Angewandte mandmantion Chemie

Supporting Information

Thorpe-Ingold Effect in Branch-Selective Alkylation of Unactivated Aryl Fluorides

Matthew J. O'Neill ${ }^{+}$, Tim Riesebeck ${ }^{+}$, and Josep Cornella*
anie_201804479_sm_miscellaneous_information.pdf

Author Contributions

M.O. Conceptualization: Equal
T.R. Conceptualization: Equal.

Table of Contents

1. General Experimental Notes S 3
2. Starting Material Preparation S 4
3. Synthesis of Ligands S 6
4. Optimization Studies S 11
5. General Procedure S 15
6. Characterization Data S 16
7. Additional Results/Observations S 36
8. X-Ray Crystallography Data S 38
9. References S 55
10. Experimental Spectra S 56

1. General Experimental Notes

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under dry argon in flame-dried glassware. Anhydrous solvents were distilled from appropriate drying agents and were transferred under Argon: THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg} /$ anthracene $), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right), \mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{CaH}_{2}\right)$, hexane, toluene $(\mathrm{Na} / \mathrm{K})$, $\mathrm{EtOH}, \mathrm{MeOH}(\mathrm{Mg}), \mathrm{Et}_{3} \mathrm{~N}(\mathrm{MS}), \mathrm{DMF}(\mathrm{MS}) . \mathrm{Ni}(\mathrm{acac})_{2}$ purchased from Alpha Aesar, azeotropically distilled from toluene to remove traces of water, and stored in a 2 neck-flask under argon. Small amounts were kept in a Teflon sealed vial, handled open to air, and placed under argon between uses. Fresh $\mathrm{Ni}(\mathrm{acac})_{2}$ was used to replaced aged samples approximately every 3 weeks. Commercially available Grignard reagents were obtained from Sigma Aldrich. Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$. GC-MS (FID): GC-MS-QP2010 equipped (Shimadzu Europe Analytical Instriuments). MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker). Accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). NMR spectra were recorded using a Bruker Avance VIII-300, Bruker Avance III HD 400 MHz spectrometer, Bruker Avance III 500 MHz spectrometer equipped with a 5 mm BBFO probe. ${ }^{1} \mathrm{H}$ NMR spectra $(300.13 \mathrm{MHz}$, 400.1 MHz , or 500 MHz) were referenced to the residual protons of the deuterated solvent used. ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectra (75.47 MHz .101 MHz , or 125 MHz) were referenced internally to the D-coupled ${ }^{13} \mathrm{C}$ resonances of the NMR solvent. All compounds purified by column chromatography are shown with the isomerized product in the same spectra, and the obtained selectivities were determined by the integration of the respective terminal methyl groups. Chemical shifts (δ) are given in ppm, relative to deuterated solvent residual peak, and coupling constants (J) are provided in Hz .

2. Starting Material Preparation

2-fluoroquinoline
4-fluoro-2-phenylpyrimidine

The above starting materials were prepared via cross-coupling, alkylation or fluorination according to general methods reported in the literature.
(a) Via cross coupling: 1-(4-fluorophenyl)-1H-pyrrole, ${ }^{1}$ 1-(4-fluorophenyl)-1H-pyrazole, ${ }^{1}$ 2-fluoro-5-(thiophen-3-yl)pyridine, ${ }^{2}$ 2-fluoro-5-(thiophen-2-yl)pyridine, ${ }^{2}$ 2-fluoro-5-phenylpyridine, ${ }^{2}$ and 2-fluoro-5-(4-(trifluoromethyl)phenyl)pyridine, ${ }^{2}$ and 1-(4-fluorophenyl)piperidine. ${ }^{3}$
(b) Via alkylation: 5-fluoro-1-methyl-1H-indole ${ }^{4}$ and 6-fluoro-1-methyl-1H-indole. ${ }^{4}$
(c) Fluorination via Hartwig's protocol': 2-fluoroquinoline and 4-fluoro-2-phenylpyrimidine.

2-chloro-3-fluoropyridine (36) and 4-chloro-3-fluoropyridine (39) were each synthesized from 3-fluoropyridine (35) according to Schlosser's literature precedent ${ }^{6}$.

Cyclopropyl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ was prepared from cyclopropyl bromide according to literature precedent ${ }^{7}$.
(4-phenylbutan-2-yl)magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ was prepared from (3-bromobutyl)benzene according to literature precedent ${ }^{8}$.

Spectroscopic analysis of each of the above compounds was in agreement with the respective literature report.

3. Synthesis of Ligands

Preparation of Mesylate

To a mixture of the respective diol ($22 \mathrm{mmol}, 1 \mathrm{eq}$.$) , DMAP (0.33 \mathrm{mmol}, 40 \mathrm{mg}, 0.015 \mathrm{eq}.), \mathrm{DCM}(10 \mathrm{~mL})$ and pyridine (20 mL), was added methanesulfonylchloride ($86.7 \mathrm{mmol}, 6.7 \mathrm{~mL}, 4 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred for 4 h at the same temperature. Subsequently, the reaction mixture was poured onto icecold $\mathrm{HCl}(2 \mathrm{M}, 100 \mathrm{~mL})$, and extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and with saturated aq NaHCO_{3} solution (50 mL), dried over MgSO_{4}, concentrated, and purified by column chromatography (Hexanes/EtOAc).

Preparation of Diphosphines ${ }^{9}$

While rigorously stirring, $\mathrm{n}-\mathrm{BuLi}(13 \mathrm{~mL}, 1.6 \mathrm{M}, 3 \mathrm{eq}$.$) was added dropwise to a solution of$ diphenylphosphine ($3 \mathrm{~mL}, 17.3 \mathrm{mmol}, 2.5 \mathrm{eq}$.) in THF (40 mL) at $0^{\circ} \mathrm{C}$. The deep-red solution was allowed to stir for 1 h at $25^{\circ} \mathrm{C}$. Subsequently, a solution prepared from the respective dimesylate ($7 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (20 mL) was slowly added and stirred for an additional 4 h at the same temperature. The reaction was quenched with MeOH . The mixture was concentrated in vacuo and the crude product was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ (60 mL) and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution (32 mL). The aq phase was extracted under inert atmosphere with $\mathrm{Et}_{2} \mathrm{O}$ (2 $\times 30 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and quickly filtered through a short plug of silica. The solution was concentrated and the product recrystallized.

Characterization of Mesylates and Phosphine Ligands

2,2-Dimethylpropane-1,3-diyl dimethanesulfonate ${ }^{10}$

Prepared from 2,2-dimethylpropane-1,3-diol ($22 \mathrm{mmol}, 2.3 \mathrm{~g}, 1 \mathrm{eq}$.). The desired product was obtained as a pale-yellow solid ($5.2 \mathrm{~g}, 91 \%$) after purification by column chromatography with silica gel ($6.0 \mathrm{~g}, 95 \%$). NMR data are in accordance with the literature report.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.02(\mathrm{~s}, 4 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 73.2,37.4,35.6,21.3$.

2,2-Diethylpropane-1,3-diyl dimethanesulfonate ${ }^{9}$

Prepared from 2,2-diethylpropane-1,3-diol ($22 \mathrm{mmol}, 2.9 \mathrm{~g}, 1 \mathrm{eq}$.). The desired product was obtained as a white solid ($6.0 \mathrm{~g}, 95 \%$) after purification by column chromatography with silica gel (hexane/EtOAc $=4: 1$). NMR data are in accordance with the literature.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left._{3}\right): \delta 4.05(\mathrm{~s}, 4 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 69.9,40.7,37.4,21.9,6.8$.

2,2-Diisobutylpropane-1,3-diyldimethanesulfonate

Prepared from 2,2-diisobutylpropane-1,3-diol ($22 \mathrm{mmol}, 4.1 \mathrm{~g}, 1 \mathrm{eq}$.). The desired product was obtained as a pale-yellow solid ($4.5 \mathrm{~g}, 62 \%$) after purification by column chromatography (hexane/EtOAc $=4: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.08(\mathrm{~s}, 4 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 1.76(\mathrm{hept}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H})$, 0.98 (d, $J=6.6 \mathrm{~Hz}, 12 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 71.0,41.7,39.7,37.4,25.3,23.3$.
HRMS (ESI): calc'd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 367.1220$; found 367.1218.
M.P.: $64.4^{\circ} \mathrm{C}$.

(2,2-Dimethylpropane-1,3-diyl)bis(diphenylphosphane) ${ }^{11}$

Prepared from 2,2-dimethylpropane-1,3-diyl dimethanesulfonate $\mathbf{S 1}(1,9 \mathrm{mmol}, 500 \mathrm{mg})$. The desired product was obtained after recrystallization from boiling MeOH as a white solid ($250 \mathrm{mg}, 30 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 12 \mathrm{H}), 2.34\left(\mathrm{~d}, J_{H-P}=3.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.04(\mathrm{~s}$, 6 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.5(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.7$, 44.6 (dd, $J=16.6,9.0 \mathrm{~Hz}$), $35.6(\mathrm{t}, J=14.2 \mathrm{~Hz}), 30.8(\mathrm{t}, J=9.1 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-24.5(\mathrm{~s})$.

(2,2-Diethylpropane-1,3-diyl)bis(diphenylphosphane) ${ }^{9}$

Prepared from 2,2-diethylpropane-1,3-diyl dimethanesulfonate $\mathbf{S 2}$ ($7 \mathrm{mmol}, 2 \mathrm{~g}$). The desired product was obtained after recrystallization from boiling MeOH as a white solid ($1.34 \mathrm{~g}, 41 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 12 \mathrm{H}), 2.37\left(\mathrm{~d}, J_{H-P}=4.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.49(\mathrm{q}$, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 0.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.6(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 128.9,128.6(\mathrm{~m}), 40.6(\mathrm{t}, J=11.4$ $\mathrm{Hz}), 37.5(\mathrm{t}, J=11.8 \mathrm{~Hz}), 31.3(\mathrm{t}, J=8.4 \mathrm{~Hz}), 7.8$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-26.0(\mathrm{~s})$.

(2,2-Diisobutylpropane-1,3-diyl)bis(diphenylphosphane)

Prepared from 2,2-diisobutylpropane-1,3-diyl dimethanesulfonate $\mathbf{S 3}(0.7 \mathrm{mmol}, 250 \mathrm{mg})$. The desired product was obtained after recrystallization from boiling MeOH as a white solid ($242 \mathrm{mg}, 65 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 12 \mathrm{H}), 2.36\left(\mathrm{~d}, J_{H-P}=3.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.64$ (hept, $J=6.6,2 \mathrm{H}), 1.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.5(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 128.5(\mathrm{~m}), 128.4,48.7(\mathrm{t}, J=7.8$ $\mathrm{Hz}), 42.6(\mathrm{t}, J=12.3 \mathrm{~Hz}), 40.0(\mathrm{dd}, J=16.3,9.2 \mathrm{~Hz}), 25.7,24.1$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-25.8(\mathrm{~s})$.
HRMS (ESI): calc'd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{P}_{2} 524.2762[\mathrm{M}+\mathrm{H}]^{+} 525.2835$; found 525.2836.
M.P.: $83.6^{\circ} \mathrm{C}$.

4. Optimization Studies

General Procedure for Early Optimization
A culture tube equipped with a stir bar was charged with $\mathrm{Ni}(\mathrm{acac})_{2}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phosphine ligand (0.01 mmol). A teflon cap was fitted, and the tube was evacuated for 15 min , refilled with argon, and then the atmosphere was recycled 2 times. 4-Fluoroanisole (0.2 mmol) was added, followed by toluene, ensuring to rinse any residual substrate from the walls of the vial. The mixture was vigorously stirred, and the Grignard nucleophile ($0.2-0.4 \mathrm{mmol}$) was added with a single push of the syringe. The reaction was then stirred at the desired temperature for 24 h . The solution was diluted with MTBE ($\sim 10 \mathrm{~mL}$) and quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. Tetradecane was added as an internal standard, and GC was used to confirm the branched/linear selectivity and yield.
*Moisture sensitive additives were added in an argon-filled glovebox before adding fluoroanisole.

Temperature Screening

Temperature	Yield branched	Selectivity (b:I)
$\mathbf{2 0}{ }^{\circ} \mathbf{C}$	40%	$18.7: 1$
$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	83%	$18.6: 1$
$60^{\circ} \mathbf{C}$	70%	$10.3: 1$

Solvent Screening

Solvent	Yield branched	Selectivity (b:I)
Toluene	50%	$18.5: 1$
Diethylether	72%	$17.8: 1$
Tetrahydrofuran	$<5 \%$	n.d.
Dioxane	$<5 \%$	n.d.

Additive Screening

Additive	Ligand	Additive Loading	Selectivity (b:l)
NaBF_{4}	L18	1 eq .	5.6:1
LiOTf	L18	1 eq .	6.4 : 1
Lil	L18	1 eq .	n.d.
LiBF_{4}	L18	1 eq .	1:1
LiF	L4	0.15 eq.	23:1
NaF	L4	0.15 eq.	20:1
CsF	L4	0.15 eq.	28:1

Additive and Concentration Dependency

Reaction Volume	CsF	Selectivity (b:I)
$\mathbf{0 . 5} \mathbf{~ m L}$	-	$19: 1$
1.0 mL	-	$23: 1$
$\mathbf{0 . 5} \mathbf{~ m L}$	15%	$24: 1$
1.0 mL	15%	$30: 1$

5. General Procedure

A culture tube equipped with a stir bar was charged with $\mathrm{Ni}(\mathrm{acac})_{2}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phosphine ligand $\mathbf{L 4}(4.7 \mathrm{mg}, 0.01 \mathrm{mmol})$, and additionally aryl fluoride if solid. A teflon cap was fitted, and the tube was evacuated and refilled with argon (3 cycles). The tube was transferred to a glove box, and anhydrous CsF (6.0 $\mathrm{mg}, 0.04 \mathrm{mmol}$) was added. The tube was removed from the glove box, and placed under a positive pressure of argon. Aryl fluoride (0.2 mmol) was added (if liquid), followed by toluene (1 mL), ensuring to rinse any residual aryl fluoride from the walls of the vial. The mixture was vigorously stirred, and the Grignard nucleophile (100-200 $\mu \mathrm{L}, 0.2 \mathrm{M}, 0.2-0.4 \mathrm{mmol}$) was added with a single push of the syringe. The reaction was then stirred at the desired temperature $\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ until the reaction was judged complete by TLC or GC. The solution was diluted with EtOAc or MTBE ($\sim 10 \mathrm{~mL}$) and quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{H}_{2} \mathrm{O}$ (3 mL) - depending on substrate sensitivity to acid. The aq phase was separated and extracted with MTBE (3 x 5 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The desired product was then purified by flash chromatography with a mixture of pentane/EtOAc, pentane/MTBE, or $\mathrm{DCM} / \mathrm{MeOH}$ to afford the desired coupled product.

6. Characterization Data

3-(4-Phenylbutan-2-yl)pyridine ${ }^{12}$

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{5}$ was prepared from 3 -fluoropyridine ($171 \mu \mathrm{~L}, 2 \mathrm{mmol}$) yielding the above compound ($29.9 \mathrm{mg}, 1.42 \mathrm{mmol}, 71 \%$ yield) as a viscous, pale oil after silica gel chromatography (pentane/EtOAc $=4: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.48(\operatorname{broad~s}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{tt}, \mathrm{J}=9.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.31$ $(\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 148.8,147.1,142.8,141.9,134.9,128.5,128.4,126.0,123.8,39.7,37.1,33.8$, 22.3.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$212.1434; found 212.1434.

2-(4-Phenylbutan-2-yl)-5-(-(trifluoromethyl)phenyl)pyridine

Following the general procedure at $0{ }^{\circ} \mathrm{C}, \mathbf{6}$ was prepared from 2-fluoro-5-(4-(trifluoromethyl)phenyl)pyridine ($48.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($62.5 \mathrm{mg}, 0.176 \mathrm{mmol}, 88 \%$ yield) as a viscous, colorless oil after silica gel chromatography (pentane/EtOAc $=15: 1$ to $5: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.82(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.32$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{td}, J=5.3,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.19$ (dddd, $J=13.9,9.5,8.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddt}, J=13.1,9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.0,128.6,128.5,127.5,126.5,126.4,126.3,126.2,125.9,125.5,122.9-$ 122.7 (m), 40.7, 38.6, 34.0, 21.0.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.6$.
HRMS (ESI): calc'd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 356.1621$; found 356.1621.

2-(sec-Butyl)-5-(4-(trifluoromethyl)phenyl)pyridine

Following the general procedure at $0{ }^{\circ} \mathrm{C}, 7$ was prepared from 2-fluoro-5-(4-(trifluoromethyl)phenyl)pyridine ($48.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($41.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 75 \%$ yield) as a viscous, colorless oil following silica gel chromatography (pentane/EtOAc $=5: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.80(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.64(\mathrm{~m}$, 4 H), $7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=13.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (ddd, $J=13.8,7.5,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 166.3,147.1,141.4,135.5,133.1,130.2(\mathrm{q}, J=32.6 \mathrm{~Hz}), 127.4,126.2(\mathrm{q}, J=$ $3.6 \mathrm{~Hz}), 124.3(\mathrm{q}, J=272.0 \mathrm{~Hz}), 122.0,43.3,30.1,20.5,12.3$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.6$.
HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$280.1308; found 280.1308 .

8

2-(sec-Butyl)-5-phenylpyridine

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{8}$ was prepared from 2-fluoro-5-phenylpyridine ($34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($31.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 75 \%$ yield) as a colorless oil after silica gel chromatography (pentane $/ \mathrm{EtOAc}=4: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78(\mathrm{dd}, J=2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{sext}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 165.5,147.7,138.2,134.8,134.1,129.1,127.9,127.1,121.6,43.5,30.2,20.6$, 12.3.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$212.1434; found 212.1436.

5-Phenyl-2-(4-phenylbutan-2-yl)pyridine

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{9}$ was prepared from 2-fluoro-5-phenylpyridine ($34.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($47.1 \mathrm{mg}, 0.164 \mathrm{mmol}, 82 \%$ yield) as a colorless oil after silica gel chromatography (pentane/EtOAc $=15: 1$ to $5: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.81(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.13-2.98(\mathrm{~m}, 1 \mathrm{H})$, $2.69-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 164.7,147.0,142.4,137.7,135.6,134.6,129.2,128.5,128.4,128.1,127.1$, 125.8, 122.0, 41.1, 38.8, 34.0, 21.1.

HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N} 288.1747$; found $[\mathrm{M}+\mathrm{H}]^{+} 288.1748$.

2-(4-Phenylbutan-2-yl)-5-(thiophen-2-yl)pyridine

Following the general procedure at $0{ }^{\circ} \mathrm{C}, \mathbf{1 0}$ was prepared from 2-fluoro-5-(thiophen-3-yl)pyridine (35.8 mg , 0.2 mmol) yielding the above compound ($25.2 \mathrm{mg}, 0.086 \mathrm{mmol}, 43 \%$ yield) as a colorless oil after silica gel chromatography (pentane/EtOAc $=5: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.76(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=4.2,3.6$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 5 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.51$ (dddd, $J=29.4,15.7,8.6,4.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.09 (dddd, $J=13.9,9.6,8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92 (ddt, $J=13.2,9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.0,144.8,144.6,142.2,135.2,128.9,128.8,128.5,128.4,126.4,125.9$, 124.5, 122.5, 40.6, 38.7, 34.0, 21.0.

HRMS (ESI): calc'd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$294.1311; found 294.1312.

11

2-(sec-Butyl)-5-(thiophen-2-yl)pyridine

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{1 1}$ was prepared from 2-fluoro-5-(thiophen-3-yl)pyridine (35.8 mg , 0.2 mmol) yielding the above compound ($21.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 49 \%$ yield) as a colorless oil after silica gel chromatography (pentane/EtOAc $=5: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80(\mathrm{dd}, J=2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=3.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{p}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 165.1,146.7,139.0,134.5,129.3,127.0,126.1,121.8,121.1,43.3,30.1,20.5$, 12.3.

HRMS (ESI): calc'd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$218.0998; found 218.0999.

2-(4-Phenylbutan-2-yl)pyridine ${ }^{13}$

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{1 2}$ was prepared from 3-fluoropyridine ($171 \mu \mathrm{~L}, 2 \mathrm{mmol}$) yielding the above compound ($40.1 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$ yield) as a viscous, colorless oil after silica gel chromatography (pentane/EtOAc $=4: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.50(\mathrm{ddd}, J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14$ $(\mathrm{m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 5 \mathrm{H}), 2.87(\mathrm{dq}, J=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 166.1,149.1,142.5,136.8,128.5,128.4,125.8,122.0,121.4,41.5,38.8,33.4$, 21.0.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$212.1434; found 212.1434.

13

2-Methoxy-6-(4-phenylbutan-2-yl)pyridine ${ }^{14}$

Following the general procedure with 10% catalyst and ligand loading, $\mathbf{1 3}$ was prepared from 2-fluoro-6methoxypyridine ($25.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($31.3 \mathrm{mg}, 0.13 \mathrm{mmol}, 64 \%$ yield) as a colorless oil after silica gel chromatography (pentane/EtOAc $=3: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.69$ (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H})$, $2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 164.0,163.8,142.9,138.8,128.5,128.4,125.7,114.5,107.6,53.3,41.2,38.5$, 34.0, 21.1.

HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$242.1539; found 242.1539.

6-Cycloheyl-2-methylquinoline ${ }^{15}$

Following the general procedure at $40^{\circ} \mathrm{C}, \mathbf{1 4}$ was prepared from 6 -fluoro-2-methylquinoline ($32.2 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($39.2 \mathrm{~g}, 0.174 \mathrm{mmol}, 87 \%$ yield) as a colorless oil after silica gel chromatography (pentane $/ \mathrm{EtOAc}=3: 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d): $\delta 8.02(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.86$ $(\mathrm{m}, 4 \mathrm{H}), 1.82(\mathrm{ddd}, J=12.8,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.24(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta 158.1,146.8,145.6,136.1,129.9,128.4,126.7,124.2,122.0,44.5,34.6,27.0$, 26.3, 25.4.

15

2-Phenyl-4-(4-phenylbutan-2-yl)pyrimidine

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{1 5}$ was prepared from 4-fluoro-2-phenylpyrimidine ($17.4 \mathrm{mg}, 0.1$ mmol) yielding the above compound ($18.7 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$ yield) as a colorless oil after silica gel chromatography (pentane/MTBE $=30: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.69(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.51-8.48(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25$ $(\mathrm{m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.23$ (dddd, J $=13.5,9.2,8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (dddd, $J=13.3,9.4,7.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 174.9,164.4,157.1,142.2,138.1,130.7,128.7,128.5,128.5,128.4,126.0$, 117.4, 41.3, 38.0, 33.8, 20.5.

HRMS (ESI): calc'd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$289.1699; found 289.1700.

2-(4-Phenylbutan-2-yl)quinolone

Following the general procedure at $0^{\circ} \mathrm{C}, \mathbf{1 6}$ was prepared from 2-fluoroquinoline ($29.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($36.5 \mathrm{mg}, 1.4 \mathrm{mmol}, 70 \%$ yield) as a colorless oil after silica gel chromatography (hexane/EtOAc =15:1).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=8.5,6.9,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.48 (ddd, $J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H})$, $\delta 3.14(\mathrm{dt}, J=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=13.7,10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=13.7,10.4,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.20 (dddd, $J=13.6,10.4,8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddt}, J=13.4,10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta 166.7,148.0,142.6,136.5,129.4,129.2,128.5,128.4,127.6,127.1,125.8$, 125.8, 119.9, 42.7, 38.9, 34.1, 21.4.

HRMS (ESI): calc'd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 262.1590$; found 262.1593.

1-(sec-Butyl)napthalene ${ }^{16}$

Following the general procedure at $40^{\circ} \mathrm{C}, \mathbf{1 7}$ was prepared from fluoronapthalene ($25.8 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) yielding the above compound ($33.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 90 \%$ yield) as a transparent oil after silica gel chromatography $($ pentane $/ E t O A c=100: 1$ to $20: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 143.9,134.1,131.9,129.1,126.3,125.7,125.7,125.3,123.4,122.6,35.5,30.7$, 21.4, 12.4 .

5-(sec-Butyl)-1-methyl-1H-indole

Following the general procedure at $40^{\circ} \mathrm{C}$, $\mathbf{1 8}$ was prepared from 5 -fluoro-1-methyl-1H-indole ($29.8 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($33.3 \mathrm{mg}, 0.178 \mathrm{mmol}, 89 \%$ yield) as a viscous, yellow oil after silica gel chromatography (pentane $/ \mathrm{EtOAc}=5: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{tt}, J=8.1$, $4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 138.8,135.6,128.9,128.7,121.3,118.8,109.0,100.7,41.9,33.0,31.8,22.8$, 12.6.

HRMS (ESI): calc'd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$188.1434; found 188.1435.

6-(sec-Butyl)-1-methyl-1H-indole

Following the general procedure at $40^{\circ} \mathrm{C}, \mathbf{1 9}$ was prepared from 6-fluoro-1-methyl-1H-indole ($29.8 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($34.8 \mathrm{mg}, 0.186 \mathrm{mmol}, 93 \%$ yield) as a viscous, yellow oil after silica gel chromatography (pentane/EtOAc $=5: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{dd}, J=$ $3.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=7.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 141.7,137.1,128.4,126.8,120.6,119.2,107.3,100.7,42.3,32.9,31.8,22.7$, 12.6.

HRMS (ESI): calc'd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$188.1434; found 188.1435.

20

6-Cyclopropyl-1-methyl-1H-indole

Following the general procedure at $40^{\circ} \mathrm{C}, \mathbf{2 0}$ was prepared from 6-fluoro-1-methyl-1H-indole ($29.8 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($27.7 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%$ yield) as a viscous, yellow oil after silica gel chromatography (pentane $/ \mathrm{EtOAc}=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.44(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{tt}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-0.96(\mathrm{~m}$, 2H), $0.80-0.74$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 137.6,137.2,128.4,126.7,120.7,118.1,106.3,101.2,32.9,16.1,9.09$.
HRMS (ESI): calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$172.1126; found 172.1121.

21

4-(sec-Butyl)- N, N-dimethylaniline

Following the general procedure at $60^{\circ} \mathrm{C}, 21$ was prepared from 4-fluoro-N,N-dimethylaniline ($27.8 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($29.7 \mathrm{mg}, \mathrm{mmol}, 0.168 \mathrm{mmol}, 84 \%$ yield) as a colorless oil after silica gel chromatography (pentane/MTBE $=15: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07(\mathrm{~d}, J=8.8,2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}), 2.51$ (sext, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.56$ (quint, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 149.1,136.1,127.7,113.0,41.1,40.8,31.5,22.1,12.5$.
HRMS (ESI): calc'd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$178.1590: found 178.1590.

22

1-(4-(sec-Butyl)phenyl)piperidine

Following the general procedure at $60^{\circ} \mathrm{C}, \mathbf{2 2}$ was prepared from 1-(4-fluorophenyl)piperidine ($35.8 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ yielding the above compound ($31.2 \mathrm{mg}, 0.144 \mathrm{mmol}, 72 \%$ yield) as a colorless oil after silica gel chromatography (pentane/MTBE $=20: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 4 \mathrm{H}), 2.53$ $(\mathrm{sext}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 150.6,138.7,127.6,116.7,51.2,40.9,31.5,26.2,24.5,22.0,12.4$.
HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$218.1903; found 218.1905.

tert-Butyl(4-(sec-butyl)phenoxy)dimethylsilane

Following the general procedure at $40^{\circ} \mathrm{C}$ with the omission of CsF additive, $\mathbf{2 3}$ was prepared from tert-butyl(4fluorophenoxy)dimethylsilane ($45.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($44.8 \mathrm{mg}, 0.17 \mathrm{mmol}, 85 \%$ yield) as a pale-yellow oil after silica gel chromatography (pentane/MTBE $=20: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{sext}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 153.6,140.5,127.9,119.8,41.0,31.5,25.9,22.1,18.3,12.4,-4.3$.
HRMS (EI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}]^{+}$(264.1904); found 264.1902.

1-(sec-Butyl)-4-phenoxybenzene ${ }^{17}$

Following the general procedure at $40^{\circ} \mathrm{C}, \mathbf{2 4}$ was prepared from 1-fluoro-4-phenoxybenzene ($37.6 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($30.7 \mathrm{mg}, 0.136 \mathrm{mmol}, 68 \%$ yield) as a colorless oil after silica gel chromatography (pentane/EtOAc $=50: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}$, $2 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.8,155.1,142.8,129.8,128.3,123.0,119.0,118.7,41.2,31.5,22.1,12.4$.
HRMS (EI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+} 226.1358$; found 226.1354.

25

1-Phenoxy-4-(4-phenylbutan-2-yl)benzene

Following the general procedure at $40^{\circ} \mathrm{C}, \mathbf{2 5}$ was prepared from 1-fluoro-4-phenoxybenzene ($37.6 \mathrm{mg}, 0.2$ mmol) yielding the above compound ($38.7 \mathrm{mg}, 0.128 \mathrm{mmol}, 64 \%$ yield) as a transparent oil after silica gel chromatography (pentane/EtOAc $=50: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H})$, $7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=8.7,6.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 157.7,155.3,142.6,142.4,129.8,128.5,128.4,128.4,125.8,123.1,119.1$, 118.7, 40.3, 39.0, 34.1, 22.7.

HRMS (EI): calc'd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+} 302.1671$; found 302.1667.

26

1-(4-(sec-Butyl)phenyl)-1H-pyrrole ${ }^{18}$

Following the general procedure, 26 was prepared from 1-(4-fluorophenyl)-1H-pyrrole ($32.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($23.9 \mathrm{mg}, 0.12 \mathrm{mmol}, 60 \%$) as a colorless oil after silica gel chromatography $($ pentane $/ E t O A c=15: 1)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.34$ $(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 145.3,138.9,128.2,120.7,119.5,110.1,41.3,31.3,22.0,12.4$.

27

1-(4-Hexylphenyl)-1H-pyrrole

Following the general procedure, 27 was prepared from 1-(4-fluorophenyl)-1H-pyrrole ($32.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($38.1 \mathrm{mg}, 0.168 \mathrm{mmol}, 84 \%$ yield) as a colorless oil after silica gel chromatography (pentane/EtOAc $=15: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.67-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 2 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 140.6,138.8,129.5,120.7,119.5,110.2,35.5,31.9,31.6,29.1,22.8,14.3$.
HRMS (ESI): calc'd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$228.1747; found 228.1746.

1-(4-(sec-Butyl)phenyl-1H-pyrazole

Following the general procedure, $\mathbf{2 8}$ was prepared from 1-(4-fluorophenyl)-1H-pyrazole ($32.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($22.8 \mathrm{mg}, 0.11 \mathrm{mmol}, 57 \%$) as a colorless oil after silica gel chromatography $($ pentane $/ E t O A c=10: 1)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{dt}, J=2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.28$ $-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{dd}, J=2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.2,140.9,129.4,128.1,126.8,119.4,107.4,41.4,31.3,22.0,12.3$.
HRMS (ESI): calc'd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386; found 201.1388.

1-(4-Hexylphenyl)-1H-pyrazole

Following the general procedure, 29 was prepared from 1-(4-fluorophenyl)-1H-pyrazole ($32.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($38.8 \mathrm{mg}, 0.17 \mathrm{mmol}, 85 \%$ yield) as a pale yellow residue after silica gel chromatography (pentane/EtOAc $=10: 1$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}$, $J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-6.41(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.88$ (td, $J=5.9,4.8,2.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta 141.5,140.9,138.3,129.4,126.8,119.4,107.4,35.5,31.8,31.5,29.0,22.8$, 14.2.

HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$229.1699; found 229.1701.

3-(4-(sec-Butyl)phenyl)-1-isopropyl-1H-indole

Small Scale: Following the general procedure at $40^{\circ} \mathrm{C}$, $\mathbf{3 0}$ was prepared from 3-(4-fluorophenyl)-1-methyl-1Hindole (32) ($52.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($48.3 \mathrm{mg}, 0.166 \mathrm{mmol}, 83 \%$ yield) as a viscous, yellow oil after silica gel chromatography (pentane $/ \mathrm{EtOAc}=25: 1$).

Large Scale: A 100-mL Schlenk flask equipped with a stirring bar was charged 3-(4-fluorophenyl)-1-methyl1 H -indole (32) ($1.267 \mathrm{~g}, 5 \mathrm{mmol}$), $\mathrm{Ni}(\mathrm{acac})_{2}(128 \mathrm{mg}, 0.5 \mathrm{mmol})$, and phosphine ligand (L4) ($234 \mathrm{mg}, 0.5$ mmol). Anhydrous CsF ($150 \mathrm{mg}, 1 \mathrm{mmol}$) was added, followed by toluene (25 mL). After stirring for 10 min , sec-butylmagnesium chloride ($5 \mathrm{~mL}, 2 \mathrm{M}$) was added in a single fast push, and the flask was immediately subjected to a heating bath preheated to $40^{\circ} \mathrm{C}$. The reaction was stirred for 24 h , at which point $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to the flask. The phases were separated, and the aq phase extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography to afford $\mathbf{3 1}$ as a yellow, viscous oil ($1.253 \mathrm{~g}, 4.27 \mathrm{mmol}, 86 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.12(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 145.2,136.4,133.5,127.5,127.3,126.5,121.7,121.3,120.3,119.8,117.0$, 109.8, 47.2, 41.5, 31.4, 23.0, 22.0, 12.5.

HRMS (ESI): calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$292.2060; found 292.2060.

1-Isopropyl-3-(4-isopropylphenyl)-1H-indole

Following the general procedure at $40{ }^{\circ} \mathrm{C}$, $\mathbf{3 1}$ was prepared from 3-(4-fluorophenyl)-1-isopropyl-1H-indole ($50.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) yielding the above compound ($49 \mathrm{mg}, 0.178 \mathrm{mmol}, 89 \%$ yield) as a pale-yellow oil after silica gel chromatography (pentane/MTBE $=30: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dt}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.18(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(h e p t, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-$ $2.91(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 146.4,136.4,133.5,127.4,126.9,126.5,121.7,121.4,120.2,119.8,117.0$, 109.8, 47.2, 33.4, 24.2, 23.0.

HRMS (ESI): calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$278.1903; found 278.1903.

4-(4-(sec-Butyl)phenyl)-2-(4-ethylpiperazin-1-yl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine

34 was prepared from blonanserin (33) $(9.2 \mathrm{mg}, 0.025 \mathrm{mmol})$ following the general procedure at $60^{\circ} \mathrm{C}$ with 10% metal and catalyst until the point of purification. The crude white solid obtained after standard aq workup was purified by preparative HPLC, which afforded 34 as an off white solid ($4.2 \mathrm{mg}, 42 \%$ yield single isomer, 46% yield of mix).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{q}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 4 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dt}$, $J=18.5,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.77(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.05(\mathrm{~m}, 14 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 159.8, 151.8, 146.7, 138.8, 128.3, 126.6, 123.3, 106.3, 52.6, 52.4, 45.5, 41.4, $35.5,31.6,31.2,30.6,29.7,26.6,26.5,25.9,21.7,12.3$.

HRMS (ESI): calc'd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 406.3217$; found 406.3125 .

By ${ }^{13} \mathrm{C}$ NMR three carbon peaks were not effectively resolved. The product identity was confirmed spectroscopically by mass spec and 2D HMBC.

2-Chloro-3-fluoropyridine

Prepared according to Schlosser's protocol ${ }^{6}$. A Schlenk flask equipped with a stir bar was charged with DABCO ($561 \mathrm{mg}, 5 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and hexane (3 mL). The flask was cooled to $-20^{\circ} \mathrm{C}$, at which point $\mathrm{n}-\mathrm{BuLi}(3.13 \mathrm{~mL}, 1.6 \mathrm{M}, 5 \mathrm{mmol})$ was added dropwise. The solution stirred for 1 h at $-20{ }^{\circ} \mathrm{C}$, was cooled to -60 ${ }^{\circ} \mathrm{C}$, and then charged dropwise with 3-fluoropyridine ($0.43 \mathrm{~mL}, 5 \mathrm{mmol}$). The solution stirred for an additional hour at the same temperature, and then hexachloroethane ($1.184 \mathrm{~g}, 5 \mathrm{mmol}$) was added all at once. The cooling bath was removed and the flask was warmed to rt. Then $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The phases were separated, and the aq layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash chromatography (pentane/EtOAc $=3: 1$) to yield $\mathbf{3 6}$ as an off yellow oil (348 $\mathrm{mg}, 2.65 \mathrm{mmol}, 53 \%$ yield). Purity was in accordance with commercially available 36.

CAS: 17282-04-1

37

3-Fluoro-2-propylpyridine

Prepared according to Fürstner's protocol ${ }^{19}$. A Schlenk flask was charged with 2-chloro-3-fluoropyridine 36 $(260 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Fe}(\mathrm{acac})_{3}(35.3 \mathrm{mg}, 0.1 \mathrm{mmol})$, THF $(10 \mathrm{~mL})$, and NMP $(1 \mathrm{~mL})$. Then, $\mathrm{n}-\mathrm{PrMgBr}(1.2 \mathrm{~mL}$, $0.2 \mathrm{M}, 0.24 \mathrm{mmol}$) was added to the flask in a single push. The reaction was stirred at room temperature for 30 min, and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The layers were partitioned, and the aq layer extracted with MTBE $(3 \times 10$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by column chromatography (pentane/EtOAc $=5: 1$), to afford $37(255 \mathrm{mg}, 1.84 \mathrm{mmol}, 92 \%$ yield) as an off yellow, viscous oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32(\mathrm{dt}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=9.6,8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dt}, J=$ $8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=7.8,6.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 159.1,156.6,150.7(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 144.9(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 122.8-121.9(\mathrm{~m})$, 33.6 (d, $J=2.4 \mathrm{~Hz}$), 21.9, 13.9.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 125.8$.
HRMS (ESI): calc'd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$140.0870; found 140.0871.

38

3-Hexyl-2-propylpyridine

Following the general procedure with $10 \mathrm{~mol} \%$ metal and ligand, 38 was prepared from 3-fluoro-2propylpyridine 37 ($13.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielding the above compound ($11.5 \mathrm{mg}, 0.056 \mathrm{mmol}, 56 \%$ yield) as a colorless oil following flash chromatography (pentane $/ \mathrm{EtOAc}=6: 1$)
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.37(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.6$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{tt}, J=7.8,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-$ $1.28(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 160.3,146.7,136.7,135.7,121.1,37.1,32.4,31.8,30.8,29.4,23.1,22.8,14.4$, 14.2.

HRMS (ESI): calc'd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$206.1903; found 206.1903.

4-Chloro-3-fluoropyridine

Prepared according to Schlosser's protocol ${ }^{6}$. A Schlenk flask equipped with a stir bar was charged with n-BuLi ($3.13 \mathrm{~mL}, 1.6 \mathrm{M}, 5 \mathrm{mmol}$), THF (7 mL), and hexanes (3 mL) and cooled in a dry ice/ MeOH bath. Diisopropyl amine $(0.70 \mathrm{~mL}, 5 \mathrm{mmol})$ was added dropwise, stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and cooled at $-75^{\circ} \mathrm{C}$. Then 3fluoropyridine ($0.43 \mathrm{~mL}, 5 \mathrm{mmol}$) was added dropwise, and the mixture was aged for 2 h at $-75{ }^{\circ} \mathrm{C}$. Hexachloroethane ($1.184 \mathrm{~g}, 5 \mathrm{mmol}$) was added all at once. The cooling bath was removed and the flask was warmed to rt . Then $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The phases were separated, and the aq layer extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash chromatography (pentane/EtOAc $=3: 1$) to yield 40 as an off yellow oil ($375 \mathrm{mg}, 2.85 \mathrm{mmol}, 57 \%$ yield). Purity was in accordance with commercially available 40.

CAS: 2546-56-7

3-Fluoro-4-hexylpyridine

Prepared according to Fürstner's protocol ${ }^{19}$. A Schlenk flask was charged with 4-chloro-3-fluoropyridine 39 ($260 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{Fe}(\mathrm{acac})_{3}(35.3 \mathrm{mg}, 0.1 \mathrm{mmol})$, THF (10 mL), and NMP (1 mL). Then, DecylMgBr (1.2 $\mathrm{mL}, 2.0 \mathrm{M}, 2.4 \mathrm{mmol}$) was added to the flask in a single push. The reaction was stirred at room temperature for 30 min , and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The layers were partitioned, and the aq layer extracted with MTBE ($3 \times$ 10 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography (pentane/EtOAc $=5: 1$), to afford $40(465 \mathrm{mg}, 1.98 \mathrm{mmol}, 96 \%$ yield) as a pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=6.4,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 14 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6(\mathrm{~d}, J=253.9 \mathrm{~Hz}), 145.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 137.8(\mathrm{~d}$, $J=25.0 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 32.0,28.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 22.8,14.3$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-133.5$.
HRMS (ESI): calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$238.1966; found 238.1966.

3-(sec-butyl)-4-hexylpyridine

Following the general procedure at $40^{\circ} \mathrm{C}$ with $10 \mathrm{~mol} \%$ catalyst and ligand loading, 41 was prepared from 3-fluoro-4-hexylpyridine $40(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ yielding the above compound ($16 \mathrm{mg}, 0.057 \mathrm{mmol}, 57 \%$) as a colorless oil following flash chromatography (pentane/MTBE $=1: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.46-8.27(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{dd}, J=8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.69-2.52(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.22(\mathrm{~m}, 25 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 150.3,148.9,148.0,147.2,146.7,123.9,34.3,33.2,32.1,31.9,31.8 .30 .7$, $30.6,30.2,29.7,29.6,29.6,29.5,29.5,29.3,22.7,21.8,14.1,13.9,12.3$.

HRMS (ESI): calc'd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$276.2684; found 276.2686.

7. Additional Results/Observations

Example Unsuccessful Substrates

Some substrates did not afford alkylated product under our catalytic protocol or proved recalcitrant to facile purification. For example, 4-fluorostyrene failed to show any conversion from the starting material. Molecules with functionality at the benzylic position also proved incompatible, and did not provide an indication of reactivity. Primary amines were also problematic, and no product was detected.

Grignard reagents prepared with solutions of THF were also found to perform poorly, and THF employed as solvent was found to preclude observable reaction progress. We propose that this detrimental effect arises through formation of an adduct with the Grignard, but thus far, only speculation has been put forth.

Additional Experiments and Considerations

After optimization, control reactions showed the requirement of the nickel catalyst and ligand to obtain couple product. Furthermore, control experiments for all electron deficient compounds that might experience competing $S_{N} A r$ pathways of the Grignard without participation of the catalyst were completed. In each case, no product was observed when the catalyst was excluded.

An attempt to expand the scope to tertiary nucleophiles led to rearrangement of the nucleophile $t-\mathrm{BuMgCl}$, with several distinct isomers identified by GC. Therefore, further attempts to expand beyond t - BuMgCl were not explored. Experiments utilizing chiral nucleophiles were not attempted for utilization herein.

While Grignard nucleophiles were consistently added in a single push, the relevance of an exotherm does not seem to strongly influence the reaction. This is demonstrated by compound $\mathbf{3 0}$, as the scale up had only a slight influence on the reaction outcome, despite the expected distinct exotherm profiles.

8. X-ray Crystallography Data

General Procedure

To obtain crystals suitable for X-ray study, $\mathrm{NiCl} 2.6 \mathrm{H}_{2} \mathrm{O}(63.3 \mathrm{mg}, 0.121 \mathrm{mmol})$ was dissolved in EtOH (1 $\mathrm{mL})$. A solution of phosphine ligand $(0.121 \mathrm{mmol})$ in $\mathrm{DCM}(0.8 \mathrm{~mL})$ was added to the solution. The resulting red/orange solid was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The solid was then dried in vacuo. Afterwards, the solid was dissolved in DCM (24 mL) and layered with $\mathrm{Et}_{2} \mathrm{O}$ to obtain crystals. X-ray analysis was subsequently completed.

Table SX. Crystal data and structure refinement.

Identification code
11120
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{Ni} \mathrm{P}_{2}$
red
$542.03 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100(2) K
$0.71073 \AA$
TRICLINIC
P1, (no. 2)
$a=8.4067(11) \AA \quad \alpha=88.217(16)^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=10.4499(14) \AA & \beta=79.904(19)^{\circ} . \\
\mathrm{c}=14.456(4) \AA & \gamma=73.186(14)^{\circ} .
\end{array}
$$

Volume Z

Density (calculated)

Absorption coefficient	$1.182 \mathrm{~mm}^{-1}$
$F(000)$	560 e
Crystal size	$0.14 \times 0.13 \times 0.13 \mathrm{~mm}^{3}$
θ range for data collection	2.716 to 33.200°.
Index ranges	$-12 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-22 \leq 1 \leq 22$
Reflections collected	43081
Independent reflections	$9123\left[\mathrm{R}_{\mathrm{int}}=0.0454\right]$
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$	7206
Completeness to $\theta=25.242^{\circ}$	99.9 \%
Absorption correction	Gaussian
Max. and min. transmission	0.90 and 0.87
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9123 / 0/289
Goodness-of-fit on F^{2}	1.035
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0378 \quad \mathrm{wR}^{2}=0.0864$
R indices (all data)	$\mathrm{R}_{1}=0.0558 \quad \mathrm{wR}^{2}=0.0959$
Largest diff. peak and hole	0.6 and $-0.9 \mathrm{e} \cdot \AA^{-3}$

$1196.6(4) \AA^{3}$

2
$1.504 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$1.182 \mathrm{~mm}^{-1}$
560 e
$0.14 \times 0.13 \times 0.13 \mathrm{~mm}^{3}$
2.716 to 33.200°.
$-12 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-22 \leq 1 \leq 22$
43081
$9123\left[\mathrm{R}_{\mathrm{int}}=0.0454\right]$
7206
99.9 \%

Gaussian
0.90 and 0.87

Full-matrix least-squares on F^{2}
9123 / 0/289
1.035
$\mathrm{R}_{1}=0.0378$
$w^{2}=0.0864$
$w^{2}=0.0959$
0.6 and $-0.9 \mathrm{e} \cdot \AA^{-3}$

Table SX. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

$\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$2.2062(6)$	$\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$2.2138(5) \mathrm{Ni}(1)-\mathrm{P}(1)$
$2.1737(5)$	$\mathrm{Ni}(1)-\mathrm{P}(2)$	$2.1690(6)$	$\mathrm{P}(1)-\mathrm{C}(1) 1.8444(17)$
$\mathrm{P}(1)-\mathrm{C}(4)$	$1.8195(16)$	$\mathrm{P}(1)-\mathrm{C}(10)$	$1.8200(16)$
$\mathrm{C}(3)$	$1.8350(17)$	$\mathrm{P}(2)-\mathrm{C}(16)$	$1.8155(17)$
$\mathrm{C}(22)$	$1.8174(17)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{P}(2)-$
$1.532(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.385(2)$	$\mathrm{C}(4)-\mathrm{C}(9) 1.391(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.393(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$\mathrm{C}(2)-\mathrm{C}(3)$
$1.380(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$\mathrm{C}(10)-\mathrm{C}(11)$	
$1.392(2)$	$\mathrm{C}(10)-\mathrm{C}(15)$	$\mathrm{C}(11)-\mathrm{C}(12)$	
$1.397(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$\mathrm{C}(13)-\mathrm{C}(14)$	
$1.383(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$\mathrm{C}(16)-\mathrm{C}(17)$	
$1.390(2)$	$\mathrm{C}(16)-\mathrm{C}(21)$	$\mathrm{C}(17)-\mathrm{C}(18)$	
$1.389(3)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$\mathrm{C}(19)-\mathrm{C}(20)$	
$1.383(3)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$\mathrm{C}(22)-\mathrm{C}(23)$	
$1.396(2)$	$\mathrm{C}(22)-\mathrm{C}(27)$	$\mathrm{C}(23)-\mathrm{C}(24)$	
$1.393(2)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$\mathrm{C}(25)-\mathrm{C}(26)$	
$1.390(3)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.395(2)$	

$\mathrm{Cl}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$91.96(2)$
$\mathrm{Cl}(2)$	$176.329(18)$
$\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$86.93(2)$
$\mathrm{Ni}(1)$	$117.18(6)$
$\mathrm{C}(1)$	$106.28(8)$
$\mathrm{Ni}(1)$	$115.66(6)$
$\mathrm{Ni}(1)$	$117.70(6)$
$\mathrm{C}(3)$	$101.95(8)$
$\mathrm{Ni}(1)$	$109.62(6)$
$\mathrm{P}(1)$	$117.79(12)$
$\mathrm{C}(3)-\mathrm{P}(2)$	$111.71(11)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$118.65(16)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$120.68(18)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$119.41(18)$
$\mathrm{C}(4)$	$119.92(19)$

$\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$90.58(2)$	$\mathrm{P}(1)-\mathrm{Ni}(1)-$
$\mathrm{P}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$170.017(19)$	$\mathrm{P}(2)-$
$\mathrm{P}(2)-\mathrm{Ni}(1)-\mathrm{P}(1)$	$91.03(2)$	$\mathrm{C}(1)-\mathrm{P}(1)-$
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{Ni}(1)$	$109.44(6)$	$\mathrm{C}(4)-\mathrm{P}(1)-$
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{C}(10)$	$106.19(7)$	$\mathrm{C}(10)-\mathrm{P}(1)-$
$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(1)$	$101.10(8)$	$\mathrm{C}(3)-\mathrm{P}(2)-$
$\mathrm{C}(16)-\mathrm{P}(2)-\mathrm{Ni}(1)$	$115.30(6)$	$\mathrm{C}(16)-\mathrm{P}(2)-$
$\mathrm{C}(16)-\mathrm{P}(2)-\mathrm{C}(22)$	$107.44(8)$	$\mathrm{C}(22)-\mathrm{P}(2)-$
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(3)$	$103.74(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.31(14)$	$\mathrm{C}(2)-$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{P}(1)$	$118.74(13)$	$\mathrm{C}(5)-$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{P}(1)$	$122.56(13)$	$\mathrm{C}(4)-$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.41(19)$	$\mathrm{C}(6)-$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.9(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{P}(1)$	$121.84(12)$	$\mathrm{C}(11)-$

$\mathrm{C}(10)-\mathrm{C}(15)$	$119.53(15)$	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{P}(1)$	$118.61(13)$	$\mathrm{C}(10)-$
$\mathrm{C}(11)-\mathrm{C}(12)$	$120.14(16)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.89(17)$	$\mathrm{C}(14)-$
$\mathrm{C}(13)-\mathrm{C}(12)$	$120.35(16)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.05(16)$	$\mathrm{C}(14)-$
$\mathrm{C}(15)-\mathrm{C}(10)$	$120.03(16)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{P}(2)$	$120.49(13)$	$\mathrm{C}(17)-$
$\mathrm{C}(16)-\mathrm{C}(21)$	$119.33(16)$	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{P}(2)$	$120.00(13)$	$\mathrm{C}(18)-$
$\mathrm{C}(17)-\mathrm{C}(16)$	$119.97(18)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.45(19)$	$\mathrm{C}(20)-$
$\mathrm{C}(19)-\mathrm{C}(18)$	$119.83(18)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.83(18)$	$\mathrm{C}(20)-$
$\mathrm{C}(21)-\mathrm{C}(16)$	$120.59(18)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{P}(2)$	$121.44(13)$	$\mathrm{C}(23)-$
$\mathrm{C}(22)-\mathrm{C}(27)$	$119.32(15)$	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{P}(2)$	$119.08(13)$	$\mathrm{C}(24)-$
$\mathrm{C}(23)-\mathrm{C}(22)$	$120.03(16)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$120.43(17)$	$\mathrm{C}(24)-$
$\mathrm{C}(25)-\mathrm{C}(26)$	$120.18(17)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$119.88(17)$	$\mathrm{C}(26)-$
$\mathrm{C}(27)-\mathrm{C}(22)$	$120.16(17)$			

Table SX. Crystal data and structure refinement.

Identification code

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

11182
$\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{Ni} \mathrm{P}_{2}$
orange
$652.22 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100(2) K
$0.71073 \AA$
TETRAGONAL
I4/m,(no. 87)

$$
\begin{array}{ll}
\mathrm{a}=19.534(3) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=19.534(3) \AA & \beta=90^{\circ} .
\end{array}
$$

$$
\mathrm{c}=17.501(4) \AA \quad \gamma=90^{\circ} .
$$

Volume Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections

Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=25.242^{\circ}$

Absorption correction
Max. and min. transmission

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Remarks

Largest diff. peak and hole

6678(2) \AA^{3}

8

$1.298 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.859 \mathrm{~mm}^{-1}$
2736 e
$0.11 \times 0.045 \times 0.04 \mathrm{~mm}^{3}$
2.606 to 31.075°.
$-28 \leq \mathrm{h} \leq 28,-28 \leq \mathrm{k} \leq 28,-20 \leq 1 \leq 25$

61097
$5522\left[\mathrm{R}_{\text {int }}=0.0767\right]$

4132
99.8 \%

Gaussian
0.96830 and 0.93116

Full-matrix least-squares on F^{2}
5522 / $0 / 213$
1.107
$\mathrm{R}_{1}=0.0467 \quad \mathrm{wR}^{2}=0.0965$
$\mathrm{R}_{1}=0.0752$
$w R^{2}=0.1078$

SQUEEZE was applied

0.8 and $-0.4 \mathrm{e} \cdot \AA^{-3}$

Table SX. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$.

$\mathrm{Ni}(1)-\mathrm{Cl}(1)^{*}$	$2.1910(6)$	$\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$2.1910(6) \mathrm{Ni}(1)-\mathrm{P}(1)^{*}$
$2.1650(6)$	$\mathrm{Ni}(1)-\mathrm{P}(1)$	$2.1650(6)$	$\mathrm{P}(1)-\mathrm{C}(1) 1.845(2)$
$\mathrm{P}(1)-\mathrm{C}(10)$	$1.828(2)$	$\mathrm{P}(1)-\mathrm{C}(16)$	$1.824(2) \quad \mathrm{C}(1)-\mathrm{C}(2)$
$1.534(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.552(4)$	$\mathrm{C}(2)-\mathrm{C}(6)^{*}$
$1.575(5)$	$\mathrm{C}(2)-\mathrm{C}(6)$	$1.575(5)$	$\mathrm{C}(11)-\mathrm{C}(10)$
$1.391(3)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.395(3)$	$\mathrm{C}(8)-\mathrm{C}(7)^{*}$
$1.581(5)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$\mathrm{C}(3)-\mathrm{C}(4) 1.545(4)$	
$\mathrm{C}(10)-\mathrm{C}(15)$	$1.401(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.383(3) \quad \mathrm{C}(14)-\mathrm{C}(13)$
$1.381(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.388(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$
$1.389(3)$	$\mathrm{C}(17)-\mathrm{C}(16)$	$\mathrm{C}(21)-\mathrm{C}(20)$	
$1.399(3)$	$\mathrm{C}(21)-\mathrm{C}(16)$	$\mathrm{C}(18)-\mathrm{C}(19)$	
$1.391(4)$	$\mathrm{C}(4)-\mathrm{C}(5)^{*}$	$\mathrm{C}(4)-\mathrm{C}(5) 1.521(3)$	
$\mathrm{C}(20)-\mathrm{C}(19)$	$1.373(4)$	$1.521(3)$	$\mathrm{C})$
$1.527(6)$	$\mathrm{C}(7)-\mathrm{C}(6)$	$\left.\mathrm{C}(7)-\mathrm{C}(7)^{*}\right)$	$\mathrm{C}(6)-\mathrm{C}(6)^{*}$
$1.551(6)$	$\mathrm{C}(9)-\mathrm{C}(9)^{*}$	$1.277(6)$	$\mathrm{C}(7)-\mathrm{C}(9)$
$0.599(7)$			

$\mathrm{Cl}(1)^{*}-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$91.41(3)$
$\mathrm{Cl}(1)^{*}$	$176.93(3)$
$\mathrm{Cl}(1)$	$176.93(3)$
$\mathrm{Ni}(1)$	$119.37(7)$
$\mathrm{C}(1)$	$100.00(10)$
$\mathrm{C}(1)$	$105.57(10)$
$\mathrm{C}(1)-\mathrm{P}(1)$	$119.66(17)$
$\mathrm{C}(3)$	$107.27(16)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$100.96(19)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$120.1(2)$
$\mathrm{C}(6)^{*}$	$110.6(3)$
$\mathrm{C}(6)^{*}$	$21.9(3)$
$\mathrm{C}(7)^{*}$	$48.3(3)$
$\mathrm{P}(1)$	$118.09(17)$
$\mathrm{P}(1)$	$122.64(17)$
$\mathrm{C}(10)$	$119.7(2)$

$\mathrm{P}(1)^{*}-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$86.14(2)$	$\mathrm{P}(1)^{*}-\mathrm{Ni}(1)-$
$\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(1)^{*}$	$86.14(2)$	$\mathrm{P}(1)-\mathrm{Ni}(1)-$
$\mathrm{P}(1)^{*}-\mathrm{Ni}(1)-\mathrm{P}(1)$	$96.25(3)$	$\mathrm{C}(1)-\mathrm{P}(1)-$
$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{Ni}(1)$	$112.53(7)$	$\mathrm{C}(10)-\mathrm{P}(1)-$
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{Ni}(1)$	$112.77(8)$	$\mathrm{C}(16)-\mathrm{P}(1)-$
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}(10)$	$104.98(10)$	$\mathrm{C}(2)-$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(1)^{*}$	$109.9(2)$	$\mathrm{C}(1)^{*}-\mathrm{C}(2)-$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.26(16)$	$\mathrm{C}(1)^{-}-$
$\mathrm{C}(1)^{*}-\mathrm{C}(2)-\mathrm{C}(6)^{*}$	$100.97(19)$	$\mathrm{C}(1)^{*-}$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)^{*}$	$120.1(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$110.6(3)$	$\mathrm{C}(6)-\mathrm{C}(2)-$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.4(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$117.5(2)$	$\mathrm{C}(11)-\mathrm{C}(10)-$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	$119.3(2)$	$\mathrm{C}(15)-\mathrm{C}(10)-$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121.2(2)$	$\mathrm{C}(14)-\mathrm{C}(15)-$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.9(2)$	$\mathrm{C}(18)-\mathrm{C}(17)-$

C(16)	120.2(2)	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	119.8(2)	$\mathrm{C}(17)-\mathrm{C}(18)-$
C(19)	120.0(2)	$\mathrm{C}(5) *-\mathrm{C}(4)-\mathrm{C}(3)$	110.3(2)	$\mathrm{C}(5)-\mathrm{C}(4)-$
C(3)	110.3(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(5){ }^{*}$	111.2(4)	$\mathrm{C}(19)$-C(20)-
C (21)	120.6(2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	119.6(2)	$\mathrm{C}(17)-\mathrm{C}(16)-$
$\mathrm{P}(1)$	120.28(18)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{P}(1)$	120.49(17)	$\mathrm{C}(21)$
$\mathrm{C}(16)-\mathrm{C}(17)$	119.2(2)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	120.1(2)	$\mathrm{C}(7) *-\mathrm{C}(7)-$
C(8)	65.85(16)	$\mathrm{C}(7) *-\mathrm{C}(7)-\mathrm{C}(9)$	96.0(2)	$\mathrm{C}(7) *-\mathrm{C}(7)-$
C(6)*	52.4(2)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	108.8(3)	$\mathrm{C}(9)-\mathrm{C}(7)-$
C(6)*	108.5(3)	$\mathrm{C}(6) *-\mathrm{C}(7)-\mathrm{C}(8)$	109.3(3)	$\mathrm{C}(6)-\mathrm{C}(7)-$
C(8)	126.4(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(7) *$	74.2(3)	$\mathrm{C}(6)$-C(7)-
C(9)	109.7(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(6)^{*}$	21.8(3)	$\mathrm{C}(7)-\mathrm{C}(9)-$
C(9)*	84.0(2)	$\mathrm{C}(7)^{*}-\mathrm{C}(6)-\mathrm{C}(2)$	116.2(3)	$\mathrm{C}(7)-\mathrm{C}(6)-$
C(2)	136.8(4)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(7)^{*}$	53.4(4)	$\mathrm{C}(6) *$-C(6)-
C(2)	79.04(14)	$\mathrm{C}(6) *-\mathrm{C}(6)-\mathrm{C}(7)$	105.8(3)	$\mathrm{C}(6) *-\mathrm{C}(6)-$
C(7)*	52.4(2)			

Symmetry transformations used to generate equivalent atoms: * x,y,-z+1

Table SX. Crystal data and structure refinement.

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

11121
$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{Ni} \mathrm{P}_{2}$
orange
$570.08 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100(2) K
$0.71073 \AA$
MONOCLINIC
P2 $1 / \mathrm{c}$, (no. 14)
$a=11.2173(14) \AA \quad \alpha=90^{\circ}$.
$b=17.533(2) \AA \quad \beta=92.921(2)^{\circ}$.
$\mathrm{c}=13.6391(16) \AA \quad \gamma=90^{\circ}$.

Volume Z

Density (calculated)
Absorption coefficient
$\mathrm{F}(000)$
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
2678.9(6) \AA^{3}

4
$1.413 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$1.060 \mathrm{~mm}^{-1}$
1184 e
$0.132 \times 0.032 \times 0.032 \mathrm{~mm}^{3}$
1.818 to 35.213°.
$-18 \leq \mathrm{h} \leq 18,-28 \leq \mathrm{k} \leq 28,-22 \leq 1 \leq 22$
99600
$11933\left[\mathrm{R}_{\mathrm{int}}=0.0850\right]$
8635
100.0 \%

Gaussian
0.98 and 0.89

Full-matrix least-squares on F^{2}
11933 / 0 / 309
1.059
$\mathrm{R}_{1}=0.0393$
$\mathrm{wR}^{2}=0.0920$
$\mathrm{R}_{1}=0.0703$
$w R^{2}=0.1084$
0.7 and $-0.9 \mathrm{e} \cdot \AA^{-3}$

Table SX. Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$.

$\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$2.1924(5)$	$\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$2.2056(5) \mathrm{Ni}(1)-\mathrm{P}(1)$
$2.1659(5)$	$\mathrm{Ni}(1)-\mathrm{P}(2)$	$2.1591(5)$	$\mathrm{P}(1)-\mathrm{C}(1) 1.8334(15)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.8140(15)$	$\mathrm{P}(1)-\mathrm{C}(12)$	$1.8140(17)$
$\mathrm{C}(3)$	$1.8271(16)$	$\mathrm{P}(2)-\mathrm{C}(18)$	$1.8205(17)$
$\mathrm{C}(24)$	$1.8225(16)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{P}(2)-$
$1.536(2)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.537(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.395(2)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.396(2) \quad \mathrm{C}(7)-\mathrm{C}(8)$
$1.387(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.387(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$
$1.383(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$\mathrm{C}(12)-\mathrm{C}(13)$	
$1.398(2)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$\mathrm{C}(13)-\mathrm{C}(14)$	
$1.386(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$\mathrm{C}(15)-\mathrm{C}(16)$	
$1.382(3)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$\mathrm{C}(18)-\mathrm{C}(19)$	
$1.396(2)$	$\mathrm{C}(18)-\mathrm{C}(23)$	$\mathrm{C}(19)-\mathrm{C}(20)$	
$1.387(3)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$\mathrm{C}(21)-\mathrm{C}(22)$	
$1.385(3)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$\mathrm{C}(24)-\mathrm{C}(25)$	
$1.401(2)$	$\mathrm{C}(24)-\mathrm{C}(29)$	$\mathrm{C}(25)-\mathrm{C}(26)$	
$1.390(2)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$\mathrm{C}(27)-\mathrm{C}(28)$	
$1.379(3)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.3895(3)$	

$\mathrm{Cl}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$92.276(17)$	$\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$179.183(18)$	$\mathrm{P}(1)-\mathrm{Ni}(1)-$
$\mathrm{Cl}(2)$	$87.218(17)$	$\mathrm{P}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$84.040(17)$	$\mathrm{P}(2)-\mathrm{Ni}(1)-$
$\mathrm{Cl}(2)$	$176.270(18)$	$\mathrm{P}(2)-\mathrm{Ni}(1)-\mathrm{P}(1)$	$96.472(17)$	$\mathrm{C}(1)-\mathrm{P}(1)-$
$\mathrm{Ni}(1)$	$120.66(5)$	$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{Ni}(1)$	$110.05(5)$	$\mathrm{C}(6)-\mathrm{P}(1)-$
$\mathrm{C}(1)$	$101.20(7)$	$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	$107.25(7)$	$\mathrm{C}(12)-\mathrm{P}(1)-$
$\mathrm{Ni}(1)$	$112.87(5)$	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(1)$	$103.54(8)$	$\mathrm{C}(3)-\mathrm{P}(2)-$
$\mathrm{Ni}(1)$	$119.41(5)$	$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{Ni}(1)$	$110.75(5)$	$\mathrm{C}(18)-\mathrm{P}(2)-$
$\mathrm{C}(3)$	$99.69(7)$	$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{C}(24)$	$108.50(8)$	$\mathrm{C}(24)-\mathrm{P}(2)-$
$\mathrm{Ni}(1)$	$112.88(6)$	$\mathrm{C}(24)-\mathrm{P}(2)-\mathrm{C}(3)$	$104.45(7)$	$\mathrm{C}(2)-\mathrm{C}(1)-$
$\mathrm{P}(1)$	$118.08(10)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109.57(13)$	$\mathrm{C}(1)-\mathrm{C}(2)-$
$\mathrm{C}(4)$	$107.18(12)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$106.50(13)$	$\mathrm{C}(5)-\mathrm{C}(2)-$
$\mathrm{C}(1)$	$111.43(13)$	$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{C}(3)$	$112.16(13)$	$\mathrm{C}(5)-\mathrm{C}(2)-$
$\mathrm{C}(4)$	$109.77(13)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{P}(2)$	$118.20(11)$	$\mathrm{C}(7)-\mathrm{C}(6)-$
$\mathrm{P}(1)$	$121.62(12)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$119.49(14)$	$\mathrm{C}(11)-\mathrm{C}(6)-$

$\mathrm{P}(1)$	$118.77(12)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$119.64(16)$	$\mathrm{C}(9)-\mathrm{C}(8)-$
$\mathrm{C}(7)$	$120.62(16)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.20(15)$	$\mathrm{C}(9)-\mathrm{C}(10)-$
$\mathrm{C}(11)$	$119.57(16)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$120.47(15)$	$\mathrm{C}(13)-\mathrm{C}(12)-$
$\mathrm{P}(1)$	$120.61(12)$	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{P}(1)$	$120.23(13)$	$\mathrm{C}(17)-\mathrm{C}(12)-$
$\mathrm{C}(13)$	$119.09(15)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.46(16)$	$\mathrm{C}(15)-\mathrm{C}(14)-$
$\mathrm{C}(13)$	$119.79(17)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120.37(18)$	$\mathrm{C}(15)-\mathrm{C}(16)-$
$\mathrm{C}(17)$	$120.16(17)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	$120.13(17)$	$\mathrm{C}(19)-\mathrm{C}(18)-$
$\mathrm{P}(2)$	$116.44(13)$	$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{P}(2)$	$124.08(13)$	$\mathrm{C}(23)-\mathrm{C}(18)-$
$\mathrm{C}(19)$	$119.47(16)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.30(17)$	$\mathrm{C}(21)-\mathrm{C}(20)-$
$\mathrm{C}(19)$	$120.08(17)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$119.85(18)$	$\mathrm{C}(21)-\mathrm{C}(22)-$
$\mathrm{C}(23)$	$120.58(18)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$119.67(17)$	$\mathrm{C}(25)-\mathrm{C}(24)-$
$\mathrm{P}(2)$	$120.89(13)$	$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{P}(2)$	$120.08(12)$	$\mathrm{C}(29)-\mathrm{C}(24)-$
$\mathrm{C}(25)$	$118.96(15)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.48(17)$	$\mathrm{C}(27)-\mathrm{C}(26)-$
$\mathrm{C}(25)$	$119.77(17)$	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$120.36(16)$	$\mathrm{C}(27)-\mathrm{C}(28)-$
$\mathrm{C}(29)$	$120.14(17)$	$\mathrm{C}(24)-\mathrm{C}(29)-\mathrm{C}(28)$	$120.28(16)$	

Table SX. Crystal data and structure refinement.

Identification code
Empirical formula
Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

11157
$\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{Ni} \mathrm{P}_{2}$
orange
$598.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100(2) K
0.71073 Å

MONOCLINIC
P21/n, (no. 14)

$$
\begin{array}{ll}
\mathrm{a}=11.201(8) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=19.982(12) \AA & \beta=110.304(18)^{\circ} . \\
\mathrm{c}=13.383(10) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume	$2809(3) \AA^{3}$
Z	4
Density (calculated)	$1.414 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
Absorption coefficient	$1.014 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1248 e
Crystal size	$0.14 \times 0.03 \times 0.02 \mathrm{~mm}^{3}$
θ range for data collection	2.814 to 31.096°.
Index ranges	$-16 \leq \mathrm{h} \leq 16,-28 \leq \mathrm{k} \leq 29,-19 \leq 1 \leq 19$
Reflections collected	52505
Independent reflections	$9005\left[\mathrm{R}_{\text {int }}=0.1251\right]$
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$	5304
Completeness to $\theta=25.242^{\circ}$	99.6%
Absorption correction	Gaussian
Max. and min. transmission	0.98 and 0.88
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$9005 / 0 / 327$
Goodness-of-fit on F^{2}	1.026
Final R indices [I>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0608$
R indices (all data)	$\mathrm{R}_{1}=0.1328$
Largest diff. peak and hole	0.6 and $-0.7 \mathrm{e} \cdot \AA^{-3}$

Table SX. Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$.

-				
$\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$2.2189(13)$	$\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$2.2015(16)$	$\mathrm{Ni}(1)-$
$\mathrm{P}(1)$	$2.1596(16)$	$\mathrm{Ni}(1)-\mathrm{P}(2)$	$2.1728(13)$	$\mathrm{P}(1)-$
$\mathrm{C}(1)$	$1.839(3)$	$\mathrm{P}(1)-\mathrm{C}(8)$	$1.824(3) \quad \mathrm{P}(1)-\mathrm{C}(14)$	
$1.828(3)$	$\mathrm{P}(2)-\mathrm{C}(3)$	$1.847(3)$	$\mathrm{P}(2)-\mathrm{C}(20) 1.824(3)$	
$\mathrm{P}(2)-\mathrm{C}(26)$	$1.829(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{C}(2)-\mathrm{C}(6) 1.543(4) \mathrm{C}(2)-\mathrm{C}(3)$	
$1.541(4)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.553(4)$	$1.531(4) \quad \mathrm{C}(8)-\mathrm{C}(9)$	
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.521(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	
$1.404(4)$	$\mathrm{C}(8)-\mathrm{C}(13)$	$\mathrm{C}(14)-\mathrm{C}(15)$		
$1.382(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$\mathrm{C}(15)-\mathrm{C}(16)$		
$1.391(5)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$\mathrm{C}(17)-\mathrm{C}(18)$		
$1.393(4)$	$\mathrm{C}(14)-\mathrm{C}(19)$	$\mathrm{C}(20)-\mathrm{C}(21)$		
$1.391(4)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$\mathrm{C}(21)-\mathrm{C}(22)$		
$1.389(5)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$\mathrm{C}(23)-\mathrm{C}(24)$		
$1.399(4)$	$\mathrm{C}(20)-\mathrm{C}(25)$	$1.385(4)$	$\mathrm{C}(26)-\mathrm{C}(27)$	
$1.389(5)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$\mathrm{C}(27)-\mathrm{C}(28)$		
$1.391(5)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$\mathrm{C}(29)-\mathrm{C}(30)$		
$1.396(4)$	$\mathrm{C}(26)-\mathrm{C}(31)$	$1.395(4)$		
$1.391(4)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.377(5)$	$1.387(4)$	
$1.386(5)$	$\mathrm{C}(30)-\mathrm{C}(31)$	$1.399(4)$	$1.382(4)$	$1.384(4)$

$\mathrm{Cl}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$92.46(5)$
$\mathrm{Cl}(2)$	$177.92(4)$
$\mathrm{Cl}(1)$	$178.64(4)$
$\mathrm{Ni}(1)$	$120.27(11)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$100.57(14)$
$\mathrm{P}(1)-\mathrm{Ni}(1)$	$113.34(10)$
$\mathrm{P}(2)-\mathrm{Ni}(1)$	$121.47(11)$
$\mathrm{P}(2)-\mathrm{C}(3)$	$102.49(14)$
$\mathrm{P}(2)-\mathrm{Ni}(1)$	$111.29(11)$
$\mathrm{C}(1)-\mathrm{P}(1)$	$118.9(2)$
$\mathrm{C}(4)$	$106.8(2)$
$\mathrm{C}(4)$	$106.6(2)$
$\mathrm{C}(4)$	$111.2(2)$

$\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$85.67(5)$	$\mathrm{P}(1)-\mathrm{Ni}(1)-$
$\mathrm{P}(1)-\mathrm{Ni}(1)-\mathrm{P}(2)$	$95.45(5)$	$\mathrm{P}(2)-\mathrm{Ni}(1)-$
$\mathrm{P}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	$86.43(5)$	$\mathrm{C}(1)-\mathrm{P}(1)-$
$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{Ni}(1)$	$110.71(10)$	$\mathrm{C}(8)-$
$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(14)$	$106.59(14)$	$\mathrm{C}(14)-$
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(1)$	$103.88(14)$	$\mathrm{C}(3)-$
$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{Ni}(1)$	$112.93(11)$	$\mathrm{C}(20)-$
$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(26)$	$106.02(14)$	$\mathrm{C}(26)-$
$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{C}(3)$	$101.00(14)$	$\mathrm{C}(2)-$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.9(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$111.5(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$112.4(2)$	$\mathrm{C}(6)-\mathrm{C}(2)-$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{P}(2)$	$118.4(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-$

$\mathrm{C}(2)$	$115.7(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	$115.7(3)$	$\mathrm{C}(9)-\mathrm{C}(8)-$
$\mathrm{P}(1)$	$117.8(2)$	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{P}(1)$	$123.4(2)$	$\mathrm{C}(13)-\mathrm{C}(8)-$
$\mathrm{C}(9)$	$118.8(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.8(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-$
$\mathrm{C}(11)$	$119.9(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.6(3)$	$\mathrm{C}(13)-\mathrm{C}(12)-$
$\mathrm{C}(11)$	$120.5(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$120.4(3)$	$\mathrm{C}(15)-\mathrm{C}(14)-$
$\mathrm{P}(1)$	$119.6(2)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$119.4(3)$	$\mathrm{C}(19)-\mathrm{C}(14)-$
$\mathrm{P}(1)$	$121.0(2)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120.6(3)$	$\mathrm{C}(17)-\mathrm{C}(16)-$
$\mathrm{C}(15)$	$119.9(3)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$119.8(3)$	$\mathrm{C}(17)-\mathrm{C}(18)-$
$\mathrm{C}(19)$	$120.6(3)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$119.7(3)$	$\mathrm{C}(21)-\mathrm{C}(20)-$
$\mathrm{P}(2)$	$120.0(2)$	$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{P}(2)$	$120.9(2)$	$\mathrm{C}(25)-\mathrm{C}(20)-$
$\mathrm{C}(21)$	$119.0(3)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.0(3)$	$\mathrm{C}(23)-\mathrm{C}(22)-$
$\mathrm{C}(21)$	$120.4(3)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.3(3)$	$\mathrm{C}(25)-\mathrm{C}(24)-$
$\mathrm{C}(23)$	$119.6(3)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	$120.7(3)$	$\mathrm{C}(27)-\mathrm{C}(26)-$
$\mathrm{P}(2)$	$121.0(2)$	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(31)$	$119.0(3)$	$\mathrm{C}(31)-\mathrm{C}(26)-$
$\mathrm{P}(2)$	$119.9(2)$	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$120.1(3)$	$\mathrm{C}(29)-\mathrm{C}(28)-$
$\mathrm{C}(27)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$119.6(3)$	$\mathrm{C}(31)-\mathrm{C}(30)-$	
$\mathrm{C}(29)$	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	$120.1(3)$		

9. References

1. T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya. J. Am. Chem. Soc. 2015, 137, 14313.
2. A. Zapf, A. Ehrentraut, B. Matthias, Angew. Chem. Int. Ed. 2000, 39, 22, 4153; Angew. Chem. 2000, 112, 4315.
3. N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S. Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am. Chem. Soc. 2017, 139, 8267.
4. X. H. Xu, G. K. Liu, A. Azuma, E. Tokunaga, N. Shibata, Org. Lett. 2011, 13, 4854.
5. P. S. Fier, J. F. Hartwig, Science, 2013, 22, 956.
6. E. Marzi, C. Bobbio, F. Cottet, M. Schlosser, Eur. J. Org. Chem. 2005, 2116.
7. C. Tejo, Y. F. A. See, M. Mathiew, P. W. H. Chan, Org. Biomol. Chem. 2016,14, 844.
8. B. Vulvovic, A. P. Cinderella, D. A. Watson, ACS Catal. 2017, 7, 8113.
9. C. Bianchini, H. M. Lee, A. Meli, S. Moneti, F. Vizza, M Fontani, P. Zanello, Macromolecules 1999, 32, 4183.
10. V. K. Aggarwal, I. W. Davies, R. Franklin, J. Maddock, M. F. Mahon, K. C. Molloy, J. Chem. Soc. [Perkin 1] 1994, 17, 2363.
11. C. S. Kraihanzel, J. M. Ressner, G. M. Gray, Inorg. Chem. 1982, 21, 879.
12. S. V. Kannan, H. Pines, J. Org. Chem. 1971, 36, 2304.
13. Tschumakow. Ukrainskii Khimicheskii Zhurnal 1965, 31, 506.
14. L. Li, C. -W. Wang, R. Huang, M. R. Biscoe, Nat. Chem. 2013, 5, 607.
15. J. Li, J. Zhang, H. Yang, G. Jiang, J. Org. Chem. 2017, 82, 3284.
16. D. Heijnen, F. Tosi, C. Vila, M. C. A.Stuart, P. H. Elsinga, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 3354; Angew. Chem. 2017, 129, 3402.
17. W. J. Croxall, F. J. Sowa, J. A. Nieuwland J. Org. Chem. 1937, 2, 253.
18. L. Li, S. Zhao, A. Joshi-Pangu, M. Diane, M. R. Biscoe, J. Am. Chem. Soc. 2014, 136, 14027.
19. A. Fürstner, A. Leitner, Angew. Chem. Int. Ed. 2002, 41, 609; Angew. Chem. 2002, 114, 632.
20. Experimental Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra
$\underbrace{\infty} \underbrace{\infty} \underbrace{\infty} \underbrace{\infty} \infty$
$\int \mid(1)$
$\| \iint_{1} 10$

${ }^{13}$ C Spectra

${ }^{19} \mathrm{~F}$ Spectra

[^0]

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{19} \mathrm{~F}$ Spectra

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

:

10

${ }^{1}$ H Spectra

 $\left.\int\right)^{1}$

10
${ }^{13}$ C Spectra

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

$\stackrel{\rightharpoonup}{\text { ² }}$	$\stackrel{m}{\square}$	\%
	-	-
	\|	\|

[^1]

12

${ }^{1} \mathrm{H}$ Spectra

 $\xrightarrow{(1)}$ $\iint 1$

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

15

${ }^{1}$ H Spectra

15

${ }^{13}$ C Spectra

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

[^2]

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

M

${ }^{1}$ H Spectra
(

${ }^{13}$ C Spectra

			$\begin{aligned} & \circ \stackrel{\circ}{\circ} \\ & \stackrel{\text { O}}{1} \end{aligned}$	-		$\stackrel{\circ}{\square}$	¢	$\underset{\text { N }}{ }$		
\|		V	\|		\|	\|	\}		1/	\|

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

	$\begin{aligned} & \underset{\sim}{*} \underset{\sim}{*} \underset{\sim}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{+}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { oo } \\ & \text { ò } \end{aligned}$		$\stackrel{\sim}{\text { ¢ }}$	$\stackrel{\text { ü }}{\stackrel{\text { ¢ }}{+1}}$

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

24

${ }^{1}$ H Spectra

24

${ }^{13}$ C Spectra

[^3]
${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

[^4]
${ }^{1}$ H Spectra

${ }^{13}$ C Spectra
\[

$$
\begin{aligned}
& \text { N- }
\end{aligned}
$$
\]

1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ Spectra

${ }^{13}$ C Spectra

1	1	1	1	1	1	1	1	1	1	1 ,	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{nnm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1} \mathbf{H}$ Spectra

${ }^{13}$ C Spectra

HMBC Spectra

mal

Preparative HPLC Data for 34

${ }^{1} \mathrm{H}$ Spectra

${ }^{13} \mathrm{C}$ Spectra

${ }^{19}$ F Spectra

38
${ }^{1}$ H Spectra

38

${ }^{13} \mathrm{C}$ Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{19}$ F Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

${ }^{1}$ H Spectra

${ }^{13}$ C Spectra

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{31}$ P Spectra

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

