
Compression of Time-Vectors in W7-X Archived Measurements

I

J.G.Krom⇤,a,b, R.Dahera, T. Bluhma, S. Dumkea, M.Grahla, M.Grüna, C.Henniga, A.Holtza, H. Laquaa,
M. Lewerentza, H.Riemanna, A. Springa, A.Wernera, the W7-X Team

a
Max Planck Institute for Plasma Physics, Greifswald, Germany

b
European Commission, DG-RTD

Abstract

Wendelstein 7-X is, as a stellerator, in principle capable of very long operation. The Control and
Data-acquisition (codac) systems around w

7

x have, therefore, been designed for continuous operation.
One aspect of this design is the recording of the absolute time of every measurement. Whereby for every
relevant event, such as every sample-clock tick of every adc, the time is recorded as a 64 bit integer value.
On the one hand, this approach has several advantages. On the other hand, it generates much more data

to process and archive. In extreme cases it can lead to a multiplication of the data amounts.
Compression of these time-stamps-data can be expected to save storage and network resources. However,

even though most of these time-stamps have a high degree of predictability, the normal, de-facto standard,
compression approaches (zip, flac, etc., etc.) perform rather poorly on this type of data.
Thus, inspired by well-known audio compression approaches, we developed a specialised loss-less compres-

sion algorithm, aimed at fairly constantly incrementing 64 bit long-integers. Experiments on data collected
in the past demonstrate very large compression factors, whilst retaining all details in the timing data.

Key words: Data-acquisition, Timing-data, Data-compression

1. Introduction

The wendelstein 7-X codac department runs
a uniform and integrated collection of hard- and
software systems to measure, compute, store and
disseminate signals from w

7

x and related experi-
ments. These systems have been designed for con-
tinuous data-acquisition [1, 2].
One of the unique features of these codac sys-

tems is the handling of time data.
Older experiments tend to store only descriptive

information about the timing of data sources like
adcs. In most cases, that means storing the start-
time, in a local time-frame for the experiment, and
a sampling frequency.
W

7

x codac decided to measure, record and store
a time-stamp for every sampling moment [3, 4]. So,

IThis work has been carried out within the framework
of the EUROfusion Consortium and has received funding
from the Euratom research and training programme 2014—
2018 under grant agreement number 633053. The views and
opinions expressed herein do not necessarily reflect those of
the European Commission.

⇤Corresponding author: Jon.Krom@ipp.mpg.de

if an adc runs for 3 seconds, with a sample-clock
of 2 kHz, 6 000 time-stamps are recorded, alongside
the data from the adc channels.

These time-stamps are all (1) derived from and
synchronised with a central clock, (2) with refer-
ence to the same absolute point in time and (3)
stored with the same resolution of one nanosecond.
Although most acquisition systems have a poorer
resolution (10ns or greater), all store these time-
stamps as an integer count of nanoseconds since
the start of the year 1970, based on the same cen-
tral clock.

This is a significant quality improvement for the
w

7

x data-acquisition setup over other systems.
It allows to correlate measurements from di↵er-
ent sources and it reduces the number of assump-
tions one has to make during analysis. Even if the
sample-clock of an adc is of poor quality, all actual
sample-moments are measured instead of assumed,
so can be accounted for.

Although this idea to store all these time-stamps
is “a good thing”, it clearly leads to large amounts
of extra data to store. In fairly normal cases, these

Preprint submitted to Fusion Engineering and Design November 30, 2017

jgk



time-stamps can be more than one third of the total
data amount. These extra data amounts require
extra cpu, network and storage capacity.

In many discussions around w

7

x, this issue came
up and there have been suggestions to reduce the
number of recorded time-stamps. One could esti-
mate start and step values from just a few time-
stamps and ignore the rest, one could only store
every now and then a time-stamp (say, every one-
hundred samples), etc.

All these suggestions imply throwing away part
of the measured time-stamps and thereby losing all
the advantages of this absolute time recording sys-
tem.

An alternative would be to compress these time-
stamps in a loss-free way. That would maintain the
advantages of the system, whilst removing the main
disadvantage.

It appears that very e↵ective, loss-less compres-
sion is possible with a relatively simple algorithm
that can be implemented in all relevant environ-
ments.

2. General Considerations

Most general-purpose compressors handle their
input data as streams of bytes, but ignore thereby
information in larger units that could lead to bet-
ter compression. Especially in the audio field, there
exist several loss-free compression algorithms, that
use knowledge of the data-type (16, 24, 32 bit inte-
ger, or even float) to improve compression ratios.

There are, however (to the current knowledge of
the authors) no compression implementations that
will attempt such “intra-channel decorrelation” on
64bit (or wider) data streams.

It is possible to adapt the ideas from these audio
algorithms to w

7

x’s 64bit time-stamp data. Such
an approach is presented here, under the working
title of “CTV”, for Compressed Time Vector.

This algorithm, as described below, and its sup-
port codes could be implemented in any program-
ming language, or indeed even in firm- or hardware.
A reference implementation was coded in Java. The
choice for Java is mainly to ensure well-defined se-
mantics; for example “long” always means a 64bit
signed two’s complement integer. Furthermore, it
is the de-facto standard development language at
w

7

x codac.

3. The CTV algorithm

The ctv method is inspired by the open-source
products flac, png and zlib (or zip) [6, 8, 9]. It
uses, following flac, a multi-step algorithm:

• First, reduce the range of values of the sam-
ples (because a list of mainly small values com-
presses more e↵ectively than a similar list of
large values).

• Secondly, compress these reduced values with
a general purpose compressor.

• Optionally, pack the data closer together.

• Lastly, pack the compressed data in a “con-
tainer” structure that makes it easy to di↵er-
entiate compressed data from normal data.

3.1. First Step: Sample- and Residue Prediction

The first step in compressing is trying to remove
information in the samples that is already available
in earlier samples; or to “de-correlate” data within
the channel. A possible way is to predict the value
of a sample, based on other samples and then only
store the di↵erence between the prediction and the
actual sample-value, the “residue”. See figure 1.

Note that Pn only depends on Sm for m < n. So
from a vector of signal samples, a unique vector of
residue values can be obtained. From this vector
of residue values, the original signal can be fully
reconstructed.

The range of values in the residue signal depends
on the fit of the predictor to the actual signal. In
the case of thew

7

x time-stamps, a linear prediction
function as sketched in figure 1 provides a near-
perfect fit, resulting in a residue signal of mostly
zeros. A good signal for further compression.

3.2. Second Step: Residue Compression

In principle any general purpose compressor
could be used to compress the residue signal. The
expected “runs” (or long sequences) of zeros make
“Run-length Encoding”[10] an obvious candidate.
Hereby are runs of data values (that is, sequences
in which the same value occurs in many consecutive
elements) stored as a single value V and a count C,
rather than as the original run.

2

jgk



n� 2 n� 1 n

Predictor function Pn

Residue Rn

Original signal St

z
I

y

N

N

N
N

Predictor function: Pn = Sn�1 + (Sn�1 � Sn�2) Assuming: S�2 = S�1 = 0
Residue function: Rn = Sn � Pn

Reconstructed signal: S0
n = Rn + Pn

Figure 1: A linear predictor function

3.2.1. Run-length Encoding

Advantages:

• Conceptually easy to understand, implement
and test.

• Can be implemented in any environment, in-
cluding FPGAs; requires only addition (sub-
traction) and comparison operators on 64bit
two’s complement integers.

• Very time e�cient at run-time, both for com-
pression and decompression.

• Any sample (also the last) can be recovered
from the compressed data without the need
to fully decompress the signal. Useful in data
handling were the first (“from”) and the last
(“upto”) time-stamp are often referenced.

Disadvantage:

• Sensitive to non-optimal predictors, compres-
sion e�ciency deteriorates quickly.

3.2.2. Modified Run-length Encoding

Both theoretical considerations and actual mea-
surements at w

7

x indicate a very high likelihood
of two directly subsequent non-zero residue values
following each run of several equal residues. (Also
following the assumed zero values for indices < 0).

This suggest a useful modification of the pure
run-length encoding approach: store these two non-
zero residues as they are and then store the run of
equal values as a count and value pair.

So, store all the data in a stream of mini-chunks,
each of 4 longs, see figure 2. The first two longs in a
mini-chunk are the residue values, Rq and Rr, with-
out a count (or, an implied count of 1), followed by
one pair “count plus value” (Cs, Vs). Any following
residue values are encoded in the next mini-chunk.

· · · Rq Rr Cs Vs · · ·

Figure 2: A stream of mini-chunks

3

jgk



M i/c R0 R1 C2 V2 · · · Rq Rr Cs Vs Rt Ru · · ·

Figure 3: An array of longs; a container with a stream of mini-chunks

3.3. Optional Step: Packing

Following (pure or modified) run-length encod-
ing, and perhaps following other compression, it
might still be possible to pack the data closer.
There will be many small values in long words.
In practice, we found this not necessary. Com-

pression is already so good that the remaining
timing-data takes only a small fraction of the space
required for the associated adc channel data. We
prefer not to incur the added complexity and run-
time cost of further packing.

3.4. Final Step: CTV Container

Compressed Time Vectors are packaged into a
standard array of 64 bit longs, see figure 3. In that
way, all software that currently handles time vectors
as such arrays can also handle compressed vectors
with little or no change.

• The first long in this array contains a marker
word M with the value 0x89435456430d0a1aL.
This is a value that is extremely unlikely to
happen in real measurements; it would repre-
sent a time-point very far in the future. This
value was furthermore inspired by the png file
marker. The png-designers have given their
marker some thought [8, p.134].

• A slightly di↵erent marker word has been de-
fined (0x89435456490d0a1aL) to mark time vec-
tors that were found to be incompressible by
an earlier application of the compressor.

• Software could check this very first word and
decide, based on that word, if the rest of the
array carries real time-stamps or a compressed
time vector.

• The second long word carries:

– in the most significant 32 bit, a chunk type
identifier i, a specifier for the actual com-
pression method, currently 0x4c4d5238L.
Di↵erent specifiers should be defined
when di↵erent encodings, compacting or
containers are considered.

– in the least significant 32 bit, the count c
of uncompressed long words.

• Hereafter follows a stream of mini-chunks, as
defined earlier.

4. Assessment

The Java reference implementation of the de-
scribed algorithm was tested against data obtained
from the w

7

x archive of measurements [5]. The
assessment decribed below is based on all data
collected on Tuesday1 2011-07-26. This data was
stored in the archive in “boxes” representing about
1 to 10 seconds of measurements. The time vectors
were extracted from these boxes and subsequently
compressed, decompressed and checked.

4.1. Reference Assessment

Files carrying an ascii representation of these
time-stamp signals can be compressed with the
gzip program to about 30% of its original size.
Files carrying a binary representation of those

same time-stamp signals (which is 0.4 times the size
of the ascii file) can be compressed in that way to
about 60% of its original size.
This seems to confirm the generally held believe

that loss-less compression gains at best a factor 4.

4.2. Compression Assessment

A first point to note is that all data was correctly
decompressed. The ctv mechanism seems indeed
to be loss-less.
One can furthermore notice that the data falls

into three groups:

• Adc channels that used a low quality, probably
a free-running internal clock.

The 1 565 boxes in this group carried 72 224 000
time-stamps, these compressed into 3 850 568
longs, an average compression ratio of 19.

• Data that comes from external sources, PLCs,
local control stations, etc..

1Although w

7

x was not yet operational, some compo-
nents were already being commissioned and produced data.

4



The 4 019 boxes in this group carried 1 590 731
time-stamps, these compressed into 37 169
longs, an average compression ratio of 43.

This ratio is mainly an artefact of reading rel-
atively short time vectors in these boxes, with
only a small number of time-stamps per box.
Of the 4 019 boxes in this group, 2 946 (73%)
compress to the theoretical minimum of 6 long
words. Using other box sizes will directly a↵ect
this compression ratio.

• Adcs that were clocked by a quality, synchro-
nised clock. (It is expected that most of w

7

x’s
adc-clocks will be of this type.)

These 697 boxes carried 16 350 000 time-
stamps, which compressed into 4 242 long

words, an average compression ratio of 3 854.

4.3. Performance Assessment

Compression speed of this CTV algorithm has
been observed around 10Msample/s, with a not
specifically tuned Java implementation, on a fairly
standard o�ce PC.

4.4. Worst-case Considerations

For any known compression algorithm, there ex-
ist “pathological” input data that, when processed
by that algorithm, will actually produce an array
that requires more space than the original vector.
It is useful to consider such “pathological” data-sets
for the described system.
The worst case is an original time vector of one el-

ement. This will “compress” into three long words.
In fact, any original vector with a length < 6

will “compress” into a longer array. A vector with
a length = 6 will at best return a data-set of the
same length.
Longer original vectors could also cause expan-

sion. This could happen when every residue value
is di↵erent from its immediate neighbours, so when
a fairly random distributed set of time-stamps is
recorded. In such cases, the worst-case “com-
pressed” array would have a length of 2 +N ⇥ 4/3
words.
A CTVcompressor can, and should, recognise

such expanding data-sets during the compression
process. It should return, at that point, a copy
of the input array, with a special marker word
prepended. If this “compressed” array were to be
used again as input to a compressor, it can quickly
detect that this data-set was already found to be
incompressible.

5. Summary

• A loss-less compression scheme, named CTV
(Compressed Time Vector) has been presented.

• This compression scheme is specifically ad-
justed to 64 bit time-stamps as used by w

7

x.

• This compression uses “Linear-prediction” and
“modified run-length encoding” to significantly
reduce the data amounts required to handle,
transport and store such time-stamps.

• Typical w
7

x time-stamp data compresses very
well using this scheme.

• All detailed information in the time-stamps is
una↵ected by this compression.

• This ctv approach is being rolled-out in the
w

7

x archive and related software.

References

[1] A.Werner, et al., Cutting edge concepts for con-
trol and data acquisition for Wendelstein 7-X.
10.1109/SOFE.2013.6635430

[2] T.Bluhm, et al., Wendelstein 7-X’s CoDaStation: A
modular application for scientific data acquisition, Fu-
sion Engineering and Design, 89 (2014), 658-662

[3] J. Schacht, et al., A trigger-time-event system for the
W7-X experiment, Fusion Engineering and Design, 60
(2002) 373–379

[4] J. Schacht, et al., The Trigger- Time-Event-System
for Wendelstein 7-X: Overview and first Operational
Experiences, 20th Real Time Conference

[5] C.Hennig, et al., ArchiveDB—Scientific and technical
data archive for Wendelstein 7-X, Fusion Engineering
and Design, 112 (2016) 984–990

[6] FLAC – Free, Loss-less Audio Codec, http://flac.

sourceforge.net/

[7] “Loss-less Compression of Digital Audio (audioPaK)”,
Mat Hans, Ronald W. Schafer, HP Laboratories Palo
Alto, 1999

[8] “PNG, The Definitive Guide”, Greg Roelofs, O’Reily.
PNG – Portable Network Graphics, ISO/IEC 15948,

[9] zlib – The Compression Library behind png, gzip,
java.zip, etc., http://zlib.net/

[10] Run-length encoding. E.g.: “Algorithms in C”,
R. Sedgewick, isbn 0-201-51425-7, page 320. Or: http:
//en.wikipedia.org/wiki/Run-length_encoding

5

http://flac.sourceforge.net/
http://flac.sourceforge.net/
http://zlib.net/
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding

	Introduction
	General Considerations
	The CTV algorithm
	First Step: Sample- and Residue Prediction
	Second Step: Residue Compression
	Run-length Encoding
	Modified Run-length Encoding

	Optional Step: Packing
	Final Step: CTV Container

	Assessment
	Reference Assessment
	Compression Assessment
	Performance Assessment
	Worst-case Considerations

	Summary

