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In population genetics, fixation of traits in a demographically changing population under frequency-
independent selection has been extensively analyzed. In evolutionary game theory, models of fixation
have typically focused on fixed population sizes and frequency-dependent selection. However, combining
ecological fluctuations with frequency-dependent interactions such as Lotka-Volterra dynamics and thus
the analysis of eco-evolutionary fixation has received comparatively little attention. Here, we consider
a two-type stochastic competitive Lotka-Volterra model with higher order interactions. The emerging
individual based model allows for stochastic fluctuations not just in the frequencies of the two types but
the total population size as well. Assuming weak selective di↵erences between the traits we approximate
the fixation probability for di↵ering competition coe�cients. We find that it resembles qualitatively the
corresponding evolutionary deterministic dynamics within a population of fixed size. Furthermore, we
analyze and partially disentangle the selection e↵ects into their ecological and evolutionary components.
Concretely, we show that the evolutionary selection intensity has a larger e↵ect on the predictive power of
our approximation than the ecological selection. However, the fixed points themselves are also a↵ected by
the selection intensity which implies that a clean separation of the ecological and evolutionary impacts on
the evolutionary outcome of the model is not possible. The entanglement of eco-evolutionary processes
in a co-evolutionary system is thus a reality which needs to be considered when determining the fixation
properties in populations of fluctuating size.

Keywords: eco-evolution; fixation probability; social dilemma; stochastic di↵usion; evolutionary game theory;
competitive Lotka-Volterra model

I. INTRODUCTION

The theoretical study of fixation or extinction of an allele
or a trait in a population has a long history in the context
of population genetics [24, 37, 48, 94]. It has since then
served as a basic theory in a huge variety of fields in evo-
lutionary biology [63]. While traditionally the focus is on
the evolutionary dynamics of a trait in a fixed or infinitely
large population size under frequency-independent selection,
there are also models including deterministic population size
changes [23, 49, 70, 89, 92].

Additionally, also evolutionary game dynamics has been
utilized in biological and social contexts since its inception
[55, 58]. This framework allows for an easy interpretation
and implementation of frequency-dependent selection pro-
cesses which can lead to coexistence or bistable dynamics.
Amongst others, evolutionary games have provided insights
into evolution of cooperation [65], evolution of sex [57],
host-parasite-dynamics [50] and more recently, the evolu-
tion of cancer [71]. The introduction of stochasticity albeit
within fixed population sizes, allows the study of quanti-
ties such as fixation probabilities or mean fixation times
[2, 3, 31]. The main focus of this discipline, has been on
evolutionary dynamics [45, 64], mainly neglecting ecological
e↵ects.

In real biological systems, as it is becoming increasingly
clear from epidemiological as well as experimental studies,
the interaction of ecology and evolution is crucial in de-
termining the joint eco-evolutionary trajectory of a system
[26, 36, 78]. Evolutionary dynamics of two traits, e.g. co-
operators and cheaters, has been studied in evolutionary
models inspired by microbial experiments [1, 12, 16, 17, 35].

Ecology, and in particular fluctuating population sizes, often
dictate the dynamics of these experiments.

In this study we take inspiration from population genet-
ics, theoretical ecology and evolutionary game theory and
develop a mechanistic eco-evolutionary model with higher
order interaction terms. Focusing on finite populations we
explicitly calculate the fixation probability where the popu-
lation size can fluctuate stochastically over time.

The analysis of evolutionary games in finite populations
has garnered a lot of attention in the past decade [2, 6, 86].
Besides adding realism, models of finite populations can
even provide results qualitatively di↵erent from the deter-
ministic estimates [9, 15, 65]. While of importance in under-
standing the underlying processes which lead to the gross
deterministic behaviour, the importance of stochastic dy-
namics in biological systems cannot be understated [9].

Barring a few exceptions, majority of the literature fo-
cuses on a constant population size, neglecting potential
ecological e↵ects on the population dynamics. Further ex-
aminations on the interaction of evolutionary and popula-
tion dynamics have recently gained more attention [11, 14–
16, 52, 61, 74–76, 89]. Classical equations of ecology such
as the co-evolutionary Lotka-Volterra dynamics have to be
re-evaluated when finite populations are considered [33, 72].
Recent studies explicitly include evolutionary game dynam-
ics into an ecological framework [8, 19, 32, 47, 59, 96]. In
these models, one challenge is to re-interpret game interac-
tions in terms of ecological dynamics so as to make sense in
a fluctuating population size scenario. Recent work in this
direction provides a mechanism by which such an amalga-
mation of techniques is possible [47]. Since the game in-
teractions are between individuals with di↵erent traits, we
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can interpret them as the interaction terms as in the com-
petitive Lotka-Volterra type interactions [97]. Typically in
evolutionary games when an individual interacts with an-
other, it receives a payo↵. In our eco-evolutionary setting,
the payo↵s translate inversely into competition outcomes.
Thus, the more the payo↵, the less likely is the interaction
harmful for the actor.

Derivation of a stochastic formulation of a model begs
further analysis. When drift dominates, i.e. in the limit of
weak selection, the impact of the interactions on the fitness
is minimal, approximations for the fixation probability are
available [11, 14, 19, 52]. From a game theoretic perspec-
tive, all these studies are restricted to the highly abstract
notion of two player games [87]. The mathematics of these
games is the same as that of allele dynamics within a hap-
loid population [18]. This framework has been extended to
diploids [41, 77]. Multiplayer games would allow us to in-
crease the ploidy level [39]. Therefore, multiplayer games
are not just theoretically interesting [62], but have clear bi-
ological [13] as well as social interpretations. From multiple
bacteria interacting together as in microbiomes [95], in quo-
rum sensing [93] or during biofilm formation [22] to social
dilemmas such as the classic tragedy of the commons [40],
evolutionary games can be interpreted across scales of or-
ganization. For an extensive account for the applications of
multiplayer games in biology we refer to Broom [10]. Of
interest then, would be a complete eco-evolutionary analy-
sis of fixation probability for multiplayer evolutionary games
such that we can understand the e↵ects of demographic
changes on the combined eco-evolutionary trajectory.

Following this line of thought, we develop an ecological
interpretation of a two trait multiplayer evolutionary game
model. We calculate the fixation probability of a trait (strat-
egy) in a competitive Lotka-Volterra model with higher or-
der interactions (multiplayer game), where the population
size fluctuates over time. The population size changes are
not external shocks [27] but rather are a consequence of the
mechanistic setup of the system. This individual based im-
plementation of reactions also allows for a straight-forward
interpretation of the fitness e↵ects on the population level.
The stochastic model so generated, generalizes previous re-
sults on fixation probability [19, 52]. It allows us to (partly)
disentangle the impact of evolutionary and ecological forces
on the fixation probability. We then apply our theory to
a well studied example of a social dilemma, the so called
threshold public goods game. This example allows us fur-
ther insight into the structure of the expression of the fix-
ation probability and we can thus extend the framework to
general d-player interactions eco-evolutionary models.

II. FROM EVOLUTIONARY GAMES TO POPULATION

DYNAMICS

While two player games form the crux of most of evolu-
tionary game theory, multiplayer games are rather the norm
in social as well as a number of biological situations. Usu-
ally the evolutionary dynamics is concerned with the change

in frequencies of traits over time under the assumption of
population densities being in an ecological equilibrium. This
results in the ecological aspect of changing population densi-
ties often times being overlooked. We develop a multiplayer
population dynamics model which is based upon ecological
processes as in [47]. As an example we begin with a three
player interaction.

A. Replicator dynamics

Consider a population consisting of two traits, A and B.
The interactions between the individuals when they interact
in groups of three are then denoted by,

 AA AB BB

A a2 a1 a0

B b2 b1 b0

!
(1)

The focal individual (row) with trait A interacts with two
other individuals. If the other two individuals happen to be
also A then the payo↵ to the focal individual is a2. Typ-
ically in traditional evolutionary game theoretic terms the
population size is considered to be infinitely large so that
the number of A and B individuals can be represented by
their frequencies xA = x and xB = 1 � x. The fitness of
the trait is then the product of the payo↵ and the frequency
of the corresponding trait in the population, thus,

⇡A = a2x2 + 2a1x(1 � x) + a0(1 � x)2 (2)

⇡B = b2x2 + 2b1x(1 � x) + b0(1 � x)2 (3)

The evolutionary change in the frequencies of the types
can then be captured by the standard replicator dynamics
which is fully valid for multiplayer games [34, 45] given by,

dx

dt
= x(1 � x)(⇡A(x) � ⇡B(x)). (4)

We can recover the traditional outcomes of neutrality,
dominance, bistability and coexistence for the three player
game but furthermore the setup has the possibility to show
two internal fixed points, one being stable and the other one
unstable.

1. Finite populations:

Replicator dynamics is based on an assumption that the
population size is infinitely large. This allows us to look
at the gross qualitative dynamics of selection. Interactions
however take place in finite population. The results so ob-
tained when taking finite populations into account can force
us to rethink the limits of the infinite populations size as-
sumption [25, 28, 66, 88]. Various ways of handling finite
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populations have been implemented and this applies also to
multiplayer games [34, 54, 87].

A crucial concept in finite populations is that of selection
intensity. We can control the e↵ect of the game (interac-
tions) on to the fitness of a trait by tuning the magnitude
of the intensity of selection. Assuming a linear payo↵ to fit-
ness mapping we have fa = 1 + !⇡A. If selection is weak,
! ⌧ 1, then drift dominates and the average payo↵ has a
minimal e↵ect on the fitness. Thus the e↵ective di↵erence
between the two types reduces. The mapping can be sub-
sumed in the payo↵ matrix where each payo↵ entry say ai

is rescaled to 1 + !ai.

B. Population dynamics

As per [47] we rationalize that since the game contributes
only to the competition between individuals, it can thus
result in the death of the focal individual. The payo↵s of
a game usually translate positively towards the fitness of
the focal individual, so an inverse relationship between the
magnitude of the payo↵ and the probability of death. The
microscopic interactions which lead to birth, competition
and death of the types can be written down in the form of
chemical reactions as in [30],

A
�A��! A + A

B
�B��! B + B

A + (A + A)
�a2��! A + A

A + (A + B)
�a1��! A + B

A + (B + B)
�a0��! B + B (5)

B + (A + A)
�b2��! A + A

B + (A + B)
�b1��! A + B

B + (B + B)
�b0��! B + B

A
�A��! 0

B
�B��! 0,

where the reaction rates �ki =
�2

i

�
/(M2(1 + !ki)) with

ki the payo↵s from the payo↵ matrix for the three player
game. The reaction rates for the birth and death reactions
are explicitly defined. The parameter M controls the abun-
dance of the population size in equilibrium. The reactions
are corrected according to their combinatorial possibilities
as in [60]. Note, that this combinatorial correction is not
the same as the standard mass-action kinetics from chemical
reaction network theory [5, 30]. This di↵erent implementa-
tion is justified by the intuition of drawing the individuals
participating in these reactions from the overall population
instead of calculating the probability for particles to meet
as argued in the context of biochemical reactions. This mi-
croscopic implementation of the model has the advantage
of directly relating selective advantages to birth or death

processes. This mechanistic way of thinking about evolu-
tionary success has not been examined in the literature, see
[21] for an essay about this. We believe that interpreting
selection in a mechanistic way can give new insight into
the concrete advantages of mutants and situations in which
these mutants are beneficial.
We proceed by writing down the transition rates to go

from a state n = (nA, nB) to another accessible state.
These rates read as,

T (nA + 1, nB |n) = �AnA,

T (nA, nB + 1|n) = �BnB ,

T (nA � 1, nB |n) = �a2nA(nA � 1)(nA � 2) + 2�a1nAnB(nA � 1)

+ �a0nAnB(nB � 1) + �AnA,

T (nA, nB � 1|n) = �b2nB(nA � 1)(nA � 2) + 2�b1nBnB(nA � 1)

+ �b0nBnB(nB � 1) + �BnB .

Using these rates we can write down the stochastic master
equation with the general form as

dP (n, t)

dt
=
X

n0 6=n

T (n|n0)P (n0, t) �
X

n0 6=n

T (n0|n)P (n, t).

(6)

In the limit of a large population size we recover the mean
field approximation or the population level model [60].

dhnAi
dt

= �AnA � nA(nA � 1)(nA � 2)

M2(1 + !a2)

� 2nAnB(nA � 1)

M2(1 + !a1)
� nAnB(nB � 1)

M2(1 + !a0)
� �AnA.

Rescaling population size by xA = nA/M and time by
⌧ = Mt we find

dxA

dt
= xA


�A � �A � 1

1 + !a2

✓
xA � 1

M

◆✓
xA � 2

M

◆

� 2

1 + !a1
xB

✓
xA � 1

M

◆
� 1

1 + !a0
xB

✓
xB � 1

M

◆�
.

(7)

Similarly for trait B we have

dxB

dt
= xB


�B � �B � 1

1 + !b0

✓
xB � 1

M

◆✓
xB � 2

M

◆

� 2

1 + !b1
xA

✓
xB � 1

M

◆
� 1

1 + !b2
xA

✓
xA � 1

M

◆�
.

(8)

The change in the number of the individual types is in-
teresting in itself when considering co-evolutionary dynam-
ics. This will relate to the interactions between di↵erent
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species which in principle can have di↵erent carrying capac-
ities (MA,MB , . . . ). The evolutionary process (change in
the population composition) as well as the ecological dy-
namics (change in population density) can then be mea-
sured by transforming the above di↵erential equations to
the fraction of trait A individuals, p = xA

xA+xB
, and the

total population size, z = xA + xB , thus given by,

dp

dt
= p(1 � p)z

✓
z +

1

M

◆
1

1 + !b0
� 1

1 + !a0

+2p

✓
1

1 + !b1
� 1

1 + !b0
� 1

1 + !a1
+

1

1 + !a0

◆

(9)

+p2

✓
1

1 + !b2
� 2

1 + !b1
+

1

1 + !b0

� 1

1 + !a2
+

2

1 + !a1
� 1

1 + !a0

◆�
,

dz

dt
= z

✓
� � � � z2


1

1 + !b0

+p

✓
1

1 + !a0
+

2

1 + !b1
� 3

1 + !b0

◆
(10)

+p2

✓
2

1 + !a1
� 2

1 + !a0
+

1

1 + !b2
� 4

1 + !b1
+

3

1 + !b0

◆

+p3

✓
1

1 + !a2
� 2

1 + !a1
+

1

1 + !a0

� 1

1 + !b2
+

2

1 + !b1
� 1

1 + !b0

◆�◆
.

Since our ultimate goal is to approximate the fixation
probability of type A individuals in the population, we now
proceed by considering the stochastic counterpart of this
eco-evolutionary model.

1. Stochastic eco-evolutionary dynamics:

Most often stochastic models are derived from an individ-
ual based formulation as given in Eq. (5) and then approx-
imated by a stochastic di↵erential equation, the so called
di↵usion approximation, see e.g. [29, 91]. For our model
we obtain (for a detailed derivation see part 1.1 in the sup-
plementary information (SI))

dxA(t) = xA

✓
�A � �A � x2

A

1 + !a2
� 2xAxB

1 + !a1
� x2

B

1 + !a0

◆
dt

+
1p
M

 
(�A + �A)xA

+ xA

✓
x2

A

1 + !a2
+

2xAxB

1 + !a1
+

x2
B

1 + !a0

◆!1/2

dW1(t),

dxB(t) = xB

✓
�B � �B � x2

A

1 + !b2
� 2xAxB

1 + !b1
� x2

B

1 + !b0

◆
dt

+
1p
M

 
(�B + �B)xB

+ xB

✓
x2

A

1 + !b2
+

2xAxB

1 + !b1
+

x2
B

1 + !b0

◆!1/2

dW2(t),

(11)

where Wi are independent Brownian motions.
Again, we can transform this to the relative frequency

of A individuals denoted p and the total population size z.
A visualization of this transformation along with stochastic
simulations is shown in Figure 1.

III. FIXATION PROBABILITY

Under the assumption of weak selection, i.e. ! ⌧ 1 we
are able to approximate the probability of fixation '(p0, z0)
of trait A. Note, that it only depends on the initial popu-
lation size z0 and the composition of the initial population
characterized by p0. The techniques used to derive an inter-
pretable expression are first described in [11, 52] and refined
for this specific setup in [19]. The interpretation relies on
our ability to separate the evolutionary terms from the eco-
logical variable z. In a two player system the condition
for this separation to be valid conveniently coincides with
a weak selection assumption, see [19]. However, in multi-
player games the separation of evolutionary and ecological
scales becomes more complicated and harder to interpret.
The conditions derived below are mainly on the location of
the fixed points of the eco-evolutionary system. In the case
of three players the equilibria are given by (Eq. (9) = 0)

p⇤
1,2 = �

1
1+!b1

� 1
1+!b0

� 1
1+!a1

+ 1
1+!a0

1
1+!b2

� 2
1+!b1

+ 1
1+!b0

� 1
1+!a2

+ 2
1+!a1

� 1
1+!a0

±
 ✓ 1

1+!b1
� 1

1+!b0
� 1

1+!a1
+ 1

1+!a0

1
1+!b2

� 2
1+!b1

+ 1
1+!b0

� 1
1+!a2

+ 2
1+!a1

� 1
1+!a0

◆2

+
1

1+!a0
� 1

1+!b0
1

1+!b2
� 2

1+!b1
+ 1

1+!b0
� 1

1+!a2
+ 2

1+!a1
� 1

1+!a0

!1/2

(12)

and the conditions necessary for the approximation read
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FIG. 1. From an evolutionary game to population dynamics. The interaction between two types A and B is represented

by the payo↵ matrix as shown in the top left of the figure. We include weak selection via a linear payo↵ to fitness mapping

such that the e↵ective matrix is 1+!⇥matrix. Then we compute the population dynamics of this interaction matrix for weak

selection ! = 10
�0.7

. Weak selection as implemented here only makes sure that the average payo↵s are close to each other.

Weak selection as per population dynamics would mean that the payo↵ entries are close to each other. Thus as the dynamics

comes close to neutrality the number of runs fixed in either type A or B is almost equal. From an eco-evolutionary point of view

(bottom right), the population density rapidly converges to the ecological equilibrium and then the almost neutral dynamics

proceeds in the evolutionary dimension of the fraction of type A individuals. The fixed points in the evolutionary dimension

are denoted by the solid horizontal lines (given by Eq. (12)) which reduce to the dashed lines in case of weak selection as per

Eq. (14).

(i) ! ⌧ 1 (weak selection),

(ii) p⇤
1 + p⇤

2 = 1 and

(iii) p⇤
1p

⇤
2 = 1

5 .

The latter two conditions basically ensure that selection
when looked at over the whole frequency space is negli-
gible, i.e. the integral of the replicator dynamics over the
frequency space is zero or at least close to it. Or more
formally, conditions (ii) and (iii) yield

Z 1

0

dx

dt
dx =

Z 1

0
x(1 � x)(⇡A(x) � ⇡B(x))dx ⇡ 0, (13)

where the equality is explained by equation (4). Note,
that this is an extension of the two-player case where the
ecological condition reduced to p⇤ being close to 1/2, [19].
Appyling conditions (i)-(iii) we find a function  (z) inde-
pendent of p thus separating the e↵ects of the initial pop-
ulation size and the initial frequency of type A individuals,
cf. part 1.2 of SI for a detailed derivation. Furthermore,
under condition (i) the fixed points simplify to

p⇤
1,2 ⇡ � b0 � b1 + a1 � a0

2b1 � b2 � b0 + a2 � 2a1 + a0

±
 ✓

b0 � b1 + a1 � a0

2b1 � b2 � b0 + a2 � 2a1 + a0

◆2

(14)

+
b0 � a0

2b1 � b2 � b0 + a2 � 2a1 + a0

!1/2

.

Finally, under assumptions (i)-(iii) we find the following
expression for the fixation probability when dropping the
subscript for the initial population size and fraction of type
A individuals (details are stated in the SI part 1.2):

'(p, z) ⇡ p + !p(1 � p)(p � p⇤
1)(p � p⇤

2)

⇥ (2b1 � b2 � b0 + a2 � 2a1 + a0) (z),
(15)

where  (z) satisfies
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0 = z

✓
z +

1

M

◆
+ z

�
� � � � z2

�
 0(z)

� 6

zM

�
� + � + z2

�
 (z) +

z

2M

�
� + � + 2z2

�
 00(z).

(16)

The approximation '(p, z) (Eq. (15)) shows a nice fit
with simulation results obtained from Gillespie runs with
parameters in the vicinity of the assumptions (i)-(iii), see
Fig. 2.
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FIG. 2. Fixation probability for a three player game
under weak selection. For a selection intensity of ! =

10
�1.0

the three player game shows qualitatively three di↵er-

ent regimes. When the initial frequency of type A individuals

is low or high, the fixation probability is larger than neutral.

For intermediate initial fraction of type A individuals the fix-

ation probability is lower than neutral. The simulations were

averaged over 10
5
runs where each was run until type A fixed

or went extinct. Total initial population size was 200 with

M = 100,� = 0.6, � = 0.1 which leads to  ⇡ 5.85. For the

numerically calculation of  we refer to part 1.4 of SI.

A. Deviating from the assumptions

In the following we examine the impact of deviating from
the conditions under which the theory holds. Therefore, as
a “benchmark” model we choose the matrix

 AA AB BB

A 1.00 0.50 1.00

B 0.50 1.25 0.50

!
. (17)

The internal equilibria, according to equation (14),
corresponding to this matrix are given by p⇤

1,2 =
{0.7236, 0.2764}. For this combination of equilibrium val-
ues, we have p⇤

1 + p⇤
2 = 1.0 and p⇤

1p
⇤
2 = 0.2 which holds for

! ⌧ 1 thus satisfying the required conditions.
Our aim is to calculate the fixation probability of type A

when the population size is fluctuating. The theory devel-
oped is applicable under weak selection which results in a

separation of the parameter p and z and leads to the tech-
nical conditions (i)-(iii) above. Our setting allows for two
possible ways to deviate from the idea of weak selection.
We can assume larger values of ! corresponding to a over-
all larger impact of the evolutionary fitness di↵erences on
the model. Thus, by increasing ! the fixation probability
is less and less captured by our theoretical expectation, see
x-axis of Fig. 3. Alternatively, weak selection is achieved
when the payo↵ values of the matrix satisfy conditions (ii)
and (iii) from above. Varying the values in the payo↵ matrix
changes the intensity of selection but more importantly also
alters the location of the fixed points (Eq. (12)). In this
case the theory is able to capture qualitatively the direction
of deviation from neutrality (Fig. 3 y-axis). We call these
two deviations either evolutionary or ecological weak selec-
tion even though it is not possible to strictly disentangle
the e↵ects as they are intertwined via the calculation of the
fixed points.

1. Evolutionary weak selection - varying !:

Typically in evolutionary games, changing the intensity
of selection does not a↵ect the stability of the fixed points
in the infinite population size limit. This only holds approx-
imately in our considered eco-evolutionary model. Due to
varying the influence of the underlying game on the compe-
tition parameters we slightly change the location of the fixed
points in the system. Calculating fitness as 1+!(matrix),
weak selection can be imposed when ! ⌧ 1. In this case
we get the theoretical optimum value for p⇤

1p
⇤
2 (Fig. 4 hori-

zontal axis). Increasing the values of ! leads to a deviation
of p⇤

1p
⇤
2 = 0.2 and thus the approximations become worse

(Fig. 3). However, Figure 4 shows that we can recover this
formally strict separation of p and z by slightly altering the
payo↵ matrix such that even for higher values of ! the pre-
dicted fixation probability fits well to the observed values
obtained by simulations (for the set of results for value 1 on
the y-axis in Fig. 4).

2. Ecological weak selection - varying the payo↵s:

When we alter the payo↵s, we change the location of
the equilibria drastically which can be seen as changing the
ecological output of the model, i.e. the carrying capacities
of the two strains. For instance, in the monomorphic states
these are given by (� + �)(1 + !a2)M and (� + �)(1 +
!b0)M for type A and B, respectively. By fixing ! this
indeed only a↵ects the ecological dynamics since the impact
itself from the evolutionary process it determined by ! and
thus constant. Hence, to implement weak selection as per
closeness to the ecological conditions, i.e. assumptions (ii)
and (iii) from above, we change the payo↵ entries such that
p⇤
1 + p⇤

2 = 1 whereas p⇤
1p

⇤
2 6= 0.2 (Fig. 4 vertical axis).

Overall, as can be seen in Figure 4, increasing ! has
a larger impact on the goodness of our predictions than
varying the payo↵ values. This is also intuitive since ! is
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FIG. 3. Weak selection(s). Typically in evolutionary games, scaling the payo↵s (by the selection intensity) does not change

the deterministic dynamics. Thus across the x-axis the replicator dynamics Eq. (4) can be visualized, see right column. A

positive value (blue) determines that type A is favored over type B and vice versa for negative values (red). In a stochastic

setting in general and especially in a model with fluctuating population size however, the intensity of selection plays a major

role (x-axis). For weaker selection, the magnitudes of the positive and negative values are extremely small, tending towards

neutrality. Taking population dynamics into account, another way of introducing weak selection is when the payo↵ entries are

close to our “benchmark” model (y-axis). If we increase the di↵erence between the payo↵s, we change the dynamics of the

game and the fixed points of the (ecological) system, thus also a↵ecting the regions where the theory is applicable (p⇤1p
⇤
2 = 0.2).

the parameter determining the strength of all the selection
e↵ects. When large enough, the concrete payo↵s can play
a role and thus have an impact on the system. Hence, one
should rather think of a nested selection characterization
(first evolutionary impact, then ecological variance) rather
than two distinct variables acting on two di↵erent scales.

IV. POPULATION DYNAMICS OF COLLECTIVE

ACTION

We now extend the analytical calculations to a particular
example of multiplayer game. The evolutionary dynamics
of collective action is an extremely well studied topic in the
social sciences [68, 69]. How social structures overcome
the tragedy of the common is a recurring theme in this field
[40, 82]. The tragedy of the commons is a case where the
defectors benefit at a cost to the cooperators. However the
tragedy is relaxed if a part of the benefit can be recovered
by the acting cooperator. This negative frequency depen-
dence is the essence of the snowdrift game [20]. It has been
proposed that the snowdrift game might better reflect hu-
man social dilemmas than the otherwise famous Prisoners
Dilemma [51]. Also biological observations like phenotypic
heterogeneity, a well established phenomena in microbes,
can be a result of snowdrift like, negative frequency dynam-
ics [44].

A. (Multiplayer) Snowdrift game

The metaphor (for d players) states that if d drivers meet
at an intersection where a snowdrift has occurred, if every-
one helps out in clearing it then all can go home (benefit
b > c) while paying a cost of c/d. If only k of the drivers
decide to shovel then they get b � c/k while the defectors
enjoy the warmth of the car and get home, obtaining b.
We are interested in further realistic cases where a certain
threshold number of cooperators are necessary to get the
job done [84]. Thus imagine that it is not a snowdrift but
a large tree has fallen across the road, then a certain num-
ber of individuals are necessary to pick up the heavy trunk.
Hence if ✓ is the threshold number of cooperators necessary
to generate the benefit, then for k < ✓ the e↵orts of the
cooperators go waste resulting in 0 � c/✓ (assuming that
each cooperator does the best it can). The defectors also
get nothing 0. Once the number of cooperators is equal to
or above the threshold, then the trunk is moved from the
road, and everyone can go home. The cooperators having
paid the cost get b � c/k while the defectors get b. If the
number of other cooperators is ✓ � 1 then it is profitable
to be a cooperator, fill the quorum, and reap the benefit
b�c/✓ as opposed to defect and end up with nothing. This
concept of threshold public goods games is applicable not
just in humans but in other species as well [4, 7]. For big
game hunting or territory defence a certain number of indi-
viduals are necessary. If the number of cooperators is not
met then the quarry cannot be captured [85]. In microbes
quorum sensing, or simply density dependent e↵ects, play a
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FIG. 4. Disentangling weak selection. As we change the payo↵ entries in steps of 0.05 ⇥ y we are changing the fixed

points such that p⇤1 + p⇤2 = 1 still holds but the condition of p⇤1p
⇤
2 = 0.2 is not necessarily met (y-axis). In contrast we can

modify ! which keeps the fixed points of the replicator dynamics constant while changing the impact of the game and thus

the interactions strength between the strategies (x-axis). While in evolutionary games ! has been termed as the evolutionary

selection intensity, we can interpret the distance as the ecological selection intensity, since it directly a↵ects the carrying capacity

of the two types. As we change these two selection intensities, the expected theoretical performance is illustrated in the left

panel as the magnitude by which the condition p⇤1p
⇤
2 = 0.2 is violated. Gillespie simulations, starting at di↵erent initial fraction

of A individuals (0.1, 0.2, . . . , 0.9) were performed and the fixation probabilities were calculated over 10
5
realizations. The total

initial population size was set to 200 with M = 100,� = 0.6, � = 0.1 resulting in  ⇡ 5.85. We calculate the mean standard

deviation between the simulation results and the expectation from Eq. (15). The right panel is a histogram of such deviations

from the expectation for di↵erent ! and di↵erent matrix configurations. We see that the deviation is the least where the

violation of p⇤1p
⇤
2 = 0.2 is the least. The discrepancy that we see for high ! and but negative y-axis values can be attributed

to ecological shifts of the equilibria, namely the carrying capacities. In the region of the discrepancy, the theory estimates

the fixation probability still in the shape of the replicator dynamics, which is a gross underestimate (for example ! = 10
0.5

and distance = 0 in Fig. 3.) As the distance decreases further, the replicator dynamics and the fixation probability both,

increase above neutrality, reducing the standard deviation from the simulation results (! = 10
0.5

and distance = �5) . No such

discrepancy exists for positive y values since the simulations are progressively overestimated while maintaining the qualitative

picture (! = 10
0.5

and distance = 5) .

critical role in the so called social behaviour evolution [56].
As follows from the concept of multiplayer games, a neces-
sary condition for observing n fixed points in the interior of
the replicator simplex [34, 43] is the n changes in the sign
of the payo↵ di↵erence.

Excluding finite populations precludes the possibility of
ecologically relevant events such as extinctions. Population
dynamics in social dilemmas have been considered before via
deterministic dynamics [32, 42]. In a stochastic system as
ours, the fixed points p⇤

i for a multiplayer game in the eco-
evolutionary space (p�z) can be calculated in a similar way
as in the three player game from above, see also Eq. (A.7)
in the SI. In general for any d�player game the fixation
probability can then be approximated by (details in part 1.3
of SI)

'(p, z) ⇡ p + !p(1 � p)(�1)d�1

⇥
 

d�1X

i=0

(�1)i

✓
d � 1

i

◆
(ai � bi)

! 
d�1Y

i=1

(p � p⇤
i )

!
 (z),

(18)

where  (z) satisfies the following equation:

0 = zd�2

✓
z +

1

M

◆
+ z

�
� � � � zd�1

�
 0(z)

+
1

2zM

�
� + � + zd�1

�
�(p, p⇤

1, ..., p
⇤
d�1) (z)

+
z

2M

�
� + � + 2zd�1

�
 00(z).

The term �(p, p⇤
1, ..., p

⇤
d�1), explicitly given in Eq.(A.8) in

the SI, needs to be independent of p for the theory to apply.
However, to investigate the concrete conditions for it to be
so is beyond the scope of this study. We note that Eq. (18)
reduces to the already obtained fixation probabilities in the
cases d = 2, see [19, Theorem 1], and d = 3, see Eq. (15).
While the main features of the fixation probability are the

same as in the cases with less players (intersections with the
neutral fixation probability at internal equilibria, qualitative
agreement with the replicator dynamics, i.e. '(p, z)�p > 0
when dx

dt

��
x=p

> 0 and vice versa - note however that the

fixed points are not exactly the same), there is also a notable
exception. Doing the general approximation it becomes ap-
parent that not only the internal (and meaningful) fixed
points determine the evolutionary success but so do the
other (potentially imaginary) solutions of the corresponding
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deterministic model.
Given all these uncertainties, as well as the fixed points

not satisfying the required conditions perfectly, the general
formula in equation (18) describes the qualitative behaviour
of the fixation probability of the system, reflecting the repli-
cator dynamics Fig. 5.
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FIG. 5. Eco-evolutionary fixation probabilities in a
snowdrift game. The graph (on the left) shows the evolu-

tionary dynamics as per the replicator equation for a 20 player

game with di↵erent number of threshold snowdrift game sce-

narios (✓ = 1, 5, 10, 15 and 20) and benefit b = 1.5 and a cost

of c = 1. No benefit is generated if the number of cooper-

ators is less than ✓. If the number of cooperators is ✓ � 1

then it is preferable to switch to the cooperate trait. For each

case we calculate the corresponding fixation probability using

Eq. (18) (right panel) for M = 100,� = 0.6, � = 0.1, initial
total population size of 200, weak selection ! = 10

�0.5
and

 ⇡ 0.53. Comparing the structure of the fixation probability

we see that it follows the gradient of selection qualitatively.

Thus the replicator dynamics is a good approximation of the

fixation probability in populations with a fluctuating size un-

der weak selection.

To precisely determine if the approximation is valid we
employed the Gillespie algorithm to simulate the stochas-
tic population dynamics. As above, we consider a snowdrift
game with d = 20 players. To construct a stochastic version
of this we need to consider 44 reactions (4 made up of birth
and death processes for the two types and the rest as com-
petition terms coming from the payo↵ matrix). As already
observed in [84], varying the threshold number of necessary
cooperators (✓) we change the location of the fixed points in
the replicator dynamics, see Fig. 5. Alternatively we fix the
threshold ✓ = 10, and starting with equal number of coop-
erators and defectors, we calculate the fixation probability
while varying !, Fig. 6.

For weak selection the dynamics is essentially neutral
with the trajectories randomly fixing in either allC or
allD. However as selection increases, the distance between
the two fixed points starts to matter. For example, for
! = 100.1 the fixed points within the relevant space are
p⇤
1,2 = {0.405328, 0.708458}. Thus it is closer for the tra-

jectories to go from p⇤
1 to the stable fixed point p⇤

2 which is
closer to allC than to allD. Interestingly, drift may be an
explanation for the results with strong selection dynamics in
this multiplayer case. Take for instance the last data point,
the case ! = 100.5, where the fixed points are approximately
p⇤
1,2 = {0.509443, 0.732788}. Then considering that for

our initial population we have p = 0.5 we can argue that
in approximately one half of the cases the population drops

below that value, ending up in fixation of the resident. This
is an underestimation since under strong selection starting
below p⇤

1 all trajectories should end up in p = 0. However,
due to the fluctuating population size the population is de-
creasing at first and due to random drift p might be larger
than p⇤

1 when hitting the ecological equilibrium such that
in these cases p tends quickly to p⇤

2 which in our approx-
imation corresponds to the other half of the cases. Once,
the population is close to this value due to random drift
the population eventually drops under p⇤

1 (thus the resident
reaches fixation) or the mutant strain becomes fixed in the
population. This heuristic reasoning is captured by hitting
probabilities of a Brownian motion or a random walk. Thus,
we have:

'(0.5, z) = 1 � 0.5|{z}
immediate fix-

ation of the

resident

� 0.5 ⇥ 1 � 0.73

1 � 0.51| {z }
fixation of the

resident after

reaching p⇤
2

⇡ 0.225.

This value is approximately the observed frequency of tra-
jectories where the mutant reaches fixation for large ! in
Figure 6. The di↵erence emerges from our assumption that
half of the trajectories immediately end up in p = 0. To
further validate this reasoning we have performed additional
simulations starting from the coexistence state. The above
reasoning indeed gives a very accurate approximation of the
fixation probability in case of strong selection, see part 1.5
of SI.

V. DISCUSSION AND CONCLUSION

Experimental evolution, which has boomed since the sem-
inal results of [53] relies on serial transfers. The population
is subjected to repeated bouts of population size bottle-
necks. The approximation of extinction of a beneficial trait
in this situation has been studied in [92]. However, an eco-
evolutionary approach, where stochastic fluctuations in pop-
ulation size are included and the carrying capacity is chosen
to be very low (M ⇠ 100), is a viable alternative.
Previous studies, beautifully combining theoretical and

experimental approaches in microbes have shown that how
often populations undergo bottleneck events as well as their
actual size can determine the eco-evolutionary trajectory
[16, 17, 61]. Bottleneck events are not just important for
the evolution of fixation of traits in a microbial system itself
but can act as a mechanism of transition from one level of
organization to the next. For example, the periodic single
cell bottleneck event (M ⇠ 10) was a necessary condition
for the evolution of multicellularity [38].
In co-evolutionary systems too, populations are repeat-

edly subjected to changes in population sizes. While typical
host-parasite systems undergo periodic cycles, the popula-
tion sizes are actively regulated by the antagonist. Early
on, it was shown how the population size of the azuki bean
weevil was a↵ected by its parasitoid wasp [90]. However the
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FIG. 6. Snowdrift under selection. The snowdrift as discussed in the main text can have two internal equilibria depending

on the value of ✓. For ✓ = 10 we have two internal equilibria (x⇤
1,2) . In a scenario with changing population sizes, the intensity

of selection drives the population to fixation in all C (blue, p⇤ = 1) or all D (red, p⇤ = 0). For weak selection the e↵ect of

the selection gradient is minimal and drift plays a dominant role and hence the fixation probabilities are close to neutral. As

selection increases, the stable fixed point (filled circle) , close to all C, attracts and holds most of the trajectories. Whenever

drift is possible it takes the population to the closest monomorphic state, i.e. of all C. However for extremely strong selection

the stable point is strongly attracting and the only escape is again explained by random drift. Either the population fixes in

the all C state or it overcomes the unstable point (empty circle) and then selection driving the population to all D. To grasp

the exact intensity of selection where the switch takes place, we have performed 10
5
Gillespie simulations for M = 100 and a 20

player snowdrift game with an initial population of 200, b = 1.5, c = 1, � = 0.6, � = 0.1,  ⇡ 0.53 and 1 + !(matrix) mapping

for di↵erent intensities of selection. The bar charts show the probability of a trajectory fixing in either all C (blue) or all D
(red). All simulations were executed until one of the types fixed. The selection intensity ranges as ! = 10

�1.0, . . . , 100.5.

drastic population size change can a↵ect other important
evolutionary properties such as genetics diversity as well as
the e↵ect of evolutionary selection on the traits [46, 70, 76].

Extending on [19] we have derived the fixation proba-
bility in a stochastic Lotka-Volterra-model including higher
order dynamics. These higher order interactions can be in-
terpreted in terms of multiplayer games from evolutionary
game theory. The model explicitly deals with finite and es-
pecially fluctuating population sizes which are important in
the context of co-evolution [33, 73, 83, 97]. While con-
stant or infinite population size is captured by birth-death
processes and the replicator equation we apply stochastic
di↵usion theory to tackle the fluctuating size complication.

Going from two player to three player interactions might
seem like a minor extension but this work shows that as
often in many systems, two body interacts are a special
case. From linkage issues when moving from diseases with
single locus determinants to complex traits to change in
dimensionality in predatory prey dynamics [79, 80]. Extend-
ing the conditions required for the theory from two player
games [19] to three players we see a general outline of the
assumption. While two player games required the internal
fixed point to be at p⇤ = 0.5, the conditions for higher or-
der games clarify that in fact the requirement is that of the
fitness of the strategies over the complete frequency space
need to be balanced. For instance, conditions (ii) and (iii),
i.e. p⇤

1 + p⇤
2 = 1 and p⇤

1p
⇤
2 = 0.2, ensure that the selective

advantage in the evolutionary dynamics of the replicator
equation vanishes when considered on the whole frequency
space. To be more precise:

Z 1

0

dx

dt
dx =

Z 1

0
x(1 � x)(⇡A(x) � ⇡B(x)) = 0,

see also equation (13). This is an interesting interplay be-
tween the ecological parameter of the model. The linkage
between the deterministic equilibria of Lotka-Volterra dy-
namics and the trait frequency dynamics comes about when
the pure birth-death processes are neglected. Furthermore,
as we have seen in Figures 3 and 4 the intertwined nature
of ecological and evolutionary e↵ects in our model cannot
be entirely separated. Even for strong selection the fit of
our prediction is still surprisingly good as long as the eco-
evolutionary equilibria satisfy the conditions a↵ecting the
ecological scale. Deviating from the ecological conditions
has a strong e↵ect on our predictions. The reason being
that by increasing selection intensity ! the dynamics do not
converge to a stable ecological trajectory. Equilibria are
displaced from the optimal values in the z space. Hence,
changing the evolutionary selection intensity has an e↵ect
on the ecological equilibrium as well.

Besides providing a generalization of the fixation proba-
bility for multiplayer games, we apply our analysis in context
of social evolution. In particular to the situations captured
by the snowdrift game. For a game with a large number of
players there can be multiple internal equilibria [43]. Such
social dilemmas, particularly the threshold version of social
dilemmas, resonate with the concept of quorum sensing in
microbes.

Increasingly used as models of social evolution, the fix-
ation of traits in microbes is then of crucial importance.
Clearly in microbes, assuming that they play a two player
game, i.e. the interactions are linear is an assumption which
can be easily violated as in general biological systems [81].
However for multiplayer games, we show that it is not pos-
sible to undertake a quantitative analysis of the fixation
probability since (we hypothesize that) d � 1 di↵erent con-
ditions would need to be met for a d player game. Knowing
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the replicator dynamics can already allow us to estimate the
qualitative structure of the fixation probability (Fig. 5) when
including Lotka-Volterra type of ecological interactions. Ex-
cluding Lotka-Volterra dynamics, it would not be surprising
if we recover the replicator-like behaviour for weak selection.
The dynamics of the fixation probability for fixed population
sizes would then be expected to follow the shape of the de-
terministic dynamics as well.

This is however not a general rule as other studies of
infinite populations show distinctly opposite qualitative be-
havior when compared to the deterministic dynamics. A
well known example of this phenomena is the one-third rule
where a deterministically unfavorable trait can have a larger
than neutral fixation probability [67].

In conclusion, we have brought together the concept of
weak selection from population genetics, multiplayer games
from evolutionary game theory and populations dynamics

from theoretical ecology. By this synthesis of fields we have
added new insight on the dynamics of fixation under de-
mographic fluctuations by extending the previously studied
competitive Lotka-Volterra model now including higher or-
der interactions between traits. We find that by increasing
the complexity of the model, the separation of ecological
and evolutionary processes becomes more and more di�-
cult. The emergence of such complexity in the intertwined
nature of eco-evolutionary dynamics is a natural outcome of
biological processes derived from mechanistic first principles
[21].
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1 Appendix

1.1 Deriving the diffusion approximation

Here we derive the stochastic differential equations of the eco-evolutionary system in the
main text. Therefore, let us first write down the infinitesimal change of the stochastic system
given by the reactions listed in Eqs. (5). This is basically the infinitesimal generator G of
the Markov process, i.e. for a twice differentiable function f we find (just considering the
reactions affecting type A)

(Gf)(nA(t)) = lim
h!0

E[f(nA(t+ h))]� f(nA(t))

h

= �nA(f(nA(t) + 1)� f(nA(t)) + nA(t) (� + �a2(nA(t)� 1)(nA(t)� 2)

+�a1(nA(t)� 1)nB(t) + �a0nB(t)(nB(t)� 1)) (f(nA(t)� 1)� f(nA(t)).

Setting xA(t) = nA(t)
M , expanding in terms of 1

M and neglecting terms of order higher than
M�1 we obtain

(Gf)(xA) = M�xA

✓
f

✓
xA +

1

M

◆
� f(xA)

◆

+MxA


� + �a2M

2

✓
xA � 1

M

◆✓
xA � 2

M

◆

+�a1M
2

✓
xA � 1

M

◆
xB + �a0M

2xB

✓
xB � 1

M

◆�✓
f

✓
xA � 1

M

◆
� f(xA)

◆

⇡ xA

✓
� � � � 1

1 + !a2
x2
A � 2

1 + !a1
xAxB � 1

1 + !a0
x2
B

◆
@f

@x

+
1

2M
xA

✓
� + � +

1

1 + !a2
x2
A +

2

1 + !a1
xAxB +

1

1 + !a0
x2
B

◆
@2f

@x2
.

1

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/259069doi: bioRxiv preprint first posted online Feb. 2, 2018; 

http://dx.doi.org/10.1101/259069
http://creativecommons.org/licenses/by-nc-nd/4.0/


We can do the analogous calculation for the variable nB. Lastly, we note that this infinitesimal
generator corresponds to a stochastic differential equation precisely given in equation (11) in
the main text (cf. (Kallenberg, 2002, Chapter 21)).

For completeness we write down the infinitesimal generator corresponding to the two-
dimensional stochastic differential equation:

(Gf)(xA, xB) = xA
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�A � �A � x2

A

1 + !a2
� 2xAxB
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� x2

B

1 + !a0

◆
@f

@xA

+ xB

✓
�B � �B � x2

A

1 + !b2
� 2xAxB

1 + !b1
� x2

B

1 + !b0

◆
@f

@xB

+
xA

2M

✓
�A + �A +

x2
A

1 + !a2
+

2xAxB

1 + !a1
+

x2
B

1 + !a0

◆
@2f

@x2
A

+
xB

2M

✓
�B + �B +

x2
A

1 + !b2
+

2xAxB

1 + !b1
+

x2
B

1 + !b0

◆
@2f

@x2
B

.

(A.1)

1.2 Approximating the fixation probability

In order to get an approximation for the fixation probability of type A individuals we first
transform the system to the parameter space p = xA

xA+xB
, fraction of type A particles, and

z = xA + xB, the population size. Additionally, setting �A = �B = � and �A = �B = � the
transformed generator is then given by

(G̃f)(p, z) = xA
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Next, we assume ! ⌧ 1, i.e. the payoffs only have a small impact on the overall evolution
of the model. This also allows us to simplify the generator:

(G̃f)(p, z) ⇡ p(1� p)z
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z +

1

M
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@p

+ z
�
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⇤� @f
@z

+
p(1� p)

2zM
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@z2

.

Using the same techniques as developed in (Lambert, 2006) and refined for this setting in
(Czuppon and Traulsen, 2017, Appendix B, C, D) we find the following approximation for the
fixation probability:

'(p, z) ⇡ p+ !p(1� p)(p� p⇤1)(p� p⇤2) (2b1 � b2 � b0 + a2 � 2a1 + a0) (z), (A.2)

where the internal equilibria p⇤1,2 are given by

p⇤1,2 = � b0 � b1 + a1 � a0
2b1 � b2 � b0 + a2 � 2a1 + a0

±

s✓
b0 � b1 + a1 � a0

2b1 � b2 � b0 + a2 � 2a1 + a0

◆2

+
b0 � a0

2b1 � b2 � b0 + a2 � 2a1 + a0
,

(A.3)

For the fixed points one solves the deterministic term of the frequency variation of the approx-
imated infinitesimal generator, i.e. @f

@p = 0.
To see that the formula for the fixation probability holds we plug in ' into G̃. Setting G̃' = 0

and simplifying we end up with an equation for  (z):

0 = z

✓
z +

1

M

◆
+ z

�
� � � � z2

�
 0(z) +

1

2zM

�
� + � + z2

�
�(p, p⇤1, p

⇤
2) (z)

+
z

2M

�
� + � + z2

�
 00(z),

(A.4)
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where
�(p, p⇤1, p

⇤
2) =

�2(p⇤1 + p⇤2 + p⇤1p
⇤
2) + 6p(1 + p⇤1 + p⇤2)� 12p2

(p� p⇤1)(p� p⇤2)
.

Since for the method to work it is important that  depends only on the total population size z
and not also on the frequency of mutants p we need � = constant. Resolving this yields:

�(p, p⇤1, p
⇤
2) =

�2(p⇤1 + p⇤2 + p⇤1p
⇤
2) + 6p(1 + p⇤1 + p⇤2)� 12p2

(p� p⇤1)(p� p⇤2)

=
�12p2 + 12p(p⇤1 + p⇤2)� 12p⇤1p

⇤
2 � 2(p⇤1 + p⇤2 � 5p⇤1p

⇤
2) + 6p(1� p⇤1 � p⇤2)

(p� p⇤1)(p� p⇤2)

=
�12(p� p⇤1)(p� p⇤2)� 2(p⇤1 + p⇤2 � 5p⇤1p

⇤
2) + 6p(1� p⇤1 � p⇤2)

(p� p⇤1)(p� p⇤2)

= �12 +
�2(p⇤1 + p⇤2 � 5p⇤1p

⇤
2) + 6p(1� p⇤1 � p⇤2)

(p� p⇤1)(p� p⇤2)

For the second term to vanish we condition the fixed points to satisfy:

p⇤1 + p⇤2 = 1 and p⇤1p
⇤
2 =

1

5
,

which in the end gives �(p, p⇤1, p⇤2) = �12. This gives equation (16) in the main text.

1.3 Extension to d players

We now extend the formalism to the general setting with d�players and two strategies. The
payoff matrix is then given by  

ad�1 · · · a0
bd�1 · · · b0

!
.

The death rates due to competition need to change accordingly, i.e. a death of a type A particle
occurring due to the interaction with k � 1 type A and d� k type B individuals is given by

�ak�1
=

✓
d� 1

k

◆
xk�1
A xd�k

B

Md�1(1 + !ak�1
).

Note, that instead of scaling these interactions between individuals with 1/M2 we now need
the scaling 1/Md�1 in order to obtain a reasonable diffusion limit. Doing the same steps as in
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the three player case we end up with the following stochastic differential equations:

dxA(t) = xA

 
�A � �A �

d�1X
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✓
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i

◆
xi
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B
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dt

+
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i
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dxB(t) = xB
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(A.5)

The transformed generator, i.e. in terms of p and z, can again be derived analogously to
the three player scenario and yields:

(G̃f)(p, z) = p(1� p)zd�2
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The solution to G̃' = 0 for ! ⌧ 1 can be approximated by

'(p, z) ⇡ p+ !(�1)d�1
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i=0

(�1)i
✓
d� 1

i

◆
(ai � bi)

!
p(1� p)

d�1Y

i=1

(p� p⇤i ) (z), (A.6)

where p⇤i are the roots of
d�1X

i=0
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i

◆
pi(1� p)d�1�i

1 + !bi
�

d�1X

i=0

✓
d� 1

i

◆
pi(1� p)d�1�i

1 + !ai
= 0. (A.7)

This can be seen by again plugging in the resulting approximation of ' into G̃. Along the
way one needs to see that

Pd�1
i=0 (�1)i

�
d�1
i

�
= 0 which can be seen by induction. Then the

remaining equation that  needs to satisfy reads
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z
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�
 00(z),

(A.8)
where

�(p, p⇤1, ..., p
⇤
d�1) =

1
Qd�1

i=1 (p� p⇤i )

 
2(1� 2p)

d�1X

i=1

Y

j 6=i

(p� p⇤i )

+p(1� p)
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X

j 6=i

Y

k 6=i,j

(p� p⇤k)� 2
d�1Y

i=1

(p� p⇤i )

!
.

(A.9)

Technically, for � to be independent of p this formula gives conditions on the location of the
fixed points p⇤i such that the above approximation of the fixation probability, i.e. the separation
of the p and z coordinates, is valid. However the general form of this condition is beyond the
scope of our analysis.

1.4 Numerical evaluation of  

In order to calculate values of  we numerically evaluate, dependent on the number of play-
ers, equation (16) (main text) or (A.8), respectively. For this we use the predefined function
“solve bvp” from the scipy.integrate library in Python, Jones et al. (2001–). There-
fore we need to input boundary values for the algorithm to work with. In particular we evaluate
 in the interval [0.0001, 10] with boundary values  (0.0001) = 0.0001 and  (10) = ln(10).
The concrete choice of the boundary values is not very relevant since the method is quite ro-
bust. For instance, we tested for different values of  (0.0001) 2 [0.00000001, 0.1] and all
solutions gave the same values for z = 2. The same applies for the boundary value  (10). For
a more thorough analysis of  we refer to (Czuppon and Traulsen, 2017, Appendices E,F).
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1.5 Fixation probability under strong selection

We give an approximation of the fixation probability in the d-trait eco-evolutionary model in
case of the snowdrift game dynamics, for details see the main text. We perform the same
simulations which led to Figure 6 in the main text, i.e. we vary the selection intensity ! and
analyze the fixation behavior of the cooperative trait. The dynamics allow for two internal
fixed points p⇤1 < p⇤2 where p⇤1 is locally unstable and p⇤2 is locally stable.
As opposed to the main text we start the simulations in the close vicinity of the fixed point p⇤2.
Weak selection then predicts fixation probabilities close to the initial frequency of cooperative
individuals, i.e. 'weak ⇡ p⇤2. As we see in Figure A.1 this is a good approximation for the
simulation outcome until some intermediate value.
For very strong selection we argue that the system is dominated by the replicator dynamics.
Hence, trajectories stay in p⇤2 for a long time and randomly fluctuate around this stable equi-
librium. The escape probability of the attracting domain is then given by standard stochastic
diffusion theory, i.e.

'strong =
1� p⇤2
1� p⇤1

. (A.10)

For the strongest considered selection intensity this exactly fits the simulation result (right-
most value in the right subfigure of Figure A.1) validating our heuristic reasoning in the main
text.
This has an interesting implication since it basically means that both weak and strong selection
can be explained by random drift. Still there is a difference since in the weak selection limit
the replicator dynamics is close to neutral, i.e. the stability of the fixed points just has a minor
impact on the dynamical behavior. Hence, the fixation process can be described by a Brownian
motion over the whole frequency space resulting in a fixation probability close to the initial
frequency. However, for strong selection the deterministic dynamics define the trajectories of
the individual based model. Thus, in this case the escape behavior out of the attractor region of
the stable fixed point is described by a Brownian motion yielding the approximation obtained
in equation (A.10).
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Figure A.1: Comparison between weak and strong selection. Re-evaluating the findings
from Figure 6 (where the initial condition was set to p0 = 0.5) we now consider p0 = p⇤2
(filled circle). The deterministic behavior of the system is visualized in the left panel. By
varying the selection intensity ! we also alter the location of the deterministic fixed points.
For weak selection the effect of the selection gradient is minimal and drift plays a dominant
role and hence the fixation probabilities are close to neutral (dashed lines in the right panel).
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