日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Biohybrid and bioinspired magnetic microswimmers

MPS-Authors
/persons/resource/persons203555

Bente,  Klaas
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons206776

Codutti,  Agnese
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons221418

Bachmann,  Felix
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121274

Faivre,  Damien
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bente, K., Codutti, A., Bachmann, F., & Faivre, D. (2018). Biohybrid and bioinspired magnetic microswimmers. Small, 14(29):. doi:10.1002/smll.201704374.


引用: https://hdl.handle.net/21.11116/0000-0001-6DA1-F
要旨
Many motile microorganisms swim and navigate in chemically and mechanically complex environments. These organisms can be functionalized and directly used for applications (biohybrid approach), but also inspire designs for fully synthetic microbots. The most promising designs of biohybrids and bioinspired microswimmers include one or several magnetic components, which lead to sustainable propulsion mechanisms and external controllability. This Review addresses such magnetic microswimmers, which are often studied in view of certain applications, mostly in the biomedical area, but also in the environmental field. First, propulsion systems at the microscale are reviewed and the magnetism of microswimmers is introduced. The review of the magnetic biohybrids and bioinspired microswimmers is structured gradually from mostly biological systems toward purely synthetic approaches. Finally, currently less explored parts of this field ranging from in situ imaging to swarm control are discussed.