日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

The chemistry-climate model ECHAM6.3-HAM2.3-MOZ1.0

MPS-Authors
/persons/resource/persons37300

Rast,  Sebastian
Global Circulation and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37320

Schmidt,  Hauke       
Global Circulation and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

gmd-11-1695-2018.pdf
(出版社版), 6MB

付随資料 (公開)

gmd-11-1695-2018-supplement.zip
(付録資料), 3MB

引用

Schultz, M., Stadtler, S., Schröder, S., Taraborrelli, D., Franco, B., Krefting, J., Henrot, A., Ferrachat, S., Lohmann, U., Neubauer, D., Siegenthaler-Le Drian, C., Wahl, S., Kokkola, H., Kühn, T., Rast, S., Schmidt, H., Stier, P., Kinnison, D., Tyndall, G., Orlando, J., & Wespes, C. (2018). The chemistry-climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 11, 1695-1723. doi:10.5194/gmd-11-1695-2018.


引用: https://hdl.handle.net/21.11116/0000-0001-5D87-F
要旨
The chemistry-climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols using either a modal scheme (M7) or a bin scheme (SALSA). This article describes and evaluates the model version ECHAM6.3-HAM2.3-MOZ1.0 with a focus on the tropospheric gas-phase chemistry. A 10-year model simulation was performed to test the stability of the model and provide data for its evaluation. The comparison to observations concentrates on the year 2008 and includes total column observations of ozone and CO from IASI and OMI, Aura MLS observations of temperature, HNO3, ClO, and O3 for the evaluation of polar stratospheric processes, an ozonesonde climatology, surface ozone observations from the TOAR database, and surface CO data from the Global Atmosphere Watch network. Global budgets of ozone, OH, NOx, aerosols, clouds, and radiation are analyzed and compared to the literature. ECHAM-HAMMOZ performs well in many aspects. However, in the base simulation, lightning NOx emissions are very low, and the impact of the heterogeneous reaction of HNO3 on dust and sea salt aerosol is too strong. Sensitivity simulations with increased lightning NOx or modified heterogeneous chemistry deteriorate the comparison with observations and yield excessively large ozone budget terms and too much OH. We hypothesize that this is an impact of potential issues with tropical convection in the ECHAM model. © 2018 Author(s).