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Abstract

Based on a combined data set of sea surface temperature, zonal surface wind

stress and upper ocean heat content the dynamics of the E1 Nifio phenomenon is

investigated. In a reduced phase space spanned by the first four EOFs two different

stochastic models are estimated from the data. A nonlinear model represented by

a simulated neural network is compared with a linear model obtained with the

Principal Oscillation Pattern (POP) analysis. While the linear model is limited to

damped oscillations onto a fix point attractor, the nonlinear model recovers a limit

cycle attractor. This indicates that the real system is located above the bifurcation

point in parameter space supporting self-sustained oscillations. The results are

discussed with respect to consistency with current theory.



1 Introduction

A major task in climate research and modeling is to reduce the number of degrees of free-

dom from observational or model produced data sets. Several statistical methods have

been developed for this purpose, such as real or complex Empirical Orthogonal Functions I

(EOFs) or Canonical Correlation Analysis (CCA). More recently-Hasselmann (1988) pro-

posed the method of Principal Interaction Patterns (PIPs) to derive simplified dynamical

models from large data sets. In the linear case the PIPs reduce to the Principal Oscillation

Patterns (POPS) (Storch et al. (1988,1990)) which represent the damped oscillations of a

stochastically driven system.

During the last few years neural networks have successfully been applied to a variety

of problems. It has been shown by Elsner and Tsonis (1992) that neural networks can be

used successfully for the prediction of a univariate chaotic time series. Tang (1992) trained

neural networks to forecast the El Nifio state for a certain lead time and demonstrated-

that its skill is comparable to or better than that of a linear statistical model.

Here we use neural networks to get more insight into the dynamics of the El Nifio/Sou-

thern Oscillation (ENSO) phenomenon (Rasmussen and Carpenter (1982), Cane et al.

(1986), Philander (1990)). ENSO is the most prominent climate signal on the short-range

climatic time scale and recent observational and modeling studies suggest that ENSO

is based on a low—frequency oscillation (Schopf and Suarez (1988), Graham and White

(1988), Cane et al. (1990), Chao and Philander (1991), Latif et al. (1993)). A conceptual

model has been developed, the so-called “delayed action oscillator” (Schopf and Suarez

(1988)) which is commonly regarded as a paradigm for ENSO and is based on equatorial



wave propagation and reflection (Zebiak and Cane (1987), Battisti (1988), Battisti and

Hirst (1989)). Neelin and Jin (1993) showed that the “delayed action oscillator” can be

regarded as an extreme case of a general mixed surface/subsurface dynamics mode. We

are here concerned with the question of what the underlying dynamics of the ENSO cycle

is and to what extent this dynamics is consistent with current theory.

Our primary tool is the neural network technique (see 6. g. Widrow and Lehr (1990)).

The optimization of a suitable structured neural network with the backpropagation learn—

ing algorithm (Rumelhart et al. (1986)) is comparable with fitting a parameterized func- ,

tion by error minimization using steepest descent methods. The neural network formu—

lation provides a large class of model functions accompanied by analytical derivatives,

which strongly accelerates the optimization procedure.

This paper is organized as follows. Section 2 deals with the description of the data

whose degrees of freedom have been reduced by applying EOF analysis. In section 3 we

give a brief description of the neural network approach. In section 4 we derive reduced

state space models of ENSO based on a linear (POP) and the (non-linear) neural network

approach. The relationship of our results to the ENSO theory is discussed in section 5.

We conclude the paper in section 6.

2 Data and EOF analysis

We use bimonthly observations of sea surface temperature, depth of the 20°C-isotherm

(a measure of upper ocean heat content), and zonal surface wind stress for the period

1967 to 1986. The same data set was used by Latif et al. (1993), who performed a POP



analysis of this combined data set. We removed prior to the analysis the annual cycle

and linear trend from the data. Each quantity was normalized by its spatially averaged

standard deviation so that they all have the same weight.

We then performed an EOF analysis of the data. The first four EOFs, explaining

23.3%, 9.6%, 4.6%, and 4.0% of the variance in the data, respectively, are shown in Fig. 1. I

The first two combined EOFs are associated with the ENSO phenomenon. As shown by

Latif et al. (1993) and below, the dominant POP mode of the data is mainly composed

of the two leading EOFs. The first combined EOF represents conditions during the

extreme phase of ENSO, with anomalously warm surface waters in the eastern equatorial

Pacific, a drop in upper ocean heat content in the western Pacific, and westerly wind

stress anomalies centered near the dateline. The second combined EOF is dominated

by a strong heat content anomaly centered at the equator. As discussed by Latif et

al. (1993) these two patterns describe well the dominant mode of interannual variability

in the tropical Pacific and are consistent with the conceptual model of ”delayed action .

oscillation” (Schopf and Suarez (1988)). According to this picture, the propagation of

equatorial waves and their reflection at meridional boundaries are crucial in maintaining

the ENSO cycle. (For a more detailed discussion of the ”delayed action oscillator” the

reader is referred to Graham and White (1988), Chao and Philander (1991), Cane et

al. (1990).)

The purpose 0f the EOF analysis is the reduction of the number of degrees of freedom.

Various methods have been described to determine the truncation point (Richman et al.,

1992), i. e. the number of EOFs which are kept for further analysis. None of the proposed

criteria take into account the dynamics, i. e. the temporal sequence of the patterns. Here
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Figure 1: The first four EOFs (from top to bottom) of the data. Left: Heat content
(depth of the 20°C-isotherm). Center: Sea surface temperature. Right: Zonal wind
stress. Longitude is in degrees east, latitude is in degrees north (positive) and south
(negative).
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we use a criterion which measures the “consistency” of the trajectory in EOF space.

Given an evenly spaced time series of state space vectors (X(t))t=1„„‚T we define the

progression vectors

Ax(t) := x(t + 1) — x(t). (1)

A badness function which measures the inconsistency of the observed state space trajec-

tory can be expressed through

5— _2 |l(t1)—Ax(t2)ll2 I‘tU—l—mgmgfl l(t1)—x(t2)ll2 ‘ (2)
where the sum is taken over all pairs of observed points (normalized with the total number

of pairs). The contribution of every pair to the badness becomes large when the two

observed states are close in the state space and the progression vectors differ considerably.

The idea is that if the state space trajectory is approximately deterministic the difference

in the chance Art of two states of the system should be small if the difference in the states is

small. Stochastic forcing increases the badness by producing different progression vectors

even for exactly equal states. So we are looking for the state space dimension in which

the system’s trajectory can be explained with minimum stochastic forcing.

Of course the badness function (2) is biased. An exact measure of the strength of the

stochastic component would be the mean difference of progression vectors in the limit of

vanishing distance in the state space, i. e.

I _ ~ _ 2e _ <xlirnco “Ax Ax0|| >‚ (3)

where (. . .) denotes averaging over the state space (over all x0) and all realisations, and

Ax and Axe are the progression vectors at x and x0, respectively. But the estimation of
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Figure 2: “Badness” (scatter of the observed phase space trajectory as a function of the

number of EOFS).

this value requires a large amount of data which is not available in our case. Therefore

we use Eq. (2) as a crude but reasonable proxy.

The value of the badness as a function of the number of used EOFs is shown in Fig. 2.

The function has a minimum at six, but we decided to use only four EOFs, which explain

41.5% of the data variance. The increase in badness is not large, and with less degrees of

freedom the model fitting procedure is accelerated. Moreover four dimensions can nicely '

be presented in a coloured three dimensional picture. In Fig. 3 the “raw” trajectory in

the four-dimensional state space (spanned by the first four EOFs) is shown.



Figure 3: Observed trajectory in the four-dimensional state space. The spatial dimensions

represent the first three EOFs, the color corresponds to the fourth EOF. The color scale

with respect to the space scale is displayed at the right margin. (The curve at the bottom

of the box is just a projection—a “shadow”—to elucidate the three dimensional structure.)



3 A neural network as non-linear function approxi-

mator

To estimate a non-linear system function we need a method of reconstructing the flow

field at every point in the state space from observations of the flow field at a limited

number of points, i. e. a model function depending on a few free parameters has to be

fitted to the data. The neural network approach described here provides a suitable class

of nonlinear functions accompanied by a matching optimization procedure.

In a layered feed-forward network (an example is shown in Fig. 4), the output of

neuron i in layer'k is given by

k Nk_1 kki k—y.‘ ) = (5.2 (Z Maß->21;- 1)) ‚ (4).=0

Where Nk-1 is the number of neurons in layer It — l, I/Vigk) is the weight for input j of

neuron i in layer k, and fix) is the output function of neuron i in layer k. In the present

case a two—layered network with fällt) = tanh and f8? = id will be used. no) denotes the

input vector. The so—called dummy inputs are yak) = 1. Given a training set of input

vectors accompanied by desired output vectors, the neural network can be optimized by

backpropagation of the output errors through the Whole network to adjust all weights,.

see e. g. Rumelhart et al. (1986).

Consider a system represented by a state vector x = ($1,. . . , :13”) which varies with

time. The temporal evolution of the system is described by

x(t + 1) = F[x(t); a1, . . . ‚ am] + noise, (5)

where F is a function which has to be prescribed but may depend on an arbitrary number
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Figure 4: Structure of the neural network used for the estimation of the flow field in a
four-dimensional state space. Input (left side) is an actual state space vector, output
(right side) is the predicted state space vector for the next time step. The number of
neurons in the hidden layer (two in the example shown) determines the complexity of the
flow field.



of free parameters (aj)j=1 -.,m- The function parameters (aj)j=1,.,_,m can be obtained from .

a given set of observations (x(t))t=1‚„_‚T by minimization of the lag 1 prediction error:

T—1
Z ||x(1.‘+1)—F[x(t);oz1,...,a,,,]||2 2min. (6)
:1at

If we describe the problem in terms of neural networks, the system function F can be

represented by a two—layered nonlinear network (fig? = tanh) Where a state space vector

x(t) at a certain time is the input vector and the state space vector x(t + 1) one time step

later is the corresponding output vector, i. e.

x(t + 1) = wg) + w“) tanh[W(()1) + w<1>x(t)] + noise. (7)

Here W0) and Wm denote the matrices of the weights .

(M(-1))i=1„.N1,j=1.„n and (Mg-2))i=1um'j=1l in the first and the second layer, respectively,

and W31) and W82) denote the vectors of the weights (1449)»:t and (VI/$5.11,", for

the dummy inputs.

These weights are the function parameters (aj)j=1‚„_‚m‚ and the total number of pa-

rameters is m = n+2nN1 +N1, where n is the number of dimensions and N1 is the number

of hidden neurons. Fig. 4 shows the structure of a neural network for a four—dimensional

system.

The weights of the network could be estimated by the following operations: An input

vector x(t) is chosen (randomly or in cyclic order) from the training set and presented

to the network. The desired output vector x(t + 1) is used to adjust the weights of

the network—the parameters (aj)j=1,m,m—Wlth the backpropagation algorithm. This is

repeated until convergence is achieved. Initially the network weights are set to small

random values.
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The number of parameters of the neural network model is n + 2nN1 + N1. With in-

creasing number of neurons in the hidden layer, N1, the number of parameters is increased

and the lag 1 prediction error for the training data decreases more and more. But if the

number of parameters is too large, the model tries to fit the stochastic forcing, and when

applied to a new system state which was not incorporated in the training data, the pre-

diction skill is low (compare Barnett and Hasselmann (1979)). To determine the optimal

number of hidden neurons, only a part of the available data is used. The prediction error

is then checked against the remaining data, as demonstrated below.

A general problem of the backpropagation training of neural networks is the large

computation expense, which limits the size of the networks. We needed some hundred

thousand presentations of the data before convergence was achieved. The number of

necessary training cycles increases dramatically with the size of the network, so even a

hardware implementation with completely parallel processing would not solve this prob— I

lem. Some computation time could be saved if the steepest descent strategy which we use

is replaced by a line-search algorithm, see e. g. Tang (1992).

We made some experiments with different starting values for the network weights

which are ususally set to small random values. In a few cases the optimization procedure

was trapped in a local minimum. Therefore we cannot be sure that the estimated models

represent indeed the global minima of the target function. More sophisticated nonlinear

optimization techniques such as simulated annealing are very time consuming and have

not been applied to neural networks yet.

12



4 Reduced state space models

The raw state space trajectory of the data, which was shown in Fig. 3, is very noisy and

illustrates the need for constructing reduced state space models.

First, we fitted a linear model—the POP model—to the data. POPS are the eigen-

vectors of the system matrix obtained by fitting a multi—variate first order autoregressive

(Markov) process to the data. POPS are generally complex, their complex amplitudes

satisfying the standard damped harmonic oscillator equation (Hasselmann (1988), Storch

et al. (1988)). As described previously by Latif et al. (1993), the dominant POP mode is

consistent with the ”delayed action oscillator” scenario. The period of the oscillation is

42 months and the exponential damping time scale is 14 months. The POP explains 25%

of the variance in the complete observation space and its lag 1 prediction explains 5%.

The POP trajectory in EOF space is shown in Fig. 5. Ten trajectories of the unforced

system predicted by the POP model are shown. As expected theoretically, all trajectories

spiral into a fix point at the origin of the state space.

In a second more general approach we fitted a nonlinear model to the data. A two

layered feedforward neural network was used as nonlinear function approximator.

If the number n of dimensions of the state space is fixed (four in our case) the neural

network model described in section 3 has one free parameter left, the number of hidden

neurons N1. The parameters n and N1 determine the number of weights of the network, i

i. e. the total number of model parameters.

By increasing the number of parameters, any model can be fitted to a given data

set with an arbitrary small error, but the results become useless when the model repro-

13



Figure 5: Trajectories in the four—dimensional state space. The spatial dimensions repre-
sent the first three EOFs, the color corresponds to the fourth EOF. The color scale with
respect to the space scale is displayed at the right margin. All figures show phase space
trajectories of the undriven system as predicted by estimated system functions. Top left:
POP model. All trajectories end up on a fix point attractor. T01) right: Neural network
model with two hidden neurons. The limit cycle attractor is embedded in a plane. Bottom
left: Neural network model with three hidden neurons. The attractor is embedded in a
three-dimensional subspace. Three trajectories starting on points of this subspace are
shown. Bottom right: Neural network model with four hidden neurons. The attractor is
now embedded in the complete four-dimensional state space. Four trajectories are shown,
starting in some corners of the four-dimensional hypercube. (In all figures the curve at the
bottom of the box is just a projection—a “shadow”—to elucidate the three dimensional
structure.)
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half. Foreground bars: Error for used half. Backround bars: Error for unused half.

duces the stochastic component of the data. To determine the optimal number of hidden

neurons, we trained various networks using only one half of the data and checked the

lag 1 prediction error for the other independent half. The results are shown in Fig. 6.

Using either the first or the second half of the data to train the model, prediction error

for the complementary data set was a minimum for a number of four hidden neurons.

Larger networks with five or more hidden neurons therefore have too many parameters'

and reproduce in part the stochastic forcing.

For N1 = 1 (one hidden neuron) the output of the network is of the form

1/52) = Wg) + Wall”, (8)

i. e. all possible output vectors lie on a straight line in the state space. This prohibits

15



oscillatory behaviour and restricts the model to fix point attractors. For two, 'three, and

four hidden neurons, the results of training with the complete data set—represented by

some typical model state space trajectories—are shown in Fig. 5.

A number of two hidden neurons corresponds to 22 model parameters (section 3). The

resulting flow field in the state space converges to a limit cycle attractor, see Fig. 5, top

right. This result is qualitatively different from the linear model obtained with the POP .

analysis, which can only produce damped. oscillations converging to a fix point attractor.

The unforced temporal evolution of the four EOF coefficients is shown in Fig. 7. Most

of the energy is contained in the first two EOFs, i. e. the limit cycle plane is the plane

spanned by the first two EOFs. The two coefficient time series are approximately in

quadrature. The period of the limit cycle is about 56 months and thus somewhat larger

than the POP period of 42 months.

The state space trajectories resulting from a system function represented by a neural

network with three hidden neurons, a number which corresponds to 31 model parameters,

are presented in Fig. 5, bottom left. The dimension of the output space is increased by

one compared with the two—hidden-neuron model. Thus the attractor is now embedded in

a three—dimensional subspace of the four-dimensional state space. Although the position

and orientation of the attractor has slightly changed, we recover again a limit cycle which

has a period of about 44 months (Fig. 7). The variance in direction of the second EOF is

smaller than for the two hidden-neuron—model, whereas the variances in direction of the

third and fourth EOFs are larger.

The model with the best prediction skill for unused data, namely the neural network

with four hidden neurons, recovers also a limit cycle attractor, see Fig. 5, bottom right.

16
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The period is 49 months, compare Fig. 7. The variance in the direction of the first EOF is

more dominant than for the other two models. Here we have 40 model parameters and the

possible output vectors fill the complete four-dimensional state space. So the attractor is

now embedded in this four—dimensional space. The attractor itself, the limit cycle, has a .

dimension of one in all cases. The two-hidden-neuron model forces it to be embedded in

a plane, while the three- and four-hidden—neuron models allow for a curvature in a third

and a fourth dimension, respectively. The qualitative stability of the resulting limit cycle

attractor is demonstrated by the similarity of all three network models. The ability of the

model to distinguish between fix point and limit cycle attractors is tested in appendix A.

The lag 1 prediction error of the POP model and the neural network models with

N1 = 1 . . . 4 respectively is shown in Fig. 8 and compared with the error of the climatology

prediction (the prediction of the mean, i. e. the null—prediction for the zero mean EOF

coefficients) and the persistence prediction. While the error of the POP model is slightly -

larger than that of the persistence for the lag 1 prediction, the error of the neural network

model with four hidden neurons is smaller. The lag 1 prediction of the neural network

model with four hidden neurons explains 79% of the variance in the four-dimensional EOF

space, whereas the lag 1 prediction of the POP model explains 62%.

The neural network model can also be used to make multi—lag predictions of the ex—

pected state space trajectory of the system. We make predictions with all three neural

network models (two, three, and four hidden neurons) which were trained With the com-

plete available dataset from 1967 to 1986. The last state—November/December 1986—is

taken as starting point. It is introduced into the neural network and the output—the.

state one time step later—is used as new input. This is repeated to produce a predicted

18



Figure 8: The lag 1 prediction error, i. e. the rms—diiference between the observed x(t + 1)

and the value calculated from x(t) by the different models, the POP model and the neural

network models 1 . . .4. Training was done with the complete data set. For comparison the

error of the climatology prediction—i. e. the prediction of the mean—and the persistence ‘

prediction are also shown.
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Figure 9: Observed time series of spacially averaged sea surface temperature of the eastern

equatorial Pacific obtained from the first four EOFs of the data (solid black line), predic—

tions obtained from the neural network model with two (dark blue), three (green), and

four hidden neurons (red), the POP prediction (light blue) and the NINO 3 index (dotted

line). The NINO 3 index is normalized to the variance of the temperature observations.

state space trajectory. In Fig. 9 the observed time series of spatially averaged sea surface

temperatures of the eastern equatorial Pacific is shown, together with the POP model

prediction and the neural network predictions. Due to the different limit cycle periods,

the neural network models diverge with increasing lead time.

To compare the prediction with the observed SST since 1986 we use the NINO 3 index

of the CAC (Climate Analysis Centre) which was available for the period from January

1980 to March 1993. Predictions and observations are in surprisingly good agreement,

especially for the four—hidden—neurons model. All neural network models are considerable

superior to the POP model. Note that there is no artificial prediction skill. The data used

for the estimation of the models and the initialization of the predictions were available

only until 1986.
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5 Conclusions

From the observed data, the described neural network recovers a limit cycle attractor.

Starting from their physical ocean—atmosphere model, Battisti and Hirst (1989) also ob-

tained a system with a limit cycle attractor, when they reduced their model to one dynam-

ical equation only, the “delayed action oscillator’.’ equation (Schopf and Suarez (1988)). -

The “delayed action oscillator” scenario, however, is of limited value in understanding

the ENSO dynamics due to its ad h0c.nature and since it does not pose an eigenvalue

problem. A more thorough theoretical analysis of the ENSO dynamics can be found in

Miinnich et al. (1991) and Neelin and Jin (1993). According to these studies, ENSO is

largely determined by the first bifurcation from the climatic state leading to a limit cycle.

Thus, many aspects of ENSO can be addressed by understanding the linear problem and

investigating the most unstable mode of the system linearized about the climatic state.

Our results are consistent with this View and indicate that the real system is located above

the bifurcation point in parameter space supporting self-sustained oscillations, i. e. the‘

essential dynamics of the El Nifio phenomenon is represented by a limit cycle attractor.

Additionally, there is some unresolved variability which has to be taken as a kind of

stochastic forcing at this point of the investigation. It it possible that this “stochastic”

component is in fact also deterministic, so that the complete variability can be described

by a strange attractor. But to resolve such an attractor, much more data would be needed.

With our limited amount of data only a blurred picture of the attractor can be obtained,

and this picture shows a limit cycle attractor.

It has been shown that neural networks with sigmoid nonlinearities (i. e. smoothed

21



step functions like tanh) are appropriate for approximating the behaviour of dynami-

cal systems. Even with a small number of neurons they can reproduce realistic system

behaviour, e. g. damped oscillation on a fix point or limit cycle attractors.

It is often assumed that nonlinear models—which have a comparatively large number

of parameters—can only be estimated if very long time series—i. e. a large amount of

data—is available. The time series we used is very short (in terms of the time scale of

the dynamics) and very noisy. Nevertheless the nonlinear neural network model appears

to be significantly superior to the linear POP model in terms of the prediction skill.

A Test of the neural network model

The POP analysis leads always to damped oscillations onto one fix point attractor. This is

due to the restrictions of a linear system function. Can the limit cycle attractor recovered

by the neural network model be an artefact in the same sense, i. e. does this method

always create limit cycles regardless of the dynamics of the data?

To test this we create an artifical data set which is not based on a limit cycle attractor.

We take the POP which was estimated in section 4 and is shown in Fig. 5 and drive it

with stochastic forcing. The strength of the forcing is calculated from the observed data

in the following way. For each observed time point we make a lag 1 prediction with

the POP model and compare the result with the true state at the next time step. The

squared deviation is averaged over all time points to give the strength of the forcing,

i. e. we calculate the forcing which would have been necessary to produce the observed

data variance if the POP dynamics was true. The driving of the POP with simulated
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Figure 10: Trajectories in the four-dimensional state space. The spatial dimensions rep-

resent the first three EOFs, the color corresponds to the fourth EOF. The color scale

with respect to the space scale is displayed at the right margin. Left: Simulated phase

space trajectory of a stochastically driven POP. Right: Phase space trajectories of the

undriven system as predicted by the system function estimated with the neural network.

All trajectories end up on a fix point attractor. The dynamics is somewhat similar to the

underlying POP. (In all figures the curve at the bottom of the box is just a projection—a

“shadow”—to elucidate the three dimensional structure.)

stochastic forcing yields the phase space trajectory shown in Fig. 10, left side.

A neural network with two hidden neurons is now trained to reproduce the artificial

data. The resultant model dynamics is presented in Fig. 10, right side. It clearly shows

the qualitative characteristics of the underlying POP and not a limit cycle attractor. The

similarity does not extend beyond the spiral—like attraction onto a fix point. Differences

must be expected because the synthetic time series is short (120 bimonth, as the observed
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data) and because the number of parameters of the network model is larger than the

number of parameters of the POP dynamics.
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