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Music performance relies on the ability to learn and execute actions and their associated
sounds. The process of learning these auditory-motor contingencies depends on the
proper encoding of the serial order of the actions and sounds. Among the different serial
positions of a behavioral sequence, the first and last (boundary) elements are particularly
relevant. Animal and patient studies have demonstrated a specific neural representation
for boundary elements in prefrontal cortical regions and in the basal ganglia, highlighting
the relevance of their proper encoding. The neural mechanisms underlying the
encoding of sequence boundaries in the general human population remain, however,
largely unknown. In this study, we examined how alterations of auditory feedback,
introduced at different ordinal positions (boundary or within-sequence element), affect
the neural and behavioral responses during sensorimotor sequence learning. Analysing
the neuromagnetic signals from 20 participants while they performed short piano
sequences under the occasional effect of altered feedback (AF), we found that at
around 150–200 ms post-keystroke, the neural activities in the dorsolateral prefrontal
cortex (DLPFC) and supplementary motor area (SMA) were dissociated for boundary
and within-sequence elements. Furthermore, the behavioral data demonstrated that
feedback alterations on boundaries led to greater performance costs, such as more
errors in the subsequent keystrokes. These findings jointly support the idea that the
proper encoding of boundaries is critical in acquiring sensorimotor sequences. They also
provide evidence for the involvement of a distinct neural circuitry in humans including
prefrontal and higher-order motor areas during the encoding of the different classes of
serial order.

Keywords: serial order, boundaries, prefrontal cortex, supplementary motor area, sensorimotor learning,
sequence learning

INTRODUCTION

A broad spectrum of daily tasks, such as preparing a meal or washing hands, requires the learning
and production of sequential movements. These processes also support more complex forms
of sensorimotor behavior, such as speech or music performance, which additionally require the
processing of auditory feedback to control the production of motor output. The unique demands
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that music performance (including singing) poses on the
underlying neural circuitry—namely, higher precision in
temporal (i.e., rhythm) and spectral properties (i.e., pitch) than
speech—make it a useful model for investigating the neural
mechanisms at the base of sensorimotor sequence learning
(Natke et al., 2003; Zatorre et al., 2007; Herrojo Ruiz et al., 2009,
2011; Patel, 2011; Zatorre and Baum, 2012).

Sequence learning requires organizing single actions in a
specific temporal serial order to build a larger action unit. A
large body of evidence suggests the involvement of frontoparietal,
basal ganglia, and cerebellar circuits during sequence learning
(Mushiake and Strick, 1995; Hikosaka et al., 1999; Averbeck
et al., 2002; Fujii and Graybiel, 2003; Kao et al., 2005; Lehéricy
et al., 2005; Penhune and Doyon, 2005; Ölveczky et al., 2011;
Wymbs et al., 2012). Also, a neural representation of serial
order coding has been reported in primate frontal areas—the
prefrontal cortex (PFC), supplementary motor area (SMA) and
primary motor cortex (M1)—as well as primate and rodent
striatal areas (Tanji and Shima, 1994; Procyk and Joseph, 2001;
Averbeck et al., 2002; Fujii and Graybiel, 2005; Lu and Ashe,
2005).

Animal studies suggest that in addition to the encoding
of serial order, the encoding of boundary elements at the
beginning and the end of the sequence is crucial for the
acquisition of motor sequences (Fujii and Graybiel, 2003, 2005;
Jin and Costa, 2010). In these studies, neuronal ensembles
in the PFC and basal ganglia nuclei showed an increased
neural response at the boundary elements (‘‘Bo’’) of a
sequential task. Another study found that in macaque’s PFC,
boundaries were associated with stronger neural representations
compared to within-sequence (‘‘In’’) elements (Averbeck et al.,
2002).

Crucially, the findings in non-human animals relating to
specific neural representations for first and last sequence
elements emphasize the relevance of sequence boundaries
during sequence learning, as was also postulated in theoretical
models of serial order memory (Dehaene and Changeux,
1997; Henson, 1998; Graybiel, 2008). However, the neural
correlates of encoding sequence boundaries in humans have
not yet been well studied and understood. Direct local field
potential recordings from the human basal ganglia—available
in patients with movement disorders—demonstrated differential
changes of beta (13–30 Hz) oscillatory activity for boundary
and within-sequence elements (Herrojo Ruiz et al., 2014a,b).
In addition, one neuroimaging study reported that during a
sequential visual task, increased BOLD activity in different
prefrontal areas was specifically associated with either encoding
boundary elements (the mid-ventrolateral PFC) or within-
sequence elements (the mid-dorsolateral PFC and anterior
cingulate cortex), respectively (Amiez and Petrides, 2007). Due
to their specific characteristics, namely, clinical populations and
visual task, these studies provide only fragmentary evidence
regarding the neural mechanisms contributing to the encoding
of boundary elements during sensorimotor sequence learning in
humans.

In the current study, we explored how the encoding
of sequence boundaries contributes to the formation of

sensorimotor sequence representations during an early
phase of learning. To address this question, we recorded
the neuromagnetic activity from 21 healthy subjects while
they performed short piano sequences. The acquisition of
representations of piano sequences relies on the encoding
of the precise mapping between the motor commands for
the finger movements and the monitoring of the associated
auditory feedback. To investigate the encoding of boundary
elements in that context, we introduced an experimental
manipulation. Specifically, we examined how alterations
of feedback (AF), introduced at different ordinal positions
(boundaries [Bo] or within-sequence elements [In]), affected the
neural and behavioral responses during sensorimotor sequence
learning.

Notably, AF introduced at random positions during piano
performance elicit a frontocentral negative-going event-related
potential (ERP) peaking between 140 ms and 240 ms, termed
feedback-error related negativity (fERN), and likely generated
by the anterior cingulate cortex (ACC, Maidhof et al., 2010).
This component is followed within 280–330 ms by a later
positive deflection with fronto-central topography, the P3a,
reflecting an involuntary shift in attention towards unexpected
stimuli (e.g., Escera et al., 2000). The use of better spatially-
resolved techniques such as fMRI to investigate AF during
piano performance has confirmed the crucial involvement of the
ACC in processing AF (Pfordresher et al., 2014). Additionally,
AF during music performance, as well as during singing and
speech induced enhanced activation in the superior temporal
lobe (Tourville et al., 2008; Zarate and Zatorre, 2008; Chang
et al., 2013; Pfordresher et al., 2014; Herrojo Ruiz et al.,
2017).

Here, in order to demonstrate a pivotal role of boundary
elements encoding in sequence learning in humans, we tested
the hypothesis that feedback alterations on boundary elements
would disrupt behavioral performance to a greater extent
than alterations on within-sequence elements. Parallel to the
changes in performance, we anticipated that the brain responses
during the early acquisition of auditory-motor representations
would reflect different neural processing of the AF when
introduced at the start/end or within-sequence elements. Based
on the reviewed literature, we hypothesized that at the neural
level, changes in processing AF at the different classes of
ordinal positions (boundary, within-sequence elements) would
be localized in areas of the prefrontal and temporal cortices,
pre- and postcentral gyri (sensory and motor areas), and the
SMA. Generic processing of AF, regardless of the ordinal
position, should elicit a fERN (Maidhof et al., 2010), signaling
the processing of error feedback that does not match the
expected feedback based on motor prediction, itself related
to prediction error (Chase et al., 2011). Initial processing of
the error feedback may be followed by a deflection around
300 ms, similar to the P3a, related to the automatic shift
of attention to deviant stimuli (Comerchero and Polich,
1999; Maidhof et al., 2010). Thus, a combined effect on
behavioral and neuromagnetic responses would underscore the
prominent role of boundaries during sensorimotor sequence
learning.
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MATERIALS AND METHODS

Participants
Participants in the study included 21 healthy, right-handed
subjects (10 females, aged 22–34 years, mean age = 27 years) with
no extensive formal piano training (accumulated lifetime practice
experience below 500 h). The participants had no history of
neurological or psychiatric disorders and were compensated for
their participation. They all gave written informed consent, and
the study was approved by the ethics committee of the University
of Leipzig. The data from one participant were discarded due to
bad quality of the MEG recordings. In this study, we focused
on evoked magnetic fields while our previous study used the
data for the analysis of neuronal oscillations (Herrojo Ruiz et al.,
2017).

Material and Procedure
This study is a re-analysis of Herrojo Ruiz et al. (2017) and the
paradigm corresponds to the one used in that study, where more
details are provided. The participants were asked to perform six
sensorimotor sequences on a MIDI piano, using the dominant
hand. The sequence patterns had a length of 4–5 notes and

were explicitly taught to the participants (Figure 1A). The
patterns were constructed to enable varying combinations of
the successive finger movements. The keyboard did not have
any ferromagnetic component and was tested for MEG and
MRI compliance (Bangert et al., 2006). The time delay between
keystrokes when registered as MIDI data and the corresponding
trigger in the MEG recording was in the range of 20–25 ms. This
interval was corrected for the MEG analyses. Accordingly, event-
related field (ERF) waveforms at time 0 ms correspond with the
keystroke.

There were two sessions: familiarization and training. Both
these sessions corresponded to an early stage of motor skill
learning, which is characterized by rapid improvements in
performance (i.e., improved timing and reduced error rates;
Dayan and Cohen, 2011).

In both sessions, participants played the sequences and
listened to the corresponding auditory feedback, which was
delivered through air-conducting plastic ear tubes. During
familiarization, participants practiced each sequence type in a
block of three trials of 23 s duration. The performance tempo was
paced by a metronome on a 200 bpm (beats per minute) speed
prior to each trial (see next section).

FIGURE 1 | Experimental paradigm and behavioral results. (A) Subjects performed piano sequences 1–6 with the dominant hand while listening to the associated
normal feedback (NF) and occasionally to altered feedback (AF). The pitch content (and corresponding MIDI note numbers) of our custom-made MEG-compatible
keyboard is displayed at the bottom of the schematic piano keys. For instance, as illustrated in the figure, if the key 61 [C] was played, participants could listen either
to the NF (61, [C]) or to some AF (e.g., 63, [D]). The AF was presented either at the Boundary (Bo, green) or Within-sequence (In, orange) elements of the sequences.
Each type of sequence was performed repeatedly in a block of 15 trials of 23 s duration each. The paradigm corresponds to the one used in Herrojo Ruiz et al.
(2017). (B) The error rates after NF (light) and AF (dark) on Bo (green) and on In events (orange). The error rate was calculated as the ratio of the number of NF and
AF events that induced an error in the next five key presses over the total number of the NF and AF events, respectively. (C) The timing performance (mean
inter-onset interval or IOI, ms) of Bo (green) or In (orange) events with NF (light) or AF (dark) and the subsequent keystroke (+1). (D) The figure depicts the average
difference in IOI (ms) between the analyzed events and the first subsequent keystroke for all the experimental conditions. Error bars denote the standard error of the
mean; ∗p < 0.05 (non-parametric permutation test); n.s., not significant.
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In the training session participants completed, for each
sequence type, a block consisting of 15 trials. In each trial
of duration 23 s, participants had to play that sequence
type continuously without breaks. As in the familiarization
session, the tempo was induced at 200 bpm with the use of a
metronome prior to each trial. Participants were instructed to
play continuously during the trial’s length without stopping to
correct any errors.

During the task, in 12 out of 15 trials for each sequence type,
alterations of auditory feedback (termed, alterations of feedback,
AF) were introduced randomly between every 8th and 10th
produced note (every 8.37 [standard error of the mean or SEM,
0.05] keystrokes on average). We used this design because lower
AF rates do not lead to behavioral effects (Maidhof et al., 2010;
Pfordresher and Kulpa, 2011). The AF coincided with either
boundary (Bo) or within-sequence (In) elements of the sequence.
In the events with modified feedback, instead of hearing a tone
corresponding to a given pressed key, participants heard either
the tone of a different element of the sequence being played
(i.e., from a different serial position in the sequence) or a tone
that was unrelated to the sequence content. For a differential
analysis of the two types of perturbations, see Herrojo Ruiz et al.
(2017). Participants were informed, prior to the task, about the
occasional occurrence of feedback alterations. Trials 1, 6 and
10 were perturbation-free.

Behavioral Analysis
General performance was evaluated by measuring three
parameters, the average timing (time between consecutive
keystrokes or inter-onset interval, IOI, in ms), the variability
of timing (coefficient of variation for IOI [cvIOI]), and the
error rate.

Previous studies focusing on sensorimotor sequence learning
during an early training phase support the dissociation of two
processes: (a) the encoding of the serial order of the actions
(spatial feature), more strictly related to learning and reflected in
error rates; (b) the concurrent improvements in performance, as
reflected in faster tempo or reaction times and reduced temporal
variability with training (Seidler et al., 2002; Kornysheva and
Diedrichsen, 2014). Accordingly, to test the effects of AF on
sequence learning, we used as main dependent variable the
rate of pitch errors induced in the subsequent key presses.
Specifically, the error rate was calculated as the ratio of the
number of AF events that induced an error in the next five
key presses over the total number of AF events. AF events
that were followed by another AF event in the considered
range—five subsequent keystrokes—were excluded from the
error rate analysis, as the error could have been induced by
the subsequent AF event. In addition, the effects of feedback
alterations on the performance changes that typically accompany
sequence learning (i.e., encoding) were assessed in terms average
tempo and cvIOI in AF trials, as well as post-feedback slowing
(larger IOI in events following the AF event).

MEG Data Acquisition and Pre-processing
Neuromagnetic signals were recorded during the performance
session using a 306 sensor Elekta Neuromag system (Elekta

Neuromag Oy, Helsinki, Finland) in an electromagnetically
shielded room (Vacuumschmelze, Hanau, Germany). The MEG
device has 102 triple sensor elements in a head-shaped array, and
each of the elements was comprised of one magnetometer and
two orthogonal planar gradiometers.

Head Position Indicator (HPI) coils attached to the scalp
were used to monitor head movements. Vertical and horizontal
bipolar electrooculograms (EOG) and electrocardiograms (ECG)
were recorded simultaneously with the MEG recording so that
we could control for ocular and cardiac artifacts.

Magnetic signals were recorded at a 1000 Hz sampling rate
and a low pass filter of 330 Hz. The signal space separation
method (Maxfilter Neuromag; Taulu et al., 2004) was used
to suppress extracranial noise and to project individual signal
space data to a default head position. This allowed performing
statistical analyses across participants in sensor space. An
additional correction was applied to one participant (#15) whose
head displacement was larger than 5 mm (temporal-spatial
filtering algorithm, MC Neuromag, Taulu and Kajola, 2005;
Taulu and Simola, 2006). On average, the head displacement in
all participants was 1.8 (standard error of the mean or SEM, 2)
mm (range 0.5–4 mm; excluding Participant 15).

Further analysis was performed with custom-made Matlab
algorithms (The MathWorks Inc., MA, USA) and the Fieldtrip
toolbox (Oostenveld et al., 2011). The analysis was restricted
to the 204 planar gradiometer sensors because they are more
sensitive to cortical sources directly underneath them and less
sensitive to extracranial noise sources (Hämäläinen et al., 1993).
The continuous MEG data were filtered with a high pass filter of
1 Hz and a low pass filter of 100 Hz to minimize high frequency
noise from MEG coils (Linear-phase FIR [Finite Impulse
Response] filter as implemented by Fieldtrip with ‘‘firls’’ option,
filter order = 6). Ocular and cardiac artifacts were identified and
removed using the independent component analysis (FastICA,
symmetric approach, with the hyperbolic tangent—tanh—as
nonlinear function; Hyvärinen and Oja, 2000).

Sensor Space: Event-Related Fields
To analyze the ERFs in the sensor space, we segmented
continuous data into epochs from −1 s to 1 s, time-locked to
correctly played keystroke events in the different experimental
conditions. The four experimental conditions included
(Figure 1A): (i) boundary events with normal feedback (NF
Bo); (ii) within-sequence events with NF (NF In), (iii) boundary
events with AF (AF Bo); and (iv) within-sequence events with
AF (AF In). For the conditions with AF, AF Bo and AF In,
approximately 135 and 170 artifact-free epochs were extracted
on average, respectively. From the larger pool of events (>1000)
corresponding to the conditions with NF (NF Bo, NF In), we
extracted the same number of events as those available in the
AF conditions (135 and 170 on average, respectively). NF events
following AF events (+1, +2) were excluded from this selection
process. Importantly, the selected epochs were matched in
timing (IOI) and keystroke velocity to the epochs from the AF
conditions. These selected epochs were visually inspected for
further artifacts. After visual inspection, 123 (SEM, 4) trials on
average remained for NF Bo, 123 (4) for AF Bo and 157 (6) and
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156 (6) for NF In and AF In, respectively. Finally, the average
ERF across trials was estimated relative to a pre-keystroke
baseline (−200 to −100 ms) and separately for each condition
and participant. The data from the planar gradiometers were
then combined at each sensor position by computing the mean
square root of the signals (‘‘combined planar’’ representation in
FieldTrip).

Source Reconstruction
To examine between-condition differences at the source level,
we calculated the current distribution of the sources with the
use of L2-norm minimum-norm estimates (MNEs, Hämäläinen
and Ilmoniemi, 1994; Dale et al., 2000). Note that MRI
segmentation, coregistration and forward model estimation
were performed as in Herrojo Ruiz et al. (2017). In brief, we
first processed the individual T1-weighted MRI images (3T
Magnetom Trio, Siemens AG, Germany) with the ‘‘Freesurfer’’
software1 for segmentation of the MRI data and cortical surface
reconstruction. The ‘‘MNE’’ software2 was then used for the
co-registration of the MR and MEG coordinate systems and the
construction of boundary element conductivity models (BEM)
to use in the forward calculations. We selected the inner skull
surface as volume conductor geometry. Then we created a
cortical grid in the MNI space template brain (as used in
SPM8) with 4 mm resolution as the respective source space. We
further warped this grid into the subject-specific space by use
of transformation matrices obtained during the normalization of
individual MR images. The source space, the volume conductor
model, and the position of the planar gradiometer sensors were
then used for the calculation of the forward model. In the last
step, we computed the inverse solution using the L2-norm MNE
method, as implemented in the FieldTrip software (minimum-
norm estimate, based on Dale et al., 2000; Lin et al., 2004). MNE
sources were estimated for each grid point at the time interval
between 0.15 s and 0.37 s post-keystroke, and the individual
source solutions were interpolated to a template MNI mesh. The
noise-covariance matrix was estimated for each subject using
data from the time intervals preceding each performance trial
(thus corresponding to periods of no performance, amounting
to ∼3–5 min). The noise-covariance matrix was scaled using the
regularization parameter λ (as in Dale et al., 2000; Lin et al.,
2004). Here λ was set to the value recommended in the FieldTrip
tutorial (initially, though, we explored different values of λ,
which did not change the results qualitatively).

Statistical Analysis
To test for main effects and interactions of factors Feedback
(normal, altered) and Position (boundary, within-sequence) in
the behavioral data, we first run a 2 × 2 non-parametric
factorial analysis (synchronized rearrangements, Good, 2005;
Basso et al., 2007). This analysis was complemented with post hoc
pair-wise permutation tests across subjects (Good, 2005) to
assess significant differences between experimental conditions
(e.g., error rates or mean IOI following AF at Bo and In). The

1http://surfer.nmr.mgh.harvard.edu/
2www.martinos.org/mne/

difference in sample means was the test statistic. We performed
n = 5000 rearrangements, drawn at random from the complete
permutation distribution (Monte Carlo permutation test). The
p-values were estimated as the percentage of the replications
of the test statistic that had absolute values larger than the
experimental difference.

To assess differences in the ERFs at the sensor level, we
performed a 2 × 2 non-parametric factorial analysis with factors
Feedback and Position. This analysis focused on the time interval
from 0.15 s to 0.37 s post-keystroke. The choice of this time
interval was primarily based on previous research suggesting that
the main effects associated with the processing of AF during
performance occur approximately between 0.15s and 0.25 s after
the AF (Maidhof et al., 2010). However, we extended the window
of analysis to 0.37 s because this was the average IOI during
performance. Accordingly, the choice of this upper limit enabled
the investigation of ERF effects up to the next keystroke.

To correct for multiple comparisons, we controlled the false
discovery rate (FDR) at level q = 0.05 by using an adaptive
two-stage linear step-up procedure (Benjamini et al., 2006). The
result of this procedure is the corrected threshold p-value, which
is provided in the text as pthr, when multiple comparisons were
performed. Note that as a sanity check we also ran statistical tests
in the peri-keystroke interval [−200, +150 ms] and found no
significant clusters (p > 0.05).

Post hoc analyses of the ERFs following the 2 × 2 factorial
analysis were performed in the same time window 0.15–0.37 s
with non-parametric tests based on spatio-temporal clustering,
using the FieldTrip software (dependent samples t-test,
1000 iterations; Maris and Oostenveld, 2007). The threshold to
control for family-wise error (FWE) was set to p = 0.025 (two-
sided test). The test statistic of the observed data was evaluated
against the Monte-Carlo permutation distribution in order to
test the null hypothesis of no difference between conditions.
We applied the cluster-based permutation tests to the following
between-condition differences: (i) AF Bo − NF Bo; (ii) AF In −

NF In, to test for Feedback effects (Altered − Normal); (iii) NF
Bo − NF In; and (iv) AF Bo − AF In to test for differences
related to the ordinal Position (boundary − within-sequence).

Following up on the finding of a significant interaction
between factors Position and Feedback in the sensor space
(see ‘‘Results’’ section), statistical analyses at the source level
focused on the pair-wise comparisons outlined in the previous
paragraph for the ERF analysis and were carried out with
pair-wise permutation tests.

To estimate statistically dynamic changes at the source level,
we divided the time interval 0.15–0.37 s into four segments of
55 ms-length each and calculated the average source current
distribution for each segment. We then applied the permutation
test to assess between-condition source differences in each
segment separately. The same design as the one used in
the cluster statistics (described in the previous paragraph)
was used to examine potential effects on the source level
related to AF and ordinal position. The test was repeated
for each grid point of the cortical mesh (∼8000), and to
correct for multiple comparisons, we kept the FDR at level
q = 0.05, as indicated above. The anatomical locations with
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TABLE 1 | Feedback, altered feedback (AF) vs. normal feedback (NF).

Side Region MNI coordinates (mm) Activation strength (nAm) Time segments

x y z

Boundaries
AF > NF

R Postcentral 45 −23 38 1.92 S3, S4
R Temporal Sup 53 −19 2 2.44 S2, S3, S4
R Frontal Inf Oper 42 11 26 0.85 S3, S4
R Temporal Inf 52 −21 −27 1.31 S3, S4
R Temporal Mid 55 −19 −13 2.09 S3, S4
R Precentral 46 −8 33 1.55 S4

Within-Sequence
AF > NF

R Temporal Sup 55 −23 5 3.55 S3, S4
R Postcentral 51 −18 37 3.60 S3, S4
L Temporal Sup −52 −24 7 2.29 S3, S4
L Temporal Mid −54 −31 −2 2.60 S2, S3, S4
L Frontal Inf Tri −45 25 11 1.42 S3, S4
R Precentral 48 −6 40 3.33 S3, S4
L Temporal Inf −42 −5 −37 0.80 S3, S4
R Frontal Inf Oper 47 12 19 2.17 S3, S4
R Frontal Inf Tri 48 24 18 3.03 S4
L Frontal Inf Orb −36 25 −13 0.99 S3, S4
R Temporal Mid 56 −39 1 2.48 S1, S2, S3, S4
L Frontal Inf Oper −45 12 18 1.56 S3, S4
L Temporal Pole Sup −40 10 −21 1.02 S3, S4
L Postcentral −57 −13 19 3.70 S3, S4
L Cingulum Mid −8 −6 40 0.16 S3, S4
L Precentral −48 2 27 1.89 S4
L Temporal Pole Mid −36 9 −35 0.76 S3, S4

Brain regions showing significant differential activation between Bo and In elements. Coordinates represent the average across all significant grid points for each region.
“Activation Strength” is the average source activation across all the region-specific significant grid points. “Time segments” indicate the time windows in which the reported
regions yielded significant effects. S1, 150–205 ms; S2, 205–260 ms; S3, 260–315 ms; S4, 315–370 ms; L, Left; R, Right.

significant differences in source activity were identified by
the use of the Automated Anatomical Labeling atlas (AAL).
The regions of interest included the pre- and postcentral gyri,
corresponding to sensory and motor areas, and the frontal
and temporal cortices. Furthermore, the ‘‘area of significant
activation’’ was estimated by the ratio of the number of
significant grid points over the total number of grid points
for each region (in percentage). In Tables 1, 2 we report the
cortical regions with an ‘‘area of significant activation’’ equal or
larger to 10%.

In addition to significance testing using permutation tests, a
nonparametric effect size estimator, the probability of superiority
for dependent samples or PSdep (Grissom and Kim, 2012), is
reported. PSdep is an estimation of the probability (maximum 1)
that in a randomly sampled pair of matched values (from same
individual), the value from Condition B will be greater than the
value from Condition A: PSdep = Pr (XiB > XiA). Throughout the
manuscript, this index will be provided in association with each
pair-wise permutation test.

RESULTS

Behavioral Results
Data are provided as the mean and, in parentheses, SEM.
Figure 1C depicts the average timing (IOI) of the analyzed
events and the subsequent keystroke for all conditions, while

Figure 1D depicts the average IOI difference between the two.
We first compared the timing performance (mean IOI, ms)
between events with NF and AF and, expectedly, found no
significant differences (p > 0.05 overall, but also for all positions
of 4-note sequences and 5-note sequences). To investigate the
effect of AF on the timing of the subsequent keystrokes, and
the role of ordinal position, we analyzed the change in the
mean IOI (ms) at the keystroke following the feedback. A
2 × 2 factorial analysis of the timing performance at the
subsequent (+1) stroke with factors Feedback (NF, AF) and
Position (Bo, In) demonstrated a significant main effect for
both factors (Feedback, p = 0.0064; Position, p < 0.001) as
well as an interaction effect (p = 0.008). With respect to the
main effect of Position, post hoc comparisons revealed that
IOI change at +1 keystroke was significantly larger for Bo
compared to In, both when AF and NF were introduced (AF:
49 [16] ms for Bo and −2.1 [3.7] ms for In, p < 0.001,
PSdep = 0.85; NF: 34 [16] ms for Bo and −3.8 [2.4] ms
for In, p < 0.001, PSdep = 0.95). Regarding the main effect
in Feedback, post hoc comparisons were performed for IOI
changes at +1 (Bo: AF vs. NF and In: AF vs. NF) in order to
investigate whether the manifestation of AF-induced changes
in tempo were different depending on the position in the
sequence on which AF was introduced (Bo or In elements).
When introduced at Bo elements, AF caused a slowing at the
subsequent keystroke (an IOI difference of 49 [16] ms), which
was significantly larger than the change in IOI observed at
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TABLE 2 | Position, Boundary (Bo) vs. Within-Sequence (In).

Side Region MNI coordinates (mm) Activation strength (nAm) Time segments

x y z

Normal feedback
R Frontal Mid 35 30 29 1.65 S1(+)
L Temporal Mid −54 −21 −12 1.30 S1(+)
R Frontal Sup 22 28 37 1.63 S1(+)
L Temporal Inf −45 −14 −31 0.59 S1(+)
R Precentral 43 −7 45 1.44 S1(+)
L Cingulum Ant −7 27 16 0.17 S1(+)
L Precentral −36 −9 46 1.77 S1(+)
R Temporal Mid 46 −52 6 0.74 S1(+), S2 (+)
L Frontal Mid −29 37 24 1.46 S1(+)
R Cingulum Mid 8 −2 35 0.18 S1(+)
L Temporal Sup −53 −28 6 1.54 S1(+)
R Cingulum Ant 8 31 14 0.20 S1(+), S3 (−)
L Frontal Inf Tri −44 24 17 1.76 S1(+)
L Frontal Sup Medial −8 49 21 1.00 S1(+)
R Frontal Inf Orb 35 29 −14 0.50 S1(+), S3 (−)
R Frontal Inf Tri 41 28 17 1.20 S1(+)
R Frontal Sup Medial 10 55 18 1.10 S1(+)
L Frontal Sup −20 36 33 1.93 S1(+)
L Frontal Inf Oper −47 11 19 2.20 S1(+)
R Frontal Mid Orb 31 49 −11 0.56 S1(+)
R Supp Motor Area 10 −4 57 1.64 S1(+)
R Frontal Sup Orb 19 43 −16 0.23 S1(+), S3 (−)
L Cingulum Mid −8 −3 36 0.17 S1(+)
L Temporal Pole Sup −40 7 −23 0.34 S1(+)
R Temporal Inf 46 −5 −37 0.93 S1(+)
R Postcentral 55 −12 35 1.56 S1(+)
L Frontal Inf Orb −31 28 −16 0.38 S1(+)
R Temporal Pole Mid 39 9 −35 0.57 S1(+)
L Frontal Sup Orb −20 47 −11 0.41 S1(+)
L Frontal Mid Orb −29 47 −11 0.50

Altered feedback
L Temporal Mid −53 −26 −7 −0.03 S1(+), S3 (−)
L Temporal Sup −52 −21 3 −0.81 S1(+), S3 (−)
L Frontal Mid −32 29 33 2.36 S1(+), S3 (−)
L Temporal Inf −48 −16 −29 0.31 S1(+), S3 (−)
R Frontal Sup 22 34 31 1.37 S1(+), S3 (−)
R Frontal Mid 34 33 28 1.48 S1(+)
L Temporal Sup −53 −28 6 1.54 S1(+)
L Cingulum Ant −7 30 17 0.15 S1(+), S3 (−)
L Postcentral −52 −18 28 −0.69 S1(+), S2(+), S3(−), S4(−)
L Frontal Inf Tri −43 24 18 1.63 S1(+), S3 (−)
R Frontal Inf Orb 37 30 −13 0.04 S1(+), S3 (−)
L Frontal Inf Oper −46 12 19 0.74 S1(+), S3 (−)
L Frontal Sup −18 42 33 2.28 S1(+), S3 (−)
L Frontal Sup Medial −8 50 24 1.38 S1(+)
R Frontal Sup Medial 10 56 14 0.96 S1(+), S3 (−)
R Precentral 42 −9 48 0.68 S1(+), S3 (−)
R Cingulum Ant 9 38 11 0.21 S1(+), S3 (−)
L Temporal Pole Sup −40 7 −23 0.34 S1 (+)
R Supp Motor Area 10 1 59 −1.08 S1(+), S3 (−)
R Frontal Mid Orb 32 50 −11 0.51 S1(+), S3 (−)
R Temporal Pole Mid 39 10 −34 −0.24 S1(+), S3 (−)
R Frontal Sup Orb 19 42 −16 0.19 S1(+), S3 (−)
R Temporal Pole Sup 40 9 −24 0.06 S1(+), S3 (−)
L Precentral −47 3 27 0.64 S1(+), S3 (−)
R Temporal Inf 43 0 −40 −0.63 S1(+), S3 (−)

Brain regions showing significant differential activation between Bo and In elements. Coordinates represent the average across all significant grid points for each region.
“Activation Strength” is the average source activation across all the region-specific significant grid points. “Time segments” indicate the time windows in which the reported
regions yielded significant effects. The sign in the parentheses indicates the direction of the effect in the particular time segment (“+” for Bo > In and “−” for Bo < In). S1,
150–205 ms; S2, 205–260 ms; S3, 260–315 ms; S4, 315–370 ms; L, Left; R, Right.

the same position following NF on Bo elements (34 [16] ms;
p = 0.009, PSdep = 0.65; Figure 1D. Note that any changes in

IOI following boundary elements with NF are due to sequence-
position-specific characteristics). A similar analysis performed
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FIGURE 2 | Sensor-level event-related field (ERF) effects. Each row shows the temporal evolution of the topography of the average ERF differences between the
compared conditions in the window 0.15–0.37 ms post-keystroke. Cluster statistics were performed on that time window to explore possible significant effects for all
of the four post hoc comparisons (1st row, AF Bo − NF Bo; 2nd AF In − NF In; 3rd NF Bo − NF In; 4th AF Bo − AF In). The lines below each row show the duration
of each significant cluster (red denotes a positive and blue a negative effect) and the dots on the topography maps indicate the sensors that contribute to the cluster
(black for positive and gray for negative cluster).

for In elements under AF showed that the effect of AF on the
timing (IOI) of the subsequent keystroke was not significantly
different relative to the timing (IOI) change at the same position
following NF on In elements (p > 0.05; Figure 1D). The
comparison of the difference (AF-NF) between Bo and In did
not reach significance level (15 [6.2] ms for Bo and 1.7 [2.7] for
In, p = 0.08, PSdep = 0.65). A detailed separate analysis for each
ordinal position (Bo: first and last elements; In: each element
within the sequence) confirmed this pattern of results and can
be found in Supplementary Figure S1. In summary, these
results show that the timing performance at the first subsequent
keystroke is disturbed only after introducing AF on Bo but not
on In elements.

With regard to the error rates, a 2 × 2 analysis on the error
rates following Bo and In elements (for AF and NF events)
unveiled a significant main effect for factor Feedback (p = 0.009)
and a significant interaction (p = 0.013). This main effect was
due to larger error rates following AF events (0.011 [0.02] on
average) than NF events (0.005 [0.002]). When exploring the
interaction effect, we found that AF induced a larger error rate
when introduced at Bo elements relative to In elements (0.019
[0.003] for Bo and 0.016 [0.002] for In; p = 0.04, PSdep = 0.74;
Figure 1B).

In sum, our findings on timing and error rates suggest that
behavioral changes due to AF are sensitive to the class of ordinal
position and that feedback modifications affecting start and end
(boundary) elements seem to disrupt behavior to a greater extent
than when introduced at within-sequence elements.

Lastly, we assessed sequence-specific learning and related
changes in performance across time in purely NF trials, which
are better suited to test effects of training when AF is not
present (see also Herrojo Ruiz et al., 2017, for more details).
There was no significant change in error rates from the first
(#1) to the last (#11) NF trial (p > 0.05). Regarding changes in
timing in NF trials across time, we found no significant changes
in tempo but a significant increase in the extent of temporal
variability (cvIOI = 0.24 [0.02] in trial 1 and 0.31 [0.03] in trial
11, p < pthr = 0.0028, PSdep = 0.80).

A similar analysis performed across time throughout the
experiment, regardless of the sequence that participants played
(i.e., comparison of data in the first and second half of the
experiment), revealed also no significant changes in error rates in
NF trials (p > 0.05). Notably, however, across time throughout
the experiment there was a significant improvement in the
average timing performance (mean IOI from 395 [10] ms to 374
[9] ms; p = 0.001, PSdep = 0.90).
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FIGURE 3 | ERF waveforms for the significant effects. For all the significant effects revealed by the cluster statistical analysis (2 for Feedback and 4 for Position
comparisons, see Figure 2), an exemplary topographical map of the ERF difference between the two compared conditions as well as their ERF waveform, averaged
over the significant sensors, is shown here. The non-shaded area in each plot represents the duration of the respective cluster. The first row represents the significant
effects in the “Bo: AF—NF” (A) and “In: AF—NF” (B) comparisons. The second and third row correspond to the positive (left) and negative (right) effects found in the
“NF: Bo—In” (C,D) and “AF: Bo—In” (E,F) comparisons, respectively.

Sensor Space: Event-Related Fields
The effects of AF and the ordinal position on the averaged
ERFs were examined using a 2 × 2 non-parametric permutation-
based factorial analysis with factors Feedback (normal, altered)
and ordinal Position (Bo, In). This test revealed a significant
main effect for both factors and a significant interaction within
150–370 ms post-keystroke (p < pthr = 0.0032 for interaction,
0.0050 for factor feedback and 0.0016 for factor position). Post
hoc analyses with cluster-based permutation tests—performed
in the same time window (150–370 ms)—revealed for both
Feedback comparisons AF Bo − NF Bo and AF In − NF In a
significantly larger activation for the AF conditions (p < 0.025).
The significant difference was mainly due to enhanced activation
over right (AF Bo − NF Bo) and bilateral (AF In − NF
In) temporal sensors (Figure 2, Feedback, Figures 3A,B). A
further comparison of the AF-NF difference between Bo and
In (double difference statistic) was not significant. The cluster
analysis for the comparisons NF Bo − NF In and AF Bo
− AF In, which was performed to investigate the effect of ordinal
position, demonstrated for both comparisons one positive and
one negative significant cluster (p < 0.025; positive means
Bo > In and negative Bo < In). In both cases, the differences
were more pronounced over fronto-temporal and central sensors

(Figure 2, Position, Figures 3C–F). Overall, this analysis revealed
at the sensor level a differential activation pattern for the
contrasted conditions in both the examined factors Feedback (AF
vs. NF) and ordinal Position (Bo vs. In).

Source Space Analysis
Using minimum-norm estimates, we then contrasted the
experimental conditions to define potential differences at
the source level and their spatio-temporal characteristics.
The selected time window from 0.15 s to 0.37 s was segmented
into four epochs (S1–S4, see ‘‘Materials and Methods’’ section),
and the source analysis results for each segment were contrasted
between the compared conditions using a non-parametric
permutation test. In Table 1 (Feedback effects) and Table 2
(Position effects), we report the cortical regions that showed
significantly different activity between the contrasted conditions.
The last column of the Tables indicates the time segments in
which a particular region showed a significant effect while the
sign in parenthesis in Table 2 (Position effects) indicates the
direction of the effect. In the cases where an area is marked with
‘‘S1(+), S3 (–)’’, that means that the particular region showed a
Bo > In significant activation in the first segment (S1) while in
segment S3, it showed an opposite activation pattern (Bo < In).
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Figure 4A illustrates the significant brain activations in the
contrast between AF and NF (AF Bo − NF Bo, left panel; AF
In − NF In, right panel). Table 1 indicates all the activated
regions (p < pthr, see Table 3 and area of significant activation
larger than 10% of the region’s total number of grid points). Both
Feedback contrasts showed differential activation in a number
of cortical locations primarily in the last two segments (S3:
260–315 ms, Figure 4A, first and third row for right and left
hemisphere, respectively; S4: 315–370 ms, Figure 4A second and
fourth rows), being consistent with our findings at the sensor-
level (see Figure 2, Feedback). The main brain areas contributing
to the significant AF minus NF contrasts were the primary
sensorimotor (pre- and postcentral gyri), temporal (e.g., superior
temporal gyrus) and frontal (mainly portions of the inferior
frontal gyrus [IFG]) cortices. This result reflects a complex
activation pattern involved in the processing of AF, which was
most prominently right-lateralized for the Bo: AF-NF contrast
(bilateral for the In contrast). In the right hemisphere, there was
a large overlap in the implicated regions between the AF-NF
contrasts for Bo and In elements. An additional comparison of
the difference AF-NF between Bo and In revealed no significant
effects.

The analysis of the factor Position revealed a significant
Bo—In effect mainly localized to bilateral fronto-temporal
areas, including temporal regions and the IFG—similar to the
analysis of factor Feedback—but also extending substantially to

TABLE 3 | Corrected p-threshold values for source analysis.

Segment

S1 S2 S3 S4
150–205 ms 205–260 ms 260–315 ms 315–370 ms

Comparison
Feedback
AF Bo—NF Bo 0 0 0.0018 0.0070
AF In—NF In 0 0 0.0030 0.0136
Position
NF Bo—NF In 0.0200 0 0 0
AF Bo—AF In 0.0094 0 0.0064 0

the dorsolateral and medial prefrontal cortex (DLPFC, MPFC;
Figure 4B, Table 2). In the first segment (S1: 150–205 ms,
Figure 4B, Table 2), both for AF and NF Bo—In contrasts,
frontal regions such as the bilateral IFG, DLPFC, MPFC and
the right SMA as well as several temporal areas (e.g., the left
middle temporal gyrus) showed a significantly larger response at
Bo relative to In elements. In contrast, in the third segment (S3:
260–315 ms, Figure 4B, second and fourth rows, Table 2) of the
AF Bo—In contrast, we identified a significantly weaker response
at Bo compared to In elements in temporal areas (e.g., the
left superior and middle temporal gyri). Overall, the results
of the source reconstruction indicate, first, that the processing
of feedback alterations was associated with neural activity
distributed over a wide cortical network including temporal

FIGURE 4 | Neural sources of the differential response to AF vs. NF and boundary vs. within-sequence items. (A) Feedback: significant source activity differences for
“AF—NF”, separately for boundary (Bo, left) and within-sequence (In, right) elements. The maps depict the cortical sources for the right (top four maps) and left
hemisphere (bottom four maps) in the windows 260–315 ms and 315–370 ms. (B) Ordinal Position: significant source activity differences for “Bo—In” (left NF, right
AF) occurred at 150–205 ms (Bo > In) and 260–315 ms (Bo < In; criterion for visualization in both figures: p < pthr, non-parametric permutation test, pthr estimated
to correct for multiple comparisons, see “Materials and Methods” section).
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regions and portions of the IFC. Additionally, the results show
that fronto-temporal regions, similar to those found for the
feedback analysis but additionally extending to the (DLPFC
and MPFC), were differentially activated during the encoding
of boundary elements, compared to within-sequence elements.
The last finding, in addition to the results from the sensor-
level and the behavioral analysis, suggests a distinct role for the
encoding of boundaries during sensorimotor sequence learning
in humans.

DISCUSSION

Does the encoding of boundary and within-sequence elements
differ during sensorimotor sequence learning? To address this
question, the current study compared the effects of alterations
of auditory feedback when introduced at boundary and within-
sequence elements during the learning of short piano sequences.
In terms of behavior, we found that AF led to greater disruptive
changes in performance when applied at boundary relative to
within-sequence elements. At the neural level, we also found
a dissociation in the neural responses in the two conditions,
demonstrated by the ERF and the source reconstruction analysis.
Our findings thus suggest that the encoding of boundary
elements plays an essential role during the early-stage acquisition
of sensorimotor sequences.

Altered Feedback at Boundary Elements
Impairs Performance to a Greater Extent
The analysis of performance revealed that AF when
introduced at boundary elements—compared to within-
sequence elements—resulted in larger error rates and a larger
post-feedback slowing in the subsequent keystroke. This
finding indicates that disturbances of the action-perception
contingencies during the encoding of boundaries can affect both
the accuracy and the timing of behavior. Although the slowing
down in timing performance induced by AF might not be a direct
indicator of impaired learning, the larger number of errors after
AF at boundaries demonstrates that disturbance of the encoding
of boundaries leads to greater disruption of sequential learning.
This interpretation is aligned with the reported dissociation
between error rates—as an index of sequence encoding and
learning—and the changes in the timing of performance that
occur in parallel (e.g., Seidler et al., 2002). Thus, the evidence
supports that the adequate encoding of start and end elements
facilitates sensorimotor sequence learning.

Fronto-Temporal and Sensorimotor
Responses to Altered Feedback (AF)
With respect to the neuromagnetic processing of AF, the present
data showed that AF activated the auditory cortex, the IFG, and
the pre- and post-central gyri. The temporal cortex is involved
in processing musical sequences (Hickok et al., 2003; Koelsch
et al., 2005) and auditory sequence violations (Giard et al.,
1995; Uhrig et al., 2014). In addition, it is critical for auditory-
motor transformations in speech and aspects of musical abilities
(Hickok and Poeppel, 2004). Although a recent fMRI study
employing a similar design (Pfordresher et al., 2014) reported Spt

(Sylvian parieto-temporal area) but no temporal cortex activation
in response to AF, this might be due to the low sensitivity of
fMRI in detecting rapid changes in brain activity, which were,
however, detectable in the current experiment. The IFG (BA44)
is involved in syntax processing during music performance
and perception (Maess et al., 2001; Bianco et al., 2016) while
music-related auditory-motor transformations involved IFG as
well as the premotor cortex (Bangert et al., 2006; Lahav et al.,
2007). Significantly, an earlier model of musical processing
by Koelsch (2005) suggested that musical syntax engages the
inferior frontolateral cortex (BA44), the premotor cortex and
STG with a right hemispheric dominance. Because our sequences
did not follow any harmonic rules but were instead created as
simple associations between movement and pitch values, our
findings expand upon the proposal by Koelsch et al. (2005) in
demonstrating the involvement of these structures in processing
more generic auditory-motor associations. This interpretation
thus aligns well with anatomical data from non-human primates
showing that STG is directly connected to IFG and the premotor
cortex (see Zatorre et al., 2007).

We additionally found simultaneous activation of pre- and
post-central gyri, which have been reported in previous studies
to be activated during music performance and imagery (Meister
et al., 2004) and during auditory feedback control in speech
(Tourville et al., 2008). Thus, this finding might reflect the
activation of the sensorimotor network that is known to connect
sensory and the motor cortex during motor behavior (e.g.,
Brovelli et al., 2004).

Another interesting finding of the source analysis was a
difference in laterality for the effects of AF depending on the
position on which AF was introduced. While AF on within-
sequence elements resulted in the engagement of bilateral fronto-
temporal areas, the processing of feedback alterations on Bo
was limited to right fronto-temporal areas. This difference
in laterality could reflect a more localized processing of
disturbances of boundary encoding as opposed to within-
sequence elements. However, clarifying the implications of this
laterality effect will require follow up studies aiming to replicate
our findings.

DLPFC and SMA Support the Differential
Encoding of Ordinal Position
The main aim of the study was to investigate whether different
neural mechanisms are involved in the encoding of boundary
and within-sequence elements and their disruption by AF.
We found evidence supporting differences in the event-related
responses to boundaries and within-sequence elements under
AF as demonstrated by an early fronto-temporal positivity and
a subsequent negativity over mainly temporal sensors. The
source reconstruction analysis suggested that the latter effect
emerges around 260–315 ms and stems mainly from the left
temporal cortex. Although a similar negativity in the ERF was
observed also for the NF at the sensor level, the effect was
shorter in time and spatially more confined. Note, however,
that this effect had no corresponding significant source. This
negative ERF pattern found in the Bo—In contrast might be
associated with the interaction effect as it extended over a longer
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period and was more pronounced in AF than NF conditions.
Note, however, that our post hoc exploration of the interaction
effect (factors Feedback—AF, NF—and Position—Bo, In) did
not reveal conclusive results concerning the direction of changes
leading to the interaction effects.

In contrast, the early fronto-temporal positivity had the
same spatio-temporal characteristics under both NF and AF,
suggesting that it might index merely different encoding of
boundary and within-sequence elements regardless of the
auditory feedback. The source analysis supports this idea
by revealing a large overlap of activated regions in the
corresponding time window between the NF Bo—NF In
and AF Bo—AF In contrasts. This activation was distributed
predominantly over the bilateral DLPFC, an area which has
been consistently implicated in different aspects of serial order
encoding both in human and non-human primate studies
(Averbeck et al., 2002; Ninokura et al., 2004; Fujii and Graybiel,
2005; Amiez and Petrides, 2007). The observed additional
activation of the right SMA is in agreement with studies linking
SMA to sequential behavior (Shima and Tanji, 2006) and
proposing a key role for SMA in the encoding of temporal
structure (Kotz and Schwartze, 2011). The left IFG and temporal
regions that were also activated have been related to auditory
chunking (Dehaene et al., 2015) and formation of structural
representations (only left IFG; Karuza et al., 2013), and thus they
probably act complementarily to DLPFC and SMA. The present
findings provide a clear indication for the differential encoding of
boundaries and within-sequence elements during the early stage
of sensorimotor sequence learning, a process that is supported by
the DLPFC and SMA with the IFG and temporal regions having
a complementary role.

Previous studies have demonstrated that the basal ganglia
are involved in the encoding of sequence boundaries during
the acquisition of sequential behavior (Jin and Costa, 2010;
Herrojo Ruiz et al., 2014a,b). This finding converges with similar
evidence for the frontal (Fujii and Graybiel, 2005) and motor
cortex (Santos et al., 2015). We therefore propose that DLPFC
and SMA might interact with the basal ganglia via cortico-basal
ganglia loops during the differential encoding of boundary and
within-sequence elements during the early phase of sequence
acquisition. Ultimately, this encoding leads to the concatenation
of actions into integrated units of behavior (Graybiel, 2008).

Methodological Considerations
As in any MEG study, the results of the source localization
should be interpreted with caution, given the limitations that
affect source localization of MEG data (Hari et al., 1988; Hansen
et al., 2010). Moreover, it should be noted that minimum-norm
estimates are limited to the cortical surface, thereby excluding the
possibility of detecting other structures relevant for processing
feedback-related errors in our paradigm, such as the cerebellum
(Herrojo Ruiz et al., 2017). In addition, a higher sensitivity
to neuromagnetic sources in the cerebellum might be better
achieved by focusing on high-frequency oscillatory activity
(E/MEG: Dalal et al., 2008, 2013).

Interestingly, a few recent studies have reported the
involvement of the cingulate cortex in processing AF during

piano performance (Maidhof et al., 2010; Pfordresher et al.,
2014) or sensorimotor sequence learning (Herrojo Ruiz et al.,
2017). The limited sensitivity of the L2-norm MNE to this
region might account for this apparent discrepancy. However,
our reported sources associated with processing AF (i.e., STG)
or differential encoding of boundary elements (DLPFC) might
be more consistent with these processes.

CONCLUSION

The present findings emphasize the importance of boundaries in
sensorimotor sequence learning and extend previous studies by
showing that the differential encoding of boundaries and within-
sequence elements is sensitive to changes in auditory feedback
and relies on dorsolateral prefrontal and higher-level motor
areas. This finding is particularly relevant for understanding the
neural circuitry behind the encoding of serial order position
of actions in behavioral sequences that rely on auditory-
motor coupling. Thus, it has implications for future studies
investigating sequence learning in music, speech and singing.
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FIGURE S1 | The effect of altered feedback (AF) on the timing performance of the
subsequent keystroke. The plot shows the timing performance (mean IOI, ms) at
the subsequent keystroke, +1, after normal feedback (NF; gray) or altered
feedback (AF; black) at each element of the 4-note sequences (Position 1, 2,
3 and 4). When participants heard altered feedback, there was a post-feedback
slowing at the next keystroke, which was prominent only after AF on boundary
elements (significant for the Position 4, p < pthr = 0.02, PSdep = 0.65; trend
relative to pthr for the Position 1, p = 0.06, PSdep = 0.70). ∗p < pthr,
non-parametric permutation test, pthr estimated to correct for multiple
comparisons, see “Materials and Methods” section in the main text.
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