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New Gramians for Switched Linear Systems:
Reachability, Observability, and Model Reduction

Igor Pontes Duff, Sara Grundel and Peter Benner

Abstract—In this paper, we propose new algebraic Gramians
for continuous-time switched linear systems, which satisfy gener-
alized Lyapunov equations. The main contribution of this work is
twofold. First, we show that the ranges of those Gramians encode
the reachability and observability spaces of a switched linear
system. As a consequence, a simple Gramian-based criterion for
reachability and observability is established. Second, a balancing-
based model order reduction technique is proposed and, under
some sufficient conditions, stability preservation and an error
bound are shown. Finally, the efficiency of the proposed method
is illustrated by means of numerical examples.

Index Terms—Model reduction; switched systems; balanced
truncation; reachability and observability

I. INTRODUCTION

WE consider a continuous-time switched linear system
(see [26], [35]) (abbreviated by SLS1) given by

ΣSLS :

{
ẋ(t) = Aq(t)x(t) +Bq(t)u(t), x(0) = x0,
y(t) = Cq(t)x(t),

(1)

where Ω = {1, . . . ,M} is the set of different modes of ΣSLS ,
x(t) ∈ Rn is the state, u(t) ∈ Rm is the controlled input,
y(t) ∈ Rp is the measured output and q(t) is the switching
signal, i.e., a piecewise constant function taking values from
the index set Ω. The system matrices Aj ∈ Rn×n, Bj ∈ Rn×m
and Cj ∈ Rp×n, where j ∈ Ω, correspond to the linear system
active in mode q, and x0 is the initial state. Furthermore,
let x(t) = φ(t, x0, u, q) denote the state trajectory at time
t of the SLS initialized at x(0) = x0 ∈ Rn, with input u
and switching signal q. In what follows, we assume a zero
initial condition, i.e., x(0) = 0 in (1) and, for j ∈ Ω, the
matrices Aj are Hurwitz. When these models are large-scale,
modern analysis, simulation and optimization tools become
drastically inefficient and thus, model order reduction (MOR)
may become necessary.

In the context of linear time-invariant systems, several
model reduction approaches have been efficiently developed
since the 1960s (see the monograph [3] and the recent surveys
[4], [9]). However, reliable MOR techniques for switched sys-
tems have been only studied in recent years. For discrete-time
switched linear systems, see for instance [8] for reachability
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1Note that this class of systems is also referred to as Linear Switched
Systems (or LSS) in the literature.

and observability reduction with constrained switching, [17],
[18], [38] for H∞-type reduction, and [16], [21], [33] for
balancing-based methods. For continuous-time switched linear
systems, see [6], [7], [22] for a class of moment-matching
methods, [23], [27], [28], [32] for balancing-based methods
and [31] for model reduction of systems affected by a low-
rank switching. Also, [29] presents a theoretical analysis of
the techniques proposed in [32] and [33] for continuous- and
discrete-time SLS.

Besides [27], all of the balancing-based methods rely on
Gramians satisfying Linear Matrix Inequalities (LMIs). Al-
though LMIs provide a very flexible tool in control theory,
they are costly to solve numerically in the large-scale setting.
To overcome this, the current paper aims at providing new
algebraic Gramians for SLS, denoted by P andQ, respectively,
which satisfy generalized Lyapunov equations. These Grami-
ans are inspired by bilinear model reduction techniques, in
which the generalized Lyapunov equation plays an important
role, e.g., (see [13]). In addition, we prove that P and Q
encode the reachability and observability spaces of the SLS
(1), and their kernels correspond to the uncontrollable and
unobservable spaces.

Once the proposed Gramians are computed, by means of
a square root balancing approach (see [3]) and for a given
state space dimension r � n, we are able to construct two
projection matrices V,W ∈ Rn×r such that WTV = Ir,
which allows us to determine the reduced-order SLS as

Σ̂SLS :

{
˙̂x(t) = Âq(t)x̂(t) + B̂q(t)u(t), x̂(0) = 0,

ŷ(t) = Ĉq(t)x̂(t),
(2)

where

Âj = WTAjV, B̂j = WTBj , Ĉj = CjV (3)

for j ∈ Ω. We call V,W ∈ Rn×r global projection matrices
because they are independent of the switched mode j ∈ Ω (see
[15] for a discussion of local and global projection techniques).
Readers should refer to [23] for a balancing-type method
where the projection matrices Vj ,Wj ∈ Rn×r might depend
on the mode j ∈ Ω and the authors consider a more general
realization than (1).
Outline. The remaining parts of the paper are organized as
follows. In Section 2, the SLS is formulated as a bilinear
system. Inspired by this transformation, Gramians for SLS
are proposed. In Section 3, we prove that those Gramians
encode the reachability and observability spaces. Also, we
propose a Gramian-based criterion to determine if an SLS is
reachable and observable. In Section 4, the balanced truncation
procedure based on these Gramians is introduced. Moreover,
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under a certain assumption (see [29]), this procedure is shown
to preserve quadratic stability and to have an error bound.
Finally, numerical results are shown in Section 5, and Section
6 concludes the paper.
Notation. We denote by N the set of natural numbers including
0. Let A ∈ Rn×m and B ∈ Rp×q be two real matrices, then
A ⊗ B ∈ Rnp×mq is the corresponding Kronecker product
between A and B, and vec (A) is the vectorization of the
matrix A formed by stacking the columns of A into a single
column vector. If P and Q are two symmetric matrices, we
write P < Q (resp. P ≤ Q ) if the matrix Q− P is positive
definite (resp. semidefinite).

II. BILINEAR FORMULATION OF AN SLS AND
GENERALIZED GRAMIANS

A. Bilinear realization
In this section, we rewrite the equations of an SLS to

resemble a bilinear system. A very similar procedure was
developed in [11] in the context of parametric systems.

To this aim, first, let us define the matrices

A = A1 Dj = Aj −A1, for j = 1, . . . ,M. (4)

Notice, even though D1 = 0, for simplicity, we are going
to keep it in the equation. Now, let us replace the switching
signal q(t), which takes values in the mode set Ω, by M
switching indicators {q1(t), . . . , qM (t)}, taking binary values,

i.e., qj(t) ∈ {0, 1} such that
M∑
k=1

qk(t) ≡ 1. Therefore,

q(t) = k ⇔ qk(t) = 1 and qj(t) = 0 for j 6= k.

With this notion, the mode k is active when qk(t) = 1 and
qj = 0 for j 6= k. The SLS from (1) can be expressed as

ẋ(t) = Ax(t) +

M∑
j=1

qj(t)Djx(t) + qj(t)Bju(t),

y(t) =

M∑
j=1

qj(t)Cjx(t).

(5)

Let us include the switching indicators as additional inputs,
i.e.,

(ũ(t))T =
[
u(t)T q1(t) . . . qM (t)

]
∈ R1×(m+M)

and B̃j =
[
Bj 0

]
for j ∈ Ω. Then,

ẋ(t) = Ax(t) +
M∑
j=1

ũj+m(t)Djx(t) + ũj+m(t)B̃j ũ(t),

y(t) =
M∑
j=1

ũj+m(t)Cjx(t).

(6)
The crucial observation is that the equations above are very

similar to a bilinear system realization, which is usually given
as

ẋ(t) = Ax(t) +

M∑
j=1

uj(t)Njx(t) +Bu(t),

y(t) = Cx(t).

(7)

Indeed, if Bj = B and Cj = C for j ∈ Ω, then, since

uj+m(t) = qj(t) and
M∑
k=1

qk(t) ≡ 1, the terms of equation

(6) can be written as

M∑
j=1

ũj+m(t)B̃j ũ(t) =
[
B 0

] M∑
j=1

qj(t)ũ(t) = Bu(t),

and, similarly,

M∑
j=1

ũj+m(t)Cjx(t) = C
M∑
j=1

qj(t)x(t) = Cx(t).

Hence, in this case, the realization of an SLS can be recast as a
bilinear system. However, in the general case, when Bj 6= Bk
and Cj 6= Ck for j 6= k, this is no longer true.

In what follows, we recall some results of model reduction
of bilinear systems and, inspired by that, new Gramians for
SLS are proposed.

B. Generalized Gramians for SLS

In the past years, model reduction of bilinear systems has
been studied in the literature, see [5], [13], [30], [37] for
more details. A bilinear system as (7) is associated to the
reachability and observability Gramians

PB =

∞∑
k=1

∫ ∞
0

. . .

∫ ∞
0

Pk(t1, . . . , tk)Pk(t1, . . . , tk)T dt1 . . . dtk,

(8a)

QB =
∞∑
k=1

∫ ∞
0

. . .

∫ ∞
0

Qk(t1, . . . , tk)Qk(t1, . . . , tk)T dt1 . . . dtk,

(8b)

respectively, where

P1(t1) = eAt1B,

Q1(t1) = eA
T t1CT ,

Pk(t1, . . . , tk) = eAtk
[
N1Pk−1 . . . NMPk−1

]
,

Qk(t1, . . . , tk) = eA
T tk
[
NT

1 Qk−1 . . . NT
MQk−1

]
.

Moreover, if the Gramians exist, i.e., the infinite sums
converge, they satisfy the following generalized Lyapunov
equations

APB + PBAT +
M∑
j=1

(
NjPBNT

j

)
+BBT = 0, (9a)

ATQB +QBA+
M∑
j=1

(
NT
j QBNj

)
+ CCT = 0. (9b)

Those equations where proposed in [24] and used to construct
minimal realizations and model reduction techniques based on
balanced truncation of bilinear systems, see, e.g., [1], [2], [37]
and [13]. As mentioned before, the realization of an SLS is
not equivalent to a bilinear realization because Bk 6= Bj and
Ck 6= Cj for j 6= k. However, inspired by those expressions,
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we propose the following Gramians to be associated to a given
SLS.

Definition 1 (Generalized Gramians for SLS). Given an SLS
as in (1) and the matrices Dj defined in (4), let P,Q be

P =
∞∑
k=1

∫ ∞
0

. . .

∫ ∞
0

Pk(t1, . . . , tk)Pk(t1, . . . , tk)T dt1 . . . dtk,

(10a)

Q =
∞∑
k=1

∫ ∞
0

. . .

∫ ∞
0

Qk(t1, . . . , tk)Qk(t1, . . . , tk)T dt1 . . . dtk,

(10b)

where

P1(t1) = eAt1
[
B1 . . . BM

]
,

Q1(t1) = eA
T t1
[
CT1 . . . CTM

]
,

Pk(t1, . . . , tk) = eAtk
[
D1Pk−1 . . . DMPk−1

]
,

Qk(t1, . . . , tk) = eA
T tk
[
DT

1 Qk−1 . . . DT
MQk−1

]
.

If they exist, P and Q will be called the reachabillity and
observability Gramians of the SLS (1).

As a consequence, if P,Q exist, they are symmetric,
positive semidefinite matrices which satisfy the following
generalized Lyapunov equations

AP + PAT +
M∑
j=1

(
DjPDT

j +BjB
T
j

)
= 0, (11a)

ATQ+QA+

M∑
j=1

(
DT
j QDj + CTj Cj

)
= 0. (11b)

Note that the name ”Gramian” will be justified in Sec-
tion III, where the connection between the newly proposed
SLS Gramians and the reachability and observability sets is
established.

The SLS Gramians can be computed using the Kronecker
product, i.e., let

M =

(
A⊗ In + In ⊗A+

M∑
j=1

Dj ⊗Dj

)
∈ Rn

2×n2

,

B = vec

(
M∑
k=1

BjB
T
j

)
and C = vec

 M∑
j=1

CTj Cj

 .

Then, the generalized reachability and observability Gramians
are given by

vec (P) = −M−1B and vec (Q) = −M−TC.

However, in this Kronecker form, the solution of the gen-
eralized Lyapunov equation is determined by solving a set of
n(n + 1)/2 equations in n(n + 1)/2 variables, whose cost
is O(n6) operations. Fortunately, new efficient methodologies
have been developed recently to determine low-rank solutions
of these generalized Lyapunov equations (see [19], [12], [34]
and [25]) which are suitable in the large-scale setting.

The following theorem, from [37], states a sufficient condi-
tion for existence and uniqueness of P and Q.

Theorem 1 (Sufficient conditions for existence and uniqueness
[37], Theorem 2). Let A, Dj , Bj , and Cj be given by the nota-
tion above. In addition, suppose that A is Hurwitz. Then, there
exist real scalars β > 0 and 0 < α ≤ −maxi(Re(λi(A)))
such that

‖eAt‖ ≤ βe−αt, for t ≥ 0.

Then, the reachabillity and observability Gramians satisfying
(11a) and (11b) exist if∥∥∥∥∥∥

M∑
j=1

DjD
T
j

∥∥∥∥∥∥ < 2α

β2
. (12)

Furthermore, under the conditions of Theorem 1, the sym-
metric positive semidefinite solutions P and Q of equation
(11a) can be expressed as an infinite sum of symmetric positive
semidefinite matrices Pk and Qk (see [37] for more details),
i.e.,

P =
∞∑
k=1

Pk and Q =
∞∑
k=1

Qk,

where

AP1 + P1A
T +

M∑
j=1

BjB
T
j = 0,

ATQ1 +Q1A+
M∑
j=1

CTj Cj = 0,

and

APk + PkAT +
M∑
j=1

DjPk−1D
T
j = 0,

ATQk +QkA+
M∑
j=1

DT
j Qk−1Dj = 0.

Remark 1. In [31], the authors also replace the SLS by a non-
switched system with extended input and output vectors, which
is able to reproduce the dynamical behavior of the original
SLS by applying a certain feedback law. This approach is
designed for systems with low-rank switching, i.e., the matrices
Dj have a low-rank factorization. In contrast to [31], the
approach presented in this section does not have any limitation
with respect to low-rank switching.

From here on, we assume the existence and uniqueness
of positive semidefinite solutions to (11a) and (11b) and
that the conditions of Theorem 1 hold. In what follows, we
show that the proposed Gramians encode the reachability and
observability sets of the SLS (1).

III. GRAMIANS AND REACHABILITY AND OBSERVABILITY
SETS

As previously mentioned, the main goal of this section is
to show that the SLS Gramians encode the reachability and
observability sets of the SLS (1).

First of all, let us recall the definition and properties of
those sets in the context of SLS. The reader should refer to
[36] and [35] for more details. Let us start with the notion of
reachability and observability sets.
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Definition 2 (Reachable set). A state x ∈ Rn is reachable, if
there exist a time instant tf , a switching signal q : [0, tf ]→ Ω,
and an input u : [0, tf ] → Rp, such that φ(tf , 0, u, q) = x.
The reachable set of the SLS (1) is denoted by R, that is the
set of states which are reachable.

Definition 3 (Observability set). A state x is said to be
unobservable, if for any switching signal q, there exists an
input u(t) such that

Cq(t)φ(t, x, u, q) = Cq(t)φ(t, 0, u, q), ∀t ≥ 0.

The unobservable set of the SLS (1), denoted by UO, is the
set of states which are unobservable. The observable set of the
SLS, denoted by O, is defined by O = (UO)⊥.

In what follows, we recall the algebraic characterizations of
R and O and we state the main result of this paper, i.e., the
Gramian-based version of this result.

A. Characterization of the reachability and observability sets

The following result, from [35], describes the reachable and
observable sets of the SLS (1) by algebraic conditions.

Theorem 2 (Algebraic conditions [35], Theorem 4.17). For
the SLS (1), the reachable and observable sets R and O are
linear subspaces of Rn given by

R =
∞∑
k=1

 ∑
i0,...,ik∈Ω
j1,...,jk∈N

Ajkik . . . A
j1
i1

range (Bi0)

 ,

and

O =

∞∑
k=1

 ∑
i0,...,ik∈Ω
j1,...,jk∈N

(Ajkik )T . . . (Aj1i1 )T range
(
CTi0
) .

Theorem 2 generalizes the well-known reachability and
observability criteria for LTI systems. In the context of LTI
systems, the reachable set is a linear subspace of Rn given
by R =

∑∞
k=0A

k range (B), i.e., all possible combinations
of polynomials in A multiplied by B. In the context of
SLS, the reachable set is also a linear subspace of Rn given
by all possible combinations of M -variate polynomials in
A1, . . . , AM multiplied by Bk. Moreover, this subspace can
be seen as the smallest subspace of Rn that contains each
range (Bi) and is invariant under each Ai, for i ∈ Ω.

In what follows, we state the main result of this paper.

Theorem 3 (Gramian conditions). Let P,Q be the solutions
of the generalized Lyapunov equations (11a) and (11b), re-
spectively. Then, the reachable and observable spaces R, O
are given by

R = range (P) and O = range (Q) .

Proof. The proof of this theorem shows that the ranges of P
and Q are given by the algebraic condition of Theorem 2. The
complete proof is detailed in the appendix.

Theorem 3 states a Gramian-based characterization of the
reachable and observable sets. Moreover, the following reach-
ability and observability criteria are corollaries of this result.

Corollary 1 (Reachability and observability criteria). Given
Σ, an SLS as in (1), and suppose that P,Q are the unique
solutions of the generalized Lyapunov equations (11a) and
(11b). Then,

1) Σ is completely reachable if and only if

range (P) = Rn.

2) Σ is completely observable if and only if

range (Q) = Rn.

Proof. The SLS is completely reachable (respectively, observ-
able) if and only if R = Rn (respectively, O = Rn). Then the
result is a straightforward application of Theorem 3.

Corollary 1 provides simple criteria to determine if a given
SLS is completely reachable and observable. This result is
equivalent to verifying if the algebraic conditions given in
Theorem 2 generate the entire space. However, to the best
of the authors’ knowledge, they have not been presented in
this Gramian-based form.

To sum up, the Gramians P and Q proposed in Definition 1
encode the reachable and observable spaces of a given SLS (as
stated in Theorem 3). As a consequence, Corollary 1 provides
a simple way to verify if a given SLS is completely reachable
and observable. In the next section, we present the procedure
for model order reduction by balanced truncation using these
Gramians.

IV. MODEL REDUCTION FOR SWITCHED LINEAR SYSTEMS

In this section, we state the balancing procedure for model
reduction of SLS and we state some sufficient conditions under
which this procedure preserves stability, and provide an error
bound.

A. Balanced truncation for SLS

As mentioned before, the Gramians P and Q encode the
reachable and observable spaces. This can be rewritten as
follows :

1) If a state x lies in ker(P), then it is unreachable.
2) If a state x lies in ker(Q), then it is unobservable.

Hence, the subspace ker(P) ∩ ker(Q) is not important for
the transfer between input and output and might be truncated.
This motivates us to use the proposed Gramians to determine
the reduced-order models. To guarantee that states which
are hard to control and hard to observe will be truncated
simultaneously, we need to find a transformation T , leading
to a transformed switched system, whose controllability and
observability Gramians are equal and diagonal, i.e.,

T−1PT−T = TTQT = Σ = diag (σ1, . . . , σn) ,

with σi ≥ σi+1. This balancing transformation exists if and
only if P and Q are full rank matrices (see Chapter 7 of [3]).
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Next, we assume that the matrices of the balanced system are
partitioned as

Aj,B =

[
A11
j A12

j

A21
j A22

j

]
, Bj,B =

[
B1
j

B2
j

]
,

Cj,B =
[
C1
j C2

j

]
and Σ =

[
Σ1 0
0 Σ2

]
,

where Σ1 = diag (σ1, . . . , σr) and Σ2 = diag (σr+1, . . . , σn).
In the balancing basis, the truncation step is simply obtained
by setting the ROM to be given by the matrices Âj =
A11
j , B̂j = B1

j , Ĉj = C1
j .

It is worth noticing that, even if the Gramians P and Q
are not full rank matrices, balanced truncation can still be
performed. In this case, as a consequence of Corollary 1, there
exist some states that are either unreachable or unobservable.
Analogous to the linear case, we do not need to compute the
balancing transformation explicitly. Instead, one can construct
two projection matrices V and W using the Cholesky factors
of P and Q, and the SVD of their product. This procedure is
known as square-root balanced truncation (see Section 7.3 of
[3]), and its version for SLS is presented in Algorithm 1.

Algorithm 1 Balanced truncation for SLS
Input: Matrices (Aj , Bj , Cj) for j = 1, . . . ,M and reduced-

order r.
Output: Reduced-order matrices (Âj , B̂j , Ĉj) for j =

1, . . . ,M .
1: Let A = A1, Dj = Aj −A1.
2: Compute P and Q by solving the generalized Lyapunov

equations (11a) and (11b).
3: Compute the Cholesky decomposition P = SST and Q =
RRT .

4: Compute the SVD of STR written as

STR =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
.

5: Construct the projection matrices V = SU1Σ
− 1

2
1 and W =

RV1Σ
1
2
1 .

6: Construct Âj = WTAjV , B̂j = WTBj and Ĉj = CjV
for j = 1, . . . ,M .

7: return Âj , B̂j and Ĉj .

One should notice that, if the matrix A is Hurwitz, the
proposed procedure provides a matrix Â = WTAV which is
also Hurwitz, provided σr 6= σr+1. This is a consequence of
Theorem 2.3 from [14]. In a large-scale setting, a solution of
the generalized Lyapunov equation is computed directly in the
factorized form, i.e., one searches for the solution S as a low-
rank factor such that P ≈ SST (see [12], [34] and [25]). In
this context, one can avoid constructing the full solutions P,Q,
which is very costly with respect to memory consumption and
computational resources.

Remark 2. The reader should notice that, in equation (4), we
have made the choice of A = A1, which plays an important
role in the Gramians computation. However, by reordering the
subsystems, other choices could be made. Hence, for different
ordering, we might expect different Gramians and, conse-
quently, different model reduction results. In our experience,

the strategy to set A to be the matrix of the subsystem which
corresponds to the first mode in the simulation of the SLS (1)
is a good choice.

Remark 3. If the subsystems present very different dynamics,
we might expect the Gramians to be very rich with respect to
subspace information. As a consequence, very few states (or
even zero) can be removed from the original system.

In the next subsection, under some assumptions, we show
some properties of the reduced-order models obtained by
Algorithm 1.

B. Quadratic stability preservation and error bounds

We briefly review the definition of quadratic stability for
SLS.

Definition 4 (Quadratic stability [29], Lemma 1). The SLS as
in (1) is called quadratically stable if there exists a positive
definite matrix P > 0 such that

ATj P + PAj < 0, for all j ∈ Ω.

Quadratic stability is a sufficient condition for exponential
stability for all switching signals (see [26]). In what follows
in this section, we employ the following assumption.

Assumption 1. Let P and Q be symmetric positive definite
solutions of (11a) and (11b). Let us assume that

DkP + PDT
k ≤

M∑
j=1

DjPDT
j +

M∑
j=1,j 6=k

BjB
T
j , and (13a)

DT
kQ+QDk ≤

M∑
j=1

DT
j QDj +

M∑
j=1,j 6=k

CTj Cj , (13b)

for every k = 2, . . . ,M .

Reader should notice that Assumption 1 implies that

AkP + PATk +BkB
T
k ≤ 0, (14a)

ATkQ+QAk + CTk Ck ≤ 0, (14b)

for every k ∈ Ω. Hence, under Assumption 1, the Gramians
proposed in this work are also Gramians in the sense of [29,
Definition 10], i.e., symmetric positive definite matrices which
satisfy the set of LMIs (14). As a consequence, under the
Assumption 1, all of the results developed in [29] are also
valid for the Gramians proposed in (10). Two are particularly
important for model reduction, and we recall them in what
follows.

Proposition 1 (Quadratic stability preservation [29], Lemma
12). Under Assumption 1, suppose that at least one of the
above propositions holds:

1) AkP + PATk +BkB
T
k < 0,∀k ∈ Ω,

2) ATkQ+QAk + CTk Ck < 0, ∀k ∈ Ω.

Then the reduced-order model constructed by Algorithm 1 is
also quadratically stable.

Proposition 1 states a sufficient condition to preserve
quadratic stability by model reduction using Algorithm 1. The
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following result provides an error bound between the original
and the reduced-order model.

Theorem 4 (Error bound [29], Theorem 6). Under Assumption
1, the output error between the original model and the
reduced-order model (2), obtained by Algorithm 1, is bounded
by

‖y − ŷ‖L2 ≤ 2

(
n∑

k=r+1

σk

)
‖u‖L2 (15)

for every switching signal q(t), where σk are the neglected
singular values.

Proposition 1 and Theorem 4 give some important properties
of model reduction by balanced truncation using the Gramians
from Definition 1, provided Assumption 1 holds. Since this
assumption involves LMIs, it is hard to check in the large-
scale setting. However, in the case where Dk = 0, for all
k ∈ Ω, i.e., where all of the subsystems have the same matrix
A (a situation that might occur when only the actuator position
varies with time), Assumption 1 holds. This can induce us to
think that Assumption 1 might hold whenever the matrices Dk

are small. We leave it as an open problem whether weaker
assumptions exist such that similar results are also valid. It is
worth noticing that the error bound for balanced truncation of
bilinear systems was for a long time also an open problem.
Recently, the paper [10] proposed a solution using an infinite-
dimensional setting and Hilbert space techniques. We believe
that this methodology might also be adapted to SLS and we
leave this as future work.

If Assumption 1 is not satisfied, we can still use the
proposed Gramians to remove states that are related to zero
and very small singular values. This would be a balancing-
like approach were the main information with respect to the
important subspaces is still kept in the reduced-order model.
Also, it is important to emphasize that the Gramians presented
in [29] are solutions of LMIs and, in some cases, they might
not exist. This happens typically when the original system
is not quadratically stable (even if all of the subsystems are
stable). In this case, we can still use the Gramians from (10)
for model reduction.

In the next section, we apply the results derived in this paper
to some numerical examples.

V. NUMERICAL EXAMPLES

This section is dedicated to the application of results
proposed in Sections III and IV, namely the Gramian-based
characterization (Theorem 3) of the reachable and observable
spaces and the balanced truncation procedure (Algorithm 1).
The results will be compared with the balancing method
proposed in [27]. There, it has been shown that, if certain
restrictive conditions are satisfied, a simultaneous balanced
transformation can be constructed. When those conditions are
not satisfied, the authors propose to use, instead, the so-called
reachability and observability average Gramians given by

Pavg =
1

M

M∑
k=1

Pk and Qavg =
1

M

M∑
k=1

Qk, (16)

where Pk and Qk satisfy

AkPk + PkATk +BkB
T
k = 0,

ATkQk +QkAk + CTk Ck = 0.

In what follows, we illustrate the Gramian-based character-
ization of the reachbility set using Theorem 3.

A. Example 1: Reachability set of SLS

Let us consider a 2-mode SLS Σ given by

A1 = −I8, A2 = A1 +D,

where D ∈ R8×8 satisfies D21 = D32 = D43 = 1 and
Djk = 0 elsewhere. In addition, BT1 =

[
1 0 . . . 0

]
,

BT2 =
[
0 . . . 0 1

]
. Then, the reachability Gramian P

given by equation (11a) is

P = diag

(
1

2
,

1

4
,

1

8
,

1

16
, 0, 0, 0,

1

2

)
and the average reachability Gramian (proposed in [27]) is

Pavg = diag

(
1

2
, 0, 0, 0, 0, 0, 0,

1

2

)
.

As a consequence, since rank (P) 6= 8, Corollary 1 tells us
that Σ is not completely reachable. In addition, according to
Theorem 3, the reachable space of Σ is given by

R = range (P) = span (e1, e2, e3, e4, e8)

Notice that the average Gramian Pavg does not encode the
reachability space. More generally, one can show that

range (Pavg) ⊂ range (P) .

In what follows, we use the Gramians to construct reduced-
order models via Algorithm 1.

B. Example 2: Model reduction of a small scale SLS
Let us now consider a 2-mode SLS of order 12, with state

matrices given by A1, A2 ∈ R12×12 such that

A1(i, j) =


−1, if i = j,
1
2
, if i− 1 = j,

0, otherwise,
and A2(i, j) =


−2, if i = j,
4
5
, if i− 1 = j,

− 1
5
, if i+ 1 = j,

0, elsewhere,

BT
1 = C1 =

[
0 . . . 0 1

]
and BT2 = C2 = [1 0 . . . 0].

Let A = A1 and D = A2−A1. The reader should notice that
the matrix D has no low-rank factorization and the method
proposed in [31] is not suitable for this example. For an order
r = 6, we construct reduced-order models using generalized
Gramians P and Q satisfying (11), and the average Gramians
Pavg and Qavg satisfying (16). We compare the time domain
response of the original SLS with that of the reduced-order
models. We consider a control input u(t) = e−

1
2 t and a

switching signal

q(t) =

{
1, t ∈ [0, 0.2) ∪ [0.5, 3) ∪ [3.5, 5),
2, t ∈ [0.2, 0.5) ∪ [3, 3.5).

We depict the absolute error between the original system and
the reduced-order models in Figure 1.
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Fig. 1. Absolute output error between the original model and the reduced
ones for Example 2 (generalized Gramians: red solid line, averaged Gramians:
green dashed line).

By inspecting Figure 1, we conclude that both methods
are able to follow the behavior of the original system with
a certain precision. It is worth noticing that the proposed
method performs slightly better than the averaged Gramians.
Additionally, by numerical computation, we can verify that the
following matrix inequalities

0 < DPDT +B2B
T
2 , 0 < DTQD + CT2 C2,

DP + PDT < DPDT +B1B
T
1 , and

DTQ+QD < DTQD + CT1 C1

are satisfied for the generalized Gramians. This implies that
Assumption 1 holds. As a consequence, the original model
and the reduced-order model obtained using the generalized
Gramians are quadratically stable. Furthermore, the error
bound (15)

‖y − ŷ‖L2 ≤ 2

(
12∑
k=7

σk

)
‖u‖L2 ≈ 1.87 · 10−2

also holds. Indeed, one can compute by quadrature that
‖y − ŷ‖L2

≈ 1.29 · 10−4 for the above simulation.
In what follows, we apply the proposed method to a large-

scale system.

C. Example 3: Model reduction of a large scale SLS

For the next experiment, let us consider a 2-mode SLS of
order 1000, whose matrices are given by

A1 =


−2 1
0.1 −2 1

. . . . . . . . .
0.1 −2

 , A2 =


−2 0.5
1 −2 0.5

. . . . . . . . .
1 −2

 ,
BT1 =

[
1 0 . . . 0

]
, BT2 =

[
0 . . . 0 1

]
, C1 =[

0 1 0 . . . 0
]

and C2 =
[
0 . . . 0 1 0

]
. Let A =

A1 and D = A2 − A1. Once again the matrix D has no

low-rank factorization and the method proposed in [31] is not
suitable for the example. We first compute the generalized
Gramians P and Q satisfying (11), and the average Grami-
ans Pavg and Qavg satisfying (16). The normalized Hankel
singular values are represented in Figure 2.

0 10 20 30 40 50 60
10−15

10−10

10−5

100

σ
no

rm
al

iz
ed

Singular values decay

Gen. Gramians
Aver. Gramians

Fig. 2. Normalized Hankel singular values decay for Example 3 corresponding
to the generalized Gramians (red solid line) and averaged Gramians (green
dashed line).

Choose the truncation order r = 15 for the reduced SLS
using both methods. We compare the time domain response
of the original SLS against the ones corresponding to the two
reduced models. For this, we use as the control input, u(t) =
10 sin(30t)e−t and as the switching signal

q(t) =

{
1, t ∈ [0, 0.5) ∪ [2, 2.5) ∪ [4, 5) ∪ [5.5, 6),
2, t ∈ [0.5, 2) ∪ [2.5, 4) ∪ [5, 5.5).

The results are represented in Figure 3. The absolute errors are
represented in Figure 4. Also, Assumption 1 does not hold
for this system. Indeed, we have computed numerically the
eigenvalues of B1B

T
1 +DPDT −DP −PDT , and we have

found negative eigenvalues.

0 1 2 3 4 5 6

0

1

2

3

time (t)

ou
tp

ut

Time-domain simulation

Original SLS
BT-Gen.Gramians
BT-Aver. Gramians

Fig. 3. Output corresponding to the time domain simulation of the original
model (blue solid line), generalized Gramian ROM (red dotted line) and
averaged Gramian (green dashed line) ROM for Example 3.

By inspecting the time-domain error between the original
response and the two reduced-order models (Figure 4), we ob-
serve that the new proposed method generally produces better
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Fig. 4. Absolute output error between the original model and the reduced
ones for Example 3 (generalized Gramians: red solid line, averaged Gramians:
green dashed line).

results. Although Assumption 1 does not hold, we compute the
error bound of Theorem 4 to inspect if it is also valid in this
case. For this, notice that ‖u‖L2

= 10
√

225
901 ≈ 4.997, so that

the error bound can be computed as 2
(∑n

k=r+1 σk
)
‖u‖L2 =

5.033 · 10−5. By numerical computing of the L2-norm of the
error between the original and the reduced-order model, one
obtains 7.0 · 10−9 for the system obtained using the proposed
method and 0.27 for the one obtained using average Gramians.
As a conclusion, even though Assumption 1 does not hold, the
bounds presented in Theorem 4 are satisfied for the proposed
method.

VI. CONCLUSION

In this paper, we have proposed new reachability and ob-
servability Gramians for SLS, satisfying generalized Lyapunov
equations. Also, we prove that those Gramians encode the
reachable and observable sets of the SLS. Based on these
Gramians, a balancing-type procedure is proposed enabling
to find global projectors V and W to construct a reduced-
order model. Also, under certain assumptions, the proposed
procedure is shown to preserve quadratic stability and to have
an error bound. However, since those assumptions are difficult
to check in the large-scale context, one possible future research
axis is to find whether weaker assumptions exist such that
similar results are also valid. Finally, the results are illustrated
by some numerical examples.
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APPENDIX

In what follows, we present the proof of Theorem 3.
We only prove that R = range (P). The proof that O =
range (Q) follows analogously.

The complete proof of Theorem 3 requires the following
propositions.

Proposition 2 ([20], Theorem 2.2). Let A ∈ Rn×n be a
Hurwitz matrix and B ∈ Rn×m. Then, the Lyapunov equation

AP + PAT +BBT = 0 (17)

has a unique symmetric positive semidefinite solution P sat-
isfying

range (P) =
∞∑
l=0

Al range (B) .

Proposition 3. Let A ∈ Rn×n be a Hurwitz matrix and
B1, . . . , BM ∈ Rn×m. Then, the Lyapunov equation

AP + PAT +
M∑
j=1

BjB
T
j = 0 (18)

has a unique symmetric positive semidefinite solution P sat-
isfying

range (P) =

∞∑
l=0

M∑
j=1

Al range (Bj)

Proof. Let Pj be the unique solution of

APj + PjAT +BjB
T
j = 0.

Then, by linearity, P =
∑M
j=1 Pj is the solution of the

Lyapunov equation (18). Moreover, since Pj is a symmetric
positive semidefinite matrix, range (P) =

∑m
j=1 range (Pj)

and the result follows as a consequence of Proposition 2.

Proposition 4. Let A ∈ Rn×n be a Hurwitz matrix and
Pk−1 be a symmetric positive semidefinite matrix. Then, the
Lyapunov equation

APk + PkAT +
M∑
j=1

DjPk−1D
T
j = 0 (19)

has a unique symmetric positive semidefinite solution Pk
satisfying

range (Pk) =
∞∑
l=0

M∑
j=1

AlDj range (Pk−1) .

Proof. Since Pk−1 is symmetric positive semidefinite, it has
a decomposition given by Pk−1 = Lk−1L

T
k−1. Then, equation

(19) can be rewritten as

APk + PkAT +
M∑
j=1

DjLk−1L
T
k−1D

T
j = 0

If we rewrite B̃j = DjLk−1, by applying Propostion 3 and
using the fact that range (Lk−1) = range (Pk−1), the result
follows.

Proposition 5. Let A ∈ Rn×n be a Hurwitz matrix. Suppose
P is the unique solution of

AP + PAT +
M∑
j=1

(
DjPDT

j +BjB
T
j

)
= 0.
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To simplify the notation, let us denote A = DM+1. Then,

range (P) =
∞∑
k=1

 ∑
i0,...,ik∈Ω∪{M+1}

j1,...,jk∈N

Djk
ik
. . . Dj1

i1
range (Bi0)

 .

Proof. As stated in Section 2, P =
∑∞
k=1 Pk. Hence, since

Pk are symmetric positive semidefinite matrices for all k =
1, 2, . . . , we must have

range (P) =
∞∑
k=1

range (Pk) .

The result follows from Proposition 3 and by recurrence using
Proposition 4.

Finally, Theorem 3 follows from Proposition 5 by the fact
that

Aj ∈ span (D1, . . . , DM , DM+1) ,∀j ∈ Ω, A = DM+1,

and

Dj ∈ span (A1, . . . , AM ) ,∀j ∈ Ω ∪ {M + 1},

so that the algebraic conditions given in Theorem 2 are
equivalent to the algebraic condition given in Proposition 5.
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