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Abstract

In this brief note, we revisit the study of the leading order late time decay tails of mass-

less scalar perturbations outside an extreme Reissner-Nordström black hole. Previous authors

have analysed this problem in the time domain; we analyse the problem in the frequency do-

main. We first consider initial perturbations with generic regular behaviour across the horizon

on characteristic surfaces. For this set-up, we reproduce some of the previous results of Sela

[arXiv:1510.06169] using Fourier methods. Next we consider related initial data on t = const

hypersurfaces, and present decay results at timelike infinity, near future null infinity, and near

the future horizon. Along the way, using the r∗ → −r∗ inversion symmetry of the extreme

Reissner-Nordström spacetime, we relate the higher multipole Aretakis and Newman-Penrose

constants for a massless scalar in this background.

1

ar
X

iv
:1

80
5.

10
65

5v
1 

 [
gr

-q
c]

  2
7 

M
ay

 2
01

8



Contents

1 Introduction 2

2 Massless scalar in 4d extreme Reissner-Nordström spacetime 4

2.1 Couch-Torrence discrete conformal isometry . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Aretakis constants, Newman-Penrose constants, and initial static moments . . . . . 5

3 Late time behavior of scalar perturbation 8

3.1 Late time tails for non-compact initial data in flat space . . . . . . . . . . . . . . . . 9

3.2 Contributions due to asymptotic curvature of spacetime . . . . . . . . . . . . . . . . 13

4 Discussion 16

1 Introduction

More than 45 years ago, Price [1], in his seminal analysis, showed that when a Schwarzschild

black hole is perturbed by a massless scalar field, at late times the perturbation typically decays

as an inverse power in the Schwarzschild coordinate t. Price’s law has been rigorously proved in

the mathematical general relativity literature by Dafermos and Rodnianski [2, 3]. This is a key

result, as the problem of late time asymptotics for solutions to the wave equation finds important

applications in the study of black hole stability [4, 5, 6] and the dynamics of black hole interiors

[7, 8, 9]. The late time asymptotics to wave equations on extreme black holes have attracted

exceptional interest in the last few years.

The problem of late time decay of a scalar perturbation in four-dimensional extreme Reissner-

Nordström black hole was first analysed by Bičák [10]. He observed that the effective potential

for a massless scalar in an extreme Reissner-Nordström black hole has the same asymptotic form

near the horizon as near infinity. Couch and Torrence [11] later showed that not only the effective

potential has the same asymptotic form, it is in fact symmetric under r∗ going to −r∗, where r∗

is the tortoise coordinate for the extreme Reissner-Nordström metric. This surprising symmetry

allows one to relate scattering dynamics near the horizon to the asymptotic region. This symmetry

adds several novel features to the late time dynamics of a massless scalar field in an extreme

Reissner-Nordström black hole background compared to a Schwarzschild black hole. This richness

is one of the reasons that several authors have studied this problem [12, 13, 14, 15].

Another reason the problem has attracted attention in the last few years is that Aretakis

[16, 17, 18, 19] has shown that a massless scalar has an instability at the future horizon of an ex-
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treme Reissner-Nordström black hole. More precisely, Aretakis showed that a massless scalar field

decays at late time on and outside the future horizon, however, generically on the horizon its first

radial derivative does not decay. This implies an instability. Since the first radial derivative of the

scalar decays away from the horizon but not on the horizon, it follows that the second-derivative

must blow up at late times on the horizon. The Aretakis instability was studied numerically in

detail in [13]. They found excellent agreement with Aretakis’ results. Using the Couch-Torrence

symmetry, the Aretakis instability has been related to the similar growth in the behaviour of the

derivatives of the massless scalar field at null infinity [20, 13]. Motivated by these developments,

more recently, Ori and Sela [14, 15] have re-analysed analytically the problem of late time decay

of scalar perturbations outside an extreme Reissner-Nordström black hole along the lines of Price’s

analysis. These questions are currently being explored in the mathematical general relativity liter-

ature [21, 22, 23] as well.

In this note we revisit this problem. While the previous authors [12, 13, 14, 15] have analysed

the problem in the time domain, we analyse the problem in the frequency domain. Our analysis

brings a different perspective. We reproduce and extend some of the previous results. Using

the Couch-Torrence symmetry, an initial data with regular behaviour across the horizon on the

v := t+ r∗ = 0 surface can be mapped to an initial data on the u := t− r∗ = 0 surface. Analysing

this inverted initial data, Sela [15] has argued that there is a contribution to the late time tail

in an extreme Reissner-Nordström background that is not due to the curvature of the spacetime.

This contribution can be obtained from a flat space analysis of the inverted initial data. We first

reproduce these results, including the exact coefficients, using rather simple Fourier methods.

Application of the frequency domain Green’s function technique requires knowing initial data

on a t = const surface. Obtaining a precise relationship between characteristic initial data specified

on u = 0 and v = 0 null surfaces and initial data specified on a t = const Cauchy surface is a

difficult problem. However, to the extent the above mentioned flat space analysis is valid, it can be

easily done. We use solution of flat space wave equation to obtain the correct fall off on the t = 0

surface near spatial infinity. To this, we add a sub-leading term (slower fall-off) proportional to

the “initial static moment” and compute its contribution to the late time tail. This contribution

arises due to backscattering from the weakly curved asymptotic region of the spacetime.

Along the way, using the Couch-Torrence symmetry [11], we also relate higher multipole Are-

takis and Newman-Penrose constants [24] for a massless scalar in an extreme Reissner-Nordström

black hole background.

The rest of the paper is organised as follows. In section 2 we review various interesting features

that this problem has, namely, the Couch-Torrence symmetry and the construction of Aretakis and
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Newman-Penrose constants. In section 3 we analyse the late time dynamics of a massless scalar in

the frequency domain. We end with a brief summary and a discussion of open problems in section

4.

2 Massless scalar in 4d extreme Reissner-Nordström spacetime

The massless scalar wave equation in a 4d extreme Reissner-Nordström spacetime has a number

of rich features. In this section we review some of these features. Along the way, we relate higher

multipole Aretakis and Newman-Penrose constants.

2.1 Couch-Torrence discrete conformal isometry

The extreme Reissner-Nordström solution has a discrete conformal isometry [11]. A similar discrete

conformal isometry also exists for the extreme D1-D5 string and for the extreme D3 brane; see

comments and references in [25] and for recent discussions see [26, 27]. We will use this symmetry

in an important way in later sections, so we start with a brief review of this symmetry following

[20, 13]. In static coordinates the extreme Reissner-Nordström metric takes the form,

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2dΩ2, (2.1)

where r is the area radial coordinate and dΩ2 is the line element of the unit 2-sphere. The Couch-

Torrence symmetry is

T : (t, r, θ, ϕ)→
(
t,M +

M2

r −M , θ, ϕ

)
. (2.2)

It has number of interesting properties. It is an involution, i.e., T 2 = 1. Its pull-back on the

Reissner-Nordström metric acts by a conformal transformation

T∗(g) = Ω2g, where Ω =
M

r −M . (2.3)

On the tortoise coordinate r∗ defined by

r∗ = r −M + 2M log

( |r −M |
M

)
− M2

r −M , (2.4)

so that dr∗
dr =

(
1− M

r

)−2
, it acts as T : r∗ → −r∗. This last property implies that it interchanges

the ingoing and the outgoing Eddington-Finkelstein coordinates:

ingoing: v = t+ r∗, outgoing: u = t− r∗, T : u↔ v. (2.5)

Since the Ricci scalar of the extreme Reissner-Nordström metric vanishes, the conformally

covariant operator is simply the box operator:

Lg = �g −
1

6
R = �g. (2.6)
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Recall that under a conformal transformation g̃ab = ω2gab, (see e.g., Wald’s Appendix D, discussion

around equation (D.13) [28]),

Lω2g(ω−1Φ) = ω−3Lg(Φ) = ω−3�gΦ. (2.7)

Moreover, from tensor transformation properties, it follows that

LT∗(g)(T∗(Φ)) = T∗(Lg(Φ)). (2.8)

Combining the two in the following way, it follows that if �gΦ = 0, then

0 = �gΦ = T∗(Lg(Φ)) = LT∗(g)(T∗(Φ)) = LΩ2g(Ω−1Ω(T∗(Φ)) = Ω−3�g(ΩT∗(Φ)). (2.9)

That is, if Φ is a solution then,

Φ̃ = ΩT∗(Φ) (2.10)

is also a solution. We will use mapping (2.10) to map solutions near the horizon to solutions near

future null infinity and vice versa.

2.2 Aretakis constants, Newman-Penrose constants, and initial static moments

We now briefly review the construction of Aretakis and Newman-Penrose constants in an extreme

Reissner-Nordström background, and relate them via the Couch-Torrence symmetry (2.10).

Previous studies have related Aretakis and Newman-Penrose constants for l = 0 modes [20,

13, 27]. To the best of our knowledge, details for the l 6= 0 have not been written out. In this

subsection we write out those details explicitly.

In ingoing Eddington-Finkelstein coordinates the extreme Reissner-Nordström metric is

ds2 = −
(

1− M

r

)2

dv2 + 2dvdr + r2dΩ2. (2.11)

Expanding the scalar in spherical harmonics in ingoing Eddington-Finkelstein coordinates as

Φ(v, r, θ, ϕ) =
∑
lm

φl(v, r)Ylm(θ, ϕ), (2.12)

we get equations for the mode functions φl(v, r),

2r∂v∂r(rφl) + ∂r((r −M)2∂rφl)− l(l + 1)φl = 0. (2.13)

Applying ∂lr on this equation, we see that

Al[φl] =
M l

(l + 1)!
∂lr[r∂r(rφl)]

∣∣∣∣
r=M

(2.14)
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is conserved, i.e., independent of v along the horizon. These constants are called Aretakis constants.

For a solution of the wave equation of the form near the horizon

φl(v, r) =
1

r

∞∑
k=0

ck(v)
( r
M
− 1
)k

(2.15)

the Aretakis constants are [14, 15]

Al = cl+1 +
l

l + 1
cl. (2.16)

Note the factor of 1
r in equation (2.15).

In outgoing Eddington-Finkelstein coordinates the extreme Reissner-Nordström metric is

ds2 = −
(

1− M

r

)2

du2 − 2dudr + r2dΩ2. (2.17)

Expanding the scalar in spherical harmonics in these coordinates as

Φ(u, r, θ, ϕ) =
∑
lm

φl(u, r)Ylm(θ, ϕ), (2.18)

we get equations for the mode functions

− 2r∂u∂r(rφl) + ∂r((r −M)2∂rφl)− l(l + 1)φl = 0. (2.19)

We now construct the Newman-Penrose constants. Consider the solution of the wave equation

near infinity of the form

φl(u, r) =
1

r

∞∑
k=0

dk(u)

(
M

r

)k

. (2.20)

Inserting this expansion into equation (2.19) and looking at successive inverse powers of r gives

equations that can be expressed concisely in terms of matrices, whose components are labelled

by indices i, j = 0, . . . , l. We label the components of the vector d by di, i = 0, . . . , l, and the

(l + 1)-dimensional vectors d+ and c+ have respective components (d+)i = di+1 and (c+)i = ci+1.

We obtain

MNlḋ+ = [1
2 l(l + 1)− Pl]d, (2.21)

where Nl is the diagonal matrix of natural numbers with components (Nl)ij = (i + 1)δij and Pl

is a lower-triangular matrix with components (Pl)ij = 1
2 i(i + 1)δij − i2δi,j+1 + 1

2 i(i− 1)δi,j+2, and

over-dots denote u-derivatives. We can diagonalize Pl as

Pl = LlTlL
−1
l , (2.22)

where Tl is the diagonal matrix of triangular numbers, (Tl)ij = 1
2 i(i + 1)δij , and Ll is the lower-

triangular Pascal matrix (see, e.g., [29])

(Ll)ij =

(
i

j

)
, (2.23)
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whose inverse is

(L−1
l )ij = (−1)i+j

(
i

j

)
. (2.24)

It follows that

ML−1
l Nlḋ+ = [1

2 l(l + 1)− Tl]L
−1
l d, (2.25)

whose last component implies conservation of

Nl :=
1

l + 1

l+1∑
i=1

(−1)l+i−1i

(
l

i− 1

)
di, (2.26)

at null infinity, i.e., ∂uNl = 0. These are examples of Newman-Penrose constants.

How are these constants related to Aretakis constants? Recall that, applying the mapping

(2.10), we can construct a solution near null infinity from a given solution near the horizon. Let us

apply this mapping on the solution of the form (2.15) to get

φl =
M

r −M

(
M +

M2

r −M

)−1
(
c0(u) + c1(u)

(
M

r −M

)
+ c2(u)

(
M

r −M

)2

+ . . .

)
(2.27)

=
1

r

(
c0 + c1

M

r
+ (c1 + c2)

(
M

r

)2

+ (c1 + 2c2 + c3)

(
M

r

)3

+ . . .

)
. (2.28)

Expanding this solution in inverse powers of r, we find the coefficients in (2.20) to be

d+ = Llc+. (2.29)

Then we have

MQlċ+ = [1
2 l(l + 1)− Tl]L

−1
l d, (2.30)

where

Ql := L−1
l NlLl, (2.31)

has components (Ql)ij = (i + 1)δij + iδi−1,j . The Newman-Penrose constant Nl arising from the

last component of (2.25) and equivalently (2.30) is expressed in terms of ci as

Nl = cl+1 +
l

l + 1
cl, (2.32)

which is nothing but the Aretakis constant Al, cf. (2.16).

The diagonalizations (2.22) and (2.31) are straightforwardly proved using induction on l, by

checking that the columns of Ll and L−1
l are eigenvectors of Pl and Ql respectively. As an explicit

example, the Pascal matrices for l = 4 are

L4 =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 , L−1
4 =


1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

 , (2.33)
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which diagonalize

P4 =


0 0 0 0 0
−1 1 0 0 0
1 −4 3 0 0
0 3 −9 6 0
0 0 6 −16 10

 , Q4 =


1 0 0 0 0
1 2 0 0 0
0 2 3 0 0
0 0 3 4 0
0 0 0 4 5

 , (2.34)

whose corresponding diagonal matrices T4 and N4 are simply their diagonal entries. The Newman-

Penrose constant is

N4 = 1
5(L−1

4 N4d+)4 = 1
5(d1 − 8d2 + 18d3 − 16d4 + 5d5). (2.35)

The term static moment is often used in the literature [1] to discuss time independent solutions

of the wave equations. In the static coordinates, the mode expansion,

Φ =
1

r

∑
lm

ψl(t, r)Ylm(θ, ϕ), (2.36)

results in the equations

[∂2
r∗ − ∂2

t ]ψl = Vl(r)ψl, (2.37)

with potential Vl(r)

Vl(r) =

(
1− M

r

)2 [2M

r3

(
1− M

r

)
+
l(l + 1)

r2

]
. (2.38)

This equation has two time independent solutions

ψl = r(r −M)l, (2.39)

and

ψl =
r

(r −M)l+1
. (2.40)

Under the mapping (2.10) one static solution goes to the other (up to normalisation):

Φ̃ = Ω T∗
[
Φ(t, r, θ, ϕ) = (r −M)lYlm

]
=

M2l+1

(r −M)l+1
Ylm. (2.41)

3 Late time behavior of scalar perturbation

We are now in position to analyse the problem of late time decay of scalar field outside the horizon

in an extreme Reissner-Nordström background.
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3.1 Late time tails for non-compact initial data in flat space

We first reproduce some of the key results of Ori [14] and Sela [15] from a relatively simple Fourier

analysis. In the next subsection we look at the contributions due to backscattering from the weakly

curved asymptotic region.

To begin with, we are interested in the characteristic initial value of the field ψl specified at two

intersecting null surfaces, u = 0 and v = 0, for equation (2.37). The initial data is thus composed

of two functions

ψv
l (v) = ψl(u = 0, v), ψu

l (u) = ψl(u, v = 0). (3.1)

See figure 1. Due to the linearity of the problem, we can analyse the two functions ψu
l (u) and ψv

l (v)

separately. More precisely, we can split the characteristic initial value problem into two parts: (i)

non-vanishing data on the u = 0 surface ψv
l (v) = ψl(u = 0, v), along with vanishing data on the

v = 0 surface ψu
l (u) = 0, (ii) non-vanishing data on the v = 0 surface ψu

l (u) = ψl(u, v = 0), along

with vanishing data on the u = 0 surface ψv
l (v) = 0. We can analyse the two parts separately and

add the late time behaviour to obtain the final answer. In the following, this is how we will think

of the evolution problem. For extreme Reissner-Nordström this logic has been employed by several

authors in the past [12, 14, 15].

Sela [15] considered initial data of “compact support” — an initial data for which the function

ψv
l (v) vanishes beyond certain value of v. In his analysis, the function ψu

l (u) is taken to be supported

near the event horizon r = M . Furthermore, this function is taken to admit a Taylor expansion

near r = M as

ψu
l (u) = c0 + c1

( r
M
− 1
)

+ c2

( r
M
− 1
)2

+ . . . , (3.2)

where r is to be thought of as function of u on the v = 0 surface. We also take our initial data of this

form for the function ψu(u). For the function ψv
l (v) we consider a slightly more general behaviour

than considered in [15]. We allow for an initial static moment, i.e., as r →∞ the function ψv
l (v) is

taken to behave as

ψv
l (v) = d̂l

Rl

rl
+ compactly supported data, (3.3)

where, now, r is to be thought of as function of v on the u = 0 surface, and R is an arbitrary scale

we have introduced. The coefficient d̂l is called the static moment.

For the initial data on the u = 0 surface, it is believed that the late time tail arises due to

backscattering from the weakly curved asymptotic region [1, 30, 31]. The tail does not depend on

the exact nature of the central object. For compactly supported initial data the solution at late

times decays as t−2l−3 and for initial data with initial static moment it decays as d̂lt
−2l−2 [1].
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i0

J +

u
=

0
v
=

0

i+

H+

Figure 1: Initial data for the characteristic initial value problem for a scalar field in an extreme

Reissner-Nordström black hole background. The initial data is composed of two functions ψv
l (v) =

ψl(u = 0, v) and ψu
l (u) = ψl(u, v = 0).

For the function ψu(u), following [12, 14, 15], we use the Couch-Torrence symmetry to map the

problem from near the horizon to near infinity. The problem near infinity can be analysed again

using the well developed techniques mentioned above. The map of the initial data is (2.2):

ψv
l (v) = c0 + c1

(
M

r −M

)
+ . . .+ cl

(
M

r −M

)l

+ cl+1

(
M

r −M

)l+1

+ . . . (3.4)

where now r is to regarded as a function of v along the u = 0 surface. Expanding in powers of r

results in an expansion

ψv
l (v) = ĉ0 + ĉ1

R

r
+ ĉ2

R2

r2
+ . . .+ ĉl

Rl

rl
+ ĉl+1

Rl+1

rl+1
+ . . . . (3.5)

In this expansion there is a term that decays as the static moment. There are terms that decay

more slowly than the static moment and there are also terms that decay more quickly than the

static moment. The coefficients ĉk receive contributions from cm, m ≤ k.

Again using linearity of the problem, the effective problem that we need to analyse is therefore,

ψv
l (v) = ĉ0 + ĉ1

R

r
+ ĉ2

R2

r2
+ . . .+ (ĉl + d̂l)

Rl

rl
+ ĉl+1

Rl+1

rl+1
+ . . .+ compactly supported data, (3.6)

with ψu
l (u) = 0. Generically, if the Aretakis and the Newman-Penrose constants are non-zero, the

coefficients of 1
rl

and 1
rl+1 would be non-zero in equation (3.6).
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Sela [15], building upon the work of Barack [32], argued that for the initial data of the form

(3.6), there is a contribution to the late time in an extreme Reissner-Nordström background that

is not due to the curvature of the spacetime. The term ĉl+1
Rl+1

rl+1 in the expansion of the data (3.6)

results in a leading order tail as it disperses in flat space.1 We reproduce Sela’s results from a

relatively simple Fourier analysis.

The Fourier transform of the field ψl(t, r),

ψl(ω, r) =

∫ ∞
−∞

eiωtψl(t, r)dt, (3.7)

satisfies the equation (
−ω2 − ∂2

r +
l(l + 1)

r2

)
ψl(ω, r) = 0. (3.8)

The general solution to this equation is

ψl(ω, r) = A(ω)
√
rJl+1/2(ωr) +B(ω)

√
rYl+1/2(ωr). (3.9)

To obtain regular solutions at r = 0 we must set B(ω) = 0. Thus, we get

ψl(ω, r) = A(ω)
√
rJl+1/2(ωr). (3.10)

The solution in the time domain is simply the inverse Fourier transform,

ψl(t, r) =
1

2π

√
r

∫ ∞
−∞

A(ω)Jl+1/2(ωr)e−iωtdω. (3.11)

If we know the function A(ω), we can do this integral and would know the full solution for the field

ψl(t, r), in particular its late time behaviour. Due to linearity of the problem we can consider each

term in the expansion (3.6) separately.

To determine A(ω) corresponding to the r−k term, we use the fact that the initial data behaves

as ĉk
Rk

rk
on the u = 0 surface. We make the ansatz A(ω) = 2πA0 ω

p to get from (3.11)

ψl(t, r) = A0

√
r

∫ ∞
−∞

ωpJl+1/2(ωr)e−iωtdω (3.12)

= 2 A0

√
r ei(p+l+1/2)π

2

∫ ∞
0

ωp Jl+1/2(ωr) cos
[
(p+ l + 1/2)

π

2
+ ωt

]
dω, (3.13)

where we have used the appropriate symmetry property of Jl+1/2(ωr) under ω to −ω to convert

the integral to one along the positive ω axis. This last integral can be easily done using the identity

(6.699-1) or (6.699-2) of Gradshteyn and Ryzhik [33].

1In some sense, this result is the “Couch-Torrence dual” of the results of section 4 of [13], where they have obtained

such tails from a purely AdS2×S2 analysis. AdS2×S2 is conformal to flat space, and the massless scalar wave equation

is conformally invariant.
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Matching the resulting answer at u = 0 with

ψl(u = 0, r) = ĉk
Rk

rk
, (3.14)

gives

p = k − 1/2, (3.15)

and fixes the constant A0. Substituting the constant A0 in terms of ĉk gives a final answer

ψl(t, r) = − ĉkR
k2k+1Γ(k + 1)

π(2l + 1)!!
sin(kπ) Γ(l − k + 1)

rl+1 t−(k+l+1) F

(
l + k + 2

2
,
l + k + 1

2
; l +

3

2
;
r2

t2

)
, (3.16)

where F (a, b; c; z) is the standard hypergeometric function. For k ≤ l this expression vanishes due

to the sin(kπ) factor. However, for k ≥ l + 1, the Γ(l − k + 1) factor develops a pole that exactly

cancels with the zero of the sin function and gives a finite result. At timelike infinity, i.e., in the

limit t� r, (3.16) becomes

ψl(t, r) ∼ −
ĉkR

k2k+1Γ(k + 1)

π(2l + 1)!!
sin(kπ) Γ(l − k + 1) rl+1 t−(k+l+1). (3.17)

The leading contribution to the late time tail comes from k = l + 1. We get

ψ(t, r|t� r) ∼ 2ĉl+1R
l+1(−1)l+1(4r)l+1 [(l + 1)!]2

(2l + 2)!
t−(2l+2). (3.18)

This expression matches with Sela’s equation (6.18), including the pre-factors.

We can use solution (3.20) to obtain the tail behaviour near future null infinity. In order to

achieve the limit, we must take r → ∞ together with u := t − r finite, i.e., u � r. The leading

contribution to the tail comes once again from k = l + 1. In this limit we find, using equation

(9.131-2) of Gradshteyn and Ryzhik [33],

ψl(t, r|u� r) ∼ 2l+2ĉl+1R
l+1(−1)l+1 [(l + 1)!]2

(2l + 2)!
u−l−1. (3.19)

This expression matches with Sela’s equation (6.11), including the pre-factors, provided we relate

our u to Sela’s retarded time us: us = u/2.

Setting k = l + 1, equation (3.16) simplifies to

ψl(t, r) = 2ĉl+1R
l+1 [(l + 1)!]2

(2l + 2)!
(−1)l+1(4r)l+1

(
1− r2

t2

)−l−1

t−2l−2. (3.20)

We can use the solution (3.20) to obtain the fall off behaviour at spatial infinity,

ψl(t = 0, r) ∼ 22l+3ĉl+1R
l+1 [(l + 1)!]2

(2l + 2)!
r−l−1, (3.21)
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together with ∂tψl(t = 0, r) = 0.

There are other contributions to the t−(2l+2) late time tail. They arise due to backscattering

from the curvature of spacetime. For initial data (3.6), these contributions come from r−k terms

for k < l + 1. It is expected that they should decay as

(pre-factor) M l+1−k ĉkt
−(2l+2). (3.22)

We look at a related problem for k = l in the next subsection.

3.2 Contributions due to asymptotic curvature of spacetime

Equation (3.21) can be interpreted as initial data on the t = 0 surface in the extreme Reissner-

Nordström background; see figure 2. We conclude that for an initial data on the t = 0 surface

with r−l−1
∗ decay near spatial infinity, there is a contribution to a t−2l−2 tail at late times. This

contribution is due to decay of a massless scalar field in flat space, not due to backscattering from

the curvature of the spacetime. More precisely, if

ψl(t = 0, r) = µl+1R
l+1r−l−1

∗ , (3.23)

then the late time tail is

ψ(t, r∗|t� r∗ �M) ∼ (−1)l+12−l−1µl+1R
l+1(r∗)

l+1t−(2l+2), (3.24)

and

ψl(t, r|u� r∗) ∼ (−1)l+12−2l−2µl+1R
l+1u−l−1. (3.25)

From our discussion above, it is clear that such an initial data generically will have a non-zero

Newman-Penrose constant, and its Couch-Torrence reflection will have a non-zero Aretakis con-

stant.

Now we address the question of if, in addition to (3.23), there is an r−l∗ term present at the

t = 0 surface near spatial infinity, how does it contribute to the late time tail? The contribution

arises due to backscattering from the curvature of spacetime. If the initial data has non-zero static

moment, such a term would be present.

To compute this contribution, fortunately, we do not need to do much. Since it is believed that

the late time tail arises due to backscattering from the weakly curved asymptotic region [1, 30, 31],

this computation is exactly the same as in the Schwarzschild background.

We very briefly review the Green’s function approach to late time tails following [34] and

supplement it with a discussion for an extended source of the type:

ψl(t = 0, r) = µlR
lr−l∗ . (3.26)
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i0

J +

i+

H+

t = 0

Figure 2: Time symmetric initial data for scalar field in an extreme Reissner-Nordström black hole

background. The initial data consists of a function specified on the t = 0 surface. ∂tψl(t = 0, r) is

taken to be zero.

The retarded Green’s function for the wave operator appearing in (2.37) satisfies[
∂2
t − ∂2

r∗ + V (r∗)
]
G(r∗, r

′
∗; t) = δ(t) δ(r∗ − r′∗) (3.27)

with the boundary condition

G(r∗, r
′
∗; t) = 0, for t < 0. (3.28)

We are interested in analysing the Green’s function in the frequency domain. Therefore, we do a

Fourier transform via

G̃(r∗, r
′
∗;ω) =

∫ ∞
0

G(r∗, r
′
∗; t) e

iωt dt. (3.29)

The range of the r∗ coordinate for black hole spacetimes is −∞ to∞. In the frequency domain the

solutions to the wave equations we are interested in should satisfy outgoing boundary conditions

at infinity, and ingoing boundary conditions at the horizon. In terms of the r∗ coordinate, these

become

ψ̃l(r∗, ω)→ eiωr∗ as r∗ →∞, (3.30)

ψ̃l(r∗, ω)→ e−iωr∗ as r∗ → −∞. (3.31)

The Fourier transform of the Green’s function G̃(r∗, r
′
∗;ω) satisfies[

−ω2 − ∂2
r∗ + V (r∗)

]
G̃(r∗, r

′
∗;ω) = 0, (3.32)
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and is analytic in the upper half plane. Now recall that for a second order ODE with homogeneous

boundary conditions, the Green’s function can be uniquely constructed simply using two auxiliary

functions f(r∗, ω) and g(r∗, ω), where f(r∗, ω) satisfies the left boundary condition and g(r∗, ω)

satisfies the right boundary condition. We adopt normalisations such that

g(r∗, ω)→ eiωr∗ as r∗ →∞, (3.33)

f(r∗, ω)→ e−iωr∗ as r∗ → −∞. (3.34)

Then the Green’s function is given by

G̃(r∗, r
′
∗;ω) =


f(r∗,ω)g(r′∗,ω)

W (ω) , if r∗ < r′∗

f(r′∗,ω)g(r∗,ω)
W (ω) , if r∗ > r′∗

(3.35)

where W (ω) is the Wronskian of the two solutions f(r∗, ω) and g(r∗, ω): W (ω) = g∂r∗f − f∂r∗g.
The Wronskian is independent of r∗. The late time tails come from the branch cut along the

negative imaginary axis of the Green’s function G̃(r∗, r
′
∗;ω) in the complex ω place [35].

Andersson [34] has presented a very clear computation of the branch cut of the Green’s function

in the low-frequency asymptotic expansion using some results from [36]. Instead of reviewing those

details here, we simply write equation (40) of that reference (which has a typo of an overall minus

sign) [34]:

GC(r∗, r
′
∗, t) = −2πiM

√
r∗r′∗

∫ −i∞
0

ω Jl+1/2(ωr∗) Jl+1/2(ωr′∗) e
−iωtdω. (3.36)

The late time solution using this Green’s function is simply (see e.g., equation (7.3.5) of [37] or

[35])

ψC
l (r∗, t) =

∫ ∞
0

GC(r∗, r
′
∗, t) ∂tψ0(r′∗, 0) dr′∗ −

∫ ∞
0

∂tG
C(r∗, r

′
∗, t) ψ0(r′∗) dr

′
∗, (3.37)

where we have implicitly used the fact that the leading contribution only comes from the asymptotic

region, and our non-compact initial data has support only in the r∗ �M asymptotic region.

Inserting initial data (3.26) together with ∂tψ0(r∗, 0) = 0 in equation (3.37), we get

ψl(r∗, t) = 2πµlR
lM
√
r∗

∫ −i∞
0

dω ω2 e−iωt Jl+1/2(ωr∗)

∫ ∞
0

dr′∗ r
′
∗
−l+1/2

Jl+1/2(ωr′∗). (3.38)

We can evaluate the second integral in equation (3.38) using identity (6.561-14) of Gradshteyn and

Ryzhik [33] to get

ψl(r∗, t) =
2
√

2π

(2l − 1)!!
µlR

lM
√
r∗

∫ −i∞
0

ωl+1/2 e−iωt Jl+1/2(ωr∗) dω. (3.39)

15



To compute the tail at timelike infinity, we approximate ωr∗ � 1 to get

ψl(t, r∗|t� r∗ �M) ∼ 4µlR
lMrl+1

∗
(2l − 1)!!(2l + 1)!!

∫ −i∞
0

ω2l+1 e−iωt dω (3.40)

= (−1)l+14µlR
lM

(2l)!!

(2l − 1)!!
rl+1
∗ t−2l−2. (3.41)

This expression can be compared with equation (69) of reference [38] and equations IV-1 and IV-2

of reference [39]. In those papers, computations are done differently, and in different contexts.

To compute the tail near null infinity, we approximate ωr∗ � 1. A similar calculation then

gives

ψl(t, r∗) ∼ (−1)l+12µlR
lM

l!

(2l − 1)!!
u−l−1. (3.42)

This expression can be compared with equation (68) of reference [38].

Equations (3.41) and (3.42) are contributions proportional to µlM to the late time tails in an

extreme Reissner-Nordström black hole background.

4 Discussion

In this note we have revisited the study of the leading order late time decay tails for massless

scalar perturbations outside an extreme Reissner-Nordström black hole. While previous studies

have analysed this problem in the time domain, we analysed the problem in the frequency domain.

A systematic time domain analysis was reported by Sela [15].2 Sela’s analysis is quite involved.

The merit of our work lies in its simplicity. We are able to obtain most of the key results of Sela’s

analysis, including all pre-factors, using rather straightforward Fourier methods.

We find that initial perturbations with generic regular behaviour across the horizon decays at

late times as t−2l−2 near timelike infinity (t� r∗). It decays as u−l−1 near future null infinity. The

inversion map (2.10) maps the decay behaviour near future null infinity to the decay behaviour

v−l−1 near the horizon.

For initial data of the form (3.6) at the u = 0 surface, there are other contributions to the

t−(2l+2) late time tail. They arise due to backscattering from the curvature of spacetime, from

terms r−k for k < l + 1. These contributions should go as

(pre-factor) M l+1−k ĉkt
−(2l+2). (4.1)

We have not addressed these contributions in this note. For k = l we considered a related problem

with initial data on the t = 0 surface of the form (3.26) near spatial infinity. It corresponds to a

term proportional to the static moment. Equations (3.41) and (3.42) are the contributions to the

2For electromagnetic and gravitational perturbations see [13, 40].
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late time tails due to these terms. From the Couch-Torrence symmetry, it follows that such a term,

if present near the bifurcation surface, will contribute to the v−l−1 tail near the horizon. It seems

likely that the iterative scheme of [32] can be adopted in the frequency domain to compute tail

contributions from k < l terms.

In section 2 using the Couch-Torrence symmetry we also related higher multipole Aretakis

and Newman-Penrose constants for a massless scalar in an extreme Reissner-Nordström black hole

background. Although a number of relations involving Pascal matrices are known in the literature,

the identities (2.22) and (2.31) seem to be new. We used these matrix relations to explain relations

of functions, but from a mathematical perspective it would be more interesting to turn the logic

around. Namely, one could seek interpretations, e.g., through combinatorics or functional methods,

of these and more general matrix relations.

All of our analysis is only valid in the asymptotic regions, either near infinity or near the

horizon |r∗| � M . We have not attempted to compute the correct radial dependence of the

coefficient of the tail in full generality. From general results in the literature, we do expect the

correct radial dependence of the tail at timelike infinfity to be the static solution to the extreme

Reissner-Nordström potential [1, 14, 15], cf. (2.40)

r

M

( r
M
− 1
)−l−1

(4.2)

with a constant pre-factor. We expect that the constant pre-factor gets contributions from the

Newman-Penrose constant as well as from the Aretakis constant. This has been observed in nu-

merical simulations [13]. The proportionality to the Aretakis constant is briefly discussed in [14, 15],

but details have not been presented. Together with the suggestion of references [41, 13] that “ini-

tial static moments” are more precisely thought of as initial data with non-zero Newman-Penrose

constants, it is natural to conjecture that the total tail coefficient is proportional to the sum of

(appropriately normalised) Aretakis and Newman-Penrose constants. It will be interesting to un-

derstand this circle of ideas better in the future.

In a series of papers Casals, Gralla, and Zimmerman [42, 43, 44] have analyzed the Aretakis

instability and related questions in the frequency domain. They have obtained late time decay

results on and off the horizon from the AdS2 perspective. Their analysis is restricted to perturba-

tions with vanishing Aretakis constants. When adapted to an extreme Reissner-Nordström black

hole, and extended to perturbations with non-vanishing Aretakis constants, their analysis could be

compared to ours through the Couch-Torrence duality. It will be useful to relate our work to their

work in detail. It will be very interesting to reproduce the late time tails from a microscopic CFT

analysis for extreme black holes.

In a recent paper [45], Camps, Hadar, and Manton studied moduli space scattering of two
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extreme Reissner-Nordström black holes. They obtained the asymptotic gravitational radiation

field wave-form at “moderately” late times, when the two black holes have not merged. They found

that the asymptotic radiation field exhibits a quadrupolar late time tail of the form t−2l−2 for l = 2.

It will be interesting to understand how their results relate to our analysis. We hope to report on

some of these problems in our future work.
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[41] R. Gómez, J. Winicour and B. G. Schmidt, “Newman-Penrose constants and the tails of

selfgravitating waves,” Phys. Rev. D 49, 2828 (1994). doi:10.1103/PhysRevD.49.2828

[42] M. Casals, S. E. Gralla and P. Zimmerman, “Horizon instability of extremal Kerr black holes:

Nonaxisymmetric modes and enhanced growth rate,” Phys. Rev. D 94, no. 6, 064003 (2016)

doi:10.1103/PhysRevD.94.064003 [arXiv:1606.08505 [gr-qc]].

[43] P. Zimmerman, “Horizon instability of extremal Reissner-Nordström black holes to charged

perturbations,” Phys. Rev. D 95, no. 12, 124032 (2017) doi:10.1103/PhysRevD.95.124032

[arXiv:1612.03172 [gr-qc]].

[44] S. E. Gralla and P. Zimmerman, “Scaling and universality in extremal black hole perturba-

tions,” arXiv:1804.04753 [gr-qc].

[45] J. Camps, S. Hadar and N. S. Manton, “Exact gravitational wave signatures from colliding ex-

treme black holes,” Phys. Rev. D 96, no. 6, 061501(R) (2017) doi:10.1103/PhysRevD.96.061501

[arXiv:1704.08520 [gr-qc]].

22


	1 Introduction
	2 Massless scalar in 4d extreme Reissner-Nordström spacetime
	2.1 Couch-Torrence discrete conformal isometry
	2.2 Aretakis constants, Newman-Penrose constants, and initial static moments

	3 Late time behavior of scalar perturbation
	3.1 Late time tails for non-compact initial data in flat space
	3.2 Contributions due to asymptotic curvature of spacetime

	4 Discussion

