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Detecting truly clonal alterations 
from multi-region profiling of 
tumours
Benjamin Werner1,2, Arne Traulsen2, Andrea Sottoriva1 & David Dingli3,4

Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-
antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour 
cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty 
on whether alterations found in those samples are actually present in all tumour cells. The probability 
of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on 
the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 
renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional 
sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations 
identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability 
to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell 
carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The 
probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. 
Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting 
the need of denser sampling of tumours at relapse.

Recent advances in next-generation sequencing have led to the widespread identification of somatic changes in 
the genomes of a large number of tumours, raising the hope to transform cancer therapy based on patient-specific 
data1. Novel treatments aim at targeting cancer genomic alterations, or prime the immune system to neo-antigens 
expressed by tumour cells, allowing personalised cancer medicine2–11.

The success of this therapeutic strategy however, relies on selecting the correct targets in each patient8,12–14. The 
number of potentially targetable tumour specific alterations is continuously increasing. However, any approach 
that targets sub-clonal alterations will at best eradicate only a proportion of cells in the tumour. For a maximal 
effective therapy (and any prospect of tumour eradication), tumour-specific alterations that are present in all cells 
of the tumour and thus are “truly” clonal must be targeted by therapy13,15–17.

However, intra-tumour heterogeneity and sampling bias complicate the correct classification of truly clonal 
and sub-clonal alterations. Independent multi-region profiling of spatially distinct tumour samples increases 
the information on individual tumours and allows the reconstruction of phylogenetic trees18–26. Truly clonal 
alterations must appear in the “trunk” of these trees. However, the opposite is not necessarily true. An alteration 
that appears truncal in the “sampled” tree, may still be sub-clonal in the whole tumour because we cannot profile 
every cell in the neoplasm23,27, see also Fig. 1. Taking larger, more or spatially distant samples can mitigate the 
problem19,22–25, but the fundamental question remains: how many samples of a tumour do we need to identify the 
list of all truly clonal alterations with a certain confidence?

Results
Let us consider the complete phylogenetic tree of a tumour. Each leaf of this tree is a cancer cell. Leaves are sep-
arated by bifurcations representing cell divisions prone to inheritable alterations, which could be single nucleo-
tide polymorphisms, gene duplications, translocations or any other genomic change. Alterations that are in the 
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trunk of the tree must be present in all cells of the tumour, if we neglect unlikely events of back mutations. The 
first bifurcation divides the tumour into two populations of fraction f and 1 −  f. The sizes of these fractions are 
the result of potentially complicated processes, e.g. clonal selection, immune system escape or random drift. If 
we were to sample from both sides of the tree, all alterations that appear clonal in both samples will also be truly 
clonal in the whole tumour. But if we only sample from either side, we will misclassify a fraction of sub-clonal 
alterations as clonal, see Fig. 1. Thus the critical question is, how likely are we to sample from both sides of the 
tree in a multi-sampling strategy? Assuming we analysed i independent spatially separated tumour samples, the 
probability to sample from both sides of the tree is

= − − −p i f f( ) 1 (1 ) , (1)f
i i

see Methods for details. The information gained from multi-region sequencing follows a single universal curve 
and the balancing factor f determines the shape of this curve, see Fig. 1d. The probability to classify all truly clonal 
alterations correctly from a single sample is expected to be zero (pf(i =  1) =  0). Including more samples i to the 
analysis increases the probability to classify truly clonal alterations correctly. The probability increases fastest for 
trees in which the first bifurcation splits the tumour population approximately in half (f =  1/2). These are often 
referred to as ‘balanced’ phylogenetic trees, and are often, but not always, consistent with neutral growth (i.e. all 
the tumour driving alterations were present in the trunk of the tree)27. In this case, the information is gained 
exponentially = −

−( )p i( ) 1
i

1/2
1
2

1
 with the number of samples i. Two tumour samples have a probability of 50% 

to correctly classify all truly clonal alterations and the probability increases to 99% for 8 independent samples. 
However, the probability increases more slowly in unbalanced tumours, e.g. in cases of strong on-going sub-clonal 
selection during tumour growth or as a result of treatment. For example, if one side of the tree is 5 times larger 
compared to the other side, two independent tumour samples result in a probability of 28% to correctly classify 
all alterations and increases to 73% for 8 independent samples (Fig. 1). Given that the spatial distribution of muta-
tions in the tumour cannot be known a priori, there cannot be a unique sampling strategy, as different tumours 

Figure 1. The sampling bias of a multi region analysis depends on a tumour’s evolutionary history.  
(a,b) The most recent common ancestor of all cells in the tumour contains all alterations that are truly clonal 
(top square). The first bifurcation from the ancestor divides the tumour into two populations that will constitute 
a fraction of f and 1 −  f at diagnosis. These fractions are the result of complex processes (e.g. clonal selection) 
and tumours might be balanced (both populations reach a similar size, f =  0.5), or one population gains a 
significant fitness advantage and the tumour becomes unbalanced (f ≪ 0.5). During growth, cells accumulate 
further alterations that contribute to intra tumour heterogeneity at diagnosis. (c) This implies that different 
multi-region samples will identify different alterations and different combinations of samples will identify 
different sets of clonal and sub-clonal alterations. Only if we sample cells from both sides of the phylogenetic 
tree, we can identify all true clonal alterations. (d) The probability that at least one out of i samples is from each 
side of the phylogenetic tree depends on the relative sizes of both sides f and is given by pf =  1 −  fi − (1 −  f)i. 
Balanced trees (f =  0.5) need few samples to identify all true clonal mutations with high confidence, while 
unbalanced trees (e.g. f =  0.166) require more samples for the same confidence.
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might present with different relative f and the uncertainty to identify truly clonal alterations might be dramatically 
different for two patients with the same number of samples. Ideally, the sampling strategy should be adjusted to 
account for each tumour’s individual evolutionary trajectory.

The balancing factor f can be inferred from multi-region profiling of individual tumours, see Methods for 
details. In short, comparing the lists of clonal alterations identified by all permutations of tumour samples gives 
a measure for the average information gained by additional sampling. This information gain should fall onto 
the universal curve (1) after adjusting for finite sampling (see Equation (8) in the Method section for details). 
For example, if we have 10 tumour samples in total, we can generate 45 unique combinations of 2 subsamples. If 
the tumour were perfectly balanced (f =  0.5), half of the subsample combinations would recover the exact min-
imal list of clonal alterations. For unbalanced tumours (f <  0.5) fewer combinations of subsamples will recover 
the minimal list of alterations. This procedure is then continued for all possible combinations of subsamples. 
Comparing the shape of the universal curve (8) to the actual information gain from the data allows  assigning an 
empirical balancing factor f to a tumour. Each tumour-specific balancing factor provides a rational of whether 
the current number of tumour samples is sufficient, or if additional sampling is necessary to ascertain the identity 
of truly clonal alterations in that particular patient. In addition, the value of f would determine whether it makes 
sense to sequence additional parts of the tumour, if the expected information gain from each sample is very small.

First, we tested if the information on clonal alterations gained from multi-region sequencing data falls onto 
the theoretically predicted universal curve (8). We evaluated ten cases of multi-region sequenced clear cell renal 
carcinoma (between 5 and 11 samples per tumour, 74 samples in total) recently published by Gerlinger et al.18,22. 
Each sample had a volume of approximately 0.25mm3 and thus each sample contained ~108 cells. The protein cod-
ing region of the genome (exome) was sequenced with a depth of > 70x for all samples, allowing the identification 
of clonal mutations within each single bulk sample with high precision.

Intra-tumour heterogeneity was high in all 10 tumours. The number of coding mutations identified within 
a single sample ranged from 9 to 76 across tumours, see Fig. 2 panel a1 to j1. Considering more samples in the 
analysis decreases the number of what appeared to be clonal mutations, as well as the variability in all 10 cases, 
e.g. 8 samples from the same tumour reduced the list of clonal mutations on average by 40% compared to a single 
sample and the reduction ranged from 14 to 72% in individual patients, see also Fig. 2 panel a1 to j1.

Strikingly, the universal curve (8) describes the information gain from additional samples very well in all 10 
cases and we can assign balancing factors to all 10 tumours. We found balanced phylogenetic trees (f =  0.5) in 
only two tumours, see Fig. 2 panel a2 to j2. In these cases, eight tumour samples suffice to identify all truly clonal 
mutations with a probability of 99%. One tumour had a slightly unbalanced tree (f =  0.35), while 7 tumours 
appeared to be highly unbalanced (f <  0.01). In the latter cases, distinct clonal expansions were likely driven by 
selection, supporting the original findings of the authors of on-going clonal selection and convergent evolution 
in the majority of the patients analysed18,22. In these cases, a study with fewer or different samples on the same 
tumour would have identified very different sets of clonal mutations. Based on the data, two samples have a 
median probability of 68% (a 95% CI of 55 to 77%) to overestimate the number of clonal mutations, highlighting 
the potential risk of suboptimal treatment strategies due to incomplete information on clonal genomic changes of 
tumour cells. Adding more tumour samples to the analysis of the 7 unbalanced tumours would likely reduce the 
list of putative clonal mutations further, allowing for a better-informed course of treatment.

We note that the balancing factor f was independent from the total number of uniquely detected mutations 
(Spearman Rho =  − 0.38, p =  0.3), or the percentage of uniquely detected mutations defined as clonal across all 
samples of a single tumour (Spearman Rho =  0.18, p =  0.62). The mutational load of a tumour is the result of 
many potentially interacting factors, e.g. the age of a patient or the intrinsic (potentially elevated) mutation rate. 
Furthermore the majority of mutations are likely neutral passengers or provide only a weak selective advantage 
to the tumour and correlations might be masked by treatment induced selection biases. This suggests that a sam-
pling strategy based on mutational diversity alone may not be optimal. As we show, the change of diversity across 
independent tumour samples is the variable of interest.

We then tested the robustness of our estimates by applying our analysis to a subset of tumour samples. We 
inferred the balancing factor f for all possible combinations of subsets with a minimum of 4 samples. For example, 
all combinations of 6 out of 12 tumour samples yield 924 independent estimates for f. The distributions of values 
for f are summarised in Fig. 2 panel a3 to j3. Most combinations of samples resemble the balancing inferred from 
the full data set. We observe a trend towards a bimodal distribution for small sample numbers (e.g. Fig. 2 d3, i3 
and j3). This might be a direct consequence of the spatial sampling scheme. Few samples in close spatial proximity 
are more likely to show balanced (neutral) growth characteristics, whereas samples with maximal spatial distance 
likely diverged early during tumour development23,27,28. This suggests that conclusions about the evolutionary 
history of tumours based on only a few samples can be misleading. Sufficiently many spatially distant tumour 
samples are required for a reliable inference (and interpreted in the context of f).

Interestingly, 6/7 unbalanced tumours received treatment before resection (and sequencing) and all 7 cases 
developed metastatic disease. In contrast, 2/3 balanced tumours were treatment naive at the time of sequencing 
and the only 2 tumours without metastatic disease (Fig. 2i,j) were balanced. Indeed, tree unbalancing was associ-
ated with treatment (p =  0.02, t-test), indicating that treatment likely contributes to high selection pressures that 
lead to unbalanced phylogenetic structures. This has important biological and clinical implications, suggesting 
that treated tumours may require more samples to design the optimal therapeutic strategy based on truly clonal 
alterations. In addition, it appears that multi-region sequencing before initiation of any therapy may simplify the 
identification of truly clonal abnormalities that could be the targets of therapy. Future studies are needed to test 
this observation further. It will also be important to stratify patients for potentially other confounding factors, 
such as tumour size, tumour stage, and the spatial distribution of tumour samples.

Next, we tested if the information on copy number changes also follows our theoretical prediction (8). We 
reevaluated copy number changes in multiple single crypts (each crypt contains ~104 cells) of 11 treatment naive 
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Figure 2. Information gain from multi-region sequencing in patients with clear cell renal carcinoma. 
(Panels a1 to j1): If from a set of n multi-region samples from a patient we consider different subsets of samples 
(n is between 5 and 11 per patient) with size i =  1,2,… n, we will identify different numbers of putatively clonal 
alterations, with great variation between different sets of the same size. The more samples we consider, the closer 
we get to the minimal identifiable set of clonal mutations, i.e. mutations that may have appeared clonal with 
one or few samples, turn out to be indeed sub-clonal in the whole tumour. (Panels a2 to j2): The probability 
to find the minimal set of clonal mutations falls onto the universal curve (8). Dots represent the data; lines 
correspond to best fits of f via Equation (8). In 2 cases (c2 and j2) we find a balanced left and right side (f =  0.5). 
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colorectal tumours (7–13 crypts per tumour, 107 samples in total) previously published in ref. 23. Again the infor-
mation gain from multiple tumour samples is well described by our theoretical model (see Fig. 3 panels a2 to k2).  
Five tumours are characterised by balanced phylogenetic trees (f ≈  0.5), two cases show slightly unbalanced trees 
(f =  0.19 and f =  0.3) and four cases have unbalanced trees (f <  0.01). Based on this data, two samples have a 
median probability of 58% (95% CI of 38 to 75%) to overestimate the number of clonal copy number changes. 
Overall, these results support previous observations of largely a single clonal expansion in a majority of colorectal 
tumours that would lead to more balanced phylogenetic trees19,27. In these cases, a few samples can identify truly 
clonal copy number changes. However, we also identified four cases with an unbalanced phylogenetic history, 
similar to the 7 cases in renal cell carcinoma. Treatment strategies for these patients might benefit from an anal-
ysis of additional samples.

There was no correlation between tumour balancing and the total number of unique copy number changes 
(Spearman Rho =  0.16, p =  0.63). However, we observed a strong positive correlation between the balancing fac-
tor f and the percentage of unique copy number changes (Spearman Rho =  0.76, p =  0.007). Balanced tumours 
(f ≈  0.5) acquired fewer sub-clonal copy number changes (relative to the number of clonal copy number changes) 
compared to unbalanced tumours. This is in contrast to the mutational burden in renal cancer patients, where 
we could not observe a similar correlation. There are several potential reasons for this observation. All colon 
cancer samples were treatment naive. Copy number changes occur less frequently compared to mutations and do 
not accumulated with age in healthy tissues. Furthermore it seems plausible that a larger fraction of copy num-
ber changes is under selection (either positive or negative), whereas the majority of mutations are likely neutral 
passengers. The balancing estimates on all possible combinations of tumour samples yield results similar to the 
mutational burden in renal cancer (Fig. 2 panels a2 to j2 and Fig. 3 panels a2 to k2). The majority of subsamples 
resemble balancing estimates from the full data set. Again, we observe the trend of a bimodal distribution of the 
balancing factor f for small numbers of tumour samples.

We note that our analysis does not depend on the detailed effects of selection, i.e. whether selection acts on 
copy number changes, mutations or epigenetic alterations. Changes in tree balance caused by any type of fit-
ness advantage could potentially be detected. Moreover, the evolutionary mechanisms that generate balanced 
or unbalanced trees can be arbitrarily complex29. Our method is agnostic to the specific evolutionary dynamics 
of the tumour, but instead it leverages on the existing data and in particular on the topology of the phylogenetic 
tree. Our approach is based on the assumption that multi-region profiling represents the tumour’s evolutionary 
history, e.g. the samples are equally spatially distributed throughout the whole tumour and are not restricted to 
a small region only.

Discussion
Accumulating evidence indicates that future personalised treatment strategies of human malignancies must be 
based on information from multi-region profiling of tumours8,30. Once multi-region sampling becomes available 
in routine clinical practice, physicians will have to make informed decisions on how many samples per tumour in 
the individual patient need to be independently sequenced for optimal therapy. Our study provides a rationale for 
how many samples are necessary to achieve a certain level of confidence that truly clonal alterations in a tumour 
have been identified from multi-region profiling. Assigning clonality to specific alterations implies also the iden-
tification of sub-clonal alterations. The distribution of sub-clonal alteration contains important information on 
the evolutionary history of tumours25,27. However, here we investigated the impact of standard multi-region pro-
filing on treatment decision and focused on clonal alterations. Our method allows tailoring of the number of 
independent samples that is necessary for each individual tumour. Although the cost of genome sequencing is 
decreasing rapidly, the prospect of multiple sample profiling in each patient may present a new and daunting 
financial burden on healthcare systems, especially as the identification of truly clonal alterations in unbalanced 
tumours (f ≪ 0.5) may be difficult and perhaps less cost-effective, posing new challenges. However, in many cases 
the required number of independently sequenced samples appears surprisingly manageable.

Our approach is independent of any threshold that is often imposed from a statistical analysis of the distribu-
tion of mutations identified in a tumour. Our analysis also suggests that the optimal time to perform genome pro-
filing in tumours is at the time of diagnosis since therapy appears to introduce strong selection that may interfere 
with the identification of the therapeutically relevant truly clonal mutations or immune therapeutic targets8,18. 
Tumours at relapse might require denser sampling compared to treatment naive tumours. The list of truly clonal 
mutations identified by our approach will potentially include tumour driver alterations that could be a targeted 
for therapy. Although our approach cannot identify a priori the driver mutations, this method will significantly 
restrict the search for such drivers. This study represents one of many necessary steps to advance from purely 
descriptive tumour sequencing towards individualized therapies based on quantitative evolutionary principles.

One case (i) appears slightly unbalanced (f =  0.32) while all other cases are unbalanced (f <  0.01), supporting 
the presence of convergent evolution and on-going clonal selection. All patients but (i2) and (j2) developed 
metastasis. Only patients (h2 to j2) are treatment naïve. For balanced tumours, the information on the true set 
of clonal alterations quickly plateaus with few samples (for example 5 samples in patient (j)). (Panels a3 to j3): 
We repeat the inference of the balancing factor f on all available combinations of subsets of tumour samples with 
a minimum of 4 samples. The violin plots show the corresponding distributions of f values for each possible 
combination of i =  4,5,… n −  1 subsets. Most combinations of samples resemble the balancing inferred from 
the full data set. However, there is a trend towards a bimodal distribution for small i, which might be a direct 
consequence of the spatial evolution of tumours. Note that violin plots show the probability density distribution 
of the f-values. The actual f-values are never negative. Data from Gerlinger et al.22.
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Figure 3. Information gain from multi-region copy number profiling in patients with colorectal cancer. 
Copy number changes were inferred from spatially distributed single glands of 11 colorectal tumours. Based on 
the shape of the universal curve (Equation (8)), 7 tumours appear balanced or nearly balanced and 4 tumours 
appear unbalanced. Balanced tumours require fewer samples to identify truly clonal copy number changes, 
whereas uncertainty remains high in unbalanced trees. Data from Sottoriva et al.23.
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Methods
Mathematical model. Let us consider the complete phylogenetic tree of a tumour at a certain time t (e.g. 
at diagnosis). Each leaf of this tree is a cell. Assume there are N leaves and therefore N − 1 bifurcations in the 
tree. By definition, alterations present in the trunk of this tree are truly clonal and thus are present in all cells 
of the tumour. The first bifurcation splits the tumour into two subpopulations, the “left” side with proportion f, 
and the “right” side with proportion 1 −  f. If we were to take a single tissue sample, many alterations carried by 
this subpopulation would likely not be truncal. If we took a second tissue sample, we would increase our chance 
to identify truly clonal alterations. In this case, we have three possibilities: with probability f2 we have two tissue 
samples from one side, with probability (1 −  f)2 we have two tissue samples from the other side, and with prob-
ability 2f(1 −  f) we have one tissue sample from each side. Only in this last case, the alterations common to both 
samples would represent the true set of truncal (clonal) alterations and consequently must be present in all cells 
of the tumour. With n independent samples, the probability p to have picked both sides of the tumour becomes

= − − −p n f f( ) 1 (1 ) , (2)f
n n

resulting in a non-linear dependence of the probability to find the true set of clonal mutations through n samples. 
A single sample never provides the full information, as pf(1) =  0 for n =  1. The expected gain of information with 
an additional sample n +  1 is

+ − = − + − .p n p n f f f f( 1) ( ) (1 ) (1 ) (3)f f
n n

For example consider the case of a perfectly balanced tree (e.g. a neutrally expanding tumour27). This implies 
f =  0.5 and the expected gain of information from sample n to sample n +  1 is

+ − =





 .p n p n( 1) ( ) 1

2 (4)f f

n

The information gain due to the inclusion of additional samples decreases exponentially, in other words: in the 
case of balanced trees with f ~ 0.5, such as neutral or nearly-neutral trees, relatively few independent tumour 
samples are needed to identify all true clonal alterations. If we define the remaining uncertainty to have missed 
the true clonal alterations to be σ =  1 −  p, we can rearrange Equation (2) for the case of a balanced tree with f =  0.5 
and find the required number of samples n necessary for a certain confidence

σ= − .n 1 log ( ) (5)2

For example, a remaining uncertainty of 1% requires only n ≈  8 independent tumour samples. This level of res-
olution has already been reached in several recent multi-region sequencing studies18,20,23,25 and poses a realistic 
target for daily clinical care in the near future.

However, one “side” of the tumour could be very small with f ≪ 0.5 (i.e. the tumour is highly unbalanced), 
implying that different parts of the tree have grown at radically different rates, e.g. due to clonal selection. In this 
case, Equation (2) can be approximated by pf → 0(n) ≈  nf and the remaining uncertainty decreases linearly in n. For 
sufficiently small n, the gain of information by an additional tumour sample becomes incremental

+ − ≈ .→ →p n p n f( 1) ( ) (6)f f0 0

In this case, many tumour samples are required to reach a high level of confidence of finding all true clonal 
alterations. However, a very slowly growing side contributes very little, if at all, to the overall aggressiveness of 
the tumour, especially if this side virtually vanishes (f →  0). Although, many samples are needed to infer all true 
clonal alterations in this situation, the clonal alterations of the extremely dominant and tumour-driving side are 
of practical interest and again fewer samples may suffice. However, very small ancient sub-clones might drive 
tumour relapse, as is for example observed in certain leukaemias31,32.

In general, the remaining uncertainty is given by

σ = − −f f(1 ) , (7)f
n n

which lies between a linear (f →  0) and an exponential (f →  1/2) gain of confidence with additional samples n.

Data analysis. Here we propose a method to calculate the probability pf(n) to find all clonal alterations from 
n independent tumour samples. This method allows us to infer the balancing factor f of a tumour with respect to 
the first bifurcation and thus to estimate the expected gain of information with respect to truly clonal alterations 
by including additional tumour samples in the analysis:

(i)  Collect n samples of a tumour.
(ii)  Analyse the n samples and determine all alterations.

(iii)  Take the intersection of all alterations of all n tumour samples.
(iv)  Take the intersection of all alterations of all possible combinations of 1 to n −  1 tumour samples.
(v)  Calculate the probability that the alteration identified in step (iii) and (iv) coincide.

By definition, this probability approaches 1 for the combination of all n samples.
To allow a comparison with Equation (2), we have to normalise accordingly and get
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=
− − −
− − −

p i n f f
f f

( , ) 1 (1 )
1 (1 ) (8)f

i i

n n

Here, n is the maximal number of available samples and i =  1,… ,n denotes possible sub-samples. The only free 
parameter of this equation is f. Thus fitting Equation (8) to actual tumour data allows us to infer f, see for example 
Figs 2 and 3. We use standard least square regression to infer the single free parameter f.

Our algorithm is sensitive to misclassified mutations, e.g. mutations not found in a subset of samples due 
to normal contamination or limitations of sequencing depth (false negatives). Those are inevitable problems in 
multi-region sequencing studies, leading to a few mutations that seem to contradict the phylogenetic history 
of these tumours, the so-called “homoplasy” events. Standard phylogenetic reconstruction algorithms, such as 
Maximum Parsimony, discard those, hence we filtered the few homoplasy events present in a small subset of renal 
patients (3/10) from our analysis.
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