
Full-f version of GENE for turbulence in open-�eld-line systems
Q. Pan,1, a) D. Told,2 E. Shi,3 G. W. Hammett,4 and F. Jenko1, 2
1)Department of Physics and Astronomy, University of California, Los Angeles, CA 90095,
USAb)

2)Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching,
Germany
3)Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
4)Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451, USA

Unique properties of plasmas in the tokamak edge, such as large amplitude �uctuations and plasma�wall
interactions in the open-�eld-line regions, require major modi�cations of existing gyrokinetic codes originally
designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE,
so far employing a δf -splitting technique, is extended to simulate electrostatic turbulence in straight open-
�eld-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development
of a conducting-sheath boundary, and the implementation of the Lenard�Bernstein collision operator. With
these developments, the code can be run as a full-f code and can handle particle loss to and re�ection from
the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with
a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-o� layer,
LAPD turbulence involves collisions, parallel streaming, cross-�eld turbulent transport with steep pro�les,
and particle loss at the parallel boundary.

I. INTRODUCTION

Understanding and controlling properties of plasmas in
the tokamak edge, including the pedestal and the scrape-
o� layer (SOL) separated by the last-closed �ux surface
(LCFS), is crucial for achieving successful magnetic con-
�nement, due to the fact that plasma properties (den-
sity and temperature) at the edge signi�cantly in�uence
core con�nement, and the high power load in a narrow
layer outside of LCFS can jeopardize the plasma-facing-
components (PFCs) of the divertor or limiter plates1�4.
Edge plasmas are complex, and present unique features
that are typically absent in core plasmas, such as steep
temperature and density gradients at the pedestal, large
amplitudes of disturbances and intermittent structures
(both electrostatic and electromagnetic), plasma�wall in-
teractions, as well as complicated X-point geometry that
includes topologically separated open and closed �eld
lines5�7. Major e�orts are being devoted to develop-
ing gyrokinetic particle-in-cell codes with capabilities of
simulating the SOL region8,9, and new gyrokinetic con-
tinuum codes designed for edge plasmas10�13. Mean-
while, comprehensive and sophisticated gyrokinetic codes
have been developed for simulating core turbulence and
explaining relevant experimental data in the past two
decades or so14�21. To various degrees, the aforemen-
tioned characteristics of edge plasmas pose challenges
and questions when core turbulence codes are applied to
modeling edge plasmas, and there have been few e�orts
to modify these codes to handle them.
In the present work, we extend the global version of

the 3D2V core turbulence code GENE14,22,23, to model
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large-amplitude electrostatic disturbances in open-�eld-
line systems. Large-amplitude disturbances and open
boundaries are major characteristics of the SOL. This
study is meaningful in three aspects. First, the GENE
code employs a δf -splitting technique to achieve high nu-
merical accuracy for core turbulence simulations. The
parallel nonlinearity is usually neglected due to the clas-
sical gyrokinetic ordering δf/F � 1 in the tokamak
core24. The potential breakdown of this ordering results
in questioning the applicability of δf -splitting in simu-
lating edge plasmas with large-amplitude disturbances6.
As shown in our previous study25 based on a 1D1V code
extracted from the 3D2V GENE code, by including the
parallel nonlinearity and combining it with the corre-
sponding linear term in a �nite-volume discretization, the
δf -splitting causes no numerical di�culties in handling
the large-amplitude disturbances. In the present study,
the same approach is taken for the 3D2V δf code, which
then becomes equivalent to and can be run as a full-f
code. Second, an open parallel boundary is implemented
to account for plasma sheath e�ects in gyrokinetic sim-
ulations. The open boundary takes a conducting-sheath
boundary model, in which the particle loss to and re�ec-
tion from the wall are determined by the electrostatic po-
tential at the simulation domain edge, and net currents
are allowed to �ow through the boundary freely. This
sheath model was introduced by Shi et al.12 and imple-
mented in the Gkeyll code, which features a discontin-
uous Galerkin (�nite-element) method. In the present
study, this model is implemented in the context of a
�nite-volume method. Since plasma sheath beyond the
boundary is not resolved, the distributions and potential
are reconstructed by using local polynomials to interpo-
late the data inside the domain, in order to evaluate the
outgoing particle �ux and the parallel nonlinearity near
the boundary. Third, the Lenard�Bernstein collision op-
erator acting on full-f is implemented. The implementa-
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tion utilizes a �nite-volume discretization structure that
has been used for the linearized Fokker-Planck collision
operator acting on δf . The number density and energy
are conserved numerically. The collision operator con-
tains pitch-angle scattering and velocity-space di�usion
that preferentially damps small scale structures. The
present extensions provide GENE with essential capabil-
ities to simulate SOL plasmas and constitute an initial
e�ort for future comprehensive modeling of edge plasmas.

To test the extensions, the code is applied to a test case
of electrostatic plasma turbulence in the Large Plasma
Device (LAPD)26 at UCLA. The LAPD plasma con-
tains basic features of SOL plasmas, such as collisions,
cross-�eld turbulent transport, parallel streaming, and
particle loss at the parallel boundary, but without the
magnetic gradient and curvature e�ects in a toroidal ge-
ometry. The con�guration and parameters of the test
case are similar to those in the experiments conducted
by Carter and Maggs27. In the experiments, the LAPD
creates a linear column plasma with a length Lz ∼ 17m
and a radius r ∼ 50 cm in the main chamber. The plasma
is generated via ionization of neutrals by primary high-
energy electrons injected by an anode�cathode arrange-
ment from one end, and is open on both ends along the
magnetic �eld lines. The chamber wall can be biased with
respect to the column plasma. For the present study, we
are concerned with the unbiased case, namely the wall is
grounded.

There have been previous studies using various
Braginskii-based �uid equations to study LAPD-type
cases, by Rogers and Ricci28, Popovich et al.29,30, Fried-
man et al.31,32, and Fisher et al.33. These looked at as-
pects of the turbulence characteristics and di�erent possi-
ble driving mechanisms (including Kelvin-Helmholtz in-
stabilities and nonlinear drift-wave mechanisms involving
non-normal modes). Our simulation setup follows the
�uid simulation by Rogers and Ricci28, and the subse-
quent gyrokinetic study by Shi et al.12. These simula-
tions produced results that have qualitative similarities
to the experiments, though more detailed comparisons
could be considered in future work, as discussed in Sec. V.

The remainder of this paper is organized as follows.
Section II describes the basic equations. The parallel
nonlinear term is included in the gyrokinetic equation
for the gyrocenter distribution, and the Poisson equa-
tion is modi�ed to the form used in Ref. 12. Numerical
discretization schemes and the corresponding implemen-
tation of sheath boundary conditions are described in
Sec. III. The setup and results of the simulation of a
LAPD plasma are presented in Sec. IV. Section V con-
tains conclusions and a discussion on future work.

II. BASIC EQUATIONS

By taking the electrostatic limit and the zero-Larmor-
radius limit, the gyrocenter distribution in a straight �eld

line geometry is evolved according to22,23

∂fs
∂t

= −b̂0 ·
(
v‖∇fs −

qs∇φ
ms

∂F0s

∂v‖

)
−vE · ∇ (F0s + fs) + b̂0 ·

qs∇φ
ms

∂fs
∂v‖

, (1)

where the E × B velocity is vE = c
B0

b̂0 × ∇φ. In the
global version of GENE, the gyrocenter distribution for
species s is split into a static background depending on
the x-coordinate and a �uctuation part Fs

(
x, v‖, µ, t

)
=

F0s

(
x, v‖, µ

)
+ fs

(
x, v‖, µ, t

)
. Note that the last term is

the parallel nonlinear term that is typically neglected for
core plasmas due to the ordering fs/F0s � 1.
For the purpose of consistent discretizations, we com-

bine the parallel nonlinear term with the parallel linear
term, the E ×B nonlinear term with the E ×B driving
term, to obtain

∂fs
∂t

= −b̂0 ·
(
v‖∇fs −

qs∇φ
ms

∂Fs
∂v‖

)
− vE · ∇Fs. (2)

Hereafter, the three terms on the right-hand side are
termed the free-streaming term, the parallel nonlinear
term, and the E × B nonlinear term, respectively. The
free-streaming term combined with the parallel nonlin-
ear term describe the dynamics parallel to the magnetic
�eld lines, while the E ×B nonlinear term describes the
perpendicular dynamics.
By substituting the E × B velocity, introducing the

�eld-aligned-coordinates with B0 = C∇x × ∇y and
J−1 = B0 ·∇z/C, and adding a collision term, the equa-
tion becomes

∂fs
∂t

= − C

JB0

(
v‖∂zfs −

qs∂zφ

ms

∂Fs
∂v‖

)
− c

C
(∂xφ∂yFs − ∂yφ∂xFs) + Cs [Fs] . (3)

In this work, the Lenard�Bernstein collision operator12,34

acting on full-f is applied,

Cs [Fs] =
∑
s′

Css′ [Fs]

=
∑
s′

νss′
∂

∂v
·
[(
v − u‖,s′

)
Fs + v2T,ss′

∂Fs
∂v

]
=
∑
s′

νss′
∂

∂v‖

[(
v‖ − u‖,s′

)
Fs + v2T,ss′

∂Fs
∂v‖

]

+νss′
∂

∂µ

(
2µFs + 2

msv
2
T,ss′

B
µ
∂Fs
∂µ

)
, (4)

with u‖,s =
∫
d3vv‖Fs/ns, msv

2
T,ss′ =∫

d3vms (v − us′)
2
Fs/3ns, ns =

∫
d3vFs. The same-

species collisions, including electron�electron (ss′ = ee)
and ion�ion (ss′ = ii) collisions, thermalize the distribu-
tion function to a local Maxwellian, contain pitch-angle
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scattering and velocity-space di�usion, and conserve
density, momentum, and energy. Standard expressions

for the collision frequencies are used, νee = 4
√
2πneλe

4

3
√
meT

3/2
e

,

νii = 4
√
πniλe

4

3
√
miT

3/2
i

, where λ is the Coulomb logarithm

(Huba 2013, p. 37). The electron�ion (ss′ = ei)
collision term contains the collisional drag and pitch-
angle scattering of electrons on ions. The electron�ion
collision frequency is taken as νei = νee/1.96, in order
to approximately account for the parallel conductivity
coe�cient in a plasma. The ion�electron (ss′ = ie)
collision term is much smaller than the ion�ion collision
term (νie/νii ∼

√
me/mi) and is neglected, as was

also done in the Gkeyll study12. This leads to a small
violation of the momentum conservation in the model.
By neglecting the Debye shielding, the nonlinear gy-

rokinetic Poisson equation in a straight �eld line geome-
try is35�37

−mic
2

B2
0

∇⊥ (ni (x)∇⊥φ (x)) =
∑
s

qsns (x) , (5)

where the long-wavelength limit (k⊥ρi � 1) has been
taken. The gyro-averaging is neglected in calculating the
gyrocenter density, which is de�ned as

ns (x) =
2πB0

ms

∫
Fs
(
x, µ, v‖

)
dµdv‖. (6)

The potential φ is a nonlinear function of density because
of the polarization charge density term. As an initial step
for code developments, the nonlinear term is linearized
by replacing the ion gyrocenter density ni (x) with the
background ion gyrocenter density ni0, which is taken to
be a constant in space and time, as done by Shi et al.12.
Thus the linearized Poisson equation solved in the code
is

−mini0c
2

B2
0

∇2
⊥φ (x) =

∑
s

qsns (x) . (7)

We plan to implement a fast solver for the nonlinear Pois-
son equation (5) in the future (see a discussion on this in
Sec. (V)).

III. NUMERICAL IMPLEMENTATION

The gyrokinetic equation (3) is discretized based on
the so-called �method of lines�. A fourth-order ex-
plicit Runge�Kutta method is used for the time inte-
grator. The derivatives in phase space contains three
parts�the parallel dynamics, the E × B nonlinearity,
and the collisions. In the global version of GENE, a
Dirichlet or Neumann boundary and a fourth-order �nite-
di�erence method are applied in the x-direction to ac-
commodate radial pro�le variations seen in the toka-
mak core, whereas a periodic boundary and a spec-
tral method are used in the y-direction. The E × B

nonlinearity is discretized with a mixed spectral/�nite-
di�erence variant of the Arakawa method23. It is im-
plemented pseudospectrally in the y-direction and the
so-called 3/2-dealiasing rule is applied38. For the LAPD
test case, in addition to the E×B nonlinearity, di�erent
ky modes interact also via the parallel nonlinearity, the
open boundary, and the collisions. However, discretiza-
tions of these terms are not spectral and no dealiasing
measures are taken. Therefore for consistency and sim-
plicity the discretization of the E × B nonlinearity is
modi�ed to the �nite-di�erence version of the Arakawa
method in both x- and y-directions. In Fourier represen-
tation this is achieved simply by replacing the multiplica-
tion factor iky with i [8 sin (ky∆y)− sin (2ky∆y)] / (6∆y)
for the �rst-order derivative, where ∆y is the grid
size. The former corresponds to discretizing the deriva-
tive spectrally, whereas the latter corresponds to dis-
cretizing the derivative with a fourth-order central dif-
ference stencil. In addition, the spectral multipli-
cation factor for the second-order derivative in the
Laplace operator of the �eld equation, (iky)

2
, is re-

placed with a �nite-di�erence one in Fourier representa-
tion, [− cos (2ky∆y) + 16 cos (ky∆y)− 15] /

(
6∆y2

)
. Af-

ter these two modi�cations, the code adopts a fourth-
order �nite-di�erence method consistently in the perpen-
dicular directions. Finally, a small perpendicular numer-
ical di�usion term is applied to allow for robust code
operation22.
Below discretizations of the parallel dynamics, the par-

allel boundary, and the collisions are described. We note
that they are expressed in real space in both x- and y-
coordinates; the forward and backward Fourier transfor-
mations along y-coordinate are applied wherever neces-
sary.

A. Discretization of the parallel dynamics

The discretization of the dynamics in the parallel phase
space

(
z, v‖

)
is similar to that used in our previous work

based on a 1D1V code25. For the purpose of describing
sheath boundary conditions, we brie�y summarize it.
First, the parallel dynamics is reformulated in a con-

servative form,

∂fs
∂t

+
∂Ψf-s

∂z
+
∂Ψpnl

∂v‖
= 0, (8)

where the free-streaming �ux and parallel nonlinear �ux
are de�ned, respectively, as

Ψf-s =
C

JB0
v‖fs (9)

and

Ψpnl = − C

JB0

qs
ms

∂φ

∂z
Fs. (10)

Second, the spatial and velocity derivatives are dis-
cretized with a �nite-volume method. Integrating Eq. (8)
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over each cell Ik,l =
[
zk− 1

2
, zk+ 1

2

]
×
[
v‖,l− 1

2
, v‖,l+ 1

2

]
and

applying the Stokes' theorem, we obtain the discretized
equation,

∂f̄s,k,l

∂t̂
+

Ψf-s,k+ 1
2 ,l
−Ψf-s,k− 1

2 ,l

∆z

+
Ψpnl,k,l+ 1

2
−Ψpnl,k,l− 1

2

∆v
= 0, (11)

where k = 1, ..., Nz, l = 1, ..., Nv. The cell-averaged dis-
tributions (indicated in the following with an overbar)
are de�ned as

f̄s,k,l =
1

∆v‖∆z

∫ z
k+1

2

z
k− 1

2

∫ v‖,l+1
2

v‖,l− 1
2

fs
(
z, v‖

)
dzdv‖. (12)

The free-streaming �ux and the parallel nonlinear �ux at
the cell edges are de�ned, respectively, as

Ψf-s,k± 1
2 ,l

=
1

∆v‖

∫ v‖,l+1
2

v‖,l− 1
2

Ψf-s

(
zk± 1

2
, v‖

)
dv‖ (13)

and

Ψpnl,k,l± 1
2

=
1

∆z

∫ z
k+1

2

z
k− 1

2

Ψpnl

(
z, v‖,l± 1

2

)
dz. (14)

The net �uxes across the edges of cell Ik,l determine the
change in f̄s,k,l. By using the midpoint rule for the inte-
gration, the free-streaming �ux and the parallel nonlinear
�ux are approximated as

Ψf-s,k± 1
2 ,l

= Ψf-s

(
zk± 1

2
, v‖,l

)
(15)

and

Ψpnl,k,l± 1
2

= Ψpnl

(
zk, v‖,l± 1

2

)
. (16)

Under this approximation, the overall order of the �nite-

volume method at most is O
(
max

(
∆v‖,∆z

)2)39.
Third, the �uxes are reconstructed by �rst interpolat-

ing the data biased toward upwind direction with a piece-
wise polynomial, and then evaluating the polynomial at
the cell edges. The free-streaming �ux for v‖ > 0 at the
edge z = zk+ 1

2
is

Ψf-s,k+ 1
2

=
Cv‖

JB0

[
1

6

(
−f̄k−1 + 5f̄k + 2f̄k+1

)]
. (17)

This results in a third-order upwind scheme for the free-
streaming term,(

∂Ψf-s

∂z

)
k

=
Ψf-s,k+ 1

2
−Ψf-s,k− 1

2

∆z

=
Cv‖

JB0

1

6∆z

(
f̄k−2 − 6f̄k−1 + 3f̄k + 2f̄k+1

)
.

(18)

The species index s and the parallel velocity index l
are omitted for clarity in Eqs. (17�18). The paral-
lel nonlinear �ux is similarly reconstructed. Its up-
wind direction is determined by the parallel derivative
of the potential ∂φ/∂z, which is approximated by us-
ing a fourth-order central di�erence stencil for the inner
points (3 ≤ k ≤ Nz − 2), a third-order di�erence sten-
cil biased towards the center for the points next to the
edge points (k = 2, Nz − 1), and a second-order di�er-
ence stencil biased towards the center for the edge points
(k = 1, Nz). These stencils are constructed with a stan-
dard technique40, namely �rst interpolating the electro-
static potential inside the domain with piecewise polyno-
mials, then evaluating the derivatives of the polynomials
at desired coordinates.

B. Sheath boundary conditions

For typical edge and LAPD plasmas, the electron ther-
mal velocity is much larger than the ion thermal velocity.
In response to faster streaming to the wall by electrons
than ions, a Debye sheath is formed at the plasma�wall
interface to set up a potential drop from the plasma to
the wall. The potential drop accelerates outgoing ions
to the wall, slows down outgoing electrons, and re�ects
the low-energy electrons back to the plasma, so that the
loss of electrons to the wall is approximately in balance
with the loss of ions. However, the usage of the gyroki-
netic Poisson equation allows the simulation spatial and
temporal scales to be much larger than the sheath char-
acteristic spatial and temporal scales, which are on the
order of a few Debye lengths and plasma periods, namely
ρi � λD, Ωi � ωpe.
To account for the sheath e�ects on the plasma, a

conducting-sheath boundary model is introduced by Shi
et al.12. In this model, the sheath potential is determined
from the turbulence in the plasma, and the electron cuto�
velocity vc is calculated from the potential drop accord-
ing to

φsh − φwall =
mev

2
c

2e
, (19)

where the sheath potential φsh = φ (x, y, z = ±π) at
the upper (zU = π) and lower (zD = −π) boundaries
are solved from the Poisson equation, and the wall is
grounded φwall = 0. Outgoing ions are accelerated to
the wall without re�ection while outgoing electrons with
velocity lower than the cuto� velocity are repelled and
re�ected. Particle re�ection at the upper boundary can
be written as

Fi
(
z+U , v‖

)
= 0, v‖ < 0, (20)

Fe
(
z+U , v‖

)
=

{
Fe
(
zU ,−v‖

)
, −vc ≤ v‖ < 0,

0, v‖ < −vc,
(21)

http://dx.doi.org/10.1063/1.5008895


5

where z+U is the coordinate immediately outside the do-
main. The lower boundary conditions are similar. The
cuto� velocity according to Eq. (19) typically falls within

a cell vc ∈
(
v‖,l− 1

2
, v‖,l+ 1

2

)
and not exactly on a cell edge.

The fraction of electrons re�ected in the cuto� cell is ap-
proximated as∫ vc

vl−1/2
Fe
(
v‖
)
v‖dv‖∫ vl+1/2

vl−1/2
Fe
(
v‖
)
v‖dv‖

≈
vc − v‖,l− 1

2

v‖,l+ 1
2
− v‖,l− 1

2

. (22)

Physically, particles stream along the �eld lines and are
lost to and re�ected from the wall at the parallel bound-
ary. In the �nite-volume scheme, the sheath boundary
enters the equation by setting the free-streaming �ux for

the edge cells. De�ne the last cell as IN =
[
zN− 1

2
, zN+ 1

2

]
,

then the domain edge (wall) is located at zN+ 1
2
. The up-

wind �ux representing particles leaving from the system
to the wall at the upper boundary zU = zN+ 1

2
is evalu-

ated as

Ψf-s

(
zU , v‖

)
=
Cv‖

JB0
Fs
(
zU , v‖

)
=
Cv‖

JB0
F̄s
(
zN , v‖

)
, v‖ > 0. (23)

The second identity is valid because the �rst-order up-
wind �ux is used for the last cell. The upwind �ux rep-
resenting particles re�ected from the wall at zU = zN+ 1

2

is

Ψf-s

(
zU , v‖

)
= Ψf-s

(
z+U , v‖

)
=
Cv‖

JB0
Fs
(
z+U , v‖

)
, v‖ < 0, (24)

where Fs
(
z+U , v‖

)
for v‖ < 0 is determined from the

corresponding outgoing �ux (23) and the sheath re-
�ection (20�21). In the code, Fs

(
z+U , v‖

)
is stored in

a boundary cell and updated in each stage of each
Runge�Kutta time step.

In the conducting-sheath boundary model, net cur-
rents are allowed to �ow through the wall, which is in
contrast to the insulating logical-sheath boundary model
used in previous studies25,41,42. In the logical-sheath
boundary, the electron cuto� velocity is determined by
requiring the loss of electrons to the wall to match the
loss of ions, and the sheath potential is estimated from
the cuto� velocity. Compared with the logical-sheath
boundary, the conducting-sheath boundary re�ects more
properly the physical setup of the aforementioned LAPD
experiments, in which the currents are free to �ow along
the �eld lines at both ends of the main chamber to ad-
just to the plasma state evolution self-consistently. In ad-
dition, the conducting-sheath boundary can handle the
case of a biased wall by setting the wall potential φwall
in Eq. (19).

C. Discretization of the collision term

The structure of the Lenard�Bernstein collision oper-
ator on full-f is similar to the test-particle part of the
linearized Fokker�Planck collision operator on δf imple-
mented in GENE. Therefore, we apply the same �nite-
volume method to discretize the outer derivative in the
Lenard�Bernstein operator (4) to obtain

Css′ [Fs] l,m =
Ψv‖,l+

1
2 ,m
−Ψv‖,l− 1

2 ,m

∆v‖,l

+
Ψµ,l,m+ 1

2
−Ψµ,l,m− 1

2

∆µm
, (25)

where the weights of the grids are de�ned as ∆µm =
µm+ 1

2
− µm− 1

2
and ∆v‖,l = v‖,l+ 1

2
− v‖,l− 1

2
. A second-

order central di�erence method is used for the inner
derivative in Eq. (4) to evaluate the �nite-volume �uxes

across the edges of the cell Il,m =
[
v‖,l− 1

2
, v‖,l+ 1

2

]
×[

µm− 1
2
, µm+ 1

2

]
in velocity space,

Ψv‖,l+
1
2 ,m

= νss′

(
v‖,l+1 + v‖,l

2
− u‖,s′

)
Fs,l,m + Fs,l+1,m

2

+νss′αss′
Fs,l+1,m − Fs,l,m
v‖,l+1 − v‖,l

, (26)

Ψµ,l,m+ 1
2

= νss′ (µm + µm+1)
Fs,l,m + Fs,l,m+1

2

+νss′
2msαss′

B0

µm + µm+1

2

Fs,l,m+1 − Fs,l,m
µm+1 − µm

,

(27)

where l = 1, 2, ..., Nv, m = 1, ..., Nµ, and αss′ = v2T,ss′ is
introduced.
Similar to the implementation of the Fokker�Planck

collision operator on δf , the implementation of the
Lenard�Bernstein collision operator on full-f conserves
the density by setting the �uxes at the boundaries.
Speci�cally, the density change due to each type of colli-
sion can be expressed as

∑
l

∑
m

Css′ [Fs] l,m∆µm∆v‖,l

=
∑
m

∑
l

(
Ψv‖,l+

1
2 ,m
−Ψv‖,l− 1

2 ,m

)
∆µm

+
∑
l

∑
m

(
Ψµ,l,m+ 1

2
−Ψµ,l,m− 1

2

)
∆v‖,l.

By setting Ψv‖,
1
2 ,m

= Ψv‖,Nv+
1
2 ,m

= 0 for m =

1, 2, ..., Nµ, and Ψv‖,l,
1
2

= Ψv‖,l,Nµ+
1
2

= 0 for l =

1, 2, ..., Nv, the density change is identically zero due to
cancellations in the telescope sums.
The approach to conserving energy numerically is to

treat αss′ as a free parameter, rather than directly eval-
uate it from its de�nition αss′ = v2T,ss′ and use it in the

http://dx.doi.org/10.1063/1.5008895


6

�nite-volume �uxes. This approach was introduced in
previous gyrokinetic study in Ref. 12. The energy change
due to each type of collision is∑

l

∑
m

Css′ [Fs] l,m

(
µmB0 +

1

2
msv

2
‖,l

)
∆µm∆v‖,l

=
∑
m

∑
l

(
Ψv‖,l+

1
2 ,m
−Ψv‖,l− 1

2 ,m

) 1

2
msv

2
‖,l∆µm

+
∑
l

∑
m

(
Ψµ,l,m+ 1

2
−Ψµ,l,m− 1

2

)
µmB0∆v‖,l,

where the density conservation is used. By requiring the
energy change to vanish, the parameter αss′ is solved for
each type of collision.
We tested the implementation of the collision operator

with a drifted-Maxwellian distribution, and con�rmed
that the density and energy are conserved to machine
precision, and that αss′ solved from the energy conser-
vation condition is close to the value evaluated from its
de�nition.

IV. SIMULATION OF LAPD TURBULENCE

A. Simulation setup

To test the extensions, we select the setup with LAPD-
like parameters used in the gyrokinetic study by Shi et
al.12. The authors modi�ed and adopted the setup from
the earlier Braginskii-�uid study by Rogers and Ricci28.
The nominal parameters are Te0 = 6 eV, Ti0 = 1 eV,
mi = 3.973mp (mp is the proton mass), B0 = 0.0398T,
n0 = 2× 1018m−3. The simulation domain is (x, y, z) ∈
[−Lx/2, Lx/2] × [−Ly/2, Ly/2] × [−Lz/2, Lz/2], with
Lz = 18m, Lx = Ly = L⊥ = 100ρs0 = 1.25m,

ρs0 = cs0/Ωi, and cs0 =
√
Te0/mi.

For the LAPD-like parameters, the time steps allowed
in the explicit Runge�Kutta integrator are determined
by the electron�electron collisions. They are estimated

from the di�usion term, namely 4νeev
2
th∆t/

(
∆v‖

)2 ≤
CCourant, where the Courant number CCourant is taken
to be 0.1. The time steps estimated from the collisions
are typically smaller by a factor of ∼1000 than those con-
strained by the nonlinear terms. Furthermore, compared
with previous gyrokinetic study by Shi et al.12, in which
relatively low resolutions are allowed because the gyroki-
netic equation is discretized with an energy-conserving
discontinuous Galerkin method and the charge density
integral is evaluated with the Legendre-Gauss quadra-
ture, the GENE code requires higher perpendicular res-
olutions to resolve the perpendicular structures, and
higher velocity-space resolutions to evaluate the collisions
and the charge density. For a run with typical resolutions
shown later, the small time steps combined with the rela-
tively high resolutions would demand enormous comput-
ing resources if the experimental parameters were used.
Two reductions are introduced to alleviate the problem.

First, as done in Ref. 28 and Ref. 12, the electron-to-ion
mass ratio is reduced to me/mi = 1/400, so that the
time steps are increased while a su�cient separation of
electron scales from ion scales remains. Second, in the gy-
rokinetic study by Shi et al.12, the electron�electron and
electron�ion collision frequencies are reduced by a factor
of 10 to increase the time steps. After the reduction,
the electron mean-free-path is Lmfp = vTe/νee ≈ 0.57m
(using ne = n0 and Te = 3 eV), hence Lmfp/Lz � 1.
In our simulation, the electron�electron and electron�ion
collision frequencies are reduced by a factor of 100. Cor-
respondingly, the ion�ion collision frequency is reduced
by a factor of 10. Hence the electron mean-free-path is
smaller than but comparable with the parallel length of
the box; our simulation is marginally collisional.
To describe the initial conditions and the source term,

we de�ne A (r; c) as a function that falls from the peak
value of 1 at r = 0 to a constant value c for r > L⊥/2,

A (r; c) =

(1− c)
(

1− r2

(L⊥/2)
2

)3
+ c, r < L⊥/2

c, else,

where r =
√
x2 + y2. The initial density pro�le for

both ions and electrons is chosen to be n0A (r; c = 1/20).
The initial electron temperature pro�le has the form
5.7A (r; c = 1/5) eV and the initial ion temperature pro-
�le is an uniform 1 eV. A top-hat-like source uniform
along z representing the ionization of neutrals by pri-
mary electrons is applied continuously in time,

Ss = 1.39
n0cs0
Lz

{
0.01 + 0.99

[
1

2
− 1

2
tanh

(
r − rs
Ls

)]}
×FM,s

(
v‖, µ;Ts

)
,

where the radius of the source region is rs = 20ρs0 =
0.25m, the spatial gradient scale length at the edge
of the source region is Ls = 0.5ρs0 = 0.625 cm, and
FM,s

(
v‖, µ;Ts

)
represents a non-drift Maxwellian with a

temperature Ts. The ion source temperature is 1 eV, and
the electron source temperature is 6.8A (r; c = 1/2.5) eV.
The radial pro�les of the electron source rate and tem-
perature are shown in Fig. 1. The spatially integrated
source rate is 6.5 × 1021 s−1. This number is the total
source rate used in the Gkeyll study13, which includes a
particle source of approximately 5.5×1021 s−1 and a time-
varying particle source of approximately 1021 s−1 that
comes from adding electrons and ions to the system in
order to keep the density above a �oor of 2 × 1012m−3

everywhere. The density is also kept above that �oor
level in GENE, but the rate of added source is negligible
(below 0.1 × 1021 s−1) throughout the simulation. Fur-
thermore, it is checked and con�rmed that the particle
loss rate at the parallel boundary stays approximately
at 6.5× 1021 s−1 after the system reaches a quasi-steady
state.
In the global version of GENE, the background pro-

�les of density and temperature are uniform along the
y-coordinate, whereas in the present test case both the
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Figure 1. Radial pro�les of the electron source rate Se and
temperature Te.

initial pro�les and the source term depend on the y-
coordinate. Therefore we set the background distribu-
tions to zero F0s = 0 and fs = Fs. The code calculates
the full-f evolution.

We note that the numerical schemes in GENE are
not designed to preserve the positivity of the distribu-
tion function. For the LAPD test case, we encountered
the problem of negative distribution functions, which in
principle can result from every term in the discretized
version of the gyrokinetic equation. This problem was in-
vestigated in the Gkeyll study12 (see Sec. 2.1.1 therein).
The authors introduced a generic procedure to enforce
the positivity of the distribution function. The cause
and severity of the problem are not the same in the
two codes, since the gyrokinetic equation is discretized
with a discontinuous Galerkin method in Gkeyll and a
�nite-volume method in GENE. However, the positivity-
adjustment procedure used in Gkeyll is also suitable for
and implemented in GENE. The procedure consists of
three steps and is summarized here. First, the negative
values of the distribution functions are replaced with ze-
ros. Second, to compensate for the increased density, the
distribution functions are scaled down uniformly in ve-
locity space to keep the density unchanged at �xed x for
each species. Third, to remove the unphysical parallel
energy introduced in the �rst two steps, a drag term in
the parallel-velocity dimension is added to the gyroki-
netic equation. The magnitude of the velocity drag is
determined by requiring the �nal parallel energy at �xed
(x, µ) to match its value before the adjustment. Sim-
ilarly, a drag term in the dimension of magnetic mo-
ment is implemented to correct the perpendicular energy.
While the results to be shown in Sec. IVB appear phys-
ically reasonable, it is highly desirable to remove this
positivity-adjustment procedure by discretizing the gy-
rokinetic equation systematically with a 5D �nite-volume
method and proper �ux limiters so that the positivity
of the distribution function is automatically preserved43.
This requires substantial e�orts and is subject to our fu-
ture consideration.

Below we present the results from a typical run with
the numbers of grid points Nx = 72, Nz = 32, Nv = 32,
Nµ = 12 and y-coordinate wavenumber Nky = 36 (equiv-

alent toNy = 72). The velocity-space domain is
(
v‖, µ

)
∈

[−4, 4]
√

2Ts,ref/ms × [0, 16]Ts,ref/B0, with Te,ref = 3 eV
and Ti,ref = 1 eV. The v‖-grid spacing is uniform, and
µ-grid spacing is determined according to the Gauss-
Laguerre quadrature so that the density integral achieves
a su�ciently high accuracy. The minimum parallel and
perpendicular energies represented by the velocity-space
grids (assuming the distribution function collapses to the
cell I =

[
0,∆v‖

]
× [0,∆µ1]) are T‖,e,min = 0.05 eV and

T⊥,e,min = 0.13 eV for electrons, and T‖,i,min = 0.017 eV
and T⊥,i,min = 0.043 eV for ions. The run was performed
on ∼4000 CPU cores for 24 hours of wall-clock time.
The total physical time of the run is ∼6 ms. For a ref-
erence, the ion transit time is τi ∼ Lz/2/cs ∼ 1.1ms,
using Te = 3 eV in calculating the ion acoustic velocity
cs. For this run, the background ion gyrocenter density
in the linearized Poisson equation (7) was taken to be
ni0 = 6× 1017m−3.

B. Simulation results

Before presenting the results, we caution the readers
that we do not claim our simulation is a realistic rep-
resentation of the experiments, for two major reasons.
First, there are elements of the LAPD experiments that
are not directly or fully modeled, such as the ioniza-
tion and plasma heating process by the high-energy pri-
mary electrons, the ion�neutral collisions, and the paral-
lel boundary conditions. Second, our gyrokinetic simula-
tion is performed with a reduced mass ratio and a much
lower collisionality to reduce the necessary computing re-
sources. Lowering the collisionality from a highly colli-
sional LAPD-like case to a marginally collisional one in-
evitably modi�es the physical process. It is important to
bear this in mind when comparing our simulation with
previous �uid28,33 and gyrokinetic12 simulations. Our
goal here is to show that the extended code produces
physically reasonable features that are seen in experimen-
tal data and previous modeling results. Even though to
a large extent our results agree with the Gkeyll results12,
the focus of this paper is not benchmarking the two codes,
which involves running a set of test cases with the same
parameters and resolutions, preferably of low computa-
tion intensity, and quantifying and investigating the dif-
ferences in simulation results as the parameters and res-
olutions are varied. This benchmark is important and
necessary, but requires substantially more e�orts, and
will be conducted in the future.
Figure 2 shows the electron density evolution on the

mid-plane. At the beginning of the simulation, the den-
sity builds up in response to the top-hat-like source, re-
sulting in a steep density gradient at the edge of the
source region. At t ≈ 700µs, the plasma becomes unsta-
ble and the waves with an azimuthal integer wavenumber
m ≈ 19 start to grow at the edge of the source region. As
a consequence, a plasma rotation in the ion-diamagnetic-
drift direction becomes visible in the density pro�le, as
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Figure 2. Evolution of the electron density (in 1018 m−3) on
the mid-plane (z = 0) perpendicular to the magnetic �eld line.
(a) top-hat-like density source building up; (b) waves in the
growth stage; (c) plasma rotating and turbulence developing
and spreading radially; (d) turbulence in a quasi-steady state.
The dashed circle with radius r = rs = 0.25m indicates the
edge of the source region.

seen in previous �uid28,33 and gyrokinetic simulations12.
The waves are saturated progressively and turbulence de-
velops and spreads radially, in both inward and outward
directions. The system gradually reaches a quasi-steady
state by t ≈ 3ms.
To better visualize the wave generation and turbu-

lence development, a movie showing the evolution of the
electron density, electron temperature, and potential on
the mid-plane is presented in the supplemental material.
Figure 3 shows snapshots of the density, density �uc-
tuations, temperature, and potential on the mid-plane
after the turbulence reaches a quasi-steady state. The
azimuthal structures near the edge of the source region
in the temperature and potential pro�les collocate with
those in the density pro�le. All three quantities follow
a similar trend of decreasing from the center outwards,
although a small peak occurs in the potential near the
edge of the source region. It is seen that little variation
appears in the temperature and potential pro�les at large
radius, r & 0.5m, indicating that this low-density region
is not signi�cantly in�uenced by the turbulence and the
perpendicular-boundary e�ects on turbulence are negli-
gible. The density �uctuations will be discussed later.
Figure 4 shows the same quantities at the same time as
in Fig. 3, but the cut is made in the x−z plane at y = 0.
The density, temperature and potential peak near the
center, and decrease gradually towards the open bound-
aries. The �laments resulting from slicing the azimuthal
structures seen in Fig. 3 extend almost uniformly along
the �eld lines, indicating that the turbulence is highly
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Figure 3. Snapshots of the electron density ne and density
�uctuations δne (in 1018 m−3), electron temperature Te (in
eV), and electrostatic potential φ (in V) on the mid-plane in
a quasi-steady state. The time-averaged density is subtracted
in the density �uctuations. The dashed circle with radius
r = rs = 0.25 m indicates the edge of the source.
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Figure 4. Snapshots of the electron density ne (in 1018 m−3),
electron temperature Te (in eV), and electrostatic potential
φ (in V) in a quasi-steady state. The plots are made in the
x − z plane at y = 0. The snapshots are taken at the same
physical time as those shown in Fig. 3.

anisotropic.
The time-averaged pro�les as a function of the radius

are presented in Fig. 5. The data are selected in the
region of −4m < z < 4m, as done in Ref. 12. The con-
siderations of selecting this region are that it is similar to
the location where the measurements were taken in the
LAPD experiments, and that there is little variation in
the simulation along the �eld lines in this region. The
time averaging is performed from t ≈ 3ms to t ≈ 6ms,
with one sampling point per ∼1 µs (50 time steps). The
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time steps are nonuniform, and the gaps between sam-
pling points are uneven. The time averaging for a quan-
tity y is calculated by using a rectangular rule for the time

integration, namely ȳ =
∑i=N−1
i=0 yi (ti+1 − ti) /(tN − t0).

The data are binned by radius. The features seen in the
snapshots shown in Fig. 3 are con�rmed in the averaged
pro�les. The density and temperature are almost con-
stant at small radius, and drop o� signi�cantly at mid-
dle radius. Compared with the top-hat-like source, the
electron density pro�le is broadened by the turbulence
at the edge of the source region. The potential pro�le
shows a similar trend, and a small peak occurs near the
edge of the source region. The turbulence in�uence ap-
pears to be con�ned in the region of r . 0.5m. Beyond
this region, the density continues to drop o�, whereas the
temperature and potential reverse to larger values near
the side wall. This is understandable considering that
the source temperature near the side wall is 2.72 eV. The
potential is smaller and the turbulence �uctuations are
weaker when compared with the Gkeyll results12. The
temperature and potential drop o� monotonically from
the center to the side wall in that study. Note that the
uniform µ-grid spacing restricts the temperature in that
particular simulation to above 1.2 eV. The �uid simu-
lation results28,33 show the temperature falls to close to
zero near the side wall, but the source temperature in
their simulations vanishes at large radius.

The statistics of density �uctuations are presented in
Fig. 6. The density �uctuation is de�ned as ñe (x, t) =
ne (x, t)− n̄e (x), where the time-averaged density is sub-
tracted. The data and the time averaging process are
the same as those used in Fig. 5. The root-mean-square
(RMS) of the density �uctuations is calculated and nor-
malized by the peak time-averaged density at r = 0. The
strongest �uctuations occur at the the edge of the source
region, and the maximum �uctuation level is ∼13%. The
amplitude of the �uctuations decays both radially inward
and outward from the peak location. However, when nor-
malized to the local background density, the peak �uctu-
ations are at the 40% level and occur outside of the source
edge. The power spectral density of the �uctuations is
calculated by using a Fourier transformation and nor-
malized to the value at 1 kHz. The data are the same as
those in Fig. 5, but are further restricted to the region of
0.25m < r < 0.3m, and are interpolated linearly in time
before the Fourier transformation is applied. The power
spectral density shows that the �uctuations are broad-
band below ∼ 20 kHz, and obey a powerlaw distribution
with a powerlaw index n = −1.87 between 20 kHz and
400 kHz. Here the upper limit of this frequency range
is set by the sampling frequency. The density �uctua-
tion statistics agree with the Gkeyll results12, suggesting
the turbulence nature is the same in the two gyrokinetic
studies. Previous �uid study33 argues that the density
�uctuations follow an exponential distribution in the fre-
quency range between 4 kHz and 20 kHz.

The probability density function (PDF) of the den-
sity �uctuations has been used as an indicator of den-
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Figure 5. Average radial pro�les of (a) the electron density
ne, (b) electron temperature Te, and (c) potential φ. The
data in the region −4m < z < 4m are averaged over about
3ms after the turbulence reaches a quasi-steady state. The
shaded area indicates the source region.

sity blobs (structures of density enhancement) and holes
(structures of density depletion) in LAPD turbulence44.
A negatively skewed PDF indicates presence of density
holes, whereas a positively skewed PDF indicates den-
sity blobs resulting from plasma radial transport from
the high-density source region to the low-density region
in LAPD. The PDFs at three radial locations are cal-
culated and presented in Fig. 7. The PDF is negatively
skewed inside of the edge of the top-hat-like source region.
It is close to a symmetric Gaussian distribution near the
edge of the source region, and turns positively skewed
outside of the source region. While this trend is consis-
tent with experimental data44, and previous �uid33 and
gyrokinetic12 results, large-amplitude �uctuation events
near the edge of the source region occur less frequent
than a Gaussian distribution. A snapshot of the density
blobs and holes is shown in Fig. 3. They appear side-
by-side with each other and are results of the turbulent
�uctuations.

In addition to the diagnostics that are commonly used
for comparisons with experimental data, we have also
examined the distribution functions to further check the
implementation of the open boundary and collisions, and
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Figure 6. Statistics of density �uctuations. (a) The RMS of
the density �uctuations as a function of radius, normalized
to the peak electron density n̄max ≈ 3.20 × 1018 m−3 in the
domain; (b) The RMS of the density �uctuations as a function
of radius, normalized to the local mean density n̄e (r); (c) The
power spectral density of the density �uctuations. The data
are selected in the region −4m < z < 4m and over about
3ms after the turbulence reaches a quasi-steady state. The
shaded area in (a) and (b) indicates the source region. The
dashed line in (c) represents a powerlaw distribution. The
index n is obtained by �tting the data between 20 kHz and
400 kHz to a linear curve in a log scale.

understand the e�ects of particle loss at the open bound-
ary. Figure 8 shows the diagnostics data at the upper
open boundary taken at the same physical time as the
mid-plane snapshots shown in Fig. 3. Similar to the
pro�les on the mid-plane, the azimuthal structures in
the density pro�le approximately collocate with those
in the potential pro�le. As expected the peak density
and potential are smaller than those on the mid-plane.
The electron distribution function shown in Fig. 8(c)
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Figure 7. Probability density function of the density �uctu-
ations. The density �uctuations are normalized to the peak
electron mean density. The data span about 3ms after the
turbulence reaches a quasi-steady state, and are selected in
the region −4m < z < 4m, and (a) 18.5 cm < r < 19.5 cm;
(b) 23.5 cm < r < 24.5 cm; and (c) 30.5 cm < r < 31.5 cm.
The blue lines represent corresponding Gaussian distributions
with the same means and variances of the data. The skewness
γ1 = E

[
ñ3
e

]
/σ3 and the kurtosis γ2 = E

[
ñ4
e

]
/σ4 are also es-

timated from the data. Here σ is the standard deviation, and
E [· · · ] denotes the expected value.

is sampled near the center of the perpendicular plane,
and is representative of distribution function in the high-
density region. The distribution function is normalized
by ns,ref/v

3
Ts,ref, where the reference density is ns,ref =

2 × 1018m−3 for both species, and the reference ther-
mal velocity is vTs =

√
2Ts,ref/ms with Te,ref = 3 eV

and Ti,ref = 1 eV. The v‖-coordinate of each species
is normalized by its reference thermal velocity, and the
µ-coordinate is normalized by Ts,ref/B0. For a refer-
ence, the drifted-Maxwellian distribution (Fig. 8(d)) is
shown along with the data. The drifted-Maxwellian is
constructed by using velocity moments (density, parallel
velocity, and temperature) of the data. By visual in-
spection, the electron distribution is close to the drifted-
Maxwellian. In the sheath boundary model, outgoing
electrons with su�ciently high parallel-energies can over-
come the electrostatic potential and stream to the wall,
whereas lower-energy electrons are repelled and re�ected
back to the system, with their velocities reversed. This
selective loss and re�ection is expected to cause veloc-
ity space depletion. However, the di�usion term in the
collisions can shu�e electrons in velocity space to �ll in
the depletion. When the distribution function is sliced
and compared with the drifted-Maxwellian at �xed µ
as shown in Fig. 8(e), the depletion e�ect at velocities
greater than the cuto� velocity becomes clearly visible.
By checking the distribution functions at di�erent loca-
tions along the �eld line, we found that the depletion
e�ect becomes weaker and gradually disappears as the
probe is moved farther away from the boundary. For ex-
ample, the distribution becomes nearly symmetric about
v‖ = 0 at z = 6m (Fig. 8(g)). The positive shift is not
visible in the normalized electron distribution because
the electron reference thermal velocity is much larger
than the drift velocity, but it is clearly seen in the ion dis-
tribution function at the boundary (Fig. 8(i)). The deple-
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tion e�ect is not present in the ion distribution function
probably because the streaming loss of ions is too weak
to compete with the collision di�usion. Finally, we note
that the distribution functions appear to be well-resolved
in v‖, and improvements are expected by increasing the
resolution in µ to better resolve the high-µ portion, as
indicated by Fig. 8(f)(h)(j).

V. CONCLUSIONS

We have reported our recent progress regarding the
extensions of the global version of the 3D2V gyrokinetic
code GENE for applications of electrostatic edge plasma
turbulence. The code employed a δf -splitting technique
and was originally designed for simulating core turbu-
lence. To accommodate the large-amplitude �uctuations
that are often seen in edge plasmas, the parallel nonlin-
ear term is included and discretized along with the cor-
responding linear term by using a �nite-volume method.
By including the parallel nonlinearity, the δf code be-
comes equivalent to and can be run as a full-f code. To
account for sheath e�ects that are important in open-
�eld-line systems such as the SOL, a conducting-sheath
boundary model is implemented in the context of the
�nite-volume method. The sheath boundary model takes
into account particle loss to and re�ection from the wall,
without directly resolving the sheath details. Finally the
Lenard�Bernstein collision operator acting on full-f is
implemented. The implementation conserves the num-
ber density and energy. The extended code can simulate
collisional electrostatic turbulence in straight open-�eld-
line systems.
To test these extensions, the code is applied to simulat-

ing a test case based on LAPD experiments27. The test
case has been modeled previously by Braginskii-�uid28,33

and gyrokinetic12 codes. Our simulation produces fea-
tures that are seen in the experimental data and pre-
vious simulations. Turbulence develops and spreads ra-
dially inward and outward after the waves grow at the
maximum density gradient region and are saturated pro-
gressively in time. The absolute amplitude of density
�uctuations peaks at the edge of the top-hat-like source
region, and there the density pro�le is �attened by the
turbulence. The density �uctuations of the fully devel-
oped turbulence are broadband below ∼ 20 kHz, and
follow a powerlaw distribution in the higher-frequency
range. Density holes are more likely present inside of the
source edge while density blobs are more likely present
outside. The depletion of the electron distribution func-
tions caused by the electron loss to the wall is largely
�lled due to collision di�usion in velocity space, and the
distribution functions are close to the drifted-Maxwellian
near the open boundary. For more detailed comparisons
with LAPD experiments, future extensions could include
e�ects that may alter the predicted rotation pro�les, and
thus the turbulence characteristics. These include the ef-
fects of the mesh anode, energetic electron emission from
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Figure 8. Diagnostics data at the upper open boundary
(z = 9m) at the same physical time as those shown in Fig. 3.
(a) electron density ne (in 1018 m−3); (b) electrostatic po-
tential φ (in V); (c) normalized electron distribution func-
tion near the center in the high-density region; (d) refer-
ence drifted-Maxwellian distribution function; (e) a slice of
the electron distribution at the minimum µ grid point; (f) a
slice of the electron distribution at the minimum positive-v‖
grid point. (g) and (h) show electron distribution function
in the same format as in (e) and (f), but the data are taken
at z = 6m. (i) and (j) show distribution function in the
same format as in (e) and (f), but the data are for ions. The
distribution function data are taken directly from the simu-
lation; the normalization is performed before the simulation.
The reference drifted-Maxwellian distribution is constructed
by using the velocity moments calculated from the data. The
vertical blue lines in (e) and (g) indicate the electron cuto�
velocity calculated from the potential according to Eq. (19),
with its sign reversed.
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the hot cathode, and viscosity. In addition, it is highly
desirable to implement the more sophisticated Fokker-
Planck operator to conserve particle, momentum and
energy numerically45, preferably with an implicit time-
stepping scheme, so that the collision e�ects on LAPD
and edge plasmas can be realistically evaluated. Quan-
titatively matching GENE simulations with experimen-
tal results and examining the transport mechanisms in
LAPD turbulence28�33 are of great interest and left for
future work.

A few additional improvements and complexities can
be built up upon the present code. First, the Poisson
equation (7) uses a constant background ion density in
the polarization charge density term. To evaluate the
e�ects of this simpli�cation, a simulation with the back-
ground ion density doubled to ni0 = 1.2 × 1018m−3 has
also been performed. No material change has been found
in the averaged potential pro�le. This is understand-
able because the averaged potential at the sheath en-
trance needs to satisfy the condition φsh ∼ 3Te to re�ect
most of the electrons to give an electron �ux close to
the ion �ux to the wall; changing ni0 will just change
the small di�erence between the electron density and the
ion guiding center density that is needed to maintain
the sheath potential. In addition, it is found that the
maximum �uctuation level in the potential is reduced
slightly from ∼ 16% to ∼ 14%. Although the turbu-
lence appears to be insensitive to the change in ni0, we
plan to develop a �eld solver to use a spatially depen-
dent ion density in a quasi-steady state, or update the
ion density in every time step to remove this limitation.
The latter approach requires a fast iterative solver based
on the conjugate gradient method to solve the resultant
sparse-matrix equation from the nonlinear Poisson equa-
tion. Second, to simulate SOL turbulence, it is necessary
to include the e�ects of magnetic gradient and curvature
(see Chapter 5 in Ref. 13). This requires implementa-
tion of additional terms in the parallel nonlinearity that
are neglected. Similar to the E × B nonlinearity and
the parallel nonlinearity in the straight-�eld-line geom-
etry, the nonlinear terms associated with the magnetic
gradient and curvature can be combined with the linear
terms, and discretized by using a �nite-volume method.
Third, physical e�ects such as electromagnetic e�ects,
X-point geometry, and plasma�wall interactions are re-
quired to realistically model the edge plasmas. A few of
these directions are being pursued, and the progress will
be reported in the future.

VI. SUPPLEMENTARY MATERIAL

See supplementary material for a movie showing the
evolution of the electron density ne (in 1018m−3), elec-
tron temperature Te (in eV), and electrostatic potential
φ (in V) on the mid-plane.
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