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A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed
on the ASDEX Upgrade tokamak and has begun to make experimental measurements of electron
temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctu-
ations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the
system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial
profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent
correlation lengths. Newly refined statistical techniques have been developed in order to accurately
analyze the fluctuation data collected from the CECE system. This paper presents the hardware
upgrades for this system and the analysis techniques used to interpret the raw data, as well as
measurements of fluctuation spectra and fluctuation level radial profiles.

I. INTRODUCTION

Understanding and predicting plasma transport in the
core of fusion plasmas will be vital to the design and
operation of future devices. It is believed that in the
core of many fusion plasmas, heat, particle, and mo-
mentum transport is driven dominantly by microinsta-
bilities and plasma turbulence, which often far exceed
transport levels from neoclassical effects [1]. This turbu-
lence can be measured as small amplitude fluctuations
in the plasma temperature, density, potential, and mag-
netic field. Measurement of these fluctuations can shed
light on the character of this turbulence and the role that
it plays in plasma transport.

In addition to interest in the fundamental nature of
the fluctuations on a purely experimental level, the con-
tinuing development of more advanced gyrokinetic sim-
ulations motivates measurement of turbulence as part of
code validation efforts. While many studies focus on com-
paring experimental and simulated heat fluxes, recently
it has become increasingly common to compare other
experimental quantities to simulation outputs, such as
temperature and density fluctuation amplitudes, spectra,
and correlation lengths [2]. See Refs. [3], [4] and [5] for
just a few recent studies comparing gyrokinetic codes to
experimental measurements of turbulent fluctuations. It
has also been suggested that these comparisons may be
more constraining than heat flux comparisons, as they di-
rectly compare more fundamental turbulent phenomena
[2].

One method of measuring such fluctuations is known as
correlation electron cyclotron emission (CECE). CECE
measures local, long wavelength (kθρs < 0.3, where ρs
is the ion Larmor radius evaluated at the sound speed),
electron temperature fluctuations. Due to the thermal
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noise inherent in traditional ECE measurements, a single
channel radiometer is typically unable to resolve turbu-
lent temperature fluctuations above the noise floor. By
correlating two closely spaced (radially) radiometer chan-
nels, however, one is able to eliminate uncorrelated ther-
mal noise while retaining the turbulent fluctuation signal
(assuming the structure is larger than the channel spac-
ing). This technique has been utilized on a variety of
machines worldwide [6–17].

This paper presents the design of and preliminary re-
sults from a newly upgraded CECE radiometer installed
on the ASDEX Upgrade (AUG) tokamak, including the
analysis techniques used to obtain these results. This di-
agnostic has already measured electron temperature fluc-
tuation spectra with high sensitivity as well as finely re-
solved radial fluctuation profiles. The ability to simulta-
neously measure wide radial profiles of fluctuation levels
as well as radial correlation lengths in a single plasma dis-
charge makes this diagnostic a significant improvement
over previous CECE systems.

II. CECE DIAGNOSTIC

The original CECE system on AUG is described in
Ref. [15]. The system detects second harmonic X-mode
electron cyclotron emission and consists of waveguide op-
tics, a radio frequency (RF) section, and an intermediate
frequency (IF) section. A schematic block diagram is
shown in Figure 1. The hardware section of this paper
will focus primarily on an entirely new IF section, which
upgraded the system from six to thirty channels, includ-
ing six tunable frequency channels. This upgrade enables
a far wider range of measurements, including finely re-
solved radial profiles, and has opened up the possibility of
measuring radial correlation lengths of electron tempera-
ture fluctuations. In addition, the new hardware utilizes
an optimized physical layout and improved ground isola-
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FIG. 1: Schematic block diagram of the new ASDEX Upgrade CECE system. There are twenty four fixed frequency
bandpass channels and six tunable bandpass channels, for a total of thirty channels.

tion in order to reduce electronics noise in the system.
The AUG CECE system utilizes optics from the steer-

able Doppler reflectometer [18], which includes a steer-
able elliptical mirror, a smooth-bore Gaussian-beam an-
tenna, an oversized waveguide, two tapers, and a funda-
mental waveguide [15]. Interchangeable sideband filters
allow measurement frequencies of either 105 to 113 GHz
or 117 to 125 GHz. As an example, with an on-axis field
of 2.5 T, this corresponds to a radial range of ρtor = 0.4
to 1.0 on ASDEX Upgrade, where ρtor is the square root
of the normalized toroidal magnetic flux. This RF sec-
tion can also be interchanged to access other frequency
ranges. This signal is then mixed down to intermediate
frequencies within the RF section, with an output of 2 to
14 GHz. The signal then enters the new IF section.

The new IF section consists of six separate chassis.
The first contains a low noise 30 dB 2-18 GHz amplifier,
before dividing the signal into six in a power divider,
one for each of the five filter bank chassis (one signal is
currently unused). Each of these signals is then amplified
again by the same type of amplifier.

The divided signals are then sent to three fixed fre-
quency filter bank chassis and two tunable filter bank
chassis. Each fixed frequency chassis contains another
eight-way power divider, and then eight cavity bandpass
filters. These filter are interchangeable, but in the stan-
dard configuration the system operates with the 100 MHz
bandwidth filters spaced by 125 MHz and 200 MHz band-
width filters spaced by 250 MHz. These two sets of fil-
ters cover a range from 4 to 8 GHz, and allow for radial
profile measurements with fine radial resolution. Inclu-
sion of two different bandwidths allows for comparison
of the trade-offs between the two, as well as consistency
checks of fluctuation measurements on independent chan-
nel sets.

After bandpass filtering, the signals pass through
Schottky diode detectors and then are amplified again
in 0-6.5 MHz video amplifiers. The signals are then low-
pass filtered at 1MHz to avoid aliasing in the digitizer.

Finally, the signals are digitized in a pair of synchro-
nized 16 channel digitizers, typically at 4 mega samples
per second.

The tunable frequency chassis are identical except that
instead of fixed frequency cavity bandpass filters, they
contain Yttrium Iron Garnet (YIG) tunable bandpass
filters. These filters have a 200 MHz bandwidth, and
center frequencies that are tunable from 6 GHz to 14
GHz. One of the tunable chassis has four channels, and
the other has two (with space for two additional channels
in a future upgrade).

All together, this system has thirty separate channels
(twenty four fixed frequency and six tunable) in six mod-
ular chassis (one amplifier/divider chassis, three fixed fre-
quency chassis, and two YIG chassis). As mentioned
above, the physical layout within each chassis was op-
timized to reduce cable length and superfluous adapters
in order to minimize electronics noise and loss. This de-
sign work produced the added benefit of making the sys-
tem relatively compact despite the large number of chan-
nels. Finally, the new system contains greatly improved
ground isolation throughout the six chassis, further re-
ducing electronics noise. In particular, care was taken to
maintain separate chassis and signal grounds among the
six chassis, to prevent power supply noise and noise from
surrounding diagnostics from entering the signal.

These improvements have enabled high quality, high
resolution temperature fluctuation measurements, which
will be shown in Section IV, after Section III describes
the methods of analyzing the raw CECE data.

III. DATA ANALYSIS TECHNIQUES

This section describes new analysis techniques used to
calculate the fluctuation spectra and total fluctuation
amplitudes from the CECE diagnostic and then com-
pares these techniques to previous techniques [6–17] us-
ing synthetic and experimental data. The method pre-
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sented here does not require any sort of absolute or cross-
calibration of radiometer channels, thus eliminating the
possibility of calibration-induced error. First, all of the
equations used in the calculation of CECE temperature
fluctuation spectra and integrated fluctuation levels are
presented. Aspects of this methodology that differ from
some past work are then addressed using the results of
synthetic data testing. Finally, a method of subtracting
coherent background noise from real data is presented.

A. General Principles

Fluctuation levels are extracted from the raw CECE
diagnostic data using statistical time history analysis
techniques outlined in References [19–21]. As is derived
in Appendix A, the total temperature fluctuation level
measured by the CECE diagnostic is calculated as:

T̃

T
=

√
2

BIF

∫ f2

f1

Re{γc(f)− γbg}
1−Re{γc(f)− γbg}

df (1)

where BIF is the intermediate frequency bandwidth
(the bandwidth of the bandpass filters used in the CECE
system), f1 and f2 define the frequency range over which
to integrate the coherence (the frequency width of the
turbulent feature), γc is the complex coherence function,
and γbg is the background coherence.

The complex coherence function, γc, is defined as (see
References [19, 22–27] for this definition, as well as Ref-
erences [20, 28] for an equivalent definition):

γc(f) =
Gxy(f)√

Gxx(f)Gyy(f)
(2)

where Gxy is the one-sided cross-spectral density func-
tion between channels x and y, and Gii is the autospec-
tral density function of channel i, defined as:

Gij(f) = 2F ∗
i (f)Fj(f) (3)

where Fi is the Fourier transform (frequency spectrum)
of channel i calculated with a 50% overlapping Hanning
window ensemble averaged fast Fourier transform (FFT).

The background coherence, which will be discussed fur-
ther in Section III C, is calculated as:

γbg = Mean [γc]
f4
f3

(4)

where f3 and f4 define a frequency range far above the
turbulent signal.

The uncertainty on the complex coherence function is
calculated as the standard deviation, as described in [21]:

σγc(f) =

√
1

2nd
(1− |γc(f)|2)2 (5)

where nd is the number of independent ensemble aver-
aging windows.

This paper defines the sensitivity limit of the com-
plex coherence function as two standard deviations above
zero. In other words, a complex coherence that falls
within two standard deviations of zero is considered to
be indistinguishable from noise.

One can also propagate the uncertainty on γc through
Equation 1 to obtain the approximate uncertainty in

T̃ /T , assuming that γc is small compared to 1 (higher
order terms are ignored):

σT̃ /T ≈
1

T̃ /T

1

2BIF

√∑
i

(σγiδf)2 (6)

where δf is the frequency resolution of the Fourier
transform. This equation is expressed as a finite sum,
rather than an integral, to align most closely to how it is
calculated in practice.

Finally, one can obtain the sensitivity limit of the inte-
grated fluctuation level by appropriately integrating the
standard deviation of the complex coherence function,
given by Equation 5, over the signal bandwidth. For the
purposes of determining the sensitivity limit, the stan-
dard deviation of a signal with no coherence is used. This
integration results in the following equation:

T̃

T

∣∣∣stat
limit

>

√√√√ 2√
N

Bsig
BIF

√
Bsamp
2 ·Bsig

(7)

where N is the total number of data points, Bsig =
f2 − f1 is the signal bandwidth, Bsamp is the total sam-
pling rate, and BIF is again the intermediate frequency
bandwidth.

When Bsig is increased to the Nyquist Frequency,
Bsig = (1/2)Bsamp, Equation 7 reduces to the ideal ra-
diometer limit [8, 29]:

T̃

T

∣∣∣rad
limit

>

√
2√
N

Bsig
BIF

(8)

where all variables are defined as above. This result
is consistent with suggestions in References [10] and [30]
that the ideal radiometer limit must be corrected when
the sampling rate is significantly higher than the signal
bandwidth.

This completes the set of equations required to analyze
CECE fluctuation data.

The authors note that the equations presented here
differ from past literature [5, 6, 8, 11–13] in a few ways.
Most of this past literature has calculated the total fluc-
tuation level as:

T̃

T
=

√
2

BIF

∫ f2

f1

γxy(f)df (9)
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where all quantities are defined as before, and γxy is
the magnitude of the coherence function (see page 147 of
Ref. [20], as well as Ref. [21]):

γxy = |γc| (10)

Equation 1, used in this study, thus differs from Equa-
tion 9, used in the past, in three key ways:

1. The use of γc as opposed to γxy.

2. The use of γ/(1 − γ) as opposed to just γ in the
integrand.

3. The subtraction of the background, γbg.

Each of these three differences is addressed in the
derivation in Appendix A. In addition, Sections III B and
III C compare the results of using Equation 1, as opposed
to Equation 9, on both synthetic and real experimental
data. Items 1 and 2 will be addressed in Section III B,
which presents the results of synthetic data testing. Item
3 will be addressed in Section III C, which discusses why
and how background subtraction is accomplished.

B. Synthetic Data Testing

This subsection will present the results of syn-
thetic data testing to highlight the advantages of using
Re{γc}/(1−Re{γc}) as the integrand in Equation 1, as-
suming for now that γbg = 0.

Synthetic data consists of two, zero mean, random
gaussian signals, each consisting of 1000 bins of 1024
points, equivalent to roughly one second of data collected
at 1MHz (assuming no bin overlap). A common broad-
band feature of varying bandwidths (between 20 and 300
kHz), generated by low-pass filtering a random gaussian
signal at the appropriate frequency, is then adjusted to
be 1% of the total signal amplitude and is added to both
signals. This set of data simulates two CECE channels,
each with some uncorrelated background signal and a
common 1% fluctuation of some given bandwidth. The
common signal bandwidth is scanned in order to capture
the effects of two possible issues (one at small bandwidth
and another at large bandwidth) with integrating only
γxy, as discussed below.

The synthetic data was analyzed using the techniques
describe in Section III A. Specifically, this data was pro-
cessed using variants of Equations 1 and 9 with differ-
ent integrands, assuming that there is no coherent back-
ground (γbg = 0). Four integrands are tested: γxy,
γxy/(1− γxy), Re{γc}, and Re{γc}/(1−Re{γc}).

The integration bounds used in Equation 1 were ad-
justed along with the bandwidth of the common broad-
band feature so as to capture the entire signal without
integrating to significantly higher frequencies. In the re-
sults shown here, the BIF used in the synthetic data
calculations was chosen to be 200 MHz, though a choice

FIG. 2: Total fluctuation level of synthetic data
calculated with various integrands in Equation 1. The

true fluctuation level of 1% is represented by the
horizontal black dashed line. Integrals of γxy (blue),

γxy/(1− γxy) (cyan), Re{γc} (green), and
Re{γc}/(1−Re{γc}) (red) are tested.

Re{γc}/(1−Re{γc}) most accurately recovers the true
fluctuation level over the widest range of common signal

bandwidths.

of 100 MHz was also tested and does not alter the con-
clusions drawn.

The results of this synthetic data analysis are shown
in Figure 2. Ideally the analysis technique would recover
the true fluctuation level of 1%, shown as the horizon-
tal black dotted line, at all fluctuation bandwidths. This
synthetic data leads to two primary conclusions. First,
the data shows that utilizing either γxy or γxy/(1− γxy)
tends to increasingly overestimate the fluctuation level at
large signal bandwidths. This is due to the continued in-
tegration of noise in γxy, which will always have a nonzero
positive mean, and is proportionally larger as one consid-
ers larger and larger bandwidths. Since Re{γc} properly
accounts for the phase between the two signals, however,
it can have negative values and will not accumulate noise
during integration.

Second, the data shows that utilizing either γxy or
Re{γc} tends to underestimate the total fluctuation level
at small signal bandwidths. This is due to the fact that at
small bandwidths, the added common broadband signal
is strong enough that it becomes significant in the au-
tospectral density functions, Gii, used in the definition
of both γxy and γc. This complicates the interpretation
of the added broadband signal as a perturbation to the
main signal. One can correct for this effect, however, by
using Re{γc}/(1−Re{γc}) instead of Re{γc}. This cor-
rection is valid for any pair of signals with nonzero noise,
which therefore have a coherence less than 1.0. The ex-
perimental measurements taken with this diagnostic have
nonzero noise.
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To explain further, γc represents, at each frequency,
the fluctuating power normalized to the total signal
power. Since the total signal power includes the fluctuat-
ing power, this normalization is not entirely appropriate
when the fluctuating power makes us a significant frac-
tion of the total power. Integrating Re{γc}/(1−Re{γc})
accounts for the extra power in the denominator of the
autospectral density function due to the fluctuations
themselves. As the synthetic data shows, this integra-
tion is always superior to using Re{γc} alone, though it
converges at large bandwidths or low fluctuation ampli-
tudes.

In addition to the results shown here, common broad-
band fluctuation levels of 0 to 100% were tested using the
same technique. The results at all finite fluctuation levels
were similar to those shown in Figure 2, with higher fluc-
tuation levels only further favoring Re{γc}/(1−Re{γc})
as the most accurate calculation method. With zero com-
mon signal, calculations using γxy and γxy/(1−γxy) still
show finite fluctuation levels due to integration of noise,
further emphasizing the possible complications with us-
ing these calculations. Re{γc} and Re{γc}/(1−Re{γc}),
on the other hand, show scatter near zero, as one would
expect.

Taking both of these effects into account, Figure 2
shows that integrating Re{γc}/(1− Re{γc}) most accu-
rately recovers the true fluctuation level over the widest
range of signal bandwidths. The improvement in accu-
racy over using just Re{γc} addresses aspect 2 of Equa-
tion 1, and the improvement over using γxy/(1 − γxy)
addresses aspect 1 of Equation 1.

C. Background Subtraction

As discussed above, in addition to utilizing
Re{γc}/(1 − Re{γc}) in the integrand of Equation
1, when working with real data one must also subtract
a coherent background, γbg, from some pairs of CECE
channels. This subsection will describe the reason
for such subtraction as well as how this background
subtraction affects the final results.

It was discovered early in the operation of the new
diagnostic that different pairs of channels have consider-
ably different background levels of γc. This background
presents itself as a baseline level of the complex coherence
function that is present at all frequencies. This back-
ground originates in finite filter overlap between some
pairs of filters, but not others, since the bandpass func-
tions are not entirely identical between all of the filters
[11]. This effect can be accurately assessed by injecting
a noise source into the IF section input and calculating
the coherence, thereby testing filter overlap without any
plasma signal. For this purpose, the noise generated by
the RF section amplifiers is sufficient to act as a test
noise source. This testing can thus be performed regu-
larly and shows the same common background level even
with no plasma signal. See Ref. [11] for further discus-

FIG. 3: Effect of background subtraction on
experimental data for (a) spectra and (b) fluctuation

profiles. Orange solid line in (a) and squares in (b) are
without background subtraction. Blue dotted line in (a)

and triangles in (b) are with background subtraction.
Background subtraction effectively brings the spectrum

to within the sensitivity limit at high frequency and
removes unphysical structure from the profile. Error
bars in (b) represent two standard deviations. ρtor is
defined as the square root of the normalized toroidal

flux.

sion of finite filter overlap in CECE diagnostics, including
example cross-power spectra.

This background manifests itself in plots of γc against
frequency, in which the spectrum never drops below the
sensitivity limit, even in frequency ranges where there
should be no coherent signal. See Figure 3 (a) for an
example of an artificially raised level of γc at high fre-
quency. Non-plasma testing shows similar results, and re-
veals that this background is constant over the frequency
ranges of interest (0 to 200 kHz). In addition, once
the complex coherence function is integrated to obtain
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the total fluctuation level, the background artificially in-
creases this total fluctuation level on some channel pairs.
This artificial increase can create large discrepancies in
the fluctuation level measured by channels that are quite
close to one another, as seen in Figure 3 (b).

In order to resolve this issue of coherent noise between
some channels but not others, the background level of γc,
defined in Equation 4 as γbg, was subtracted off from each
pair of channels before the integration. The appropriate
level of background subtraction is determined by calcu-
lating the mean value of γc at frequencies above those at
which a measurable turbulent signal is present. In the
examples here and in Section IV, this background was
calculated in the frequency range of 120 to 200 kHz.

Figure 3 (a) shows the effect of subtracting γbg on an
example frequency spectrum. The background subtrac-
tion brings the signal to within the sensitivity limit at
high frequencies where there should be no measurable
fluctuation signal. In addition, Figure 3 (b) shows the
fluctuation profiles with and without background sub-
traction. The profile without background subtraction
(orange squares) clearly has a large scatter in channels
located close to each other. This profile appears to have
unphysical structure, due solely to the differing back-
grounds between different channel pairs. The use of back-
ground subtraction (blue triangles) most effectively re-
duces scatter and minimizes unphysical structure in the
profile.

The data shown in Figure 3 addresses the third aspect
of Equation 1, subtraction of γbg from γc before integra-
tion. Taking these results into account, the remainder of
this paper will use Equation 1 to calculate all fluctuation
levels from the CECE diagnostic.

IV. EXPERIMENTAL RESULTS

The newly upgraded CECE IF section was installed on
AUG in the Spring of 2017, and began taking data as part
of the 2017 ASDEX Upgrade experimental campaign. As
just one example of the diagnostic’s improved capabil-
ities, data was collected from a series of three repeat
steady plasma discharges with the following parameters:
2.5 T field on axis, 1.0 MA plasma current, 2.0·1019m−3

line averaged density, and 1.0 MW of electron cyclotron
heating.

Figure 4 (a) shows the temperature fluctuation spec-
tra from one of the discharges, plotted with γc as defined
in Equation 2 and γbg as defined in Equation 4, from
three pairs of channels at radial locations of ρtor = 0.58,
0.63, and 0.66, where ρtor is the square root of the nor-
malized toroidal flux. Uncertainty is represented by the
shaded regions, and is calculated with Equation 5. The
dotted black line shows two standard deviations above
zero. This data was collected over 3 seconds of a steady
L-mode plasma, during which all three radial locations
were optically thick (τ > 2).

All three channel pairs show measurable fluctuations,

FIG. 4: Experimental measurements with the new
CECE system on AUG. (a) Electron temperature
fluctuation spectra after background subtraction,

Re{γc − γbg}, from three radial locations in Shot 33995.
Uncertainty is represented by the shaded regions around

each curve. (b) An example radial profile of
temperature fluctuation levels from three repeat

discharges. Fluctuations integrated from 20 to 100 kHz.
Error bars represent two standard deviations of

uncertainty. ρtor is defined as the square root of the
normalized toroidal flux.

with T̃ /T = 0.41%, 0.50%, and 0.57% (calculated using
Equation 1) for ρtor = 0.58, 0.63, and 0.66 respectively.
Fluctuations were integrated from 20 to 100 kHz in order
to capture the maximum fluctuation frequency above the
sensitivity limit for the outermost channel, and to avoid
known low frequency MHD activity. These are all above
the sensitivity limit of 0.13%, calculated with Equation 7.

In a similar fashion, one can also calculate the inte-
grated fluctuation level for each set of adjacent channels
in order to construct a radial profile of the fluctuation
levels. The fluctuation profiles for the three plasma dis-
charges discussed above are shown in Figure 4 (b). The
fluctuation levels here are calculated with Equation 1,
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the uncertainty with Equation 6, and the sensitivity level
with Equation 7. These profiles show that the fluctua-
tion level rises nearly monotonically from approximately
0.4% to 0.6% over the radial range of ρtor = 0.56 to
ρtor = 0.68. The increase in fluctuation level with in-
creasing radius is consistent with past observations on
other machines [5, 13].

Figure 4 (b) also shows that the profiles measured in
all three shots generally agree within the uncertainty of
the diagnostic, indicating that the system is able to make
highly repeatable measurements in similar plasma condi-
tions.

In addition to the discharges shown here, the hard-
ware and analysis techniques described here have been
successfully applied to more than 20 other discharges in
order to measure electron temperature fluctuations.

The data shown in Figure 4 testifies to the significantly
expanded capabilities of the new CECE system. First,
the ability to measure a wide radial profile in a single
plasma discharge is a major advantage of the new system,
since previous CECE systems often required a series of
repeat discharges in order to measure radial profiles with
more than a few points [13]. This is made possible by the
large number of channels and their comb-like spacing.
In addition, the ability to make reliable measurements
deep into the core is only possible due to the reduced
electronics noise of the new system.

V. CONCLUSIONS

A new correlation electron cyclotron emission (CECE)
intermediate frequency section has been installed on AS-
DEX Upgrade and has successfully begun taking data
in the 2017 experimental campaign. The new system
has reduced electronics noise and 30 channels, enabling
finely resolved radial profile measurements of tempera-
ture fluctuations, as well as measurement of radial cor-
relation lengths in the same discharge, which are to be
completed. In addition, significantly improved statistical
analysis techniques have been developed to analyze the
raw CECE data, and are both derived here and tested
with synthetic data. Future work will include coupled
CECE and reflectometer measurements and possibly new
dedicated optics.
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Appendix A: Frequency Domain Derivation of
Temperature Fluctuation Calculation

This section will derive Equation 1 using the defini-
tion of γc from Equation 2, highlighting differences with
previous derivations that have led to Equation 9.

Consider one signal collected by an ECE radiome-
ter, x(t), which includes contributions from the steady

state temperature Te, temperature fluctuations T̃e(t),
and thermal noise Ñx(t) [8, 29].

x(t) = cx(Te+T̃e(t))(1+Ñx(t)) ≈ cx(Te+T̃e(t)+TeÑx(t))
(A1)

where cx is a calibration factor that relates the radiome-
ter signal to the absolute temperature. This factor will
cancel out later in this derivation, so absolute calibra-
tion is not necessary for CECE operation using this cal-
culation method. It is assumed in this derivation that
T̃e � Te and Ñx � 1, so that the quadratic term T̃eÑx
is negligibly small [8].

One then takes the Fourier transform of Equation A1,

defining X(f) to be the Fourier transform of x(t), T̃e(f)

to be the Fourier transform of T̃e(t), and Ñx(f) to be the

Fourier transform of Ñx(t). This gives:

X(f) = cx(δ(f)Te + T̃e(f) + TeÑx(f)) (A2)

where δ(f) is the Dirac Delta Function, indicating that
the background temperature leads to a constant compo-
nent at zero frequency.

This derivation is concerned with only the fluctuating
part of the frequency spectrum (f 6= 0) such that one
can ignore the equilibrium temperature. Consider now
the cross-spectral density function [20] of two signals x
and y:

Gxy(f) = 〈X(f)∗Y (f)〉 (A3)

where the triangle brackets represent ensemble averaging
and the asterisk represents the complex conjugate, and
the auto-spectral density function of x:

Gxx(f) = 〈X(f)∗X(f)〉 (A4)

Inserting Equation A2 into Equation A3 gives:

Gxy(f) = cxcy

(〈
T̃ ∗
e (f)T̃e(f)

〉
+

��������
Te

〈
Ñ∗
x(f)T̃e(f)

〉
+
��������
Te

〈
T̃ ∗
e (f)Ñy(f)

〉
+
〈
T 2
e Ñ

∗
x(f)Ñy(f)

〉)
(A5)
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Since the thermal noise in each channel is uncorrelated
with the turbulent temperature fluctuations, the 〈T̃ Ñ〉
terms are dropped, as in References [8, 10] and others
(even if correlated, these terms would be quadratic in
small parameters). Note that ensemble averaging brack-
ets will be dropped in the remainder of this derivation to
minimize notational clutter. This then reduces to:

Gxy(f) = cxcy

(
T̃ 2
e (f) + T 2

e Ñ
2
xy

)
= cxcyT̃

2
e (f) +Gnoise

(A6)

This assumes that the thermal noises Ñx and Ñy are

mostly uncorrelated, except for some small part Ñxy
caused, for example, by finite filter overlap. Gnoise =

cxcyT
2
e Ñ

2
xy is the portion of the cross-spectral density

due to common noise between the two channels. As de-
scribed below, this makes this derivation more general

than most previous derivations that assume Ñ2
xy = 0.

Similarly,

Gxx(f) = c2x

(
T̃ 2
e (f) + T 2

e Ñ
2
x(f)

)
(A7)

Note that this step differs from pervious derivations
in two ways, both of which make the current deriva-
tion more generally applicable than previous derivations
(for example, in Reference [31]). First, most previ-

ous derivations have assumed T̃ 2
e � T 2

e Ñ
2
x , such that

Gxx(f) ≈ c2x(T 2
e Ñ

2
x) (note that the definitions of cx and

Ñ2
x here are slightly different than in Reference [31]). Re-

laxing this assumption leads to the eventual integrand of
γc/(1 − γc) in Equation 1 as opposed to just γc (aspect
2 from Section III A).

In addition, this derivation allows for some common
noise between channels x and y by keeping a term Gnoise,
whereas previous derivations have assumed this term to
be identically zero (this will later prove to be related to
aspect 3 from Section III A) Keeping this additional term
is an important extension over previous derivations.

Solving Equation A7 for cx gives:

cx =

√
Gxx(f)

T̃ 2
e (f) + T 2

e Ñ
2
f

(A8)

This assumes that the magnitude of the thermal noise
on both channels is the same, even if the noise between

the two channels is uncorrelated (Ñ2
x(f) ≈ Ñ2

y (f) ≈ Ñ2
f ,

where the f subscript emphasizes that this is noise per
unit frequency). This assumption should be valid in any
case where all CECE assumptions are valid (the two
channels are closely enough spaced that they are sam-
pling roughly the same background temperature). Such
an assumption is also later justified by Equation A16.

Now, solve Equation A6 for T̃ 2
e (f):

T̃ 2
e (f) =

Gxy(f)−Gnoise
cxcy

(A9)

Then insert Equation A8 and the equivalent for cy to
get:

T̃ 2
e (f) =

Gxy(f)−Gnoise√
Gxx(f)Gyy(f)

(
T̃ 2
e (f) + T 2

e Ñ
2
f

)
(A10)

One can then define the complex coherence function,
γc, (see page 390 of Ref. [19]) as is done in Equation 2.
For the sake of clarity it is repeated here:

γc(f) =
Gxy(f)√

Gxx(f)Gyy(f)
(A11)

In addition, Equation 4 will be written in terms of
Gnoise, Gxx, and Gyy:

γbg =
Gnoise√
GxxGyy

(A12)

where the overbar represents a frequency average over
a frequency range far above the turbulent signal (assum-
ing a constant background over the frequency range of
interest, which is the case in all of the experimental dis-
charges considered in this study). The value of γbg is
calculated experimentally using Equation 4.

Using these definitions, one can write:

T̃ 2
e (f) = (γc(f)− γbg)

(
T̃ 2
e (f) + T 2

e Ñ
2
f

)
(A13)

Rearranging, solving for T̃ 2
e (f), and dividing by T 2

e

gives:

T̃ 2
e (f)

T 2
e

= Ñ2
f

γc(f)− γbg
1− (γc(f)− γbg)

(A14)

Integrating over the frequency range of interest and
considering the root-mean-square value of the temper-
ature fluctuation level (as in Reference [8] and others)
gives:

T̃

T

∣∣∣
rms

=

√∫ f2

f1

Ñ2
f

Re{γc(f)− γbg}
1−Re{γc(f)− γbg}

df (A15)

where one takes the real part of the complex coherence
function in order to obtain the root-mean-square value
of the temperature fluctuations [20]. Note that this in-
tegral gives the band-limited turbulent temperature fluc-
tuations from frequency f1 to f2, which, as stated in the



9

main text, are determined by the frequency width of the
turbulent feature.

For a finite frequency bandwidth (f1 to f2) one can
substitute an expression for the thermal noise. From Ref-
erences [29, 32, 33], for an ECE radiometer the measured
fluctuation level due to thermal noise is:

T̃ 2
e

T 2
e

∣∣∣
noise

=

∫ f2

f1

Ñ2
f df = BsigÑ

2
f =

2Bsig
BIF

(A16)

where BIF is the intermediate frequency bandwidth and
Bsig = f2 − f1 is the signal bandwidth (allowing the sig-
nal bandwidth Bsig to be less than the video bandwidth).

Thus, Ñ2
f = 2/BIF . If possible, it is also advantageous

to measure Ñ2
f experimentally, rather than using the the-

oretical value.

Inserting this into Equation A15 gives the desired re-
sult, Equation 1:

T̃

T

∣∣∣
rms

=

√
2

BIF

∫ f2

f1

Re{γc(f)− γbg}
1−Re{γc(f)− γbg}

df (A17)

Note that in Equation 1 the
∣∣∣
rms

notation has been

dropped for the sake of brevity.

Most previous derivations of an equation for the to-
tal temperature fluctuation level from a CECE diagnos-
tic have proceeded in the time domain, rather than the
frequency domain [8, 29, 31]. Though the derivation pre-
sented in this Appendix was performed in the frequency
domain, as the authors believe this to be clearer and more
concise, it is also possible to perform the same derivation,
starting with Equation A1, in a manner more similar to
past work. Instead of Fourier transforming immediately,
one defines the autocorrelation and crosscorrelation func-
tions as [20]:

Rij(τ) =
1

ttot

∫ ttot

0

i(t)j(t+ τ)dt (A18)

Inserting the time domain signals gives equations that
are the time domain analogues of Equations A6 and A7.
One then solves for the constants cx and cy in the same
manner as in the derivation presented here, combines
equations, and rearranges to get the analogue of Equa-
tion A10, except that it contains correlation functions
rather than spectral density functions:

T̃ 2
e

T 2
e

= Ñ 2

Rxy(0)√
Rxx(0)Ryy(0)

− Rnoise√
Rxx(0)Ryy(0)

1−
(

Rxy(0)√
Rxx(0)Ryy(0)

− Rnoise√
Rxx(0)Ryy(0)

) (A19)

Note that the Ñ 2 in this equation is different than the

Ñ2
f from Equation A10 (the former is a total noise level

while the latter is the noise level per unit frequency).
One then uses the relationship between correlation

functions and spectral density functions in general (they
are Fourier transforms on one another [20]), and specifi-
cally the realtionship [34]:

Rxy(0)√
Rxx(0)Ryy(0)

=
1

Bsig

∫ f2

f1

Re{γc(f)}df (A20)

where Bsig and γc are defined as above. This relation-
ship is exactly true in the limit of a continuous inte-
gral [34]. Inserting this relationship (and the equiva-
lent for the noise term) into Equation A19 and using

Ñ 2 = BsigÑ
2
f = 2Bsig/BIF gives the desired result,

which is the same as in the frequency domain derivation
(the same as Equation A17):

T̃

T
=

√
2

BIF

∫ f2

f1

Re{γc(f)− γbg}
1−Re{γc(f)− γbg}

df (A21)
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