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SUMMARY

Calbindin modulates intracellular Ca2+ dynamics
and synaptic plasticity. Reduction of hippocampal
calbindin levels has been implicated in early-life
stress-related cognitive disorders, but it remains
unclear how calbindin in distinct populations of hip-
pocampal neurons contributes to stress-induced
memory loss. Here we report that early-life stress
suppressed calbindin levels in CA1 and dentate gy-
rus (DG) neurons, and calbindin knockdown in adult
CA1 or DG excitatory neurons mimicked early-life
stress-induced memory loss. In contrast, calbindin
knockdown in CA1 interneurons preserved long-
term memory even after an acute stress challenge.
These results indicate that the dysregulation of cal-
bindin in hippocampal excitatory, but not inhibitory,
neurons conveys susceptibility to stress-induced
memory deficits. Moreover, calbindin levels were
downregulated by early-life stress through the
corticotropin-releasing hormone receptor 1-nectin3
pathway, which in turn reduced inositol monophos-
phatase levels. Our findings highlight calbindin as a
molecular target of early-life stress and an essential
substrate for memory.
INTRODUCTION

Calbindin D-28K (abbreviated as calbindin) binds Ca2+ with fast

kinetics and intermediate affinity (Faas et al., 2011; Kojetin et al.,

2006), and it acts as a buffer, sensor, and transporter of intracel-

lular Ca2+ (Schmidt, 2012). In the hippocampus, calbindin shows

a cell subtype-specific expression pattern: it is present in gluta-

matergic neurons, including mature granule cells in the dentate

gyrus (DG) (Celio, 1990), superficial CA1 pyramidal neurons (Ko-

hara et al., 2014), and CA3 granule cells (Szabadics et al., 2010),
Ce
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as well as in a subpopulation of GABAergic interneurons in the

CA1 (Jinno and Kosaka, 2006).

Calbindin localizes to both axonal boutons and dendritic

spines and dynamicallymodulates synaptic plasticity. Presynap-

tic calbindin facilitates vesicular release and paired pulse facilita-

tion (PPF) (Blatow et al., 2003; Pan and Ryan, 2012; Westerink

et al., 2012), while postsynaptic calbindin is necessary for the

maintenance of long-term potentiation (LTP) in DG and CA1

excitatory neurons (Molinari et al., 1996; Westerink et al., 2012).

Calbindin also influences learning andmemory. In transgenic cal-

bindin-knockout mice, spatial reference memory and cued fear

memory are compromised (Harris et al., 2016; Molinari et al.,

1996). Moreover, reduced DG calbindin levels correlate with

impaired hippocampus-dependent memory in animal models of

Alzheimer’s disease (Palop et al., 2003; Sun et al., 2008). None-

theless, overexpression of calbindin in DG neurons disrupts

PPF, LTP, and spatial memory (Dumas et al., 2004), indicative

of its homeostatic role in synaptic plasticity and memory.

Dysregulation of calbindin is implicated in stress-related psy-

chiatric disorders. In patients with depression or schizophrenia,

calbindin-expressing interneurons are decreased in number in

the neocortex (Beasley et al., 2002; Maciag et al., 2010; Raj-

kowska et al., 2007). Notably, calbindin expression levels are

developmentally regulated and peak during the early postnatal

period in the rodent neocortex (Alcántara et al., 1993), when the

developing brain is highly sensitive to stress exposure (Liao

et al., 2014; Liu et al., 2016; Yang et al., 2015). Severely stress-

ful experiences around this critical period, which increase the

risk for psychiatric disorders later in life (Humphreys and Zea-

nah, 2015; Nemeroff, 2016), could alter calbindin levels and

the density of calbindin-positive neurons in the hippocampus

(Giachino et al., 2007; Seidel et al., 2008; Xu et al., 2011) and

other stress-related brain regions (Gos et al., 2014; Helmeke

et al., 2008).

Although accumulating evidence suggests the involvement

of calbindin in early-life stress-induced synaptic and cognitive

deficits, two major questions remain unsolved. First, how do

early-life stressful experiences influence calbindin expression

in heterogeneous hippocampal neurons with distinct cellular
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properties and circuit connectivity? Second, how do altered cal-

bindin levels in each neuronal population influence hippocam-

pus-dependent memory under basal or stressful conditions? In

this study, we aimed to investigate the molecular mechanisms

underlying early-life stress-induced hippocampal calbindin alter-

ations and dissect the contribution of calbindin in each neuronal

population to spatial memory. Our findings reveal that early-life

stress suppresses hippocampal calbindin levels through the

corticotropin-releasing hormone receptor 1 (CRHR1)-nectin3

system, and they demonstrate that reduced calbindin levels in

hippocampal excitatory, but not inhibitory, neurons modulate

stress-induced spatial memory impairments.

RESULTS

Correlated Hippocampal Calbindin Reductions and
Spatial Memory Impairments in Early-Life-Stressed
Adult Mice
In the adult mouse hippocampus, calbindin expression shows a

cell-type-specific pattern (Figure 1A). During postnatal develop-

ment, hippocampal calbindin levels peaked on postnatal day 9

(P9) (Figure 1B), and this transient increase coincided with a

period sensitive to stress (Liu et al., 2016). We found that stress

exposure during this period inhibited calbindin protein expres-

sion in all subregions of the adult hippocampus (Figures 1C

and S1A). The stress effect on calbindin expression was also

evident on P9 when the stress procedure ended, but not in

adolescence (Figure S1B). Immunostaining further revealed

that, in postnatally stressed adult mice, calbindin immunoreac-

tivity in CA1 pyramidal neurons and dentate granule cells (Fig-

ure 1D), as well as the number of calbindin-positive interneurons

in the CA1 (Figure 1E), was significantly decreased, indicating

that early-life stress downregulates hippocampal calbindin

levels in both excitatory and inhibitory neurons. In addition, the

levels of calretinin, another Ca2+-binding protein that is highly

homologous to calbindin (Rogers, 1987), and the number of

neuronal nuclei antigen-positive neurons remained unchanged

between groups (Figures S1C and S1D).

In the hippocampus-dependent object location task, post-

natally stressed adult mice failed to discriminate the displaced

object from the non-displaced one, and they performed signif-

icantly worse than the controls (Figure 1F), indicative of spatial

memory deficits. The total time it took to explore the objects

during the acquisition phase of this task and the anxiety

level as evaluated by the open field test were comparable be-

tween groups (Figures S1E and S1F). Furthermore, cognitive

performance strongly correlated with calbindin immunoreac-

tivity in the CA1 or DG, but not with the number of calbin-

din-positive interneurons in the CA1 (Figures 1G and S1G).

This indicates that calbindin levels in CA1 and DG excitatory

neurons, but not CA1 interneurons, are important for spatial

memory.

Calbindin Knockdown in Both CA1 and DG Neurons
Mimicked Early-Life Stress-Induced Spatial Memory
Loss
To investigate the role of hippocampal calbindin in spatial mem-

ory, we first injected AAV-shCalb1 into the DG and CA1 of adult
892 Cell Reports 21, 891–900, October 24, 2017
C57BL/6N mice to knock down calbindin levels in both regions

(Calb1DGCA1-KD; Figures 2A, S2A, and S2B). Compared to the

controls, Calb1DGCA1-KD mice exhibited significant reductions

of calbindin immunoreactivity in the CA1 and DG and the number

of calbindin-positive interneurons in theCA1 (Figures 2B–2D). No

off-target effect of AAV-shCalb1 on calretinin levels was noticed

(Figure S2C).

In the object location task, Calb1DGCA1-KD mice failed to show

object discrimination and performed worse than the controls

(Figures 2E and S2D), mimicking the effects of early-life stress

on long-term spatial memory. In the Y-maze spontaneous alter-

nation task,Calb1DGCA1-KDmice had significantly reduced spon-

taneous alternation rates (Figure 2F) and an increased number of

same arm returns (Figure S2E) compared to the controls, indic-

ative of impaired short-term spatial memory. Anxiety-related

behavior remained unchanged in Calb1DGCA1-KD mice (Fig-

ure S2F). Moreover, in control and Calb1DGCA1-KD mice, both

the discrimination index in the object location task and sponta-

neous alternation rates in the Y-maze task significantly corre-

lated with calbindin immunoreactivity in the CA1 or DG, but not

with the number of calbindin-positive interneurons in the CA1

(Figures 2G and S2G). These data suggest that the reduction

of calbindin levels in both DG and CA1 neurons reproduces

the cognitive effects of early-life stress and that hippocampal

calbindin is necessary for spatial memory.

Because all DG and CA1 neuron subtypes were affected

in Calb1DGCA1-KD mice, we next dissected the contribution of

calbindin in each neuronal population to spatial memory.

Calbindin Knockdown in DG Excitatory Neurons
Impaired Spatial Memory
To selectively reduce calbindin levels in DG excitatory granule

cells (Calb1DGGlu-KD), we injected AAV-shCalb1 into the DG

region of adult C57BL/6N mice (Figures 3A, S3A, and S3B).

In Calb1DGGlu-KD mice, calbindin immunoreactivity in the DG

was markedly reduced, while calbindin levels in CA1 neurons

remained unchanged (Figures 3B–3D and S3C). Calb1DGGlu-KD

mice showed deficits in both long-term spatial recognition mem-

ory (Figures 3E and S3D) and short-term spatial workingmemory

(Figures 3F and S3E), with comparable anxiety levels to control

mice (Figure S3F).

Calbindin Knockdown in CA1 Excitatory, but Not
Inhibitory, Neurons Impaired Spatial Memory
To selectively knock down calbindin in CA1 excitatory pyramidal

neurons (Calb1CA1Glu-KD), we infused AAV-LSL-MIRshCalb1 into

the CA1 region of adult Camk2a-Cremice (T29-1 line; Figures 4A

and S4A). In Calb1CA1Glu-KD mice, calbindin immunoreactivity in

the stratum pyramidale of CA1 was selectively reduced (Figures

4B and 4C), whereas calbindin levels in the DG and the number

of calbindin-positive interneurons in the CA1 were unaffected

(Figures 4D and S4B). Similar to the cognitive deficits of

Calb1DGCA1-KD and Calb1DGGlu-KD mice, Calb1CA1Glu-KD mice

exhibited impairments in spatial recognition memory (Figures

4E and S4C) and spatial working memory (Figures 4F and

S4D), but they had normal anxiety-related behavior (Figure S4E).

Next, we specifically reduced calbindin levels in CA1

GABAergic interneurons (Calb1CA1GABA-KD) by expressing



Figure 1. Correlated Hippocampal Calbindin Reductions and Spatial Memory Deficits in Adult Mice with Early-Life Stress Exposure
(A) In the adult hippocampus, calbindin localized in both excitatory neurons (including superficial CA1 pyramidal neurons and mature dentate granule cells) and a

subpopulation of interneurons in the CA1 and CA3. Scale bar, 100 mm.

(B) Hippocampal calbindin protein levels were developmentally regulated and peaked on P9.

(C) Early-life stress suppressed calbindin protein expression in the adult hippocampus, involving all hippocampal subregions.

(D) Immunostaining revealed that, in postnatally stressed adult mice, calbindin levels in CA1 pyramidal neurons and dentate granule cells were decreased. Scale

bar, 200 mm.

(E) The number of calbindin-positive interneurons in the CA1 (arrowheads) was decreased in stressed mice. Scale bar, 50 mm.

(F) In the object location task, control mice distinguished the displaced object from the non-displaced one, whereas stressed mice failed to discriminate the

objects and performed worse than the controls.

(G) The discrimination index in the object location task correlated with calbindin immunoreactivity in CA1 and DG excitatory neurons, but not with the number of

CA1 calbindin-positive interneurons.

CT, control; DG, dentate gyrus; ES, early-life stress; gcl, granule cell layer; ml, molecular layer; P, postnatal day; sl, stratum lucidum; slm, stratum lacunosum-

moleculare; so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum. *p < 0.05; **p < 0.01; ***p < 0.001; ##p < 0.01. In this and subsequent figures, data are

presented as mean ± SEM.
AAV-LSL-MIRshCalb1 in the CA1 region of GAD2-Cre mice

(Figures 4G and S4F). Compared to the controls, the density

of calbindin-positive CA1 interneurons was significantly

reduced in Calb1CA1GABA-KD mice, with calbindin immunoreac-
tivity in CA1 pyramidal neurons and dentate granule cells un-

changed (Figures 4H–4J and S4G). In contrast to mice with

calbindin levels reduced in either all neurons or excitatory neu-

rons in the CA1/DG, calbindin knockdown in CA1 interneurons
Cell Reports 21, 891–900, October 24, 2017 893



Figure 2. Calbindin Knockdown in Both DG and CA1 (Calb1DGCA1-KD) Impaired Spatial Memory

(A) Schematic showing the microinjection of knockdown virus (AAV-shCalb1) into the DG and CA1 of adult C57BL/6N mice.

(B) Representative images showing the expression of EGFP and calbindin in the hippocampus of control andCalb1DGCA1-KDmice. Asterisks indicate neurons that

co-express EGFP and calbindin, while arrowheads indicate EGFP-expressing cells without detectable calbindin expression. Scale bar, 20 mm.

(C and D) In Calb1DGCA1-KD mice, (C) calbindin immunoreactivity in the CA1 and DG and (D) the number of calbindin-positive CA1 interneurons were markedly

reduced.

(E) Compared to control mice that successfully distinguished the displaced object from the stationary one, Calb1DGCA1-KD mice showed impaired spatial

recognition memory.

(F) In the Y-maze spontaneous alternation task, Calb1DGCA1-KD mice showed impaired spatial working memory.

(G) In control and Calb1DGCA1-KD mice, the discrimination index in the object location task correlated with calbindin immunoreactivity in CA1 and DG excitatory

neurons, but not with the number of CA1 calbindin-positive interneurons.

*p < 0.05; **p < 0.01; ***p < 0.001; ##p < 0.01.
did not disrupt spatial recognition memory under basal condi-

tions (Figure 4K). Furthermore, at 4 hr after an acute severe

stress challenge (6 min of forced swim), Calb1CA1GABA-KD

mice still showed intact object discrimination, whereas the

performance of control mice was impaired (Figures 4L and

S4H). We further performed the Y-maze delayed non-match-

to-sample test that is more demanding than the spontaneous

alternation task, and we found that short-term spatial working

memory of Calb1CA1GABA-KD mice was generally comparable to
894 Cell Reports 21, 891–900, October 24, 2017
the controls, with only transient and subtle impairments on

days 2 and 7 (Figures S4I and S4J). Object exploration and

anxiety level were not altered in Calb1CA1GABA-KD mice (Figures

S4K and S4L).

Together, these results indicate that the reduction of calbindin

levels in CA1 pyramidal neurons impairs spatial memory,

whereas the downregulation of calbindin in CA1 interneurons

buffers the negative consequences of acute stress on long-

term spatial memory.



Figure 3. Calbindin Knockdown in DG Glutamatergic Granule Cells (Calb1DGGlu-KD) Induced Spatial Memory Deficits
(A) Left: schematic showing themicroinjection of AAV-shCalb1 into the DG region of adult C57BL/6Nmice. Right: region-specific expression of EGFP in the DG is

shown. Scale bar, 200 mm.

(B) Magnified images showing EGFP- and calbindin-expressing neurons in the DG. Asterisks indicate DG neurons that co-express EGFP and calbindin, while

arrowheads indicate EGFP-expressing neurons without detectable calbindin expression. Scale bar, 20 mm.

(C and D) In Calb1DGGlu-KD mice, (C) calbindin immunoreactivity in the DG, but not the CA1, was selectively reduced. (D) The number of calbindin-positive CA1

interneurons remained unchanged between groups.

(E) Although both control and Calb1DGGlu-KD mice showed object preference, control mice performed better than Calb1DGGlu-KD mice.

(F) Spatial working memory was also impaired in Calb1DGGlu-KD mice.

*p < 0.05; **p < 0.01; ***p < 0.001; #p < 0.05; ###p < 0.001.
The CRHR1-Nectin3 Pathway Mediates the
Downregulation of Hippocampal Calbindin Levels by
Early-Life Stress
Having revealed that hippocampal calbindin could modulate

early-life stress-induced spatial memory deficits, we then

dissected the molecular pathway responsible for the regulation

of calbindin levels by early-life stress. In neonatally stressed

adult mice, systemic blockade of CRHR1 by antalarmin during

stress exposure normalized the protein levels of nectin3 (Fig-

ure 5A), a cell adhesion molecule linking CRHR1 to stress-

induced memory loss (Wang et al., 2013) and restored spatial

memory performance (Figures S5A–S5E). Most importantly,

CRHR1 blockade attenuated the effects of early-life stress on

hippocampal calbindin levels in both neonatal (Figure S5F) and

adult (Figure 5B) mice, indicating that stress reduces calbindin

levels via the CRHR1-nectin3 pathway.

We further investigated how nectin3 might interact with calbin-

din, and we observed that nectin3 and calbindin partially colocal-

ized in adult hippocampal neurons, including CA1 pyramidal

neurons, CA1 interneurons, and DG granule cells (Figure 5C).

A similar colocalization pattern was observed on P9 (Figure S5G).

Moreover, hippocampal calbindin levels were reduced in

Nectin3DGCA1-KD mice (Figures 5D and S5H) whose nectin3

expression in theDGandCA1was suppressed (FigureS5I). How-

ever, in Calb1DGCA1-KD mice, hippocampal nectin3 levels re-

mained unchanged (Figure S5J), suggesting that calbindin serves

as a downstream molecule of the CRHR1-nectin3 pathway.
Calbindin can activate inositol monophosphatase (IMPase), a

key enzyme in the phosphatidylinositol signaling pathway that

modulates memory (Berggard et al., 2002; Figueiredo et al.,

2016; Levi et al., 2013). We observed that early-life stress

reduced IMPase levels in the adult hippocampus, especially in

CA1-3 subregions (Figure S5K), which can be reversed by

CRHR1 antagonism (Figure S5L). Knockdown of either nectin3

(Figure 5E) or calbindin (Figure 5F) significantly reduced hippo-

campal IMPase levels, mimicking the effects of early-life stress.

Taken together, IMPase may be a common endpoint of the

CRHR1-nectin3 pathway and calbindin in modulating the cogni-

tive impact of early-life stress.

DISCUSSION

Our results demonstrate that reduced calbindin levels in CA1 and

DG excitatory neurons mediate early-life stress-induced mem-

ory loss, whereas reduced calbindin levels in CA1 interneurons

may potentially increase resilience to acute stress-induced

long-term memory impairments. Moreover, CRHR1 and nectin3

are required for the regulation of calbindin levels by early-life

stress, thus identifying a molecular mechanism linking stress-

elevated CRHR1 signaling and disrupted synaptic adhesion to

cognitive dysfunction.

Calbindin is expressed early from the embryonic stage (Mor-

ante-Oria et al., 2003), and it changes in levels during post-

natal development (Alcántara et al., 1993). We observed that
Cell Reports 21, 891–900, October 24, 2017 895



Figure 4. Calbindin Knockdown in CA1 Glutamatergic Neurons (Calb1CA1Glu-KD), but Not GABAergic Neurons (Calb1CA1GABA-KD), Impaired

Spatial Memory

(A) Left: schematic showing the microinjection of a Cre-dependent knockdown virus (AAV-LSL-MIRshCalb1) into the CA1 region of adult Camk2a-Cre mice.

Right: region-specific expression of EGFP in CA1 pyramidal neurons is shown. Scale bar, 200 mm.

(B) Magnified images showing EGFP- and/or calbindin-expressing neurons in the CA1. Asterisks indicate CA1 pyramidal neurons that co-express EGFP and

calbindin, while arrowheads indicate CA1 neurons that express either EGFP or calbindin. Scale bar, 20 mm.

(legend continued on next page)
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Figure 5. The Interplay among Calbindin, Stress Mediators, and Related Molecules

(A and B) Early-life stress reduced hippocampal (A) nectin3 and (B) calbindin levels in vehicle-injected mice, while repeated CRHR1 blockade reversed the stress

effects.

(C) Calbindin and a cell adhesion molecule nectin3 partially colocalized in superficial CA1 pyramidal neurons, CA1 interneurons, and DG granule cells. Asterisks

indicate neurons co-expressing nectin3 and calbindin, while arrowheads indicate nectin3-immunoreactive neurons without detectable calbindin expression.

(D) Nectin3 knockdown in both DG and CA1 (Nectin3DGCA1-KD) reduced hippocampal calbindin protein levels.

(E and F) Hippocampal IMPase levels were decreased by the knockdown of (E) nectin3 or (F) calbindin.

*p < 0.05; **p < 0.01.
hippocampal calbindin levels increased after birth and peaked

around P9. This transient increase falls in a critical develop-

mental period of the hippocampus (Liao et al., 2014; Liu et al.,
(C and D) In Calb1CA1Glu-KD mice, (C) calbindin immunoreactivity in the stratum py

DG and (D) the number of calbindin-positive CA1 interneurons were comparable

(E) Although both control and Calb1CA1Glu-KD mice showed object preference, co

(F) Calb1CA1Glu-KD mice had spatial working memory deficits.

(G) Left: schematic showing themicroinjection of AAV-LSL-MIRshCalb1 into the C

CA1 interneurons is shown. Scale bar, 200 mm.

(H) Magnified images showing EGFP- and/or calbindin-expressing neurons in the

while arrowheads indicate CA1 interneurons that express either EGFP or calbind

(I and J) InCalb1CA1GABA-KDmice, (J) the number of calbindin-positive interneurons

DG excitatory neurons was comparable between groups.

(K) Control and Calb1CA1GABA-KD mice showed object preference and performed

(L) At 4 hr after a 6-min forced swim test (FST), control mice showed impaired

distinguished the displaced object from the stationary one.

n.s., not significant. *p < 0.05; **p < 0.01; ***p < 0.001; #p < 0.05; ##p < 0.01; ###p
2016). Similar to previous findings (Seidel et al., 2008; Xu et al.,

2011), we found that stress exposure during this critical period

reduced calbindin levels in subtypes of CA1 and DG neurons in
ramidale of CA1 was selectively reduced. (C) Calbindin immunoreactivity in the

between groups.

ntrol mice performed better than Calb1CA1Glu-KD mice.

A1 region of adult GAD2-Cremice. Right: region-specific expression of EGFP in

CA1. Asterisks indicate CA1 interneurons that co-express EGFP and calbindin,

in. Scale bar, 20 mm.

in the CA1was significantly reduced. (I) Calbindin immunoreactivity in CA1 and

similarly under stress-free conditions.

performance in the object location task, whereas Calb1CA1GABA-KD mice still

< 0.001.
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adulthood. Although inconsistent results have been reported

(Giachino et al., 2007), these and our data are not mutually exclu-

sive considering the differences in experimental animals and

stress paradigms. Moreover, our study pinpoints the importance

of classifying hippocampal calbindin-expressing neurons into

structurally and functionally distinct subtypes to dissect their

differential roles in memory.

Our major finding is the differential contribution of calbindin

expressed by distinct hippocampal neurons to stress-induced

memory deficits. We found that calbindin protein levels in

CA1 or DG excitatory neurons, but not CA1 interneurons,

strongly correlated with spatial memory performance. Accord-

ingly, calbindin knockdown in CA1 and/or DG excitatory neurons

reproduced the effects of early-life stress and disrupted both

short- and long-term spatial memory, consistent with studies us-

ing calbindin-knockout mice (Harris et al., 2016; Molinari et al.,

1996). In contrast, calbindin knockdown in CA1 interneurons

preserved long-term spatial memory under basal conditions.

This indicates that early-life stress mainly targets calbindin-

containing excitatory neurons to disrupt memory. In the dorsal

CA1, calbindin-expressing pyramidal neurons show complex

dendritic morphology and receive circuit-specific inputs to

modulate learning (Li et al., 2017), while, in the DG, calbindin

marks functionally mature granule cells. Although we did not

monitor the electrophysiological properties of CA1 and DG

excitatory neurons with reduced levels of calbindin, considering

its role in the immediate and lasting modifications of synaptic

activities (Blatow et al., 2003; Molinari et al., 1996; Pan and

Ryan, 2012; Westerink et al., 2012), the observed cognitive

deficits are likely ascribed to abnormal activity of corresponding

neuron ensembles and neural circuits.

Interneurons are highly diverse in structural, neurochemical,

and functional properties (Kepecs and Fishell, 2014). In the

CA1 region, interneurons immunoreactive for calbindin account

for �20% of caudal ganglionic eminence-derived interneurons

(Wierenga et al., 2010). CA1 calbindin-expressing interneurons

receive excitatory (�70%) and inhibitory (�30%) innerva-

tions (Gulyás et al., 1999) as well as neuromodulatory inputs

(Freund et al., 1990). These interneurons are heterogeneous in

morphology and connectivity, with some targeting the dendrites

of local pyramidal neurons and others sending long-range pro-

jections to the septum (Gulyás and Freund, 1996; Gulyás et al.,

1999). We found that calbindin knockdown in CA1 interneurons

preserved spatial recognition memory both before and following

an acute adult stress challenge. This raises the possibility that

reduced calbindin levels in CA1 interneurons by early-life stress

might increase the resistance to a future stress challenge, which

merits further investigations. Moreover, in mice with calbindin

knockdown in CA1 interneurons, short-term spatial working

memory was transiently and subtly impaired under basal condi-

tions. This is reminiscent of mice with AMPA or NMDA receptors

selectively deleted in hippocampal parvalbumin-expressing in-

terneurons (Fuchs et al., 2007; Korotkova et al., 2010), indicating

that excitatory and inhibitory neurons in the CA1 region differen-

tially modulate specific components of spatial memory.

Another key finding is the molecular substrates modulating

the effects of early-life stress on hippocampal calbindin expres-

sion. Repeated, but not single, stress exposure downregulates
898 Cell Reports 21, 891–900, October 24, 2017
nectin3 levels in hippocampal neurons (van der Kooij et al.,

2014), which is dependent on CRHR1 (Wang et al., 2013). Here

we found a similar suppression of hippocampal calbindin levels

by early-life stress via CRHR1. Remarkably, the cell adhesion

molecule nectin3 colocalizes and interacts with calbindin in

hippocampal neurons, indicative of nectin3 as an upstream

molecule of calbindin. Moreover, calbindin has been shown to

interact with and activate IMPase (Berggard et al., 2002; Levi

et al., 2013), a key enzyme in the phosphatidylinositol-signaling

pathway. We found that early-life stress lastingly lowered

hippocampal IMPase levels, which can be reproduced by knock-

down of either nectin3 or calbindin and prevented by CRHR1

blockade. Together with previous evidence on the involvement

of CRHR1 and nectin3 in stress-induced memory loss, the

current findings suggest that the molecular components of the

CRHR1-nectin3 pathway are critical modulators of the cognitive

impact of early-life stress. Interventions that block CRHR1 or

normalize the levels of nectin3, calbindin, or IMPase in hippo-

campal neurons are promising therapeutic strategies for early-

life stress-related disorders, which can be implemented around

the time window of stress exposure or during young adulthood

(Regev and Baram, 2014).

Beyond these findings, several questions remain to be

answered. The most important one is how various stressors

dynamically influence the activity of calbindin-expressing hippo-

campal neurons and the expression of calbindin in distinct

neuron subtypes. Moreover, studies using sophisticated ap-

proaches, including calbindin-Cre mouse lines and viral tools

with neuron subtype-specific promoters, are required to reveal

the impact of hippocampal calbindin knockdown at both cellular

and circuit levels. Finally, more evidence is needed on whether

reducing calbindin levels in CA1 interneurons indeed conveys

resilience to the negative stress effects on spatial memory.

In summary, our study reveals that reduced calbindin levels

in hippocampal excitatory neurons by early-life stress lead to

cognitive deficits, and it identifies a molecular pathway that

mediates such effects.

EXPERIMENTAL PROCEDURES

Animals

Adult male C57BL/6N mice were purchased from Vital River Laboratories

(Beijing, China). The B6.Cg-Tg(Camk2a-Cre)T29-1Stl/J mice (stock number

005359, Jackson Laboratory) have Cre recombinase preferentially expressed

by excitatory CA1 pyramidal neurons. The Gad2tm2(cre)Zjh/J mice (stock

number 010802, Jackson Laboratory) have Cre recombinase expressed in

GABAergic interneurons. All experiments were approved by the Peking

University Committee on Animal Care and Use and the Animal Advisory

Committee at Zhejiang University, and they were performed in compliance

with the NIH’s Guide for the Use and Care of Laboratory Animals.

Early-Life Stress Procedure

The limited nesting and bedding material paradigm was performed as previ-

ously described (Yang et al., 2015). For details, see the Supplemental Exper-

imental Procedures.

Stereotaxic Surgery and Viral Microinjection

We used adeno-associated virus (AAV) 2/8 vectors to suppress calbindin or

nectin3 protein levels. To achieve calbindin or nectin3 knockdown in CA1

and/or DG cells, AAV-shCalb1, AAV-shNectin3, and the control virus were

used. To selectively knock down calbindin protein levels in CA1 excitatory



or inhibitory neurons, a Cre recombinase-responsive AAV (AAV-LSL-

MIRshCalb1) and a control virus (AAV-LSL-MIRshScr) were used. For details,

see the Supplemental Experimental Procedures.

Behavioral Testing

Anxiety-related behavior and spatial memory were assessed as previously

described (Wang et al., 2012, 2013; Yang et al., 2015). For details, see the

Supplemental Experimental Procedures.

Immunostaining and Image Analysis

Serial coronal or horizontal sections (30 mm thick) were prepared through

the dorsal hippocampus using a cryostat (Leica, Wetzlar, Germany). For

details about immunostaining and image analysis, see the Supplemental

Experimental Procedures.

Western Blot

Hippocampal samples containing 30 mg protein were resolved by 10% SDS-

polyacrylamide gels and transferred onto polyvinylidene difluoridemembranes

(Millipore, Bedford, MA, USA), which were then labeled with primary anti-

bodies at 4�C (overnight). After incubation with horseradish peroxidase-conju-

gated secondary antibodies at room temperature (3 hr), bands were visualized

and quantified by densitometry. See the Supplemental Experimental Proced-

ures for details.

Statistical Analysis

SPSS16.0 (Chicago, IL,USA) andGraphPadPrism5 (SanDiego,CA,USA)were

used to perform statistical analyses. Data were first checked for normality using

Kolmogorov-Smirnov test. For between-group comparisons, Student’s t test

and Mann-Whitney U test were applied for normally and non-normally distrib-

uted data, respectively. For multiple group comparisons, data were analyzed

by ANOVA followed by Bonferroni post hoc test when appropriate. Correlations

were assessedbyPearsoncorrelation coefficient. Statistical outlierswith values

that fell beyond two SDs from themean were excluded from analysis. The sam-

ple size and statistical results formain figures are summarized in Table S1. Data

are reported as mean ± SEM. Statistical significance was defined at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at https://

doi.org/10.1016/j.celrep.2017.10.006.
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