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ABSTRACT

The principal oscillation pattern (POP) analysis is a technique used to simultaneously infer the characteristic
patterns and timescales of a vector time series. The POPs may be seen as the normal modes of a linearized
system whose system matrix is estimated from data.

The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique.
The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived
from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in
identifying two independent modes with similar timescales in the same dataset.

The POP method can also produce forecasts that may potentially be used as a reference for other forecast
models.

The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP
analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the
complex POP analysis, not only the state of the system but also its “momentum” is modeled.

Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified
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by a POP analysis in other parameters.

1. Introduction

The POP (principal oscillation pattern) analysis is a
multivariate technique to empirically infer the char-
acteristics of the space-time variations of a possibly
complex system (Hasselmann 1988; von Storch et al.
1988). The basic idea is to identify a linear system with
a few free parameters that are fitted to the data. Then,
the space-time characteristics of this stmple system is
regarded as being the same as those of the full system.
In the present paper we review the state of the art of
POP analysis including two recent offsprings, the ¢y-
clostationary POP analysis (Blumenthal 1991) and the
complex POP analysis (Biirger 1993).

The POP analysis is nowadays a routinely used tool
(Gallagher et al. 1991) to diagnose the space-time
variability of the climate system. Processes analyzed
with POPs are

e the Madden and Julian oscillation, also named
the tropical 30-60 day oscillation (von Storch et al.
1988; von Storch and Xu 1990; von Storch and Baum-
hefner 1991; von Storch and Smallegange 1991),

e oceanic variability (Mikolajewicz 1990; Weisse et
al. 1994),

e the stratospheric quasi-biennial oscillation (Xu
1992),
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o the El Nifo/Southern Oscillation (ENSO) (Xu
and von Storch 1990; Xu 1990; Latif et al. 1993; Blu-
menthal 1991; Latif and Villwock 1989; Latif and Flii-
gel 1990; Biirger 1993; Xu 1992; Penland and Mago-
rian 1993; Xue et al. 1994; Wu et al. 1994; Tang 1994;
Tang et al. 1994),

e tropospheric baroclinic waves (Schnur et al. 1993;
Schnur 1993),

¢ low-frequency variability in the coupled atmo-
sphere—ocean system (Xu 1993; von Storch 1994), and

e Arctic variability (Tang et al. 1994).

In section 2 of this paper, the POPs are introduced
in two conceptually different ways. One way is to define
POPs as normal modes of a linear system, the param-
eters of which are inferred from a vector time series.
The other way is to regard POPs as a simplified and
special version of Principal Interaction Patterns (PIPs).
The PIP formulation (Hasselmann 1988) is a fairly
general approach that allows for a large variety of com-
plex scenarios. In section 3, three examples of a POP
analysis are given. One example, on tropospheric
baroclinic waves (Schnur 1993), is to demonstrate the
normal mode concept of the POPs. The best defined
POPs coincide, to good approximation, with the most
unstable ‘modes derived in a conventional stability
analysis of the linearized dynamical equations. The
other two examples have been chosen to show the abil-
ity of the POP analysis to detect signals in different
situations. In the joint POP analysis of tropospheric
and stratospheric data (Xu 1992) two independent
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modes with similar timescales, the Southern Oscillation
(SO) and the quasi-biennial oscillation (QBO), are
identified. In the POP analysis of the Madden and Ju-
lian oscillation (MJO) (von Storch and Xu 1990), the
signal has a well-defined signature all along the equator,
but it is possible to identify the signal already in 90°
subsectors. Also, the signal is the same whether the
analysis is based on two years of data or on five years
of data.

Since a POP analysis implies the fit of a time series
model to data, the POP approach incorporates a pre-
dictive potential (section 4). As an example, the skill
in predicting the state of the MJO is shown and com-
pared to the skill of a numerical weather prediction
model.

In sections 5 and 6, two generalizations of the POP
analysis are presented: the cyclostationary POP analysis
and the complex POP analysis. In section 7 the concept
of associated correlation patterns is introduced, and
the paper is concluded in section 8 with some remarks
on the general merits and limitations of the POP tech-
nique.

2. Principal oscillation patterns

The following notations are used: vectors are given
as bold letters and matrices as calligraphic letters, such

as A or %. If A is a matrix, then AT is the transposed

matrix. If x is any complex quantity, then x* is its
conjugate complex.

It should be noted that the POP formalism—con-
ventional, cyclostationary, and complex POP analy-
sis—may be applied to linear systems whose system
matrices are estimated from data or whose system ma-
trices are derived from theoretical dynamical consid-
erations (see also section 3a).

a. POPs and normal modes
The normal modes of a linear discretized real system,
x(t+ 1)=A-x(1), - (1)

are the eigenvectors p of the matrix A. In general, A
is not symmetric and some or all of its eigenvalues A
and eigenvectors p are complex. However, since A is
a real matrix, the conjugate complex quantities A* and
p* satisfy also the eigenequation A+ p* = A*p*. In
most cases, all eigenvalues are different and the eigen-
vectors form a linear basis. So, the state x at any time
t may be uniquely expressed in terms of the eigenvec-
tors:

X = sz-pj. (2)

J
The coeflicients of the pairs of conjugate complex ei-
genvectors are conjugate complex too. Inserting (2)
into (1) we find that the coupled system (1) becomes
uncoupled, vyielding n single equations, where 7 is the
dimension of the process x,
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zZ(t+ 1)-p=A-z(t)-p (3)

so that, if z(0) = 1,
z(&)+p=N-p 4)

(dropping indices). The contribution P(¢) of the com-
plex conjugate pair p, p* to the process x(t) is given
by

P(t) = z(t)-p + [2(¢)- p]* (5)
Writing p = p” + i-p’ and 2z(¢) = z'(t) — i+ zZ'(1),
this reads
P(t)=z(1)-p"+ 2'(1)- p’
= p'(cos(nt)+ p" — sin(nt)- p*)

with A = p exp(—in) and z(0) = 1. The geometric and
physical meaning of (6) is the trajectory spirals in the
space spanned by p” and p’ (Fig. 1) with the period T
= 2w /n and the e- folding time + = —1/In(p) in the
consecutive order

(6)

r=>p > —p'>-p >p>p > (7)
The e-folding time 7 is the time needed to reduce an
initial amplitude |z(0)] = 1 to |z(7)| = 1/e. We will
label this time as the damping time. The period is the
time needed to fulfill one complete cycle in (7).

Any eigenvector p is determined up to a complex
scalar «. To make things unique, one can choose « in
such a way that p” and p’ are orthogonal and |p’|
= |p'l.

The modes may be represented either by the two
patterns p” and p’ or by plots of the local wave ampli-
tude 4%(r) = [p’(r)]* + [p(r)]? and relative phase
Y(r) = tan"'[p‘(r)/p’(r)] (Fig. 2). The transformation
in (7) between the patterns p” and p’ can assume var-
ious geometric wave forms. If p’(r) = p’(r — 1y), with
a location vector r and a fixed vector ry, the signal
appears as a parallel crested wave of wavelength 4ry
propagating in the ry direction (Fig. 2a). In Fig. 2b,

FI1G. 1. Schematic diagram of the time evolution of POP coefficients
2z(¢) with an initial value z(0) = (2, z°) = (0, 1). The complex number
z rotates in slightly more than eight time steps anticlockwise once
around the origin so that the period T is slightly larger than eight
time steps. The e-folding time 7, for which |z(7)| = /e is marked
by an open circle. (From von Storch et al. 1990.)
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FIG. 2. Schematic examples representating a complex valued POP p = p’ + ip’ by their imaginary parts p’
(top) and their real parts (p” (middle), and by their phases () and amplitudes A4 (bottom). In the left column
(a), a linearly propagating wave is displayed. If the system is initially P = 1 - p’ (top), then after a quarter of a
period it will be in the state P = 1 - p” (middle). The wave propagates to the right with a constant phase speed
(bottom), and the amplitude is constant along horizontal lines with maximum values in the center. In the
right column (b), a rotational wave is shown, With the origin of the plane being between the two features in
the top two diagrams, the wave rotates clockwise around this origin. In the center the amplitude is always
zero, and the lines of constant amplitudes form concentric circles around the center with a maximum somewhat

off the center. (From von Storch et al. 1988.)

an amphidromal (rotational) wave' is shown. In the
present paper, all POPs are represented in the p’/p”
format and not in the amplitude-relative phase format.

The pattern coefficients z; are given as the dot prod-
uct of x with the adjoint paiterns p7, which are the
normalized eigenvectors of A7

(p/)'x = 2 z(p)"px = 2. (8)
k

All information used so far consists of the existence

of a linear equation (1) with some matrix A. No as-

! An amphidromal wave is a propagating wave that circles clockwise
or anticlockwise around a center that is always at rest. Many tidal
waves appear as amphidromal waves.

sumption was made as to from where this matrix orig-
inates. In dynamical theory, the origins of (1) are lin-
earized and discretized differential equations. In case
of the POP analysis, the relationship

x(t + 1) = A-x(t) + noise 9)

is hypothesized. Multiplication of (9) from the right-
hand side by the transposed x7(¢) and taking expec-
tations E leads to

A = E[x(t + DxT(D)]-[E[x()xT(H)]]™'. (10)

The eigenvectors of (10), or the normal modes of
(9), are called principal oscillation patterns. The coef-
ficients z are called POP coefficients. Their time evo-
lution is given by (3), superimposed by noise:

z(t+ 1) = A+ z(t) + noise. (1D
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The stationarity of (11) requires p = |A| < 1. In
practical situations, when only a finite time series x(?)
is available, A is estimated by first deriving the sample
lag-1 covariance matrix 6, = E{x(¢ + 1)x7(¢)] and
the sample covariance matrix X, = E[x(#)x7(?)], and
then forming A = X%,X%!. The eigenvalues of this
matrix always satisfy p < 1.

Since no data compression mechanism is incorpo-
rated into the POP analysis, the data are often subjected
to a truncated EOF expansion in order to reduce the
number of spatial degrees of freedom. In this case, the
POP analysis is applied to the vector of the first few
EOF coefficients. A positive by-product of this proce-
dure is that in this way noisy components can be ex-
cluded from the analysis. Then, the covariance matrix
2o has a diagonal form.

If there is a priori information that the expected sig-
nal is located in a certain frequency band, it is often
advisable to time filter the data prior to the POP anal-
ysis. A somewhat milder form of focusing on selected
timescales is to derive the EOFs from time-filtered data,
but then to project the unfiltered data onto these EOFs.

We have seen that, in the theoretical framework for
complex normal modes, the real and imaginary parts
z"(t) and z'(¢) vary coherently with a frequency of 7
= 27 /T and a phase lag of = /2 [with z" lagging z'; see
(7)and (8)]. Since POPs and their corresponding coef-
ficient time series z(z) (11) are empirically derived
modes, it has to be verified that z(¢) behaves in a similar
way in order to be interpreted in this same framework.
This can be accomplished by performing a cross-spec-
tral analysis of the real part z"(¢) and the imaginary
part z'(¢) of the POP coefficients. If, in the neighbor-
hood of the period %, both parts exhibit large values in
the variance spectrum accompanied with a large co-
herence and a phase spectrum close to = /2, then z"(¢)
and z/(¢)-do indeed vary coherently and can be inter-
preted in the sense of (7) and the cycle (8) (see Fig.
3¢ for an example ). Complex POPs not fulfilling these
conditions cannot be interpreted in this framework of
oscillating patterns and are disregarded.

If the original time series x(¢) is transformed into
another time series y(¢) by means of y(t) = £ - x(t)
with an invertible matrix . (i.e., £ ~! exists), then the
eigenvalues are unchanged and the eigenvectors trans-
form as x:

Ay =%6,X%5"; Ay =Y, Y5

with ¥, = E(y(t + Dy())") = L%, LT and Y,
= LXoLT. Thus, Ay = LA,L™" If p,is an eigen-
vector of A, with eigenvalue X (i.e., AP, = Ap,),
then A,L'.Lp, = Ap, and, eventually, .L A, L™}
X (Lpx) = N(Lp,). That is, if p, is a POP of the time
series x, then Lp, = py is a POP of y with the same
eigenvalue .

The EOFs are not invariant against linear transfor-
mations .L, since, in general, the matrices %, and
L%X0.L7T will have different eigenvalues and eigenvec-
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tors. Therefore, if the POP analysis is begun with a
projection of the data on a truncated EOF expansion,
the results of a POP analysis will change if the data are
transformed into another coordinate system.

To get the POP coeflicients z(¢), two approaches are
possible. One is to derive the adjoint patterns p*
=p*"+ ip™¥and to use (8). The adjoint patterns can
be estimated as the eigenvectors of the estimated matrix
AT, This is not always a stable procedure as the ei-
genvectors p* of the estimated matrix AT have to sat-
isfy the constraint [p# ]"p; = §;. Thus, the adjoint of
the POP of interest has to be orthogonal to all other
POPs, and in particular, to those POPs that are merely
reflecting noise. Therefore, it is often advisable to es-
timate the patterns p* by minimizing

Ix = [x"p*1Ipll, (12)
if p is real, or
Ix — [xTp*1p” — [x"p*1p'l, (13)

if p = p” + ip’ is complex. The minimum of (12) is
obtained at

1

A
P = 5P (14)
[pp]
and the minimum of (13) is at
1 p - 1 b
pA,r . perr peri (15)
pA,i 1 i 1 ,
'’ T’
with
«=(p"p'1-[p 01 - [p"P D). (16)

An alternative is to not derive adjoint patterns but
to derive the coefficients z by a least-square fit of the
data x by minimizing

Ix —z-p—1[z-p1*l = lIx —z’p" — 2’ (17)
if p is complex, or
Ix = z-pl (18)
if p is real. The solution of (17) is
rTr rT i r T r
(ll:rT:i l;iTpi)'(;) = (};-r::,) > (19)

and the solution of (18) is, formally, the regression of
X on p:

_x()T-p
CopTep
The solutions (17), (18) may be rewritten as z = x Tq

with a certain complex or real pattern q. Incidentally,
q = p*" + ip™ior q = pA. Thus, the minimizations

z(t) (20)
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of (12), (13) and of (17), (18) yield the same POP
coefficients z.

If the POP coefficients are obtained by (12), (13), (2)
is no longer valid. Therefore, if more than one POP is
identified as useful, the equations (17), (18) should be
formulated for all considered POPs p; simultaneously:
Ix — Z; zp;ll = min.

b. POPs as multivariate spectral analysis

The autospectrum T, of the POP coefficients z(¢) is
a function of the eigenvalue A and of the autospectrum
T, of the noise [see (11)]:

I(w)

r = —
Aw) |€“"—7\|2’

(21)
where w is frequency.

If the noise spectrum I, is almost white, that is,
I',(w) =~ const, the left-hand side of (21) does depend
only on A. In this case, the eigenvalue X is thus rep-
resentative for the temporal statistics of the signal, ex-
pressed through the autospectrum I',. We will assume
T',(w) = 1 for the remainder of this subsection.

The width of the spectrum depends on p. The smaller
p is the broader is the spectrum (in the limit of p = 0
the spectrum is white). The spectrum I', has a single
maximum T, = (1 — p) 2 at w = 5. If X is complex,
then n # 0; if A is real, then n = 0 and the spectrum
is red.

Thus, the POP analysis yields a multivariate spectral
analysis of a vector time series (Hasselmann 1988). A
first attempt to simultaneously derive several signals
with different spectra from a high dimensional dataset
was made by Xu (1993).

¢. POPs = trivial case of PIPs

Many complex dynamical systems x € R” may con-
veniently be approximated as being driven by a simpler
dynamical system z € R” with a reduced number of
degrees of freedom m < n. Mathematically, this may
be described by a state space model, which consists of
a system equation,

z(t + 1) = F[z(1), a, t] + noise (22)

for the dynamical variablesz = (z,, - + +, z,,), and an

observation equation,

x(t) = Pz(t) + noise = > z(t)p; + noise

J

(23)

for the observed variables x; P is the matrix whose
columns are the vectors, or patterns, p;. In general, P
is not a square matrix. In (22) F[z(¢), «, t] denotes a
class of models that can be nonlinear in the dynamical
variables z and additionally depends on a set of free
parameters « = («,, a3y, * - +). Both equations, (22),
(23), are disturbed by an additive noise. Formulation
(22),(23) is an “inverse modeling” approach.
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Since m < n, the time coefficients z;(¢) of a pattern
p; at a time ¢ are not uniquely determined by the x(t).
Instead, they may be obtained by a least-square fit; that
is,

z(1) = (PTP) 'P"x(1). (24)

The intriguing aspect of state space models is that
the dynamical behavior of complex systems often ap-
pears to be dominated by the interaction of only a few
characteristic patterns p;. That is, even if the dynamics
of the full system are restricted to the subspace spanned
by the columns of 2, its principal dynamical properties
are represented.

When fitting the state space model (22), (23) to a
time series, the following entities have to be specified:
the class of models ¥, the patterns 2, the free param-
eters «, and the dimension of the reduced system m.
The class of models F has to be selected a priori on
the basis of physical reasoning. Also, the number m
might be specified a priori. The parameters « and the
patterns 2 are fitted simultaneously to a time series by
requesting them to minimize

dP; o] = Ellx(¢ + 1) — x(2)

— P(F[2(1), o, 1] — 2()I?, (25)
where ¢[ 7; «] is the mean-square error of the approx-
imation of the (discretized ) time derivative of the ob-
servations x by the state space model. The patterns 2,
which minimize (25), are called principal interaction
patterns (Hasselmann 1988). If only a finite time series
of observations x is available, the expectation E is re-
placed by a summation over time.

In general, the minimization of (25) is not unique.
In particular, the set of patterns P’ = @ - .L with any
nonsingular square matrix £ will minimize (25), if #
does, as long as the corresponding model ' = L™'F
belongs to the a priori specified model class. This prob-
lem may be solved by requesting the solution to fulfill
some constraints; for example, that the linear term in
the Taylor expansion of F be a diagonal matrix.

So far, the PIP concept has not been fully imple-
mented, but encouraging progresses are reported from
several groups. There are, though, a number of partial
implementations of the PIPs in which the basic model
is simplified. In the case reported by von Storch et al.
(1990), the basic model is linear with cyclostationary
coefficients; also Penland’s approach may be seen as a
linear PIP approach (Penland 1989; Penland and Ghil
1993; Penland and Magorian 1993). The most signif-
icant progress toward full implementation has been
obtained by Selten (1995), who fitted the dynamics of
the nonlinear barotropic vorticity equation, with only
20 degrees of freedom, to the first 20 EOFs of the flow.
In this case, only the unknown parameters o in (22)
were derived from the data, whereas the patterns 2
were specified a priort as EOFs.
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FiG. 3. Baroclinic waves: The POP p of a POP analysis of twice-daily geopotential height in the Northern Hemisphere
for zonal wavenumber k = 8, which explains a maximum (54%) of variance. The oscillation period 7T is 4 days and
the e-folding time is 8.1 days. For more information see Section 3a. The POPs tend to appear in sequences » - - —

p>—p>—p>p>p—> ..

-; dimensionless units. (a) The patterns p” = Re(p) (left) and p’ = Im(p) (right)

represented by their amplitude patterns A" and A (bottom) and phase patterns 8 and @' (top). The absolute values
ofthe amplitudes are arbitrary since POPs are always normalized. The phase lines are only plotted where the amplitude
is at least 6% of its maximum value. (From Schnur et al. 1993.) (b) The coefficient time series z" (dashed) and z*
(solid). Note that, in contrast to Schnur et al. (1993), this coefficient time series was derived as a least-square fit through
(17). (c) Cross-spectral analysis between z" and z'. The vertical dashed line marks the POP period T, and the horizontal
dashed lines in the coherence plot denote the confidence limits for the respective percentage values testing the null

hypothesis of zero coherence.

The POPs can be understood as a kind of simplified
PIPs. For that, assume m = n. Then, the patterns 7
span the full x space and their choice does not affect
e[ P; a]. Also, let F be a linear model F[z(?), o]
= A - z(t), where the parameters « are the entries of
A. Then the dynamical equation (22) is identical to
(11). The constraint mentioned above leads to the ei-
genvectors of A as being the PIPs of the particular,
admittedly simplified, state space model.

When we relate the definition of POPs, as given in
section 2a, to the PIPs, as given by equations (22),
(23) and the minimization (25), we have to assume
m = n. That is, the POP approach does not automat-
ically deliver a reduction of the degrees of freedom of
the considered phase space. Instead, a POP analysis
results in the identification of relevant modes. It is for
this reason that we used the expression “trivial” in the
heading of this subsection.
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FI1G. 3. (Continued)

The approach of Penland and coworkers (Penland
1989; Penland and Ghil 1993; Penland and Magorian
1993), on the other hand, pursues the original “linear
inverse modeling” idea of the PIPs, and the use of the
expression “POPs” in both contexts has created some
confusion.

3. Examples

a. Tropospheric Rossby waves given by POP analysis
and stability analysis

POPs can be seen as normal modes of a linear ap-
proximation to a system, the dynamics of which are
unknown or too complex to be described exlicitly. A
conceptually different approach to the derivation of
normal modes is to consider a linearization of a possibly
complex set of dynamical equations and to compute
the corresponding eigenmodes.

These two concepts are compared in the context of
tropospheric baroclinic waves, which are responsible
for much of the high-frequency atmospheric variability
in midlatitudes. For this purpose, a POP analysis with
twice-daily geopotential heights ¥ at various tropo-
spheric levels and a conventional linear stability anal-
ysis of the quasigeostrophic vorticity equation were
performed (Schnur et al. 1993). For both analyses the
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signals are expected to propagate mostly in the zonal
direction on top of a zonally symmetric mean state, so
that waves may conveniently be described by a semi-
spectral representation:

W(N @, z,t) =V, (&, z, 1) cos(kN)
+ W, (¢, z, t) sin(k\) (26)

with A longitude, ¢ latitude, z height, and k the zonal
wavenumber. A pair ¥,, ¥, of zonal Fourier coefh-
cients is equivalent to a complex coefficient g exp(if)
of exp(—ik\) representing the zonal wave (26) by

a cos(kx — 0) = Re[a expi(8 — kN)]  (27)

with an amplitude a = a(¢, z, t) and a phase § = (¢,
z, t). This representation is used in the diagrams.

1) POP ANALYSIS

In the POP analysis, the state vector X is formed
from the data for each wavenumber separately by the
trigonometric coefficients ¥, and ¥, of geopotential
height at all latitudes and heights. The system matrix
A of (1) is estimated from the European Centre for
Medium-Range Weather Forecasts analyses for the
winters (DJF) 1984 /85 through 1986/87.

There is a preconception on the timescale so that
the time series for the POP analysis are bandpass filtered
retaining all variability between 3 and 25 days. Also,
an EOF expansion was made prior to the POP analysis
retaining the first 18 EOFs, which explain more than
95% of the total variance for each wavenumber. Rep-
etition of some analyses with fewer EOFs showed,
however, that the characteristics of the most important
POPs are not very sensitive to the number of EOFs
retained.

Here, only one POP obtained for the zonal wave-
number 8 on the Northern Hemisphere is discussed
(Fig. 3). The POP explains 54% of the wavenumber &
= 8 variance and has a period 7 = 4.0 days and a
damping time 7 = 8.1 days. Note that the decay time
is sensitive to the type of time filter.

Since, at any time ¢, the vector of state x is formed
by the sine and cosine coefficients of the zonal geo-
potential height waves, both real and imaginary parts
of the complex POP, p = p” + ip’, have to be inter-
preted also as a vector of sine and cosine coefficients,
which can be represented by amplitude patterns A’
= [a'(¢, z)] and A’ = [d'(¢, z)] and phase patterns
8" =[0"(¢,z)]and @' = [6'(¢, 2)].

These are shown in Fig. 3a as height-latitudinal dis-
tributions. Note that if we considered the phases and
amplitudes at a fixed height as a function of latitude
only and expanded each amplitude/phase pair (A'/
®" resp. A’/®') back to a wave in physical latitude—
longitude space, we would get a picture as in the upper
part of Fig. 2a. [cf. Fig. 6 in Schnur et al. (1993) for
the 200-hPa cross section ] (in interpretating the figure
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it might be useful to move along horizontal or vertical
cross sections, in one’s mind’s eye, fixing the respective
other dimension ). It should be noted that also in this
case the complex POP is represented by its real and
imaginary patterns ( top two rows of Fig. 2) as opposed
to the representation by means of relative phases and
amplitudes ¥ [in the lower row of Fig. 2; see discussion

“after (7)]. Here, the complex POP just happens to
consist of phases and amplitudes of three-dimensional
waves such that the real and imaginary parts themselves
are shown as amplitudes and phases.

As can be seen in Fig. 3a, the amplitude fields A"
and A/ are almost identical, and the phase distribution
@’ is shifted by 90° relative to the phase distribution
@' at those latitudes where the amplitudes are signifi-
cant. This information, together with the interpretation
(7), leads to the conclusion that the considered POP
describes an eastward traveling pattern.

The coefficient time series z"(¢) and z'(¢) was ob-
tained as a least-squares fit to the POPs (17) at each
half-day ¢ in all winter (Fig. 3b). The two curves vary
coherently, with z"(¢) lagging z'(¢) by one or two days.
This visual finding is substantiated by the cross-spectral
analysis of the two coefficient time series (Fig. 3c).
Maximum variance is at timescales of 3 to 5 days, the
phase difference is uniformly 90°, as it should be, and
the coherence is very high in the neighborhood of the
POP period of 4 days.

2) INSTABILITY ANALYSIS

In the instability analysis the quasigeostrophic vor-
ticity equation on a sphere is linearized around the
observed zonally averaged mean winter state and dis-
cretized. Using representation (26) for the stream-
function ¥ for each wavenumber k and forming the
(unknown) state vector x from ¥, and ¥, as above,
the system equation is of the form ( 1) where the system
matrix A is known from theoretical reasoning. ‘

Now (1) has complex eigensolutions Q = Q" + Q'.
The complex eigenvalue, which is connected with the
pattern Q, is equivalent to an amplifying, or damping,
rate and to a period T. Thus, apart from the amplifi-
cation or damping, the normal modes again appear in
a cyclic sequence (7) representing propagating waves.
The phase direction depends on the eigenvalue A. For
the following discussion, it is useful to rewrite (6) in
terms of the e-folding time 7 = —1/In(|\|):

P(t) = e”""[cos(nt)- p" — sin(nt)- p'].

The term e-folding time will be used here in a more
general sense in that it describes both damping (7
> 0) as well as amplifying (7 < 0) solutions, corre-
sponding to |A| < 1 and |A} > 1, respectively. A pos-
itive e-folding time is the time required to damp an
initial unit amplitude to 1/e, and a negative e-folding
represents the time until a growing amplitude is in-
creased from 1 to e. With this terminology in mind,
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the following difference between the POP analysis and
the stability analysis with respect to the e-folding time
should be noted.

As mentioned before, the POP analysis of stationary
data always yields eigenvalues A < 1, because any ei-
genvalue with A > 1 would characterize an exploding,
and therefore nonphysical, solution. By estimating the
matrix A of the linear system (1) from the data, the
POP analysis preferentially “sees™ an oscillation in its
mature state when noise is relatively small and damping
occurs because of nonlinear and other processes. The
e-folding time 7 = —1/In(|A]) gives a statistical mea-
sure of how long, on the average, such a signal is seen
before noise, which reflects both stochastic noise as
well as unknown and nonlinear dynamical processes,
becomes more and more important. In this sense the
e-folding time characterizes the statistical significance
of a POP,

In the stability analysis the system matrix A is de-
rived from a linearization of a nonlinear dynamical
equation where a small perturbation is superimposed
on a basic state. This system contains the potential of
amplifying solutions and, actually, these are the solu-
tions we are interested in. Thus, in this case eigenvalues
with A = 1 describe the formation and growth (7 < 0)
of oscillations, which the POP analysis eventually de-
tects. Here, the e-folding is equivalent to an amplifi-
cation rate where a normal mode with a larger growth
rate is considered more significant than a mode with
a smaller growth rate. This interpretation is based on
the assumption that the fastest growing modes will
emerge first from a background of many perturbations
any initial condition consists of. ,

Like the POPs, both Q” and Q' represent an ampli-
tude pattern and a phase pattern. However, since the
system matrix depends only on a zonally averaged basic
state, the solutions have to be invariant against zonal
rotation (unlike the POPs). It can be shown that the
amplitudes of patterns Q" and Q’ coincide and that
the phase of Q' is just the phase of Q" shifted by —90°;
that is, the pattern Q' is redundant and only the am-
plitude A? and the phase ®7 of Q” have to be consid-
ered.

The most unstable normal mode obtained for wave-
number 8 on the Northern Hemisphere has a period
of T = 3.9 days. It is amplifying so that an initial unit
amplitude has grown by a factor of e after 2.2 days.
The mode is propagating eastward.

The amplitude pattern A? (Fig. 4) of this normal
mode is almost identical to the amplitude patterns of
the POP shown in Fig. 3a: A7 ~ A" ~ A’. A difference
is the maximum of the normal mode at the bottom,
which can be attributed to the omission of friction in
the stability analysis. The phase pattern @7 differs from
the POP phases ®” =~ @’ — 7 /2 only by a constant
angle. The phase depends only weakly on latitude, in-
dicating almost no meridional momentum transport.
In the vertical, the mode exhibits a small westward tilt.
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FIG. 4. Baroclinic waves: The patterns Q" and Q' of the most un-
stable zonal wavenumber 8 mode on the Northern Hemisphere iden-
tified in stability analysis of the discretized quasigeostrophic vorticity
equation linearized about the observed zonal mean state in northern
winter. The e-folding growth rate is 2.2 days and the period 7T is 3.9
days. Since the unstable mode is completely determined by the real
part only, the amplitude and phase pattern A? (bottom) and &“ (top)
of Q’ have to be shown; Q' is then given by A? and 87 — #/2. (From
Schnur et al. 1993.)

The time coefficients z'(¢) and z’(¢) can again be
calculated as a least-squares fit to the two patterns Q"
and Q' (not shown). These coeflicients explain 38%
of the wavenumber 8 variance. The cross-spectrum
(not shown) between z'(¢) and z'(t) is similar to the
cross-spectrum of the POP coefficients (Fig. 3c). There
is maximum variance, a phase difference of 90°, and
a high coherence at the theoretical period T = 3.9 days.

Figure 5 shows the result of a complex cross-spectral
analysis between the POP coefficient time series (Fig.
3b) and the coefficient time series of the unstable nor-
mal mode. The variance of both time series has a max-
imum at a frequency of —0.25 (the negative sign cor-
responds to an eastward progression of the respective
patterns) where also the coherence is very high and the
phase is fairly flat. This shows that both modes oscillate
coherently at a common period of 4 days, thus repre-
senting the same feature in the geopotential height
fields. Note that the value of the phase is not of im-
portance here because it only reflects the different ab-
solute values in the phase patterns of the POP and the
unstable mode, respectively (Figs. 3a and 4).

Summarizing, the POP analysis, which estimates the
system matrix of a linear system from observation data,
finds similar modes as conventional stability analysis,

VON STORCH ET AL.

385

which makes use of first-principle dynamical reasoning
to obtain the matrix. Thus, the POP patterns can be
attributed to the linear growing phase in the life cycle
of baroclinic waves.

Results, not discussed here, also indicate that in
contrast to the instability analysis the POP analysis is
also able to identify oscillations that may be connected
to the (nonlinear) decay phase in the life cycle of baro-
clinic unstable modes (Schnur et al. 1993). If the POP
analysis is done simultaneously for all zonal wave-
numbers 5-9 (Schnur 1993), the resulting patterns are
also in very good agreement to three-dimensional in-
stability analyses, which use a zonally asymmetric basic
state (e.g., Frederiksen 1982). The most significant
patterns reflect the storm track regions connected with
the inhomogeneity of the atmospheric flow, especially
in the Northern Hemisphere.

b. The Southern Oscillation and the quasi-biennial
oscillation

Two oscillations in the tropical atmosphere with
similar oscillation period—the stratospheric quasi-
biennial oscillation (QBO) and the tropospheric
Southern Oscillation—and the relationship between
these two oscillations are examined by means of the
POP analysis (Xu 1992).

The QBO is reflected in the equatorial zonal wind
of which time series are available at six stratospheric
levels. In the POP analysis deviations from the long-
term mean are considered. No time filtering was done
for this dataset.

Monthly mean anomalies along the equator (50°E-
80°W) of the 10-m zonal wind and of the sea surface
temperature (SST) anomalies are used to describe the
SO signal. To remove high frequency noise the time
series are low-pass filtered. All variability on timescales
less than 15 months is suppressed.

One POP analysis is performed to simultaneously
analyze the three equatorial datasets: stratospheric
wind, zonal surface wind, and SST. The three com-
ponents are normalized so that they contribute an equal
amount of variance to the combined dataset.

Two significant POP pairs (Fig. 6) are found, one
with an oscillation period 7 = 28 mo and the other
with 7' = 45 mo. The cross-spectral analysis of the POP
coefficients (not shown) indicates that the 28-mo pe-
riod of the first POP is reliably estimated, but that the
period of T = 45 mo of the second POP is overesti-
mated. A more adequate value for the period would
be about 30 mo, since the coherence spectrum has a
maximum at the frequency 27 /30 mo.

Mode 1 is significant only in the stratosphere (right
panel of Fig. 6a), where it represents the downward
propagation of a signal from the uppermost level to
the lower stratosphere (the heavy lined p’ leads, ac-
cording to (7), the light lined p") within 14 months.
The POP coefficients time series (not shown ) oscillate
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F1G. 5. Baroclinic waves: Complex cross-spectral analysis between the (complex) POP coefficient
time series and the (complex) coefficient time series of the unstable normal mode. The vertical

dashed line marks zero frequency. Each absolute frequency contributes two components to the

spectral decomposition of a complex time series:

one describing a component of the time series,

which rotates clockwise in the (complex) z’/z* plane at this (absolute) frequency, and one describing
a component, which rotates anticlockwise at this same frequency. The notation here is that the
negative (positive) part of the frequency axis corresponds to clockwise (anticlockwise) rotation. The

phase spectrum specifies the phase offset between

the two series during rotation in the z’/z‘ plane.

The horizontal dashed lines in the coherence plot denote the confidence limits for the given percentage
values testing the null hypothesis of zero coherency.

regularly, and they have a torus-shaped distribution in
the phase space (Fig. 7a).

The second mode, on the other hand, is significant
only for the surface parameters surface wind and SST
(left and middle panel in Fig. 6b). It describes an east-
ward propagation of the surface wind signal from the
Indian Ocean into the Pacific Ocean, and an almost

standing feature for the SST. The POP coefficient time
series oscillate, sometimes regularly, and the occurrence
of El Nifio and La Nifia events is closely related to the
oscillatory intervals. When the SO is quiet, the POP
coefficients are small and noisy [see Fig. 5 in Xu
(1992)]. The distribution of the POP coefhicients in
the phase space (Fig. 7b) is almost bivariate normal
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FIG. 6. QBO and SO: POP p” and p’ from a POP analysis for a combined dataset including
the stratospheric zonal wind (nght panel), surface zonal wind (left panel), and SST anomalies
(mlddle panel). The thin line is the real part p” of the POP and the tthk line the imaginary

part p’. The POPs tend to appear in sequences - - -

—>p > —p—=> — —»p—»p—»---,

dimensionless units. Mode representing (a) the (QBO) and (b) (SO). (From Xu 1992.)

(the patterns visible in the scatter reflect serial corre-
lation in the data).

The two POPs of the combined datasets represent
the QBO and the SO. The correlations between the
POP coefficient time series of the two modes are neg-
ligible around the period of the two modes. Thus, the
two modes are identified as being, to first-order ap-
proximation, statistically independent.

¢. The Madden and Julian oscillation—sensitivity to
analysis time interval and analysis area

The Madden and Julian oscillation (MJO), or the
tropical 30-60 day oscillation, is particularly well re-
flected in equatorial tropospheric velocity potential.
Five years of daily NMC analyses of 200-hPa velocity
potential from May 1984 to April 1989 were available.
From these data the annual cycle was removed.

A total of six POP analyses was done for different
subsets of the complete dataset (von Storch and Xu

1990). Two analyses, named “A” and “B”, use data
along the entire equator: “A” uses data from a two-
year subset and in “B” the whole five-year dataset is
analyzed. In the four other experiments, named “C”-
“F”, five years of data are considered as in “B”’; in
space, however, the input data for the POP analysis
are restricted to equatorial 90° sectors, from 0°~90°E,
90°E-180°, etc.

In all six analyses one physically significant complex
POP is identified. To make the comparisons easier, the
POPs are rotated so that the p” patterns optimally fit
the “A”-p” pattern. This operation is not in conflict
with the POP concept since pairs of POPs are defined
as complex eigenvectors, which may be multiplied by
any complex number.

The POP obtained in the “A” analysis has a period
of T'= 44 days and an e-folding time of 13 days (about
30% of T'). The squared coherency of the POP coef-
ficients is larger than 68% on timescales between 20
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F1G. 7. QBO and SO: Distributions of the complex POP coefficients
connected with the patterns shown in Fig. 6. The coefficients of (a)
the QBO mode and (b) the SO mode. (From Xu 1992.)

and 50 days with a maximum value of 96% at 50 days.
The patterns p” and p’ are shown as solid lines in Fig.
8a. They are zonal wavenumber 1 type patterns with
one minimum and one maximum. The two patterns
are about 90° out of phase, indicating an eastward mi-
gration of the signal. The speed of the eastward move-
ment of the minimum (and of the maximum) changes
during a POP cycle.

The extension of the time interval, in the “B” anal-
ysis, from the 2-year subinterval to the full five year
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dataset is not connected with noteworthy changes of
the characteristic numbers. The “B” patterns shown
in Fig. 8a (dashed lines) are almost identical to the
“A” patterns.

In the set of “C”-“F” analyses adjacent 90° sectors
are considered. The 90° sector patterns closely resemble
the full 360° patterns (Fig. 8b). That the p” patterns
fit better than the p’ patterns is due to the aforemen-
tioned rotation of the POPs.

The characteristic numbers deviate from the “A”
and “B” results. The e-folding times in the 90° sectors
are considerably smaller than in “A” and “B”. This
difference is reasonable: the POPs describe a global,
traveling feature that will be traced for a longer time
in the 360° circle than in the 90° sectors. Interestingly,
the damping time in the Eastern Hemisphere (seven
days) is about twice that in the Western Hemisphere
(four days). This finding is consistent with the obser-
vation that the 30-60-day oscillation is markedly
stronger in the Eastern Hemisphere. The differences in
the periods in the four 90° sectors is consistent with
the variable longitudinal phase speed of the MJO. In
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FIG. 8. MJO: POPs p” and p’ of equatorial 200-mb velocity potential.
The POPs tend to appear in sequences - - - — p" = —p' = —p" —>
p' = p’— - - -; dimensionless units. (a) Analysis of equatorial data
from a 2-year subset of data (analysis “A”; solid line) and from the
complete S-year dataset (analysis “B”; dashed line). (b) The “C”-
“F” analyses for 90° sectors along the equator (0°-90°E, 90°E-
180°, 180°-90°W, and 90°W-0°). The vector p’ is given as a solid
line and p? as a dashed line. The full 360° analysis patterns shown
in (a) are indicated with dots for comparison. The POPs have been
rotated so that p” fits the “A” — p’. (From von Storch and Xu 1990.)
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the 90°E-180° sector, the MJO is slowest and 7" = 62
days. In the 180°-90°W sector, the propagation is fast-
est and the period is minimum; namely, 7" = 33 days.
The “C”-“F” average T is 45 days, almost identical
to T of the 360° analyses “A” and “B”.

We conclude that the POP technique is able to infer
a signal even from a space-time subset of data.

4. POPs as a predictive tool
a. The POP forecast technique

The POP technique is naturally suited for predictions
(Xu and von Storch 1990; Xu 1990; von Storch and
Xu 1990; Penland and Ghil 1993; Tang 1994; Tang et
al. 1994; Xue et al. 1994; Wu et al. 1994) because of
the forecast equation (11) for the POP coeflicients,
namely,

z(t+ 1) = pexp '@/ Dz(1) (28)

with the period T = 2% /7 = 2« /tan"'(ImX/Re))
and p = |\|. Equation (28) describes the damped
persistence of a trajectory in the complex plane (Fig.
1). Thus, in the framework of the POP prediction,
it is only necessary to identify the location in the
complex state space of the system at a given time to
predict future locations. For a limited time this pre-
diction might be useful, but at longer lead times the
built-in linearity of the POP analysis as well as the
unpredictable noise will result in a deterioration of
the forecast skill.

Equation (28) always forecasts a decay of the am-
plitude (because of p < 1). However, for a stationary
time series the probability of a decay at any given time
equals the probability -of an intensification, namely
50%. Therefore, we respecify p in (28) as p = 1 so that
the forecast becomes amplitudewise a persistence fore-
cast. Thus, we may expect a nontrivial forecast only
for a regularly changing phase. However, a prediction
of phase is valuable even if the amplitude is not well
predicted.

In principle, one could make forecasts with all POPs
derived in a POP analysis by applying (30) to each
POP coeflicient separately. It is our experience, though,
that a useful forecast is obtained only for those POPs
that represent a “mode” of the considered system, such
as ENSO, the MJO, or the QBO. This experience is
supported by the recent study of Tang et al. (1994),
who made a POP analysis of ENSO-related data and
Arctic sea ice data. They were successful in identifying
a well-predictable ENSO mode, whereas the modes that
came out of the POP analysis of Arctic data and could
not be understood physically did not offer any useful
predictive skill.

Because of the often noisy character of the analyzed
variable it is not sufficient to estimate the POP coeffi-
cient for a certain date and to use this as initial value.
Instead, some initialization is necessary. In the “time
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filtering” initialization (Xu and von Storch 1990) a
one-sided digital filter is used to suppress variance on
short timescales. In the time-averaging initialization
(von Storch and Xu 1990) the POP coeflicients are
derived for the last few times. Then, a one-time-step
POP forecast is made with the POP coefficients ana-
lyzed at time — 1, a two-time-step forecast is made with
the data of time —2, etc. A weighted average of the
various forecasts and of the analysis at time O is used
as the initial value. More weight is given to the recent
information and less to the older information.

POP coefficients that are small and move irregularly
in the two-dimensional phase space indicate that the
considered process is not active and that the entire sys-
tem is in a “quiet phase.” In that case it would be
reasonable not to rely on the formal POP forecast. In-
stead, the adequate POP forecast is that the system will
stay in the quiet phase.

To measure the quality of the POP forecasts, two
measures of skill are used: the correlation skill score
&(7) and the rms skill score R(7):

BERCIOEION
$ = (
A T EBREOID)

R(r) = V2 — z2(DI?), (30)

where Z,(t) denotes the (complex) forecast issued at
time ¢ — 7 for 7 time steps in advance, z(¢) is the (com-
plex) verifying quantity, and the angle brackets indicate
ensemble averages.

The correlation skill score §(7), being insensitive
to amplitude errors, is an indicator of phase errors only.
With respect to the amplitude the POP forecast is a
persistence forecast. Therefore, £(7) is an adequate
skill score of the POP method; #(7) is sensitive to
both phase and amplitude errors. It may be anticipated,
therefore, that the POP forecast appears less successful
if measured in terms of rms error.

To evaluate the merits of the POP forecast, its skill
is compared with an even simpler forecast: the persis-
tence forecast. Persistence is a fair choice as a com-
petitor because the POP forecast and the persistence
may be seen next to each other in an hierarchy of fore-
cast schemes of increasing complexity.

29)

b. Example: the Madden and Julian oscillation

In von Storch and Xu (1990) and von Storch and
Baumbhefner (1991), the skill of the POP technique in
predicting the MJO (see section 3c) was examined. In
this case, the time-averaging initialization, exploiting
the information from day O through day —4, was used
to estimate the initial value. The POP amplitude |z|
is predicted by persistence, that is, p = 1 in (28).

Individual forecasts are presented in the form of a
“dial” diagram showing the evolutions of the POP coef-
ficients derived from the analysis data before and after
the forecast date and the forecast itself. Two cases are
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considered: 30 January 1985 and | December 1988.
For these two dates not only POP forecasts are available
but also forecasts made with the NCAR Climate Com-
munity Model (CCM).

Figure 9a shows the predicted and analyzed evolu-
tion for 30 days beginning on 30 January 1985. The
MJO developed regularly, with a clockwise rotation in
the plane spanned by the real and imaginary part of
the POP coefficients, until about 26 February. After
that day the MJO moved backwards. Both forecasts,
the POP forecast as well as the NCAR CCM forecast,
are skillful in predicting the regular evolution in the
first 25 days, but fail with the phase reversal on 25
February.

Figure 9b shows the less successful forecast of 1 De-
cember 1988. The POP coefficient z of the MJO was
small on day 0 and remained so. In the velocity po-
tential field a well-defined wavenumber 1 pattern was
not present (not shown). Therefore, the failure of both
forecasts is not unexpected.

The correlation skill score §(7) and the rms error
skill score R(7), derived from a large ensemble of
forecast experiments, are shown in Fig. 10 for the POP
scheme and for persistence. During the first two days
the persistence is more skillful than the POP forecast,
but after this time the persistence forecast rapidly loses
its skill. For persistence, &(7) has a minimum after
about 20 days, indicating the 30-60 day oscillatory be-
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havior of the MJO, and R (7) reaches its saturation
level. For the POP forecast, £ (1) slowly decreases with
time, crossing the critical 0.5 level after about 9 days.
The increase of () is considerably slower than in
the case of the persistence. Even after 24 days the sat-
uration level is not yet reached.

It was also analyzed whether the skill of the POP
forecast of the MJO would depend on factors known
at the time of the forecast [Fig. 11 in von Storch and
Xu (1990) and Fig. 6 in von Storch and Baumhefner
(1991)]. It turned out that the skill was insensitive to
the initial phase. The amplitude, however, had a
marked impact: the larger the signal at the initial time,
the longer a skillfull prediction by the POP method.
Such a property is obviously favorable since it allows,
at least in principle, the prediction of the prediction
skill. It turned out that a numerical forecast model
predicted the MJO signal with some skill for about 6
days in advance, when the initial state had a large POP
coefficient. Initial states with small initial POP coeffi-
cients, on the other hand, gave poor predictions of the
MJO signal: the critical 0.50 correlation skill level was
passed already within 1 day [Fig. 16 in von Storch and
Baumhefner (1991)].

5. Cyclostationary POP analysis

The POP analysis that was described in section 2
operates on the assumption of stationary time series.

4 4
-4
-84
INITIAL VALUES o] X7 POP FORECAST
30.01.1985 T e—e NCAR CCM FORECAST
-12+ e=-= NMC ANALYSIS

-12 12
; z!
-4
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X X X POP FORECAST
e—e NCAR CCM FORECAST
-12 >—-= NMC ANALYSIS

FI1G. 9. MJO: Forecasts of the POP coefficient z for (a) 30 January 1985 and (b) for | December 1988. The forecasts are presented in the
two-dimensional POP-coefficient plane with the x axis representing the z” coefficient, and the y axis the z coefficient. The POP forecast
model (28) implies a clockwise rotation of the trajectory. The dashed line that connects the open circles represents the observed evolution,
the continuous line that connects the solid circles represents a forecast prepared with the NCAR CCM, and the POP forecast is given by
the crosses. The big labeled circles in (a) indicate the following dates in 1985: A: 10 Feb, B: 20 Feb, C: 1 Mar. (von Storch and Baumhefner

1991.)
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skill (30), R(r). (von Storch and Xu 1990.)

In many practical situations, however, the time series
are not stationary but cyclostationary; that is, the first
and second moments depend on an external cycle. This
cycle is often the annual cycle or the diurnal cycle. In
this section, we present a generalization of the conven-
tional POP analysis that explicitly takes into account
this nonstationarity.

The cyclostationary POP analysis has been suggested
first by Hasselmann in a unpublished manuscript in
1985. In 1989/1990, two groups, namely, Maria Ortiz
and her colleagues at the University of Alcala in Spain
and Benno Blumenthal from Lamont, showed inde-
pendently how to practically implement the cyclosta-
tionary POP analysis; only Blumenthal published his
results (Blumenthal 1991).
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a. Definition

Time is given by a pair of integers (¢, 7) with ¢
counting the cycles (e.g., annual cycle) and 7 counting
the seasonal date (e.g., month), that is, the time steps
withinacyclewithr =1,..., n. Itis(¢, n+ 1) = (¢
+ 1, 1) or, generally, (¢, 7 + n) = (¢ + 1, 7). Then the
cyclostationary process may be written as

x(t,7+1)= A(7r)x(t, 7) +noise  (31)

withx(¢, 7 +n)=x(t+ 1, 7)and A(7 + n) = A(7).
Applying (31) consecutively n times, we find with

B(r)=A(r+n—-1)A(r+n-2)

s AT+ D)AGT) (32)

that

x(t+ 1, 7) = B(7)x(t, ) + noise. (33)

Because of the imposed periodicity there are # models
of the form (33). To each of these models a conven-
tional POP analysis can be applied. In this way eigen-
vectors p” and eigenvalues A7 are obtained:

B(r)p" = \'p’ (34)

with [p"]7*- p” = 1. The eigenvalues A" are the same
for different B(7) models:

B(m)p” = \'p’
= A(r +n)B(r)p" = N"A(r + n)p”
=B(1+ D[A(r)p’] = N[A(7)p’].  (35)

Thus, B(r + 1) and B(r) share the same eigenval-
ues, and A(7)p” is an eigenvector of B(r + 1) if p”
is an eigenvector of B(7). Eigenvectors may be mul-
tiplied with any complex number ¢ = r;! expig,:

pt = (r;! expi¢.) A(7)p". (36)

The modulus |r;' -expi¢,| = r;' is chosen such that
[p"]™*p" = 1.If, for a certain 7, the normalization
condition (p7)7*p” = 1 is fulfilled, then [p™*']7*p~*!
= 1if

re= APl (37)

The angle ¢, is determined so that the periodicity con-
dition p™*" = p” is satisfied:

¢, =n/n (38)

with A = p exp(—in). The relations (37) and (38) are
reasonable: Within one cycle, the POP is damped by
the factor p and rotated by an angle —». Thus, to ensure
p™™" = p7, at each time step the pattern is amplified
by r, and rotated backwards by n/#. For the POP coef-
ficients z(t) a time evolution equation similar to (11)
holds:

for all =

z(t, 7+ 1) = r,exp(—in/n)z(t, v) + noise. (39)
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Repeated application of (39) yields, not unexpectedly,
the conventional POP model result (11):
n—1

z(t+ 1,7) = ([] rr+x) exp(—in)z(z, 7) + noise
k=0

= Az(t,7) + noise (40)

so that p = [172} o4k,

The time coeflicients at a given time ¢ may be ob-
tained by projecting the full field x(z, 7) onto the re-
spective adjoint [p*]” or by using a least-square ap-
proximation (17), (18). The adjoint patterns [p*]~
and [p*]™*"' are related to each other through a simple
formula, similar to (36):

[p*]" = ;' cexp(ig)- A(T)T[p*]™™.  (41)

A straightforward estimation of the A(7) is to use (10)
foreach7 =1, -« -, n:

A(r) = 26,,%5;. (42)

b. Example

The Southern Oscillation is known to be phase
locked to the annual cycle (Rasmusson and Carpenter
1982). Thus, the time series of surface wind and SST
along the equator from 50°E to 80°W (already used
in section 3b) are good candidates for a cyclostationary
POP analysis. Monthly anomalies are analyzed; thus,
n = 12. The data are time filtered to suppress the
month-to-month variability; all variability on times-
cales longer than 12 mo is retained. Parallel to the cy-
clostationary POP analysis, a conventional POP anal-
ysis has been performed.

In both POP analyses one dominant POP mode is
found. The periods of T = 31 mo (cyclostationary
analysis) and T = 34 mo (stationary analysis) are
comparable. The mode identified in the stationary
analysis is consistent with the 7= 28 mo mode found
in section 3b (Figs. 6b and 7b).

The damping rate r, exhibits a marked nonsinusoidal
annual cycle (Fig. 11). Amplification takes place from
April to September with a maximum in June. The process
is damped from October to March with a minimum in
February. Thus, the time lag between the minimum and
the maximum is only 4 mo, whereas the lag between max-
imum and minimum is 8 mo. The annually averaged
damping rate is almost identical with the damping rate
obtained in the stationary analysis (Fig. 11).

The annual 7, cycle is consistent with the annual
cycle of the persistence of various SO indices ( Wright
1985). In a PIP analysis Weese (in von Storch et al.
1990) fitted a sinusoidal damping rate to the same data
that we used. He also found an amplification in north-
ern summer and a damping in winter. His annual
range, however, was much smaller (~0.08) than is the
case here (~0.25).

The zonal wind patterns (Fig. 12a) show some east-
ward progression with the annual cycle. The real com-
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FiG. 11. ENSO: Damping rates obtained in the stationary POP
analysis and in the cyclostationary POP analysis of the Southern
Oscillation (in terms of equatorial zonal surface wind and SST). For
the stationary analysis, one damping rate representing the average
damping from one month to the next is shown. For the cyclostationary
analysis, a separate damping rate is obtained for each month.

ponent is strongest during the first half of the year,
whereas the imaginary component is strongest during
the second half.

The SST real pattern (Fig. 12b) has a notable am-
plitude in the Indian Ocean and some significant
structure in the East Pacific, but only in northern win-
ter. The imaginary component has an amplitude = 0.2
throughout the year in the East Pacific, with a maxi-
mum in northern fall. At the same time a significant
amplitude with opposite sign is identified in the West
Pacific.

The annual average of the cyclostationary modes is
similar to the pattern of the stationary POP analysis
(Fig. 6a).

Note that the wind data and the SST data have both
been normalized to variance 1 prior to the POP anal-
ysis. To transform the patterns to meaningful physical
units, the wind patterns (Fig. 12a) have to be multiplied
with 0.45 and with the standard deviations of the POP
coefficients (Fig. 14). Similarly, typical amplitudes of
SST are obtained by multiplication of the patterns by
0.60 and the standard deviation of the POP coefficients.

If the considered state at some time is represented
by our cyclostationary POP, then it may be represented
by P(0, 7) = 2 Re[z(0, 7)- p”]. Its future state at time
t is then given by

P(0, ¢ + 7) = 2 Re([] [r,+s exp(in/n)]1z(0, 7)p™*")
é=1

+ noise. (43)
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F1G. 12. ENSO: Cyclostationary POPs of the combined normalized zonal wind—SST dataset. The horizontal axis represents the longitude
along the equator, and the vertical axis denotes the annual cycle. (a) Real and imaginary component of the zonal wind pattern. (b) Real

and imaginary component of the SST pattern.

By neglecting the noise term, .t is possible to con-
struct typical evolutions that are connected with certain
initial states. In Fig. 13, these evolutions are shown for
two initial states in January and July. The initial states
are either Re(p”) or Im(p”). The initial states Re(p™*")
and Im(p’®") are not connected with the evolution of
noteworthy anomalies in the zonal wind or in the SST
(Fig. 13). Instead, the initially existing anomalies are
quickly damped. However, the other two initial states,
Im(p’*') and Re(p’®™"), are precursors for the evolution
of El Nifio and La Niiia events (Fig. 13).

The variances of the POP coefficients have a marked
annual cycle (Fig. 14). The annual average is about 5.
The real component has a minimum of only 2 in May
and a maximum of 9 in November. The imaginary
component has a minimum of 4 in March and a max-
imum of 8 in September.

6. Complex POP analysis
a. Definition of Complex POPs

By definition, a standing oscillation can be described
by a single pattern together with an amplitude. Thus,
the sequence (7) requires p” = ap' with some real
number « for a standing oscillation. Such a relationship
implies that the corresponding eigenvalue is rea/ and

the spectrum (21)is red, so that the considered process
is not oscillatory but a damped system. Thus, the linear
system (1) is not able to model a standing oscillation.
The background of this is that the description of an
oscillating process requires not only the state of the
system but also its tendency, or its momentum. From
Hamiltonian mechanics we know that the momentum
describes a process that evolves in quadrature to the
original process. As “process and conjugate process,”
they perform a perfect cycle in a two-dimensional phase
space. For traveling modes this momentum is hidden
in the spatial pattern of the system. In the case of
standing oscillations, however, the momentum is not
determined by the simultaneous pattern—in fact, this
pattern is constant for a standing oscillation.

The idea behind the Complex POP (CPOP) analysis
is to construct a momentum time series x(¢). In con-
trast to continuous processes where the definition of
“momentum” is straightforward via the time deriva-
tion, there is no unique definition of momentum for
discrete processes. One reasonable definition is ob-
tained by means of the Hilbert transform (Wallace and
Dickinson 1972; Barnett and Preisendorfer 1981): If
x(t) is a real time series with Fourier decomposition

x(1) = 2 {(w) exp(iwt), (44)
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in downward direction. (a) Imaginary component and (b) real component of POP is used as initial state in

the Hilbert transform of x is

x(1) = 2 O(w) expi(wl + 7 /2), (45)

where (w) is defined to be
w) for
0(w) = [f (w)

wET (46)
*w) for

Here x is identical to x(¢) apart from a /2 phase shift
of 8 taken uniformly at each frequency w.

Complex POPs are obtained by assuming a first-or-
der linear model (1) for the complex vector w = x(t)
+ i-x(2):

w > 7.

w(z+ 1) =W-w(t) + noise. (47)

The complex matrix W is estimated from the data as
in (10) by

W=E[w(t+1)-w ()] [E[w(t)-wT()]]7".
(48)

The eigenvectors of W are the CPOPs. Since W is
complex, the eigenvectors do not appear in conjugate
complex pairs so that, different from the real or stan-
dard POPs, the number of CPOPs equals the dimension
of the process (47).

To find the CPOP coeflicients, we expand the com-
plex state w(¢) in terms of the CPOP basis:

w(t) =2 vi(t)p;. (49)
J

At any given time ¢, the contribution of the CPOP p
to the full w(?) is given by the complex process P(¢)
=~(t)-p,or,withP=P' + /P> p=p"+ip'and v
=yl — iy
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FIG. 13. (Continued) January; (c) imaginary component and (d) real component of POP is used as initial state in Jul.

P () = v ()p" + v2(1)p’ (50)
Pi(t) =v'()p' — ¥*(t)p". (51)

The real part P’(¢) describes the signal in the “lo-
cation” x space, whereas the imaginary part P'(¢) de-
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FI1G. 14. ENSO: Annual cycle of the variance of the cyclostationary
POP coefficients (solid: real component; hatched: imaginary com-
ponent).

scribes the signal in the momentum x space. Without
noise the temporal evolution of the CPOP coefficient
v is given by (11) so that (50), (51) is equivalent to

P’(1) = p'(cos(nt)p” — sin(nr)p’)  (52)
P'(1) = p'(cos(nt)p’ + sin(nt)p”)  (53)

with A = p exp(—in). Hence, the typical evolutions
are

X-space
e
— —

. —»p’—»—pi—>—p’—>pi—>p’—>

c—>p'>p >—p—>-p>p->-..

~v

X-space

b. Example: El Nifio-Southern Oscillation

To test the CPOP model and to compare with the
POP model, two analyses have been performed for
monthly SST anomalies along the equator from 50°E
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Fi1G. 15. ENSO: Complex POPs of equatorial SST (compare with Fig. 6b). Real and imaginary part of (a)
the CPOP pattern along the equator (dimensionless unit) and (b) of the CPOP coefficient time series, together
with the normalized (SST) Southern Oscillation index (unit: °C). (From Biirger 1993.)

to 80°W. These data were already used in sections 3b
and 4b. The analyses have been confined to the SST
because, as section 3b suggests, the expected signal is
essentially standing. One dominant CPOP is resolved,
explaining 30% of the data’s total variance. It has a
period of 39 mo and a decay time of 36 mo with highly
coherent coefficients. The correlation between the
CPOP coeflicients and the Southern Oscillation index
(SOI) is 0.78 (Fig. 15b), so that this CPOP may be
identified with the Southern Oscillation. The p” pattern
shows a large positive temperature anomaly of up to
2°C over most of the Indian and Pacific Ocean, most
strongly over the latter. The p’ pattern, which has only
rather small values along the equator, can be viewed
as the zero state of the oscillation (see Fig. 15a).

The (real) POP analysis reveals no useful patterns,
thereby supporting the argument above. Only by
bandpass filtering the data, retaining variations between
16 and 96 mo, can the same pattern as in the CPOP
case be identified. The coeflicients of the standard POP
do not satisfactorily describe the process, as is dem-
onstrated by Fig. 16: The amplitude time series for the
standard POP is much more disturbed by noise than

the amplitude of the CPOP. Similarly, the phase de-
velops more smoothly for the CPOP.

The CPOP technique has also been used in forecast
experiments. The CPOP forecast model is the same as
that of the POP model (section 4) except for the de-
termination of the initial state. The Hilbert transform
is, by definition, a noncausal notion, and this under-
mines any prediction scheme. One solution of this
problem is described by Biirger (1993). In the case of
the ENSO example the correlation skill score is signif-
icantly enhanced compared to the forecast prepared
by the standard POP (see Fig. 17).

For further details see Biirger (1993), a method is
described of how to define a causal version of the Hil-
bert transform. In a way, the CPOP prediction works
like an inversion of the CPOP analysis: Whereas for
the analysis, one estimates the system matrix by means
of the noncausal Hilbert transform; the causal Hilbert
transform is estimated by means of the system matrix.

7. Associated correlation patterns

The POP coeflicients can often be regarded as an
index of some process, for example, of the Madden
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The phase is shown without the 2« jump. (From Biirger 1993.)

and Julian oscillation or of the ENSO phenomenon.
In such a case it is often desirable to be able to char-
acterize the appearance of the process in terms of other
variables. This can be achieved by means of associated
correlation patterns (von Storch et al. 1988). Note that
this concept can be applied to any uni-, bi-, or multi-
variate index, independently from this index being de-
rived from a POP analysis or any other statistical ap-
proach.

For the sake of shortness, we assume that z = (z”
+ z'}/2 is a complex POP coefficient, and v any vector
time series in which the signal shall be identified. Then,
the associated correlation patterns are the two patterns
q” and q’ that minimize

z z! )
v(t) — T — 11, (54
(2) Via,q Viaiq II (54)

where o? is the variance of z’, and ¢7 is the variance

r

€a(V) =
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of z'. The interpretation of the associated correlation
patterns is that, if the POPs perform cycles,

----—»p’-—»—pi—»—p’»p"»p’—»...

(55)

the associated correlation patterns simultaneously per-
form the same cycle

.--_.)q’_)__qi_)_qr_)ql’_)qr_’

s e. (56)

The normalization by V2 ¢2 and by V2¢7 has been in-
troduced to get typical patterns that occur if z" = 1, z°
=0,orP=porifz’ =0,z =1,or P=p’. The
solution of (54) is found by differentiating with respect
to q"and q‘and solving a 2 X 2 linear equation system.
The spatial distribution of ¢,(v) indicates the amount
of local v variance not represented by the POP coeffi-
cients z"and z'. 1 — ¢,(v)/var(v) is the rate of explained
local variance, which is a good indicator of the relative
importance of the POP in the v field.

As an example, we show associated correlation pat-
terns for tropical outgoing longwave radiation (OLR)
associated with the MJO (Figs. 18a,b). The POPs are
shown in Fig. 8, and the associated patterns are derived
only from the POP coefficients in southern summer so
that they represent the appearance of the MJO in
southern summer. The OLR signal is closely coupled
to the velocity potential signal in the Eastern Hemi-
sphere. In this area, the rate of explained day-to-day
OLR variance is up to 40% (Fig. 18c).

8. Conclusions

We have demonstrated that the POP method is a pow-
erful method to infer simultaneously the space-time
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F1G. 17. Hindcast skills of the POP and CPOP predictions and of
persistence. The predicted parameter is the SST index of the Southern
Oscillation. (From Biirger 1993.)
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FI1G. 18. Associated correlation patterns of outgoing longwave radiation that are associated with the tropical 30-60 day oscillation in
Southern Hemisphere summer (NDJF) (see Fig. 8). The patterns appear in typical sequences: -+ » - q = —¢ > —q¢ >q¢ > ¢ —> -+ -.

(a) Imaginary component q' (W m™2), (b) real component ¢’ (W m~2), and (c) explained variance (%).

characteristics of a vector time series. The basic idea is We think that the POP method represents the most
to isolate one- and two-dimensional subsystems of the consistent way of doing so, but there are certainly other
full system that are controlled by linear dynamics. techniques around that can be used successfully for



MARCH 1995

similar purposes. An alternative is the complex empir-
ical orthogonal function analysis (CEOF: Wallace and
Dickinson 1972; Barnett and Preisendorfer 1981).
CEOFs are obtained by applying the regular EOF tech-
nique to a complex time series whose real part is the
real time series that has to be analyzed and whose
imaginary part is the Hilbert transform of that real
time series. Thus, CEOFs are related to EOFs just like
CPOPs to regular POPs. The main difference between
CEOFs and POPs is that CEOFs are constructed under
the constraint of a maximum of explained variance
and mutual orthogonality. The characteristic times, the
period, and the damping time are not an immediate
result of the CEOF analysis but have to be derived a
posteriori from the CEOF coefficient time series. The
POPs, on the other hand, are constructed to satisfy a
dynamical equation, and the characteristic times are
an output of the analysis; also the complex and real
POP cocflicients z(t¢) (not the real and imaginary
parts!) are not pairwise orthogonal. The nonorthogo-
nality makes the mathematics less elegant, but it is not
a physical drawback because, in most cases, there is
no reason to assume that different geophysical processes
develop statistically independent from each other. The
rate of variance explained by the POPs is not optimal
and has to be calculated after the POP analysis from
the POP coeflicients.

The POP method is not a tool that is useful in all
applications. If the analyzed vector time series exhibit
a strongly nonlinear behavior, the POPs may fail to
identify a useful subsystem. However, if a significant
portion of the variability of a nonlinear system is
controlled by linear dynamics, the POP analysis may
be successful in extracting principal modes of oscil-
lation.

A FORTRAN code as well as a manual (Gallagher
et al. 1991) for the regular POP analysis is available
free of charge at the Deutsches Klimarechenzentrum,
Bundesstrafle 55, 20146 Hamburg, Germany.
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