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interactions in the open-field-line regions, require major modifications of

Unique properties of plasmas in the tokamak edge, such as large ampligtzde fluctuations and plasma—wall

ting gyrokinetic codes originally

designed for simulating core turbulence. To this end, the global version o tl&%\‘/ gyrokinetic code GENE,

so far employing a § f-splitting technique, is extended to simulate el trﬁtic tugbulence in straight open-
S

field-line systems. The major extensions are the inclusion of the velpci
of a conducting-sheath boundary, and the implementation of the
these developments, the code can be run as a full-f code and ¢
the wall. The extended code is applied to modeling turbule
a reduced mass ratio and a much lower collisionality. Similar
LAPD turbulence involves collisions, parallel streaming,

and particle loss at the parallel boundary.

I. INTRODUCTION

ce nonlinearity, the development
rnstein collision operator. With
1andle particle loss to and reflection from
e“i;1>he Large Plasma Device (LAPD), with
urbulence in a tokamak scrape-off layer,
urbulent transport with steep profiles,

ross-fiel

)

lgz@—a itude electrostatic disturbances in open-field-

ine S}E_t— s. Large-amplitude disturbances and open
Understanding and controlling properties of plasmas i boundaries are major characteristics of the SOL. This

the tokamak edge, including the pedestal and the scr.

off layer (SOL) separated by the last-closed flux surface
(LCFS), is crucial for achieving successful magneti
finement, due to the fact that plasma prope
sity and temperature) at the edge significantly
core confinement, and the high power load' i
layer outside of LCFS can jeopardize the p a-faeing-
components (PFCs) of the divertor ordimite g4
Edge plasmas are complex, and presen
that are typically absent in core plasmas,
temperature and density gradie he pedestal, large
amplitudes of disturbances and intermittent structures

includes topologically separ open and closed field
5-7

lines Major effortg’ aze bei evoted to develop-
ing gyrokinetic parti le—irhqdes with capabilities of
simulating the SOLfregian®?, and new gyrokinetic con-

tinuum codes d 10-13
while, compreh;

or edge plasmas Mean-
sophisticated gyrokinetic codes

r simulating core turbulence and
explaining seleyan xpé)rsimental data in the past two
decades or so'* 2! various degrees, the aforemen-
tioned char 'terist}s of edge plasmas pose challenges
core turbulence codes are applied to

N present work, we extend the global version of
the V eore turbulence code GENE'*?2:23 to model
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study is meaningful in three aspects. First, the GENE

employs a ¢ f-splitting technique to achieve high nu-

Nerical accuracy for core turbulence simulations. The

parallel nonlinearity is usually neglected due to the clas-
sical gyrokinetic ordering df/F < 1 in the tokamak
core?*. The potential breakdown of this ordering results
in questioning the applicability of § f-splitting in simu-
lating edge plasmas with large-amplitude disturbances®.
As shown in our previous study?® based on a 1D1V code
extracted from the 3D2V GENE code, by including the
parallel nonlinearity and combining it with the corre-
sponding linear term in a finite-volume discretization, the
0 f-splitting causes no numerical difficulties in handling
the large-amplitude disturbances. In the present study,
the same approach is taken for the 3D2V §f code, which
then becomes equivalent to and can be run as a full-f
code. Second, an open parallel boundary is implemented
to account for plasma sheath effects in gyrokinetic sim-
ulations. The open boundary takes a conducting-sheath
boundary model, in which the particle loss to and reflec-
tion from the wall are determined by the electrostatic po-
tential at the simulation domain edge, and net currents
are allowed to flow through the boundary freely. This
sheath model was introduced by Shi et al.'? and imple-
mented in the Gkeyll code, which features a discontin-
uous Galerkin (finite-element) method. In the present
study, this model is implemented in the context of a
finite-volume method. Since plasma sheath beyond the
boundary is not resolved, the distributions and potential
are reconstructed by using local polynomials to interpo-
late the data inside the domain, in order to evaluate the
outgoing particle flux and the parallel nonlinearity near
the boundary. Third, the Lenard—Bernstein collision op-
erator acting on full-f is implemented. The implementa-
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tilizes a finite-volume discretization structure that
as.bee1 used for the linearized Fokker-Planck collision
f@tgl acting on §f. The number density and energy
are conserved numerically. The collision operator con-
tains pitch-angle scattering and velocity-space diffusion
that preferentially damps small scale structures. The
present extensions provide GENE with essential capabil-
ities to simulate SOL plasmas and constitute an initial
effort for future comprehensive modeling of edge plasmas.

To test the extensions, the code is applied to a test case
of electrostatic plasma turbulence in the Large Plasma
Device (LAPD)?® at UCLA. The LAPD plasma con-
tains basic features of SOL plasmas, such as collisions,
cross-field turbulent transport, parallel streaming, and
particle loss at the parallel boundary, but without the
magnetic gradient and curvature effects in a toroidal ge-
ometry. The configuration and parameters of the test
case are similar to those in the experiments conducted
by Carter and Maggs?”. In the experiments, the LAPD
creates a linear column plasma with a length L, ~ 17m
and aradius r ~ 50 cm in the main chamber. The plasma
is generated via ionization of neutrals by primary high-
energy electrons injected by an anode—cathode arrange-
ment from one end, and is open on both ends along t

magnetic field lines. The chamber wall can be biased M{}é\
y, W

respect to the column plasma. For the present stu
are concerned with the unbiased case, namely the
grounded.

There have been previous studies usin

Var?ous
Braginskii-based fluid equations to study’ LAPD- ype-

cases, by Rogers and Ricci?®, Popovich et a ,
man et al.?"32, and Fisher et al.?3. These lodke

pects of the turbulence characteristics an
ble driving mechanisms (including Kelvin-
stabilities and nonlinear drift-wa hanismsinvolving
non-normal modes). tion setup follows the
fluid simulation by Rogers i%8 and the subse-

tions produced results théat
to the experiments, t mo etailed comparisons
could be considered i futuir(%O\rk, as discussed in Sec. V.

tl%paper is organized as follows.

¢ basic equations. The parallel
1 in the gyrokinetic equation

ndary conditions are described in

Sec. HWI. The s and results of the simulation of a
LAP lasmaiare presented in Sec. IV. Section V con-
tains co ions and a discussion on future work.

Il. BASIC EQUATIONS

By taking the electrostatic limit and the zero-Larmor-
radius limit, the gyrocenter distribution in a straight field

line geometry is evolved according to??23
8fs _ 7 QSV¢ 8F05
at o bO (Ulst mg 8UH
Vo afs

—vg -V (Fos 4 fs) + bo - my ov’

where the F x B velocity is vg = BLOBO x V¢. In the
global version of GENE; the gyrocenter distribution for
species s is split inté)g static background depending on
the z-coordinate an tuation part F (m,v‘hu,t) =
, 1, t)Note that the last term is
rm that is typically neglected for
ordering fs/Fps < 1.

consistent discretizations, we com-
ear term with the parallel linear
Tonlinear term with the F x B driving

core plasmas
For the
bine the

qsV o OF
ms Ov)

A()' <U|st— > —vg-VFs. (2)
Hereafter,/ the three terms on the right-hand side are
ed“the free-streaming term, the parallel nonlinear
termy and the F x B nonlinear term, respectively. The

e-Streaming term combined with the parallel nonlin-

: ear term describe the dynamics parallel to the magnetic

ld lines, while the E x B nonlinear term describes the
perpendicular dynamics.

By substituting the E x B velocity, introducing the
field-aligned-coordinates with By = CVz x Vy and
J~!' = By-Vz/C, and adding a collision term, the equa-
tion becomes

—é (0000, Fs — 8,00, F,) + Cs [Fy].  (3)

In this work, the Lenard-Bernstein collision operator!?:34

acting on full-f is applied,

with = [ dPvv Fo/ng,  mgof =
[ dBomg (v — uy)’ F,/3n,, ng = [ d®vF,. The same-
species collisions, including electron—electron (ss’ = ee)
and ion—ion (ss’ = ii) collisions, thermalize the distribu-
tion function to a local Maxwellian, contain pitch-angle
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Fprhg and velocity-space diffusion, and conserve
dengity, momentum, and energy. Standard expressions

PUb“f%h 'trﬂg ollision frequencies are used, v, = 4v/2mnedet

3\/meT63/2 ’

Avandel - where A is the Coulomb logarithm

3\/771-Ti3/27
(Huba 2013, p. 37). The electron-ion (ss’ = ei)
collision term contains the collisional drag and pitch-
angle scattering of electrons on ions. The electron—ion
collision frequency is taken as ve; = ve./1.96, in order
to approximately account for the parallel conductivity
coefficient in a plasma. The ion electron (ss’ = ie)
collision term is much smaller than the ion—ion collision
term (vie/vii ~ +/Mme/m;) and is neglected, as was
also done in the Gkeyll study'?. This leads to a small
violation of the momentum conservation in the model.

By neglecting the Debye shielding, the nonlinear gy-
rokinetic Poisson equation in a straight field line geome-
try is?337

Vii =

m¢CQ

— 5 Vi (i (@) Vig (@) =) aema(z),  (3)
0 s

gyrocenter density, which is defined as

nonlinearity is discretized with a mixed spectral/finite-
difference variant of the Arakawa method??. It is im-
plemented pseudospectrally in the y-direction and the
so-called 3/2-dealiasing rule is applied®. For the LAPD
test case, in addition to the ' x B nonlinearity, different
k, modes interact also via the parallel nonlinearity, the
open boundary, and the collisions. However, discretiza-
tions of these terms are not spectral and no dealiasing
measures are taken. Therefore for consistency and sim-
plicity the discretizazgn of the E x B nonlinearity is
modified to the finite-difference version of the Arakawa
method in both zfand, y-dire¢tions. In Fourier represen-

ply by replacing the multiplica-
sin (ky Ay) — sin (2k, Ay)] / (6Ay)
tive, where Ay is the grid
sponds to discretizing the deriva-

tion factor ¢k,
for the first-or

In addition, the spectral multipli-
]&or the second-order derivative in the
aplace o tor of the field equation, (z’ky)g, is re-
céd with a finite-difference one in Fourier representa-
ion, [~ cos (2k, Ay) + 16 cos (k,Ay) — 15] / (6Ay?). Af-
e h&'éf two modifications, the code adopts a fourth-

lar directions. Finally, a small perpendicular numer-

where the long-wavelength limit (k, p; < 1) has bee
taken. The gyro-averaging is neglected in Calcummngm finite-difference method consistently in the perpen-

2w B,
ns () = - 0 /FS (m,,u,vH) dudv.

background ion gyrocenter density n;q, wh
be a constant in space and time, as done by
Thus the linearized Poisson equétion selved in the code
is

We plan to impleme fM for the nonlinear Pois-
son equation (5) in he@ure (sée a discussion on this in
Sec. (V)).

/

1. NUM LEﬁIENTATION

IGAL
The g%o inetic Squation (3) is discretized based on
~called hod of lines”. A fourth-order ex-
f§utta method is used for the time inte-
erivatives in phase space contains three
he parallel dynamics, the E x B nonlinearity,
and Wi collisions. In the global version of GENE, a
or Neumann boundary and a fourth-order finite-
difference method are applied in the z-direction to ac-
commodate radial profile variations seen in the toka-
mak core, whereas a periodic boundary and a spec-
tral method are used in the y-direction. The F x B

\Ni‘cal diffusion term is applied to allow for robust code

operation?2.

Below discretizations of the parallel dynamics, the par-
allel boundary, and the collisions are described. We note
that they are expressed in real space in both x- and y-
coordinates; the forward and backward Fourier transfor-
mations along y-coordinate are applied wherever neces-
sary.

A. Discretization of the parallel dynamics

The discretization of the dynamics in the parallel phase
space (z,v)) is similar to that used in our previous work
based on a 1D1V code?. For the purpose of describing
sheath boundary conditions, we briefly summarize it.

First, the parallel dynamics is reformulated in a con-
servative form,

st + a\I/f-s a\Ilpnl
ot 0z 8’0”

=0, (8)

where the free-streaming flux and parallel nonlinear flux
are defined, respectively, as

C
Vg = —0 fs
= 7B, o f 9)
and
_ C qs 09
Yot = ~ JBoms 0z Es. (10)

Second, the spatial and velocity derivatives are dis-
cretized with a finite-volume method. Integrating Eq. (8)
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A

PUb|I§Wﬁfgf the Stokes’ theorem, we obtain the discretized

ach cell I, ; = {ZkfévZkJr%J XAV -1 V)L and

e
eanati

\I’f-s,k+%,l - q’f-s,k—%J
Az
+\Ilpn1,k,l+% - \I}pnl,k,lfé (11)
Av
where k =1,...,N,, Il =1,..., N,. The cell-averaged dis-
tributions (indicated in the following with an overbar)
are defined as

1 /Zk+%
A’U“AZ 2z 1
k=3

The free-streaming flux and the parallel nonlinear flux at
the cell edges are defined, respectively, as

8f_s,k,l
o

:O’

fs,k,l = / I+ fs (Z,’UH) dZdUH. (12)

v 1
IIi=5

v 1
1 Ihi+d
\ij—s,k:t%,l = Av”/ Prs (Zkzl:%vvl\) dv| (13)

v
Ii-4

v _ L[
anij:% - Az

Zk7

and

Ul (z, UH)H[%) dz. )

[SE

The species index s and the parallel velocity index [
are omitted for clarity in Eqs. (17-18). The paral-
lel nonlinear flux is similarly reconstructed. Its up-
wind direction is determined by the parallel derivative
of the potential d¢/0z, which is approximated by us-
ing a fourth-order central difference stencil for the inner
points (3 < k < N, — 2), a third-order difference sten-
cil biased towards the center for the points next to the
edge points (k = 2, N,,— 1), and a second-order differ-
ence stencil biased t%‘ds the center for the edge points
(k =1, N,). These sten
dard technique®®,
static potential i

ils are constructed with a stan-
ly interpolating the electro-
e domain with piecewise polyno-
the derivatives of the polynomials

ide

B. Shéath boundary conditions
ical ége and LAPD plasmas, the electron ther-
much larger than the ion thermal velocity.
I p(frae to faster streaming to the wall by electrons
\z;nsi@lg, a Debye sheath is formed at the plasma—wall
integface to set up a potential drop from the plasma to
the
t

all. The potential drop accelerates outgoing ions
e wall, slows down outgoing electrons, and reflects

_“w._the low-energy electrons back to the plasma, so that the

The net fluxes across the edges of cell I, ; determine
change in f, 1. By using the midpoint rule fo i
gration, the free-streaming flux and the parallel n
flux are approximated as

Wesne1 = Prs (%i%’”ll, (15)
and
\IIpnl,k,l:I:% =Y, (Zk» [+1 (16)
/ .
verallforder of the finite-

Under this approxima?{, th
volume method at mos§ is Avy, Az)2>39.

Third, the fluxes rﬁcons cted by first interpolat-
ward upwind direction with a piece-

ma;

— [é (—fr1 + 5 + 2f'k+1)] .1

third-order upwind scheme for the free-

(fr—2 = 6fr—1+ 3fk + 2frt1) -
(18)

hsﬁlte—
linear«

loss of electrons to the wall is approximately in balance
with the loss of ions. However, the usage of the gyroki-
netic Poisson equation allows the simulation spatial and
temporal scales to be much larger than the sheath char-
acteristic spatial and temporal scales, which are on the
order of a few Debye lengths and plasma periods, namely
pi > Ap, Qi < wpe.

To account for the sheath effects on the plasma, a
conducting-sheath boundary model is introduced by Shi
et al.'2. In this model, the sheath potential is determined
from the turbulence in the plasma, and the electron cutoff
velocity v, is calculated from the potential drop accord-
ing to

2
MeV;
19
26 ) ( )

¢sh - (ybwall =

where the sheath potential ¢sy = ¢ (x,y,z = +m) at
the upper (zy =) and lower (zp = —m) boundaries
are solved from the Poisson equation, and the wall is
grounded ¢y = 0. Outgoing ions are accelerated to
the wall without reflection while outgoing electrons with
velocity lower than the cutoff velocity are repelled and
reflected. Particle reflection at the upper boundary can
be written as

F; (Z?},’UH) =0, v < 0, (20)
F T [ S < Oa
Fe (25,v)) = {06 (v, =) UHUC< _Zl (21)
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l s IﬁP& z,; is the coordinate immediately outside the do-

in. The lower boundary conditions are similar. The

L1
PUb“&ﬁéH& locity according to Eq. (19) typically falls within

acell v, € (UHJ_% SV and not exactly on a cell edge.

The fraction of electrons reflected in the cutoff cell is ap-
proximated as

Ve
Jol s Fe () ogdoy v —vy, 4

~ . (22)
v / _ (
S Fe (o) vydvy vpagy = )4

Physically, particles stream along the field lines and are
lost to and reflected from the wall at the parallel bound-
ary. In the finite-volume scheme, the sheath boundary
enters the equation by setting the free-streaming flux for
the edge cells. Define the last cell as Iy = [ZN_% , zN+%} ,

then the domain edge (wall) is located at Zy41- The up-
wind flux representing particles leaving from the system
to the wall at the upper boundary zy = Nt is evalu-
ated as

C. Discretization of the collision term

The structure of the Lenard—Bernstein collision oper-
ator on full-f is similar to the test-particle part of the
linearized Fokker—Planck collision operator on ¢ f imple-
mented in GENE. Therefore, we apply the same finite-
volume method to discretize the outer derivative in the
Lenard-Bernstein operator (4) to obtain

C [F } _:IIUH Atgm T \Ijvll’lfé’m
ss’ sllm A
Yl

3 N\ 41— \I/# lom—1

e 25
where the weights«of the grids are defined as Ay, =
Hm4d — L_.;?nd =Vt —Vp—1- A second-
order centr ifference method is used for the inner

4) to evaluate the finite-volume fluxes

Cv vj,i+1 + ) Fotm + Fsisim
Ve (20,v)) = TBL‘)FS (20, v)) 4%# = Vss' (2 — Uy 5
CU " Fs m Fs m
= TBHFS (ZN’UH) y > 0. (% F Ve Qggr zll}'i‘ly . A (26)
0 \ I,0+1 — Yt
The second identity is valid because the first4on % Fytm 4 Fotmi
wind flux is used for the last cell. The upwind Hux Feps, W tmit = Vss (B + Pomg1) — B =
.resentlng particles reflected from the wall Tl » /277%0433/ i + fimst. Fotomit — Foim
18 ss BO 2 Lt 1 — fim y
27
Vs (20, v)) = Pes (27,v)) S @7)

CU”
= T_BOFS ( 75 V)l v <0, (24)
where Fy (z(?v”) for v 0 i detémmined from the

corresponding outgoing MAlux(23) and the sheath re-
flection (20-21). In tHe“gode, 8%,1)”) is stored in
a boundary cell an umm each stage of each
Runge-Kutta timegtep.

i éath boundary model, net cur-
hrough the wall, which is in

atinflogical—sheath boundary model
5254142 " In the logical-sheath

e sheath potential is estimated from
ity. Compared with the logical-sheath
he‘conducting-sheath boundary reflects more
e t&% physical setup of the aforementioned LAPD
expetiments, in which the currents are free to flow along

just to the plasma state evolution self-consistently. In ad-
dition, the conducting-sheath boundary can handle the
case of a biased wall by setting the wall potential ¢y
in Eq. (19).

where I = 1,2,...,N,, m = 1,..., N, and o = 07,/ is
introduced.

Similar to the implementation of the Fokker—Planck
collision operator on Jf, the implementation of the
Lenard-Bernstein collision operator on full-f conserves
the density by setting the fluxes at the boundaries.
Specifically, the density change due to each type of colli-
sion can be expressed as

Z Z Cyor [F] l,mAﬂmAUHJ
I m
= Zzl: (\I/’Jllvl'*‘%’m -, ’l—%”") At
+ZZ (‘I’#,z,m+$ - \I’ﬂylvm*%) Av) -
l m

By setting ¥, 1, = ¥, yi1, = 0 for m =
1’2""’NH’ and \II’U”,l,% \II'UHJ;N;LJF% =0 fOI“ [ =

1,2, ..., N,, the density change is identically zero due to
cancellations in the telescope sums.

The approach to conserving energy numerically is to
treat ass as a free parameter, rather than directly eval-
uate it from its definition a,e = v7 ., and use it in the
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volume fluxes. This approach was introduced in
revious gyrokinetic study in Ref. 12. The energy change

PUb“@I&l[‘t& wch type of collision is
1
Z ZCSS/ lm (,UmeO + ms’UH l) AﬂmAv|‘ !
1
- Z zl: (‘Il”H At+g,m \IJUMJ—%’W) 9
0D (Wt = Yty ) n Bodsoy,
I m

where the density conservation is used. By requiring the
energy change to vanish, the parameter a g is solved for
each type of collision.

We tested the implementation of the collision operator
with a drifted-Maxwellian distribution, and confirmed
that the density and energy are conserved to machine
precision, and that agy solved from the energy conser-
vation condition is close to the value evaluated from its
definition.

AP

2
MsVj| 1 Afm

IV. SIMULATION OF LAPD TURBULENCE
A. Simulation setup

To test the extensions, we select the setup wigh LA
like parameters used in the gyrokinetic study
al.'2. The authors modified and adopted tlie set

iet

m; = 3.973m, (m, is the proton mass
ng = 2 x 10 m=3. The simulation domain“
[7Lm/27 Lm/2] X [7Ly/23 Ly/2]
L. = 18m, L, = L, = L
Ps0 = CSO/Qu and Cso =

in the explicit Runge(?tftta tegragor are determined

by the electron—electr llisio They are estimated
from the diffusion Mélueevtht/ (Av”)2 <
Ccourant, Where t CL%ant number Ceoourant 1S taken

to be 0.1. The ps estimated from the collisions

kin method and the charge density
is evaluated with the Legendre-Gauss quadra-
code requires higher perpendicular res-
i0 kresolve the perpendicular structures, and
- velocity-space resolutions to evaluate the colhslons
charge density. For a run with typical resolutions
shown later, the small time steps combined with the rela-
tively high resolutions would demand enormous comput-
ing resources if the experimental parameters were used.
Two reductions are introduced to alleviate the problem.

oﬁ\

First, as done in Ref. 28 and Ref. 12, the electron-to-ion
mass ratio is reduced to m./m; = 1/400, so that the
time steps are increased while a sufficient separation of
electron scales from ion scales remains. Second, in the gy-
rokinetic study by Shi et al.!2, the electron—electron and
electron—ion collision frequencies are reduced by a factor
of 10 to increase the time steps. After the reduction,
the electron mean-free-path is Ly, = v7e/Vee =~ 0.57m
(using n. = ng and T = 3eV), hence Lyg,/L, < 1.
In our simulation, th ectron— electron and electron—ion

collision frequenc1es uced by a factor of 100. Cor-
ion collision frequency is reduced
e the electron mean-free-path is

respondingly, the 0
by a factor of 10°
smaller than arable with the parallel length of
marginally collisional.
ial conditions and the source term,
ric)as a function that falls from the peak
0 to a constant value ¢ for r > L /2,

value of twat

2

3
E(T'C 1—C)(1—m) + ¢, T'<Ll/2
c, else

The initial density profile for
;e=1/20).

Vi

re'ﬁ"
both ons and electrons is chosen to be nyA (7;
e initial electron temperature profile has the form

\fﬂ7A r;c=1/5) eV and the initial ion temperature pro-

e is an uniform 1eV. A top-hat-like source uniform
along z representing the ionization of neutrals by pri-
mary electrons is applied continuously in time,

no 1 —Ts
Lz {001+099[—2tanh< I. >]}

X Fars (v, 165 T5)

where the radius of the source region is rs = 20ps =
0.25m, the spatial gradient scale length at the edge
of the source region is Ly = 0.5p59 = 0.625cm, and
Frs (vH,p; TS) represents a non-drift Maxwellian with a
temperature T,. The ion source temperature is 1eV, and
the electron source temperature is 6.84 (r;c = 1/2.5) €V.
The radial profiles of the electron source rate and tem-
perature are shown in Fig. 1. The spatially integrated
source rate is 6.5 x 10?!s~!. This number is the total
source rate used in the Gkeyll study'?, which includes a
particle source of approximately 5.5x 102! s~! and a time-
varying particle source of approximately 10%!s~! that
comes from adding electrons and ions to the system in
order to keep the density above a floor of 2 x 102m™3
everywhere. The density is also kept above that floor
level in GENE, but the rate of added source is negligible
(below 0.1 x 10?2 s~1) throughout the simulation. Fur-
thermore, it is checked and confirmed that the particle
loss rate at the parallel boundary stays approximately
at 6.5 x 102! s~! after the system reaches a quasi-steady
state.

In the global version of GENE, the background pro-
files of density and temperature are uniform along the
y-coordinate, whereas in the present test case both the

S, =1.39
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Figure 1. Radial profiles of the electron source rate S. and
temperature Te.

initial profiles and the source term depend on the y-
coordinate. Therefore we set the background distribu-
tions to zero Fps = 0 and f; = Fs. The code calculates
the full-f evolution.

We note that the numerical schemes in GENE are
not designed to preserve the positivity of the distribu-
tion function. For the LAPD test case, we encountered
the problem of negative distribution functions, which in
principle can result from every term in the discretize

version of the gyrokinetic equation. This problem was\
)

vestigated in the Gkeyll study'? (see Sec. 2.1.1 therein).

the positivity of the distribution function.
and severity of the problem are not the sa

three steps and is summarized
values of the distribution functi

irst, the negative
laced with ze-

distribution functions are
locity space to keep th?én&

each species. Third, nove the unphysical parallel
theN: steps, a drag term in
dimension s added to the gyroki-

energy introduced i
the parallel-veloci
netic equation. gnitude of the velocity drag is
determined by e final parallel energy at fixed
(x, ;) to matchiits vah;ﬁ efore the adjustment. Sim-
ilarly, a dpAge<term«in the dimension of magnetic mo-
ment is implemented to'correct the perpendicular energy.
Its to be shown in Sec. IV B appear phys-
it is highly desirable to remove this
ty—adj\i'jtment procedure by discretizing the gy-
uation systematically with a 5D finite-volume

niformly in ve-

’Eb?an proper flux limiters so that the positivity
of t istribution function is automatically preserved?3.
uires substantial efforts and is subject to our fu-
ture consideration.

Below we present the results from a typical run with
the numbers of grid points N, = 72, N, = 32, N, = 32,
N, = 12 and y-coordinate wavenumber N, = 36 (equiv-

alent to N, = 72). The velocity-space domain is (v, 1) €
[—4,4] \/2T s yer/ms X [0,16] Ts rer/ Bo, with T, ref = 3€V
and T;rer = 1€V. The v-grid spacing is uniform, and
p-grid spacing is determined according to the Gauss-
Laguerre quadrature so that the density integral achieves
a sufficiently high accuracy. The minimum parallel and
perpendicular energies represented by the velocity-space
grids (assuming the distribution function collapses to the
cell I = AUH 5\//& are T c.min = 0.05eV and
T\ e.min = 0.13eV fopfelectrons, and TH imin = 0.017eV
and T\ j min = 0. 043 ions. The run was performed

on ~4000 CPU XMmm“s of wall-clock time.
The total physicaluti of the run is ~6 ms. For a ref-
i time is 7; ~ L,/2/cs ~ 1.1ms,
ting the ion acoustic velocity

using T, =3¢V 1

cs. For this rﬁ} ckground ion gyrocenter density

in the linearizéd Peisson equation (7) was taken to be
3

Qimulatlo results
D.

efore presenting the results, we caution the readers
thatywe do not claim our simulation is a realistic rep-
esedtation of the experiments, for two major reasons.
First, there are elements of the LAPD experiments that

e not directly or fully modeled, such as the ioniza-
tion and plasma heating process by the high-energy pri-
mary electrons, the ion—neutral collisions, and the paral-
lel boundary conditions. Second, our gyrokinetic simula-
tion is performed with a reduced mass ratio and a much
lower collisionality to reduce the necessary computing re-
sources. Lowering the collisionality from a highly colli-
sional LAPD-like case to a marginally collisional one in-
evitably modifies the physical process. It is important to
bear this in mind when comparing our simulation with
previous fluid?®3® and gyrokinetic'? simulations. Our
goal here is to show that the extended code produces
physically reasonable features that are seen in experimen-
tal data and previous modeling results. Even though to
a large extent our results agree with the Gkeyll results'?
the focus of this paper is not benchmarking the two codes,
which involves running a set of test cases with the same
parameters and resolutions, preferably of low computa-
tion intensity, and quantifying and investigating the dif-
ferences in simulation results as the parameters and res-
olutions are varied. This benchmark is important and
necessary, but requires substantially more efforts, and
will be conducted in the future.

Figure 2 shows the electron density evolution on the
mid-plane. At the beginning of the simulation, the den-
sity builds up in response to the top-hat-like source, re-
sulting in a steep density gradient at the edge of the
source region. At ¢t = 700 us, the plasma becomes unsta-
ble and the waves with an azimuthal integer wavenumber
m = 19 start to grow at the edge of the source region. As
a consequence, a plasma rotation in the ion-diamagnetic-
drift direction becomes visible in the density profile, as
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Figure 2. Evolution of the electron density (in 10*¥ m™3) on
the mid-plane (z = 0) perpendicular to the magnetic field line.
(a) top-hat-like density source building up; (b) waves in the

The dashed circle with radius » = r; = 0.25m indicates
edge of the source region.

growth stage; (c) plasma rotating and turbulence developin
and spreading radially; (d) turbulence in a quasi-steady stat(\
\ x

: 12
}?\

seen in previous fluid?®?* and gyrokinetic simu :
The waves are saturated progressively and turbulenge de-
velops and spreads radially, in both inward andwoutward
directions. The system gradually reaches.a quasi-steady
state by t =~ 3ms. \

To better visualize the wave generation “and turbu-

lence development, a movie showin evolution of the
ure, and potential on
lemiental material.

tuations, temperature,

electron density, electron tem
after the turbulence reaches a quagi-steady state. The
azimuthal structure ar thewedge of the source region

although a sma
edge of thefsource

icating that this low-density region
influenced by the turbulence and the

center, and decrease gradually towards the open bound-
aries. The filaments resulting from slicing the azimuthal
structures seen in Fig. 3 extend almost uniformly along
the field lines, indicating that the turbulence is highly

os I 32 = I—1.2

2.4 -y L 0.6
—_ I*,
E o0 1.6 | S, L 0.0
> b £
0.8 # e —0.6
2.8 '
0.5
2.1
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< ;

-0.5

x (m)

Figure 3. Sn §hots“ef the electron density n. and density
ions one @n 108 m73)7 electron temperature 7. (in
electréstatic potential ¢ (in V) on the mid-plane in

te. The time-averaged density is subtracted
fluctuations. The dashed circle with radius
i = - :'0)25 m indicates the edge of the source.

3.2
2.4
1.6
0.8
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2.8
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Figure 4. Snapshots of the electron density n. (in 10*¥ m~2),
electron temperature 7. (in eV), and electrostatic potential
¢ (in V) in a quasi-steady state. The plots are made in the
r — z plane at y = 0. The snapshots are taken at the same
physical time as those shown in Fig. 3.

anisotropic.

The time-averaged profiles as a function of the radius
are presented in Fig. 5. The data are selected in the
region of —4m < z < 4m, as done in Ref. 12. The con-
siderations of selecting this region are that it is similar to
the location where the measurements were taken in the
LAPD experiments, and that there is little variation in
the simulation along the field lines in this region. The
time averaging is performed from ¢ ~ 3ms to ¢ ~ 6 ms,
with one sampling point per ~1 us (50 time steps). The
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steps are nonuniform, and the gaps between sam-
ling points are uneven. The time averaging for a quan-
mg alculated by using a rectangular rule for the time
integration, namely § = Zzzév_l Yi (Lix1 — ;) J(En —to)-
The data are binned by radius. The features seen in the
snapshots shown in Fig. 3 are confirmed in the averaged
profiles. The density and temperature are almost con-
stant at small radius, and drop off significantly at mid-
dle radius. Compared with the top-hat-like source, the
electron density profile is broadened by the turbulence
at the edge of the source region. The potential profile
shows a similar trend, and a small peak occurs near the
edge of the source region. The turbulence influence ap-
pears to be confined in the region of » < 0.5m. Beyond
this region, the density continues to drop off, whereas the
temperature and potential reverse to larger values near
the side wall. This is understandable considering that
the source temperature near the side wall is 2.72eV. The
potential is smaller and the turbulence fluctuations are
weaker when compared with the Gkeyll results'?. The
temperature and potential drop off monotonically from
the center to the side wall in that study. Note that the
uniform p-grid spacing restricts the temperature in that

particular simulation to above 1.2eV. The fluid sim
lation results®®33 show the temperature falls to closeito

zero near the side wall, but the source temperature 1
their simulations vanishes at large radius.

The statistics of density fluctuations are prgsented
Fig. 6. The density fluctuation is defined as n
ne (x,t) — 7 (), where the time-averaged density'ig
tracted. The data and the time averagin

(RMS) of the density fluctuations is ca
malized by the peak time-averaged density
strongest fluctuations occur at t edge of
region, and the maximum fluctuation level is ~13%. The
amplitude of the fluctuations decayspoth radially inward
and outward from the peakdocation. ever, when nor-
malized to the local background density, the peak fluctu-
ations are at the 40% leyekand occurOutside of the source
edge. The power sp ctrMy of the fluctuations is
calculated by using’ a Fourier transformation and nor-
malized to the value kHz. The data are the same as
ther restricted to the region of
1 fand are'interpolated linearly in time
before the Fouzier nsz;mation is applied. The power
i wsthat the fluctuations are broad-
20kHz, and obey a powerlaw distribution
with 4 powerlawsindex n = —1.87 between 20kHz and
400k Her@, the upper limit of this frequency range
set bywghe sampling frequency. The density fluctua-
\ﬂzistics agree with the Gkeyll results'?, suggesting
ulénce nature is the same in the two gyrokinetic
Previous fluid study®® argues that the density
fluctuations follow an exponential distribution in the fre-
quency range between 4 kHz and 20 kHz.

The probability density function (PDF) of the den-
sity fluctuations has been used as an indicator of den-

7

(a)

Ne (1018m—3)

(b)

/0

v,

-:H T T T T
—
6 - (c)
CAT
%
\L—. 2 4
0 T T T T T
00 01 02 03 04 05 0.6

r(m)

Figure 5. Average radial profiles of (a) the electron density
ne, (b) electron temperature 7., and (c) potential ¢. The
data in the region —4m < z < 4m are averaged over about
3ms after the turbulence reaches a quasi-steady state. The
shaded area indicates the source region.

sity blobs (structures of density enhancement) and holes
(structures of density depletion) in LAPD turbulence®!.
A negatively skewed PDF indicates presence of density
holes, whereas a positively skewed PDF indicates den-
sity blobs resulting from plasma radial transport from
the high-density source region to the low-density region
in LAPD. The PDFs at three radial locations are cal-
culated and presented in Fig. 7. The PDF is negatively
skewed inside of the edge of the top-hat-like source region.
It is close to a symmetric Gaussian distribution near the
edge of the source region, and turns positively skewed
outside of the source region. While this trend is consis-
tent with experimental data**, and previous fluid®? and
gyrokinetic!? results, large-amplitude fluctuation events
near the edge of the source region occur less frequent
than a Gaussian distribution. A snapshot of the density
blobs and holes is shown in Fig. 3. They appear side-
by-side with each other and are results of the turbulent
fluctuations.

In addition to the diagnostics that are commonly used
for comparisons with experimental data, we have also
examined the distribution functions to further check the
implementation of the open boundary and collisions, and
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a) The RMS of
the density fluctuations as a function 'ddius, normalized
to the peak electron densit A~ 320 X 10" m~3 in the
domain; (b) The RMS of thie density flugfuations as a function
of radius, normalized to the Iogal meanidensity 7. (r); (c) The
power spectral densit he dengity fluctuations. The data
are selected in the ion ~4m <z < 4m and over about
3ms after the turbule reaches a quasi-steady state. The
shaded area in indicates the source region. The
dashed line in s a powerlaw distribution. The
index n is obtaix figfing the data between 20kHz and
400 kHz to in a log scale.

-

understand the effects of particle loss at the open bound-
Fig 8‘shows the diagnostics data at the upper

u&ary taken at the same physical time as the
ane snapshots shown in Fig. 3. Similar to the
profilesyon the mid-plane, the azimuthal structures in
the density profile approximately collocate with those
in the potential profile. As expected the peak density
and potential are smaller than those on the mid-plane.
The electron distribution function shown in Fig. 8(c)

constructed by using velocity moments (density, parallel
velocity, and temperature) of the data. By visual in-
spection, the electron distribution is close to the drifted-
Maxwellian. In the sheath boundary model, outgoing
electrons with sufficiently high parallel-energies can over-
come the electrostatic potential and stream to the wall,
whereas lower-energy electrons are repelled and reflected
back to the system, with their velocities reversed. This
selective loss and reflection is expected to cause veloc-
ity space depletion. However, the diffusion term in the
collisions can shuffle electrons in velocity space to fill in
the depletion. When the distribution function is sliced
and compared with the drifted-Maxwellian at fixed p
as shown in Fig. 8(e), the depletion effect at velocities
greater than the cutoff velocity becomes clearly visible.
By checking the distribution functions at different loca-
tions along the field line, we found that the depletion
effect becomes weaker and gradually disappears as the
probe is moved farther away from the boundary. For ex-
ample, the distribution becomes nearly symmetric about
v =0 at z = 6m (Fig. 8(g)). The positive shift is not
visible in the normalized electron distribution because
the electron reference thermal velocity is much larger
than the drift velocity, but it is clearly seen in the ion dis-
tribution function at the boundary (Fig. 8(i)). The deple-
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l s Itpipffe ’t is not present in the ion distribution function

robably because the streaming loss of ions is too weak

PUb“tSM]gJ ste with the collision diffusion. Finally, we note

that the distribution functions appear to be well-resolved
in v, and improvements are expected by increasing the
resolution in u to better resolve the high-u portion, as
indicated by Fig. 8(f)(h)(j).

V. CONCLUSIONS

We have reported our recent progress regarding the
extensions of the global version of the 3D2V gyrokinetic
code GENE for applications of electrostatic edge plasma
turbulence. The code employed a 4 f-splitting technique
and was originally designed for simulating core turbu-
lence. To accommodate the large-amplitude fluctuations
that are often seen in edge plasmas, the parallel nonlin-
ear term is included and discretized along with the cor-
responding linear term by using a finite-volume method.
By including the parallel nonlinearity, the §f code be-
comes equivalent to and can be run as a full-f code. To
account for sheath effects that are important in open-

field-line systems such as the SOL, a conducting-sheat i
boundary model is implemented in the context of S

finite-volume method. The sheath boundary modelttakes [

into account particle loss to and reflection from the
without directly resolving the sheath details.

ber density and energy. The extended code
collisional electrostatic turbulence in straight open<field-
line systems.

To test these extensions, the code is appliedo simulat-
ing a test case based on LAPD iments”. The test
case has been modeled previouslyby Brauainskii—ﬂuid%v33
and gyrokinetic'? codes. Our simulation produces fea-
tures that are seen in th
vious simulations. Turbulenc
dially inward and outward,after the waves grow at the
maximum density gradi IMand are saturated pro-
gressively in time.4 The Jabsolute amplitude of density
fluctuations pea é edge of the top-hat-like source

follow a p werlawgis ibution in the higher-frequency
holes are more likely present inside of the

open boundary. For more detailed comparisons
D experiments, future extensions could include
effects that may alter the predicted rotation profiles, and
thus the turbulence characteristics. These include the ef-
fects of the mesh anode, energetic electron emission from

y (m)

-0.5 0.0 0.5 -0.5 0.0 0.5

- 10°
- 3 (f)
3 -
I 2 107+ >
ey 1 .
s 1 = 107% 4 e data ~Ne
g 5 Maxwellian
T 10712 T T T
-~ 10°
S (h)
1 <
1 1074 A
i S
! I ° °
— -8 |
i s 10
] 3
N 10712 L4 — T ~ T 10712 T T T
iy
=~ 10° -
~ 3 ()]
3 —
I 2 107+
31 I ¢
- _ - L]
~ N 1078 | o
o 3
T 10712 T T T
0 4 8 12 16
Vi H

Figure 8. Diagnostics data at the upper open boundary
(z = 9m) at the same physical time as those shown in Fig. 3.
(a) electron density n. (in 10'¥m™3); (b) electrostatic po-
tential ¢ (in V); (c) normalized electron distribution func-
tion near the center in the high-density region; (d) refer-
ence drifted-Maxwellian distribution function; (e) a slice of
the electron distribution at the minimum g grid point; (f) a
slice of the electron distribution at the minimum positive-vj
grid point. (g) and (h) show electron distribution function
in the same format as in (e) and (f), but the data are taken
at z = 6m. (i) and (j) show distribution function in the
same format as in (e) and (f), but the data are for ions. The
distribution function data are taken directly from the simu-
lation; the normalization is performed before the simulation.
The reference drifted-Maxwellian distribution is constructed
by using the velocity moments calculated from the data. The
vertical blue lines in (e) and (g) indicate the electron cutoff
velocity calculated from the potential according to Eq. (19),
with its sign reversed.


http://dx.doi.org/10.1063/1.5008895

12

VIl. ACKNOWLEDGEMENTS

| This manuscript was accepted by Phys. Plasmas. Click here to see the version of record.
‘ s It]Pot ~athode, and viscosity. In addition, it is highly

.desirable to implement the more sophisticated Fokker-

Pum'ﬁl‘ﬂh@lg yperator to conserve particle, momentum and
energy numerically?®, preferably with an implicit time-
stepping scheme, so that the collision effects on LAPD
and edge plasmas can be realistically evaluated. Quan-
titatively matching GENE simulations with experimen-
tal results and examining the transport mechanisms in
LAPD turbulence?®3? are of great interest and left for
future work.

A few additional improvements and complexities can
be built up upon the present code. First, the Poisson
equation (7) uses a constant background ion density in
the polarization charge density term. To evaluate the
effects of this simplification, a simulation with the back-
ground ion density doubled to n; = 1.2 x 10'¥* m~3 has
also been performed. No material change has been found
in the averaged potential profile. This is understand-
able because the averaged potential at the sheath en-
trance needs to satisfy the condition ¢g, ~ 37, to reflect
most of the electrons to give an electron flux close to
the ion flux to the wall; changing n;y will just change
the small difference between the electron density and the
ion guiding center density that is needed to maintai

maximum fluctuation level in the potential is r
slightly from ~ 16% to ~ 14%. Although the
lence appears to be insensitive to the change i

the sheath potential. In addition, it is found that ‘Nf\

on the conjugate gradient method to so
sparse-matrix equation from the nonlinear
tion. Second, to simulate SOL twb

(see Chapter 5 in Ref. 13).
tion of additional terms in
are neglected. Similar t6 t nonlinearity and
the parallel nonlinearity ig the styaight-field-line geom-
etry, the nonlinear t rms&ﬁted with the magnetic
gradient and curvagure can be cembined with the linear
terms, and discreti by using a finite-volume method.
ch as electromagnetic effects,

nd plasma—wall interactions are re-
del the edge plasmas. A few of

these dire being pursued, and the progress will
be reporte %ture.
—
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