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Transient gravitational-wave searches can be divided into two main families of approaches: mod-
elled and unmodelled searches, based on matched filtering techniques and time-frequency excess
power identification respectively. The former, mostly applied in the context of compact binary
searches, relies on the precise knowledge of the expected gravitational-wave phase evolution. This
information is not always available at the required accuracy for all plausible astrophysical scenarios,
e.g., in presence of orbital precession, or eccentricity. The other search approach imposes little priors
on the targetted signal. We propose an intermediate route based on a modification of unmodelled
search methods in which time-frequency pattern matching is constrained by astrophysical wave-
form models (but not requiring accurate prediction for the waveform phase evolution). The set of
astrophysically motivated patterns is conveniently encapsulated in a graph, that encodes the time-
frequency pixels and their co-occurrence. This allows the use of efficient graph-based optimization
techniques to perform the pattern search in the data. We show in the example of black-hole binary
searches that such an approach leads to an averaged increase in the distance reach (4+7-8%) for this
specific source over standard unmodelled searches.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym

I. INTRODUCTION

The first gravitational wave detections made by
the advanced LIGO detectors (namely GW150914 [I],
GW151226 [2], GW170104 [3] and GW170608 []), and
recently jointly with advanced Virgo (GW170814 [5],
GW170817 [6]) heralds a new astronomy which will de-
velop further as more detectors come online such as Ka-
gra [7] and LIGO India [8]. So far, the detections of the
gravitational wave signals associated with the merger of
four binary black holes (BBH) [3 9] and a binary neutron
star [I0] have been announced.

The search for BBH signals in the LIGO/Virgo data
is performed using a variety of methods, including the
matched filtering technique (see e.g., [I1]). This pattern
matching algorithm essentially consists in comparing the
data with a waveform model or “template”. The matched
filtering BBH searches use a discrete grid of templates.
This grid samples the physical parameter space with suf-
ficient density to detect 90 % of the detectable binary
sources (assuming the real signals do not deviate from the
waveform model). The template grid used for the anal-
ysis of the first Advanced LIGO run includes ~ 250,000
waveforms spanning the compact binaries with total mass
M = my + my < 100Mg, mass ratio ¢ = my/ms < 99
and the dimensionless spin magnitude < 0.989 [11]. The
template grid used for the second Advanced LIGO run
has ~ 400,000 waveforms covering a parameter space
extending to larger masses, M < 500M,, with a denser
sampling in the high-mass region with ¢ < 3.

The template waveforms are obtained by solving for

the coalescence dynamics during the initial inspiral phase
and the merger that follows (for a review, see e.g.,
[12]). Current targeted BBH searches use template wave-
forms obtained from the quadrupolar (¢, |m|) = (2,2)
gravitational-wave modes emitted by binary of black
holes in quasi-circular orbits and with spins aligned to
the orbital angular momentum [I3].

This model is expected to be in good match with the
gravitational wave emission from binaries formed from
isolated star progenitors in galactic fields; but it ignores
three effects that can be relevant in other formation sce-
narios such as dynamical captures in dense stellar envi-
ronments. The effects so far poorly modelled and/or ab-
sent in current searches are: higher-order than quadrupo-
lar gravitational wave modes, orbital precession due to
non-aligned spins and orbital eccentricity.

The inclusion of those effects is not straightforward for
several reasons. First, gravitational wave modeling from
binaries is still a topic of active research and accurate
waveform models are not always available; for instance,
this is true for binaries in eccentric orbits [I4HIG]. Sec-
ond, a larger search space implies a larger template grid,
thus larger computing needs. For instance, the search
for arbitrarily spinning (or “precessing”) binary requires
10 times more template waveforms (order of millions, us-
ing relaxed sampling density requirements). The search
algorithm has also to be adapted to account for the sky-
dependency of the signal received by the detector [17].

Current searches based on the quadrupolar aligned-
spin quasi-circular template waveforms have partial sen-
sitivity to signals that departs from the nominal model.



A fraction of the signals can be missed because the sig-
nal vs template phase agreement is not good enough to
obtain sufficient signal-to-noise ratio, or because the sig-
nal is discarded by the “chi-square” consistency testﬂ
[11], 18] applied to reject transient non-Gaussian instru-
mental noise. A number of studies evaluate the ability
of the current template grids to detect signals departing
from the quadrupolar aligned-spin quasi-circular model.
Depending on the alternative astrophysical model (pre-
cession, non-quadrupolar modes, eccentricity) being con-
sidered, ~ 10 % to more than 50 % of the sources can be
missed [17, 19H22).

Searching specifically for the aligned-spin quasi-
circular quadrupolar signals [9] can introduce an obser-
vational bias as one more likely detect what one has
searched for [I7]. The sources at or beyond the bound-
aries of the currently searched parameter space may be
of larger interest as they are associated to somewhat un-
expected astrophysical scenarios.

Current matched filtering searches will extend in scope,
e.g., by including more templates to cover a larger param-
eter space (see e.g., [23] for a proposal to cover precessing
neutron-star black hole binaries).

In the meanwhile, the unmodelled transient searches
(see e.g., [24]) provide an alternative approach capable of
identifying sources beyond the ones currently addressed
by matched filtering. Unmodelled transient searches rely
on general assumptions on the target signals instead of a
precise model, and detect the signal by identifying power
excesses in a time-frequency representation of the data.

The way the power excesses are arranged in the time-
frequency plane is directly related to the signal. In this
paper, we propose to revisit the pattern matching idea
underlying in matched filtering searches, and apply this
idea to the time-frequency pattern rather than the time-
or frequency-domain waveform. The goal is to improve
the sensitivity of existing burst searches by targeting
given arrangements or shapes motivated by astrophys-
ical waveform models. This idea is general but we apply
it here specifically to one of the major search algorithms
referred to as coherent WaveBurst [25], used to analyze
LIGO and Virgo data. Similar ideas have been explored
in [26], 27] in the context of other data analysis pipelines.

The paper is organized as follows. In Sec. [T, we briefly
introduce the coherent WaveBurst algorithm. Sec. [IT]
shows how astrophysical models can be encapsulated into
a time-frequency graph. This graph is used in a modifi-
cation of coherent WaveBurst in order to specialize the
search to these particular models. In Sec. [[V] we apply
this idea to the case of BBH signals and evaluate the sen-
sitivity of the new algorithm using simulated LIGO and
Virgo noise. The results are discussed in Sec. [V]

1 This test measures how the amplitude profile of observed signal
in the frequency domain differs from that of the closest phase-
matching template.

II. OVERVIEW OF THE COHERENT
WAVEBURST PIPELINE

Coherent WaveBurst (¢cWB) [25] is a data analysis
pipeline used to search for gravitational wave transients
with limited prior knowledge on the waveform. The
pipeline has been used to analyze multiple LIGO and
Virgo runs. In this section, we review the main steps of
cWB.

The data is mapped to the time-frequency domain
by using the so-called Wilson-Daubechies-Meyer (WDM)
transforms defined in [28]. The WDM transform pro-
vides a representation of the data similar to short-term
Fourier or Gabor analysis, but it relies on an orthonormal
basis composed of regularly distributed sinusoidal func-
tions that we later refer to as “wavelets”. The time and
frequency resolutions of this representation are M/ f; and
fs/(2M) respectively, determined by the chosen number
M of frequency sub-bands and the sampling frequency
fs. ¢WB computes a collection of WDM transforms over
a range of time/frequency resolutions to obtain a com-
plete representation of signal features that have different
timescales. Typically, M = 2¢ for scales £ = 4,...,10
that correspond to analysis timescales ranging from 7.8
ms to 0.5 s when f; = 2048 Hz.

From these collections of WDM transform ¢WB only
retains the time-frequency pixels that exceed a baseline
amplitude which corresponds to the last centile (or per-
mille) under Gaussian noise assumption.

Neighboring pixels in time and frequency are grouped
in a cluster C. In principle, clusters can have any
shape. ¢WB applies only limits cluster shape by fixing
the gap between the pixels in time, frequency, and time-
frequency. They provide a multi-resolution representa-
tion of the signal recorded by the considered network of
detectors.

Clusters are then characterized using a maximum like-
lihood ratio statistics obtained from Gaussian noise as-
sumption, assuming the source is at the sky location

(0, 0):

Lmam (97 (rb) - Z wZ;PpwP (1)
peC

In the above equation, the sum runs over all pix-
els p in cluster C. The amplitudes (after whitening)
of the time-frequency pixels are collected into a vec-

tor w, = {wk(tp - Tk(97 (b)’ fp?Mp)/S’i/Q(fp)}k:L...,K

where 7; is the time delay in the arrival time between
the kth detector and a fiducial reference point. The time
tp, frequency f, and scale M), unequivocally characterize
the time-frequency pixel p.

The operator P, projects the data into the
gravitational wave subspace spanned by the noise-
weighted antenna patterns F, and Fy, where F, =

{Fe 0.0/ (1)}
[25]. K defines the number of detectors in the network

(and similarly for Fy)



and Sk (f) is the noise spectral power density for the kth
detector.

The sum of the diagonal components of the quadratic
form in the summand of Eq. defines the incoherent en-
erqgy E;y,, while the non-diagonal terms defines the coher-
ent energgﬂ FEeon, i-e., from signal that are phase-coherent
in all detector observations [25].

The energy of the component in the data that does not
lie in the gravitational wave subspace is characterized by
the null energy [25, 29)], viz.

Enull (97 ¢) = Z U’E;P;u“wp (2)
peC

where Pz?“” = I — P, is the projection operator orthog-
onal to P,.

Those energies inferred from the data are combined
into two statistics that characterizes the amplitude and
consistency of the signal associated with the cluster. The
network correlation coefficient ¢. = Econ /(| Econ| + Fnuit)
allows to distinguish gravitational-wave signals (c. = 1)
from spurious noise events (¢, < 1) [25,[30]. The statistic
Ne = (ceFeon K /(K —1))Y/2 provides an estimate of the
network coherent signal-to-noise ratio [25] [3T].

Depending on the search being performed, other figure-
of-merits are used together with the above two statis-
tics. For instance, to improve background rejection in
searches for compact binary coalescences, a selection cut
on a crude chirp mass estimate has been introduced (see
[32] for details).

IIT. BASIC PRINCIPLES OF THE PROPOSED
METHOD

We now present a new clustering method called Wave-
graph for the cWB pipeline. In this section, we explain
the general principles and describe the major steps of the
algorithm.

A. General idea

The proposed method combines three main ingredi-
ents. It is based on a formulation of signal detection
as pattern matching in the time-frequency plane. An
expected pattern is computed from the salient time-
frequency pixels i.e., pixels that stand above the noise
level when the signal is detectable.

As detailed in Sec[[II B] to compute this characteristic
set of pixels we employ an algorithm used for sparse sig-
nal approximation that ensures this pixel set contains a
complete description of the waveform model.

2 The off-diagonal terms in Eq. do necessarily sum to a positive
value for all 8 and ¢. The term “coherent energy” is not always
proper.

Astrophysical scenarios generally provide a range of
waveforms parametrized by several physical source pa-
rameters. For instance, compact binaries are character-
ized by the binary component masses and spins. This
leads to some variability in the expected time-frequency
pattern. We encapsulate the waveform model variability
into a time-frequency graph, see Sec [[ITIC]

The graphical representation allows to formulate the
detection problem as a combinatorial optimization prob-
lem where efficient algorithms can be used, as explained
in Sec [IIDI

In the following sections we detail all the steps men-
tioned above. We start from set of characteristic gravita-
tional signals for the target astrophysical source. In the
case of compact binary mergers, we use a template bank
employed in matched filtering based searches.

B. Sparse signal representation

For each characteristic signal, the first step is to in-
dividuate a representative set of salient time-frequency
pixels. As mentioned above, the cWB pipeline maps
the data to the time-frequency plane using a collec-
tion of WDM transforms, that is by projecting the data
onto a union of Wilson bases, thus resulting into an
overcomplete representation based on a redundant time-
frequency dictionary.

Signal expansions in redundant dictionaries are not
unique. Sparse linear decompositions provide a complete
signal representation where the power is concentrated in
a small set of dominating pixels, that are thus more likely
to stand above the noise level. Because of the small num-
ber of pixels, there is a reduced chance that one or several
pixels in the decomposition match noisy transients that
are often observed in gravitational-wave data.

In an earlier version of the algorithm [33] we proposed
to compute the signal expansion from local maxima of the
WDM transforms. However, the resulting set of pixels
generally failed ensure full signal energy recovery, thus
leading to an overall SNR loss of 40 % on average.

The problem of sparse signal expansion in redundant
dictionary has received a good amount of attention over
the last twenty years [34]. Although this problem is NP-
hard, efficient algorithms are available. The matching
pursuit algorithm [35] is one of these and goes with the
following steps:

1. Decompose the signal onto the time-frequency dic-
tionary,

2. Identify the dictionary wavelet with the largest dot-
product,

3. Compute the residual signal by subtracting the se-
lected wavelet rescaled by the associated expansion
coefficient,

4. Go to 1. until the residual energy is below a user-
defined fraction of the original signal.



In this work, we fixed to the residual energy in the
termination condition to ~ 20%. We observed this was
a good compromise as, below this level the convergence
of the algorithm is very slow and leads to selecting many
low amplitude pixels that do not contribute significantly
to the overall detection performance of the pipeline.

An example of the sparse decomposition obtained with
the matching pursuit algorithm is shown in Fig. It
uses an equal-mass non-spinning BBH signal with 20
Mg total mass (SEOBNRv2_DoubleSpin model [30]) after
whitening by advanced LIGO design sensitivity curve.
The top panel represents the selected time-frequency
pixels evidencing the typical raising frequency evolution
of gravitational-wave chirp signals. Closer to the fi-
nal merger, the higher frequencies are captured by the
smaller scales (shorter duration wavelets). The bottom
panel displays the same signal in the time domain and
the approximation obtained by the collection of selected
wavelets.
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Figure. 1. Sparse expansion of an equal-mass
non-spinning BBH waveform with 20 Mg, total mass
after whitening by advanced LIGO design sensitivity

PSD. (Top) Time-frequency pixels selected by the
matching pursuit algorithm. The color indicates the
scale ¢ associated to each pixel that corresponds to a

wavelet timescales 2¢/ f,. (Bottom) Strain amplitude of
the original waveform (black) with selected wavelets
colored according to their scale.

C. Graph computation

The set of time-frequency pixels selected by the sparse
signal approximation provides a compact representation
of the waveform model. With the selected pixels, we form
a cluster by connecting pixels to keep a record of their
co-occurrence in association to the same signal. To limit
the number of interconnections we only connect pixels
that are adjacent in a particular ordering defined by a
rule, e.g., by ascending order in time first, and ascending
in frequency in second. This thus forms a chain where a
pixel is connected to one pixel downstream, and another
upstream.

We repeat this operation for different alignments in
time between the waveform and the coarsest time-
frequency lattice associated to the WDM transform with
the largest analysis timescale. These alignments are ob-
tained by shifting the waveform in time by multiples
of the smallest analysis timescale. For the scale range
¢ = 3,...,7 used here, there is thus a maximum of
24 = 16 possible alignments.

We also repeat this operation on every waveforms as-
sociated with the considered astrophysical scenario, i.e.,
the template bank. We thus obtain as many pixel clus-
ters as there are templates in the bank times the number
of alignments.

The pixels in the clusters are characterized by the cen-
tral time, frequency and duration of their corresponding
wavelet. The connections between pixels form a time-
frequency graph. As two clusters may have pixels in
common, pixels in the intersection receive the connec-
tions they have in the two clusters of origin. They thus
end up being connected to more than one pixel down-
stream or upstream. The graph is oriented and acyclic,
for well chosen pixel ordering rule.

The resulting graph provides a compact and convenient
representation of the entire waveform manifold associated
with an astrophysical scenario. It allows to use efficient
search algorithms borrowed from graph-based combina-
torial optimization as we will see in the next section.

We provide examples of graphs produced for BBH
searches in Sec. (see Fig. [2)).

D. Search observational data using the graph

Signals from the targeted family can be searched by
finding the cluster C* in the graph that maximizes the
likelihood ratio in Eq. . However this would require
the computation of L,,,, over the sky coordinates which
is too computationally expensive. Instead we identify the
interconnected cluster in the graph G that satisfies

C* = arg max Z Ep — AE(fp, My), (3)
cec 1

where E, = ), @7, with
w?),k = H@l%XU]i(tp - Tk(97 (b)a fp? MP) (4)

The first part of the sum in is a proxy for the
likelihood ratio in . Though not identical, the term
E, is related to the incoherent energy FEj;, introduced
earlier in Sec. [lIl E(f,, M,) is an estimate of the noise
level at a given f, and M, obtained by the median value
of E, at this frequency and scale for all times.

The second term of the summation in is a kind
of “Occam’s razor” penalization term that favors small
clusters. Without this penalization, the maximization in
would have the tendency to prefer large clusters that
accumulate more noise power than smaller signal-related



clusters. The factor A allows to tune the strength of this
penalization. Typically, we set A = 1.

Maximizing Eq. can be directly related to the class
of ”longest path problem” and can be solved by the dy-
namic programming algorithm. The computational cost
scales linearly with the number of connections in the
graph. This makes it particularly efficient even for com-
plex graphs.

When applying the search to a segment of obser-
vational data, this segment is divided into successive
blocks shifted by strides equivalent to the largest analy-
sis timescale. The best-fit cluster C* is computed in all
blocks.

The follow-up of the selected clusters is performed fol-
lowing the standard ¢cWB workflow, by computing their
coherent statistics ¢, and 7. given in Sec. @

IV. RESULTS

While this method is applicable in principle to a broad
range of astrophysical models, we will use the specific
case of compact binary mergers to demonstrate the idea.
In this section we show how wavegraph can improve upon
c¢WB in searching for BBH signals in simulated Gaussian
noise. We give a comparison with the recent version of
c¢WB that was used in [3].

A. Time-frequency graphs

We carry out simulations of a BBH search using cWB
with and without Wavegraph. In order to check the effect
of using graphs with different size and complexity we
divided the mass range in two disjoint regions.

The region R1 (low-mass) corresponds to a total mass
range of 10 - 25 Mg, while R2 (higher-mass) covers 40 -
70 M. The selected range of masses is similar to that of
the BBH events observed during the first two LIGO ob-
servational runs. For both regions, we set the mass ratio
g = ma/my < 2 and cover the entire spin range avail-
able for the waveform model SEOBNRv2_ROM_DoubleSpin
[37H39] up to almost maximally spinning black holes.

Using the algorithm described in Sec. [ILC] we com-
pute the time-frequency graphs using grids of template
waveforms that covers the mass range chosen for each
regions.

We used template grids of 28 201 (resp. 2 950) wave-
forms for the R1 (resp. R2) region computed using a
stochastic placement algorithm [40]. To limit the overall
computational cost for the time-frequency graph, the set
of template waveforms is produced with a slightly coarser
sampling of the parameter space in the R1 case (minimal
match of 95% for the R1 graph, and 99% for R2) and
used a limited number of waveform alignments; only 1
for R1, and 32 for R2.

This leads to a graph with 1643 pixel nodes for R1,
and 941 nodes for R2, a difference that can be explained

by the relatively shorter signal duration for higher-mass
binaries in R2.

Top left panel of Figure [2| displays the pixels in the
graph computed for R1 and R2 with time on z-axis, fre-
quency on the y-axis and scale encoded in colors. The
panel on the right shows the graph connectivity ¢.e., the
number of connections of a given time-frequency pixel
with its neighbors.

As expected, the overall graph time support and com-
plexity is larger for R1 as the BBH signals have a longer
duration for this mass range and there is a higher density
of template waveforms.

We thus perform two searches using cWB with Wave-
graph and the R1 and R2 graphs separately. We do not
intent to combine the two searches a posteriori (which
would then require to apply a trial factor to account for
the multiple search attempts). The idea is rather to show
how the search background changes with the different
graphs.

B. Simulated data set

We present a Monte-Carlo simulation of the three de-
tector network composed of the two LIGO and the Virgo
detectors. We used simulated Gaussian noise colored ac-
cording to the advanced LIGO and Virgo design sensi-
tivities given in [41], 42].

We simulate and add about 10° signals from bina-
ries that are arbitrarily oriented, isotropically and uni-
formly distributed in volume with the maximum distance
of 1.4 Gpc and 3 Gpc for the R1 and R2 analysis respec-
tively. Although these distance upper bounds are con-
sistent with distance reach of the considered network for
each search region, distances of injection do not account
for any cosmological model. The mass ranges of the sim-
ulated signals are consistent though slightly larger than
the span used to compute the time-frequency graph. A
small fraction of the injected signals may then fall outside
of the time-frequency graph mass coverage.

C. Results

In this section, we summarize the main results ob-
tained running the Monte-Carlo simulation presented in
the previous section.

1. Background estimation

We compare the search algorithm sensitivities at a
fixed false alarm rate (FAR). We evaluate the false-alarm
rate by generating 129 days of simulated Gaussian noise
for the three detectors. We then follow the background
estimation procedure classically used for actual searches.
It is based on surrogate data produced by applying non-
physical time-shifts (larger than time-of-flight between
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Figure. 2. Time-frequency graphs used to search for BBH signals with the wavegraph algorithm. R1 region (top)
and R2 (bottom).

detectors) [31]. By applying this procedure to the origi-
nal data set with ~ 600 time lags, we generate the equiv-
alent of 212 years of time-shifted surrogate data. The
analysis of this noise-only data results in the search back-
ground, i.e. a set of noise-related events each character-
ized by their statistics 7. and c. defined in Sec. [[Il The
search background is further used to associate a FAR es-
timate to any detected signals by counting the number of
background events passing the same selection cuts. The
FAR estimate is a measure of the event significance, i.e.,
the probability for an event to come from the noise.

We apply selection cuts similar to that used in actual
searches. These include the ones introduced for the rejec-
tion of transient noise (or glitches) present in the LIGO
and Virgo data, although this type of noise is not present
in the simulated data used for this study. Signals with a
low network correlation coefficient ¢, are discarded (poor
phase coherence between pairs of detectors). We have
used ¢, = 0.7 for both analysis.

Clusters of pixels associated with only few wavelet du-

rations (or time-frequency resolutions) are also discarded
as this type of cluster is not representative of what is ex-
pected for BBH signals (see Sec. and Fig. . The
cWB analysis includes a third selection cut based on
a chirp mass estimate obtained from the reconstructed
time-frequency pattern (see [24] for details). This selec-
tion retains clusters that possess a “chirping-up” time-
frequency signature compatible with BBH signals.

Figure [3| represents the cumulative distribution of the
background as a function of the ranking statistic n.. Both
analyses using wavegraph have higher background rate
than ¢WB alone. Our explanation is that the clusters
extracted using wavegraph are, by design, larger on av-
erage and with a wider spread in time. Also, while cWB
gathers sets of contiguous pixels with large amplitudes,
wavegraph allows for interruption, since the cluster is se-
lected whenever the overall energy evaluated globally is
large whether the cluster is a connected set or not. These
two effects have the consequence to slightly expand the
signal space accessible to wavegraph.



Algorithm R1 region R2 region
10+ Injected |Recovered| Injected |Recovered
cWB 930 744 28900 930870 26 927
(3.1 %) (2.9 %)
1075 P, cWB + 930744 35340 930870 33699
\ wavegraph (3.8 %) (3.6 %)
N
z 105\ . TABLE I: Number of injected/recovered signals by the
2 . N k“‘«‘.‘x simulation in the R1 and R2 regions for the two
E 107 o compared pipelines. Note the recovered signals
& : e indicated in the table are not exclusive to a single
o i ™~ A“‘x pipeline.
% 108k ammmmm e —————— ) R . A‘.‘A..A. ........................
= Ty
S .
109 v ey raph. About ~ 35 — 40% of the events recovered with
o wavegraph are missed by cWB alone (exactly, 14 627 and
N = 11402 for R1 and R2 regions respectively). Conversely,
0L v 76 18 =5 =5 =7 G 15—25% of the events recovered by cWB alone are missed

Ranking statistic 7,

Figure. 3. Cumulative distribution of background
events vs the statistic . for cWB red/dashed line, with
wavegraph using R1 graph green/triangle line and using
the R2 graph in blue/square line. Dotted line shows the

reference FAR of 1078 Hz = 0.3 event/yr, chosen to

compare the different pipelines.

The analysis using the R1 graph has a higher back-
ground compared to R2. We relate this to the increase
in size and complexity of the graph, that has about twice
more nodes in the R1 case, which thus increases the prob-
ability of picking up noise outlier.

At the reference FAR=1078 Hz (0.3 event/yr) adopted
here, we obtain the 7. selection threshold of 4.8, 4.9 (+2
%) and 5.05 (+5 %) for cWB, wavegraph (R1) and wave-
graph (R2) respectively. We estimate the accuracy on
the determination of those thresholds to be < 0.6%. In
the following, we apply this selection threshold on 7. to
declare a signal detected.

Since this ranking statistic is homogeneous to the
signal-to-noise ratio and is thus inversely proportional to
the distance, we may conclude that one loses few percents
in distance reach by using wavegraph. This conclusion is
however not correct as it does not fold in the amount of
SNR recovered on average in presence of a real signal as
we will see in the next section.

2. Signal recovery

In this section we examine the average properties of
the BBH signals from the injection population that are
detected by cWB and ¢cWB with wavegraph.

Table [[] tabulates the summary of injected and recov-
ered BBH signals in both R1 and R2 regions by cWB with
and without wavegraph. The numbers show the percent-
age improvement in recovery with and without waveg-

when using wavegraph (exactly, 7941 and 4492 for R1
and R2 regions respectively). There is thus a good com-
plementarity.

In Figure [4 we display the distribution of detected sig-
nals for cWB (red histogram) and c¢WB with wavegraph
(blue histogram) with respect to the injected network
SNR. Top and bottom panels show the signal recovery
from R1 and R2 regions respectively. For the two mass
regions, the distributions reveal that the use of waveg-
raph improves the detection efficiency especially in the
low injected network SNR region, though we applied a
more selective threshold on 7, to keep the FAR require-
ment equal for all searches.

In Figure [f] we show the distribution of the network
correlation ¢, statistic for the signals recovered by cWB
(red/darker) and with wavegraph (blue/lighter). Tt ap-
pears that using wavegraph, the recovered signals have an
higher c. statistic for both R1 and R2 searches. Thank
to the information extracted from the waveform model
stored in the time-frequency graph, the wavegraph al-
gorithm is more likely to pick pixels relevant to the
gravitational-wave signal, leading to an overall larger cor-
relation.

We estimate the distance reach by computing the sen-
sitivity distance within which we would be able to detect
a signal, averaged over the observation time and over
source sky location and orientation [43]. We checked
that this distance scales as expected with M5/ where
M = (m1ms)3/°/(mq 4+ mso)/® is the chirp mass.

Figure [6] displays the relative improvement in the sen-
sitive distance for various mass bins for R1 (top) and R2
(bottom) regions. In the R1 region, the average relative
improvement in sensitive distance when using wavegraph
is ~ 7% with a maximum of 9.7% for asymmetric bina-
ries (¢ ~ 2). In the R2 region, the average improvement
is ~ 8% with a maximum at 13% in the lower part of
this mass range. Overall, this translates into an improve-
ment in the event of about 20 — 25% at a FAR level of
0.3/yr. We observe that the improvement in the sensitive
distance decreases with the total mass for a fixed mass
ratio. As the total mass increases, the BBH chirp signal
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Figure. 4. Histograms of injected (black line) and
recovered signals by ¢cWB (red/darker) and cWB with
wavegraph (blue/lighter) for the R1 (top panel) and R2
(bottom panel) simulations. WG improvement is clearer
at low injected SNR since by construction WG solves a

longest path problem and is able to collect more
wavelets.

shortens and ¢cWB is able to collect all relevant pixels.
The dependencies of the relative sensitive distance im-
provement with the mass ratio, for a fixed total mass is
rather weak.
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Figure. 5. Histograms of the network correlation
coefficient of recovered events by the R1 (top panel) and
R2 (bottom panel) simulations. Both show the counts
for cWB (red/darker) and cWB with wavegraph
(blue/lighter). Wavegraph is on average reconstructing
events with a greater correlation over the network. The
effect tends to be even more pronounced with louder
injections.

V. CONCLUSIONS

In this work we show that it is possible to improve
the sensitivity of the time-frequency pattern search algo-
rithms used in the context of unmodelled gravitational-
wave transient searches, such as c¢cWB, by restricting
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Figure. 6. Relative sensitive distance improvement (in
percent) when using wavegraph with respect to cWB
alone for R1 (top panel) and R2 (bottom panel). The

color scale encodes the importance of the improvement

with respect to cWB alone

the exploration to patterns obtained from astrophysical
waveform models.

We propose a pattern matching algorithm called
“Wavegraph” that we implemented as a module in the
c¢WB search pipeline. The algorithm has no significant
impact on the overall computational cost of the search.

We applied and tested this algorithm on the case of
BBH signals, and this leads to an averaged 7-8% im-
provement in the standard cWB distance reach over the

considered mass range (total mass of 10 — 7T0M,). This
translates into a 20-25 % relative improvement in the de-
tection rate, assuming an isotropic source distribution.
We attribute this enhancement to the more efficient col-
lection of signal-related time-frequency pixels achieved
by the proposed algorithm. Our tests evidence the im-
pact of the graph size on the background level and search
sensitivity.

The method is an intermediate approach between
matched-filtering based searches that rely on the pre-
cise knowledge of the signal phase evolution and unmod-
elled searches that impose little priors. We consider the
method particularly adapted to areas of the compact bi-
nary space such as high-mass ratio binary and precessing
or eccentric orbital evolution, where it is difficult to build
an exhaustive template bank thus preventing standard
modeled searches to operate.

This method is general and applies to a broad range
of situations, including the cases where only numerical
waveform models (e.g., from numerical relativity simula-
tions) are available.

We plan to adapt the wavegraph algorithm in the real
detector noise case, where the instrumental and/or en-
vironmental transient noise is present. We will assess
the impact of type of noise on the search and develop
additional glitch rejection scheme allowed by the time-
frequency graph.
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