimation error distributions are repre-
sented in Figures 9 (bottom) and 10 (bottom), respectively.

The sparse NN model can not extrapolate correctly to
cases outside its trained range, resulting in the observed error
increase near the outer edges of the validation range. To avoid
error biasing of the extrapolated results, the FF estimation
error is calculated within the limits of the original sparse
training universe, represented by the vertical dashed lines. The
FF estimation error of the network trained with the sparse
dataset has an average of 30 MHz and an error deviation of
550 MHz. This high deviation can be attributed to the sparsity
of the training dataset and since the extended validation dataset
includes many untrained FF cases. The neural network should

be trained with multiple different input cases for the same FF
value, which is not correctly achieved using this sparse dataset.

However, training the neural network model with the ex-
tended dataset reduced the average FF estimation error to
-0.5 MHz and the error standard deviation to 230 MHz, within
the same validations limits. This is due to a much better
individual FF coverage of the extended training dataset (there
is a higher number of cases for each of the discrete FF values)
due to the overlap of the shifted ROI cases. However, the
increased error near the lower limit of the FF range can be
attributed to a lower coverage of the training universe in this
region, when compared with remaining dataset. The average
error stabilizes close to zero when there are more than 40
different training cases per FF value.

C. Comparison of reconstructed density profiles

The density profile evolutions of discharge #33841 of AS-
DEX Upgrade were reconstructed using the ampfilt algorithm
and the extended neural network model, as shown in Figure 11.
We use the NN model trained with the extended dataset as it
provides a more constant error deviation response than the
sparse NN model, as well as better extrapolation near the
outer edges. A high core electron density, above approximately
6×1019 m−3, resulted in the lower cut off reflection appearing
inside the probing window during the 1.2-4.2 seconds interval
(shaded region in top plot). A 2 cm outer radial scan of the
separatrix position occurred at around 3 seconds. The core
magnetic field varied from -2.47 T up to -2.54 T, as can be
observed by the corresponding cyclotron frequency evolution
at the wall, fcewall.

The FF frequency estimations using the ampfilt and NN
approaches are shown in the second plot. The FFampfilt result
has higher variation between consecutive time steps. This jitter
is increased in the presence of the lower cut off reflection.
However, the neural network estimation, FFNN, has a better
precision than FFampfilt throughout the discharge, even during
lower cut off reflection.

A Kalman filtering technique [22] is used to increase the
precision of the FF estimation used for each density recon-
struction. The filtered FF value is predicted for each time step,
from the previous filter state and the new FF estimation, based
on the idea that the vacuum distance should not vary much
between two consecutive acquisitions (≈ 100 µs). This filter
greatly reduces the FF estimation jitter of either algorithm,
enabling a more accurate density profile reconstruction.

The reconstructed density profiles using both algorithms are
represented at the bottom of Figure 11. The positions of the
density profile are referenced as the distance from the antenna
origin along reflectometer the line of sight.

Both reconstructions are able to track the separatrix radial
scans at higher density layers. The magnetic field variation
starting at 3.5 seconds does not influence either density profile
reconstructions, as is expected.

The shape of the outer density layers shows higher differ-
ences between reconstructions than the layers further inside the
plasma, indicating a high sensitivity of the outer edge density
profile reconstruction to the FF measurement.
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Fig. 11. Reconstructed density profiles for AUG#33841 using the ampfilt and
neural network algorithms for first fringe frequency estimation.

The neural network reconstruction shows an approximately
constant vacuum distance, between the reflectometry antennas
and the first plasma reflection layer, throughout the discharge.
This can be expected since the reflectometry antenna is em-
bedded in the shadow but very close to the ICRF antenna
limiters.

VI. CONCLUSION

In this work we detailed the developments made to im-
prove the error of the group delay measurement of the new
ICRF embedded X-mode multichannel edge density profile
reflectometry diagnostic on ASDEX Upgrade. The group delay
measurement and resulting radial accuracy of the reconstructed
density profiles are directly dependent on a good first fringe
frequency estimation.

To improve the automatic processing of complete discharges
using the ampfilt algorithm, a neural network approach for
FF estimation was implemented. The implemented NN was
trained with experimental data to estimate the first fringe
frequency in a broad range of operational conditions from the
raw spectrogram data.

Both FF estimation methods were compared based on a
dataset with known FF frequency values. However, it is im-
portant to acknowledge that the evaluation of the FF estimation
error may still be biased as there is no known true FF
value for comparison. The training and validation dataset was
created by experienced X-mode diagnosticians, which have an
unknown estimation error and biasing. This may be improved

by averaging the same FF estimations made by different
diagnosticians.

We were able to improve the error and precision of FF
estimation using the new neural network approach when
compared to the previous ampfilt algorithm. The density profile
reconstruction using the neural network approach showed
seemingly more accurate results than the previous method
using the ampfilt algorithm. Still, the evaluation of density
profile reconstruction error requires comparison with other
edge electron density profile diagnostic reconstructions and
associated radial and density errors.

The improved FF estimation results show that neural net-
work techniques may provide more interesting and improved
results than other computational algorithms for issues where
there is no known solution.
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