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Abstract

One of the problems that reactor-relevant tokamaks face are plasma ter-
minating disruptions. Under certain circumstances a beam of high energy
electrons, so-called runaway electrons (REs) can form, which pose serious
damage to the plasma facing components. In this thesis I numerically in-
vestigate the dynamics of REs using the relativistic, full-f, linearized kinetic
(Fokker-Planck) solver CODE (“COllisional Distribution of Electrons”) for
experimentally relevant scenarios. After a theoretical introduction into the
kinetic solver applied here, I apply basic validation, testing and convergence
scans.

The first type of experimentally relevant case investigated is a “fat-top”
scenario. Here runaways are formed under quiescent (flat-top) parts of a reg-
ular tokamak discharge. We were trying to understand if CODE is suitable to
model FTU (Frascati Tokamak Upgrade) flat-top cases and provide distribu-
tions suitable for experimental comparisons. I made an extensive parameter
scan to study the effect of individual plasma parameters on the evolution of
the distribution. I have found that simply using the data as supplied would
lead to a significant overproduction of REs in the simulation. The experi-
mental discrepancy can possibly be explained by measurement uncertainties
or runaway transport in the flat-top scenario due to e.g. turbulence.

The second (and more challenging) application is the case of post-disruption
runaway generation for an ASDEX Upgrade (AUG) disruption case. This
part of the project requires self-consistent treatment of the electric field,
which introduces numerical complications, and makes the calculations sig-
nificantly slower. I discuss a number of cases where numerical issues were not
possible to resolve in the given timeframe. I finally close with a successful
calculation for a post-disruptive runaway beam case. This is first time it had
been possible to calculate RE generation for an AUG-like disruption using a
full-f solver with a self-consistent electric field.
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1. Introduction

As the world’s demand for new and sustainable energy resources grow, innovative meth-
ods are searched for in a vast field of possibilities. While renewable energies often directly
or indirectly rely on the energy radiated by the Sun, the idea of a fusion reactor is not
to harvest but to imitate the physical process of our star. Nuclear fusion is considered
to become a substantial energy supplier by the second half of this century [1] due to it
being a safe, clean, controlled and affordable way of energy production [2, 3].

At distances, where the attractive strong interaction overcomes the magnitude of the
repulsive Coulomb force, light atomic nuclei can unite into another nucleus. Because the
average binding energy per nucleon peaks roughly around Iron-56, fusing atoms below
that atomic number will usually result in an energy release [4]. In order to overcome the
Coulomb barrier, energy for the collisions necessary, can be provided through heat. For
this process to be feasible, temperatures have to reach millions of Kelvins, at which point
the medium in question is becoming a plasma - an ionized, quasi-neutral gas. Since the
cross-section of Coulomb scattering is higher than the fusion cross-section, confinement
of the fuel plasma is required. Thus the Coulomb interactions mostly redistribute the
energy instead of leading to particle and energy loss.

One concept of nuclear fusion currently under research is therefore magnetic confinement
fusion [2], where the containment of the fuel is provided through magnetic forces. The
plasma - being a heavily ionized medium - collectively succumbs to the electromagnetic
effects, forcing continuous collisions and therefore enabling fusion to effectively take
place. One device concept for magnetic confinement fusion is the so-called tokamak [2].
A heated plasma will naturally try to expand. For this reason, the magnetic coils of a
tokamak are arranged in a way, that the plasma is kept from physically touching the
device wall, as the operative temperatures at the order of 100 million Kelvins would
melt any known material and lead to dissipation of energy.

Its’ principle shall be explained using
figure 1 and the enumeration therein. P e o)

External toroidal ﬁeld COﬂS (1) create Poloidal magnetic field (5) Outer Poloidal field coils (7)

magnetic field lines (2) along which g P Pesening snasiseh
the charged particles in the plasma can
travel. Subsequently, the expansion of
the fuel will be dealt with. The ba-
sic equation, to which confinement prob-
lems in plasma physics come down to, is

the equilibrium equation [5]

]’><§:Vp.

Resulting Helical Magnetic field (6) Toroidal field coils (1)

Originating from the magnetohydrody-

Plasma electric current (3) Toroidal magnetic field (2)

namic (MHD) equations, forces gener- (seconsary transtormer erouty
ated by a current j and a magnetic field
B are capable of counteracting a certain

Figure 1: Working principle of a tokamak device.



pressure gradient Vp. A linearly flowing current will induce a perpendicular magnetic
field, which in turn, will pull the conducting material together. In a tokamak, the plasma
acts as this conducting material through which an electric current (3) is driven by inner
field coils (4), creating poloidal magnetic field lines (5) in the process. The resulting
magnetic field line configuration is a helical one (6), carrying plasma inside. Additional
outer poloidal field coils (7) can be used to for shaping and positioning purposes. The
poloidal magnetic field lines bear another important function: Inherently caused by its
geometry, charge dependent particle drift effects appear in a tokamak, separating ions
and electrons. Since the thusly created electric field £ would cause E x B-drifts to
transport the particles outwards, the potential differences have to be dispelled. The
poloidal magnetic field allows the separated charges to move along the field lines effort-
lessly and remove the potential differences (Pfirsch-Schliter-currents). Following each of
the helical magnetic field lines, one ends up with a toroidal surface of constant pressure,
so-called fluzx surfaces, which, layered together, confine the tokamak plasma.

According to the current state of research, it is to be assumed that sudden losses of
plasma confinement in a tokamak can not be ruled out [6]. These so-called disruptions
occur, when the plasma is on the threshold of its MHD-stability [7, 8]. A quick cooling
of the plasma is the consequence of a disruption, dropping its conductivity significantly,
and hereby giving rise to a strong self-inducted electric field, capable of damaging the
device mechanics through electromagnetic forces. Heat loads of the unconfined plasma
onto the plasma-facing components are also a concern for the device [9]. Additionally,
as will be explained in the following section, the strong plasma current (orders of Mega
Amperes), can be converted in significant fraction into a current carried by so-called
runaway electrons (REs) [10, 11, 12]. Apart from interfering with the fusion power plant
operation, disruptive scenarios and the high energy beam of REs pose a great threat to
future devices [13]. Disruption avoidance techniques are currently under development
[14, 15].

Runaway electrons require specific controllers to ensure their confinement and/or miti-
gation techniques to dissipate safely [16]. One technique trying keep REs in check is the
massive material injection (MMI), which achieves mitigation effects by an increase of
the plasma density and by introducing high-Z materials which are detrimental to run-
away production. The two main types of MMI are massive gas injection (MGI), where
room temperature gas is injected to trigger and mitigate the disruption and runaway
generation. This is also the method used on on ASDEX Upgrade, on which the disrup-
tion simulations of this thesis are based [17]. The other method currently being tested
is shattered pellet injection (SPI), which delivers material in the form of high-speed
cryogenic pellets [11, 12].

Analysis of REs requires (a) a kinetic physics model, that will be introduced in section 2
and (b) a numerical solver applied to it, one of which is introduced in section 3. Section
4 and 5 are dedicated respectively to the study of REs in quiescent and disruptive
scenarios.
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2. Kinetic plasma theory

Kinetic theory in plasma physics is similar to the kinetic description known from ther-
modynamics with a few distinct additions [5]. A plasma is to be spoken of, when within
a quasi-neutral gas the ionization degree is high enough for inner electromagnetic effects
to be significant to its behavior. These effects will be considered, when simplifying the
kinetic equation (1) in order to end up with the so-called Fokker-Planck equation (2),
which is the main subject to this thesis.

A certain species of particles a is described using the normalized distribution function
fa (X, p,t) in phase-space, denoted respectively by position x and momentum p. The
normalization is chosen such, that n; (¢, x) f fa (X, p,t) dp is the number density and
N, (t) = [ nq (t,x)dx is the total particle number. The distribution function expresses
the probability density of finding a particle in the phase-space volume [i,i+ di] for

€ (p,x) at a certain point in time ¢. The time-evolution of this function is given by
the kinetic equation, which reads

dfa  6fa o0
%: (‘5]; ( fa) p pfa anb{faafb}+s (1)

It contains the time-derivatives x and p, both of which will be considered to be influenced
by macroscopic forces, such as electric field acceleration and the Lorentz-force. Macro-
scopic hereby means, that the short-scale fluctuations near the charge-carrying particles
themselves are ignored, and electric field E and magnetic field B are understood as
macroscopically measurable, averaged over many Debye-lengths. The Debye-length is
the characteristic length scale, up to which its electrostatic strength is considered un-
shielded and is given by
EOkBTe
nee?

Ap =

with the vacuum permittivity €y, the electron temperature 7T, and electron charge e, as
well as the electron density n.. From now on, any temperature 7" will be used as energy
measure F = kgT', ignoring the Boltzmann constant k. The microscopic fluctuations,
shielded on the Debye-length scale, are instead contained in the Boltzmann collision-
operator C,p{fa, fo} on the right-hand side of eq. (1), which is often the main origin of
complexity (section 2.1). The notation here allows the species of interest a to scatter on
all particle species b present in the plasma, including self-collisions. Additional sources
(and sinks) of particles and energy can be inclosed in the term S.

Due to its complex nature, eq. (1) has to be simplified for feasible numerical treatment.
The main focus of my work is momentum-space dynamics, allowing a 0D approach. This
simplification means a complete lack of spatial dimensions, representing a local descrip-
tion of an infinite, homogeneous plasma. 1D calculations with a radial dimension are also
possible (see e.g. numerical solver LUKE [18]), but are out of the scope of the present
thesis. After simplification, the remaining f; (¢, p) will be represented in a spherical
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momentum coordinate system (p, ©, ¢), where © [—7/2,7/2] is the longitudinal angle
and ¢ [0,7] the azimuthal angle in relation to the main direction laid toroidally and
antiparallel to the electric field, so the electrons are accelerated in positive direction. In
a strong magnetic field of several tesla, as it is present in tokamaks, the gyro motion
of charged particles along the magnetic field lines can be averaged over. The gyro ra-
dius becomes small (compared to gradients in the plasma) and the gyro time scale is
ignorable compared to the thermal collision time, ultimately eliminating the azimuthal
angle ¢. The remaining two momentum-dimensions will be chosen as the normalized
momentum p = yv/c and the cosine of the particle pitch £ = pj/p. Definitions include
the Lorentz-gamma -, electron mass m., the velocity v as well as the speed of light ¢ and
the parallel direction is placed antiparallel to the main electric field. In a tokamak case
this field is parallel to the plasma current time-derivative (usually toroidal). Justified by
the fact that small angle collisions dominate in a plasma [19], the collision operator will
only be allowed to transfer small momenta. Contrary to the kinetic theory of neutral
gases, close encounters do not dominate the behavior in a plasma, but is mainly affected
by collective small-angle collisions within the Debye sphere (sphere with radius » = Ap)
of the particle of interest. Under the assumption that these collectively small collisions
dominate, a binary collision operator can be used, since the effects become additive.
This assumption corresponds to a large Coulomb logarithm InA, where A as a fraction,
gives the importance of small-angle scatterings over large-angle scatterings. For typical
fusion plasmas, it values between 10 and 20. An approximative formula to numerically
evaluate InA can be found in e.g. Wesson’s book [2]. By the linear superposition above,
the Boltzmann collision operator reduces to the Fokker-Planck collision operator. In RE
dynamics however, large angle collisions play a special role (avalanche) as well and have
to be included using S. This will be addressed in section 2.2. Also a full Boltzmann
treatment is possible [20], but is not included in this thesis.

The final equation in our choice of coordinates for the time-evolution of an electron
distribution reads

2
. g (é 5, 1-€*6/,

5 5p b oE ) = Crp{fe} +8S (2)

and is the kinetic equation with a Fokker-Planck collision operator Cpp{f.}. Here, E
is introduced as the magnitude of the parallel electric field. Key to this equation is
the collision operator, which describes the small-angle microscopic interactions between
particles, and the source term. Section 2.1 will elaborate both these terms.

2.1. Collision operator

As described by Chapman and Cowling, particles, following an inverse-square law of
interaction, predominantly undergo small-angle collisions [21]. In a plasma, this inverse-
square law is the Coulomb interaction. As its range is infinite, one has to consider the
shielding properties of a plasma, limiting the effect of the force to the Debye-length scale
and consequently prohibiting the Rutherford cross-section to diverge for small angles [5].
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We will take a closer look at the right hand side of eq. (2). First, we investigate the
Fokker-Planck collision operator, that is derived from the Boltzmann collision operator
and neglect the source term. We will see, that the parallel electron-electron friction force
contained in the collision operator is dropping in magnitude for electron velocities above
the thermal one. As long as a constant accelerating force stronger than this friction ex-
ists, the particle will continuously gain momentum up to relativistic energies. A specific
type of electron, the runaway electron is created.

For the Coulomb interaction in question, the main contribution to electron dynamics
comes from collisions with other electrons [22] and has the most significant implication.
The friction force can be expressed with the slowing down frequency v{¢ and is featured

in the operator as

ee __ me<AU”>66 o ee
Fg = A7 = —muv® x G (z.) . (3)

The slowing down frequency of electron-electron collisions indicates the average deceler-
ation due to binary encounters. Angled brackets denote the averaging over all collisions,
subscript || dictates the direction to be parallel to the velocity vector of the colliding test
particle, x, = v, /vy, is the velocity (normalized to the thermal velocity vy, = /27T /m.)
and G (z.) is the Chandrasekar function

erf(x) — x - erf’(z) 2= x—0
G(z) = o — 4 3T (4)
5520 % — 00
2 x
erf(z) = — [ e ¥dy.
T Jo

Being an important part of the collisional drag force between electrons, the character-
istics of the Chandrasekar function (figure 2) will be responsible for the generation of
REs. But before that, other effects must be discussed.

Until now, we have only considered elastic electron-electron friction force. Electron-ion
collisions in a plasma are also present, but in first approximation can be computed using
a simpler operator. For this, it is necessary to assume the ion to be of infinite mass,
therefore neglecting energy transfer onto it.

Source term and radiation losses

The source term S in eq. (2) can be understood as a placeholder for various effects on the
electron distribution evolution that are not covered by the electric field acceleration term
and the collision operator. These include close knock-on collisions, energy losses due to
synchrotron radiation and bremsstrahlung, as well as sources and sinks of particles and
heat. Knock-on collisions will be treated later (see section 2.2), now the radiation losses
will be considered more closely.
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Figure 2: Chandrasekar function G(z).

Synchrotron radiation is the electromagnetic radiation, emitted by charged particles
being accelerated perpendicular to their velocity [23]. In a tokamak, it provides a con-
tinuous energy loss mechanism for runaway electrons traveling along the torus. The
exact emission spectrum is highly sensitive to the shape of the whole distribution [24].
The analytic form of the resulting power spectrum has been derived by I.M. Pankra-
tov [25]. In the same work several approximative formulas are given, which, according
to evaluations of Stahl et al. [26] are good approximations to real life applications on
tokamaks, depending on the major radius of the device. In the scope of this thesis,
the spectrum is not relevant and synchrotron emission will only act as an energy loss
mechanism for REs.

Bremsstrahlung is also a radiation reaction-force, which yields in energy losses. In
relativistic quantum theory, it can be understood as the emission of a photon due to a
binary interaction (inelastic coulomb scattering) of two charged particles. Its magnitude
grows with the effective charge Zeg = >, n;Z2/ >, n;Z; for every ion species i.

2.2. Runaway phenomenon

As mentioned before, the non-monotonic behavior of the collisional friction force Fg,
characterized by the Chandrasekar function, has an important consequence. Figure 3
(red, dot-dashed) shows the collisional friction force peaking around the thermal velocity
vy and then dropping with increasing electron velocity v. Now, if an accelerating force
like an electric field acts upon an electron with v > vy, and in its magnitude is higher than
the counteracting friction, the particle is sped up and increasingly loses less momentum
due to collisions than gained from the electric field force. It becomes a “runaway”,

14
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Figure 3: Forces acting on an electron. F¢ (red, dot-dashed) denotes the collisional electron-
electron force, described by eq. (3) and Fy,q (blue, dashed) the radiation-reaction force. Fy
is the sum of these two. v; and vy imped the runaway region .S,. Inclusion of the radiation-
reaction force lifts the critical electric field Eo to Eqo*. This illustration is a modified one of
the original in Stahl’s thesis [24].

reaching relativistic velocities. For this reason, F has an asymptotic minimum value
at the speed of light, above which an associated electric field eEx = Fo(v — ¢) can
produce runaway electrons. The critical field E- has been evaluated by Connor and
Hastie (1975) [27] to

MeC nee’lnA 1
EC - lerel = 5

(5)

e mec?’

with the use of the relativistic electron-electron collision frequency [28]

neetlnA

Vrel = .
4re3m2c?

In plasma physics, the collision frequency is defined by the inverse of the average time t.
it takes for a particle to be deflected by over 90° through an accumulation of small angle
collisions. In this picture E¢,is associated with the critical velocity v., above which the
friction force succumbs the electric field acceleration.

Electric fields in a tokamak are externally applied to drive a plasma current, but are
in normal operation mode weaker than the critical value. During a disruption however
(section 2.3), an electric field may be induced that is able to drive a significant amount
of runaway electrons.
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The maximum of the friction force at around v ~ vy, is associated with the so called

Dreicer field
nee3lnA 1

6
et T, (6)

named after H. Dreicer, who historically was the first to research the runaway phe-
nomenon in plasmas [10]. Above the so called slide-away field Ey, ~ 0.214Ep the whole
species population eventually becomes a runaway population, an effect known as slide-
away [29]. Complete slide-away into the runaway regime can occur even at electric fields
initially below FE,,. Either an increase in temperature lowers the slide-away field over
time, or a strong distortion of the bulk is followed by a reduction of friction, leading to
a positive feedback loop [30, 31]. Therefore, the most practical electric field regime for
runaway research to study is Fo < E < FE,, since runaways do not exist below the
critical value and above the slide-away field (unlikely to be achieved in a disruption) the
whole distribution will eventually become one.

Ep =

Unlike the collisional drag force, the energy losses due to any radiation increase with
velocity, as illustrated by the blue, dashed line in figure 3. A momentum conservation
law of the radiating electron can be formulated using the radiation-reaction force, where
the created photon basically carries momentum away from the particle. It is described
via the Abraham-Lorentz-Dirac force [32] and leads to an increase in the slowing-down
force an electron experiences, when its velocity approaches the speed of light. A limit on
the achievable runaway energy is the consequence. Also, since it is an additional force
that is to overcome, the inclusion of the radiation-reaction increases the critical electric
field to Ef. For max|Fy| > eE > Fy = Fyy, + F¢ a closed runaway region S, (grey
area) is defined. Apart from that, radiative losses do not significantly impact the RE
generation process itself, since it typically takes place at too low velocities.

The friction force of the collision operator mentioned above is just the most significant
part of Cgp, crucial to the runaway phenomenon. In fact, the Fokker-Planck operator
is complex and its treatment often boils down to finding the appropriate approximation
for the situation of interest [22]. As I will show in the following section, the possibilities
for runaway generation are actually versatile.

Due to the highly energetic nature of REs, electron-positron pair production in a fusion
plasma is possible, when the electron collides with a thermal ion. Positrons can also
undergo the runaway process [33]. Another runaway process concerns the ions in the
plasma. Apart from its theorized appearance in tokamaks, ion runaway has been of
interest in astrophysics, where it is believed to explain the abundance of ions in solar
flares [34]. In a pure tokamak plasma (full ionization), the two main opposing forces,
namely electron-ion friction and electric field acceleration, cancel out completely [35].
In the further work, positron and ion runaway will not be considered.
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Runaway generation processes in a tokamak

The specific generation of runaway electrons as they occur in tokamak devices can be
grouped into primary and secondary processes. Primary REs provide a seed for sec-
ondary production mechanisms to start with. It will become evident, that not only the
fraction E/E¢ is important for RE generation, but also E/Ep.

Primary generation Most prominently, the primary Dreicer generation provides a con-
tinuous seed of REs through phase-space diffusion processes. When E > E¢ holds, and
the velocity-space region above v, of a distribution has run away, collisions in the bulk,
trying to restore the original shape of the distribution, repopulate the tail lost. A steady
influx into the runaway region is facilitated. Most notably, the primary Dreicer growth
rate depends on F/FEp o« T, and not on E/Es. Handwavingly speaking, the tempera-
ture determines the amount of particles being run-available.

Secondly, seeds of REs can be generated by hot-tail generation [36, 37, 38| through
incomplete thermalization: A plasma, rapidly cooling down, leaves a hot tail in the
electron distribution behind, if the cooling down is faster than the high-energy collision
time. If an electric field is also present, this drawn-out tail may well be in the runaway
region. This process is significant under the circumstance that the collision time scale
is significantly lower than the temperature-decay time scale.

Based on our current understanding, both the Dreicer and hot-tail mechanism can be of
importance on large tokamaks, depending on the shutdown scenario considered. Hot-tail
generation can still be significant if an effort is made to suppress Dreicer generation [11,
39, 40]. Once a seed is present, it can be further multiplied by large-angle collisions, as
described in the following.

Secondary generation Once runaways exist (via primary generation), they are able
to knock-on scatter with thermal electrons from the distribution bulk. These large-
angle collisions are usually rare in a plasma (by a factor of InA smaller than small-angle
collisions) but become important during runaway dynamics. Considering a RE with a
momentum at least twice the critical velocity v., a close collision may provide enough
energy for the thermal electron to enter the runaway region, while the original runaway
electron remains in it. The nature of this process enables exponential growth, which is
why the process is called avalanche. In the original paper by Rosenbluth & Putvinski
[41], the approximative solution for a cylindrical plasma in the E > E¢ limit for Z = 1,
the growth rate can be evaluated to

dn ava E
% XX nRE,ava (E—C — 1) . (7)

Contrary to the primary generation, here the (linear) F/FEc-dependence is vivid. I will
provide a more detailed description of secondary generation in section 3.1.3.
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2.3. Disruptions

In the context of tokamaks, a disruption is a sudden loss of plasma confinement. Fig-
ure 4 shows the measurements of such a disruptive case, as occurred in shot #33108 in
the ASDEX Upgrade tokamak (AUG) [17] and will serve as template to go through the
physical process. A technique used in AUG to mitigate or trigger (in this shot trigger)
disruptions in a controlled manner is by massive gas injection (MGI).

The collapse of confinement leads to the plasma cooling down, be it due to e.g. physical
contact with the surrounding vessel or due to an increase in losses. Subsequently, the
core temperature T, drops significantly (figure 4a). The magnetohydrodynamic (MHD)
energy Wymp contained is radiated away, amplified by an impure plasma composition
should the unconfined plasma touch the wall or, in that very event, even conducted
away through physical contact. The MGI-systems are triggered at tygr and conse-
quently give rise to the increasing density n. (figure 4b). The area contoured magenta
marks this phase called thermal quench (TQ). Loss of temperature during the TQ leads
to a gradual reversal of the excellent conductive properties of the plasma, as the resis-
tivity rises with n o Tef?’/ 2, introducing the current quench (CQ) phase shaded green
in the depictions. Figure 4c shows the plasma current I, consequently collapsing and
inducing an internal electric field Fy,. in toroidal direction. This electric field gener-
ates REs as indicated by the hard X-ray measurements (figure 4d). Runaway electrons
emit X-rays through bremsstrahlung processes in either the plasma, or when the REs
hit plasma-facing components. These runaway electrons carry a significant amount of
the original plasma current, preventing it from collapsing completely and saturating at
about 0.2 MA. Roughly 25% of the original plasma current have been converted into
runaway current.

Apart from the initial threats to the mechanical device, like the danger from heat loads
onto any plasma-facing component and the mechanical stresses caused by induced cur-
rents and the collapsing [, and B, the runaway beam poses a great peril to future
tokamaks. Currently, JET (Joint European Torus) in Culham, UK is the biggest toka-
mak device (R = 2.9 m) available, capable of carrying a plasma current of [, = 4.0 MA.
During a disruption, up to more than half the initial current can be converted into run-
away current [42], leaving high amounts of energy the plasma-facing components have to
bear. In the present, the devices available are mostly able to withstand the threat. But
in order to accomplish a net fusion power gain, the devices have to get bigger, containing
more energy.

The next big project, ITER [43], is to be built with a major radius of R = 6.2 m,
carrying an expected plasma current of 15 MA. The number of runaways generated via
avalanche (see section 2.2) is predicted to scale exponentially with the plasma current
[6], and is therefore crucial to research. Predictive understanding of the theory behind
RE mitigation and control is required for the success of ITER, as ad-hoc, empirical
tuning is not a desirable option.
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Figure 4: Experimental signals of key quantities during a disruption in the AUG shot #33108,
shown over the timescale gauged to the instant of time tygr, when the massive gas injection
is triggered. Graph (a) shows the core electron temperature T, obtained from the electron
cyclotron emission (ECE) and the reconstructed magnetohydrodynamic (MHD) energy Wiimp.
The ECE temperature measurement cuts off above a density of n, = 1.94-10 - B2 [T]. (b)
Core electron density n. measured by the CO; interferometer system, (c) plasma current I, &
calculated core toroidal electric field E¢oy, and (d) the hard X-ray count HXR,. TQ and CQ
mark the areas identified as thermal quench and current quench.
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3. Simulation of an electron distribution in
momentum-space

In this chapter, I introduce a numerical Fokker-Planck solver. Analytical solutions to
the kinetic equations only exist in limited cases, e.g. for avalanche dominated cases
[44]. This circumstance requires numerical solutions. For this purpose, several tools
exist, varying in their capabilities and strengths through their different assumptions and
simplifications. This thesis is build around one of these tools, introduced in the following.

3.1. CODE

“CODE” (COllisional Distribution of Electrons) is a MATLAB written numerical tool,
designed to solve the kinetic equation with a linearized Fokker-Planck collision opera-
tor for electrons (eq. (2)), first introduced by Landreman, Stahl and Fiilop [45]. Being
zero-dimensional in space and using linearized operators, CODE does not include spatial
features, nor does it allow distributions to deviate far from a Maxwellian (the number
of runaway electrons has to be small - few % - compared to the bulk). Its strength lies
in its fast run times, lasting from minutes to days on a single computer. This especially
shows in the time-independent mode, where a long-time (quasi-)equilibrium distribution
function f. of the Fokker-Planck equation (2) is determined (d f./dt = 0, steady state).
The numerical implementation is based on a finite-difference discretized nonmonotonic
grid in momentum space p and a spectral Legendre-mode decomposition in &. This
implementation has been chosen due to the fact, that the collision operator is the main
origin of complexity and is best described by its Eigenfunctions, which are the Legendre-
polynomials. For time-advance, an implicit time-stepping scheme is implemented. At
reasonable grid sizes and constant time-parameters, CODE can efficiently be run on a
desktop computer, since the whole system is hereby embodied by just one large sparse
matrix, typically sized in orders of thousand to millions of entries.

We describe the collision operator Cpp{f.} as a function of pitch and momentum and
introduce the normalization F' = (7%/2m3v}, /n.) fe, so that ' — 1 for y — 0. The kinetic
equation forms thereupon into a linear inhomogeneous partial differential equation in
2D

OF
5/ + S (8)

where M is a linear, time-independent (for constant plasma parameters) differential
matrix operator and F' is discretized using the Legendre polynomials Pp (&)

F(y,§) = ZFL@)PL(O

The full equation written out can be found in the appendix (eq.(26)) as well as the dis-
cretized version of it (eq. (27)), which shall later be investigated for a special benchmark
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case (section 3.2.4). CODE has been improved and constantly developed since its initial
paper on it was launched in December 2013. Described in a follow-up paper [46] is the
addition of features such as time-dependent plasma parameters, a field-particle term for
the collision operator (see section 3.1.1) as well as improved avalanche operators (see
section 3.1.3). Features like the synchrotron radiation operator [47] and bremsstrahlungs
radiation reaction [48] were implemented later.

Physical input parameters are temperature 7', electron-density n., effective ion charge
Zo, external electric ' and magnetic field B, all of which, with the exception of B can
be time-dependent. The temperature is a necessity to define the Maxwellian

Ne v

It describes the electron-population bulk in momentum space and is often a starting
point for the calculation, even though an arbitrary initial distribution can be set to
evolve via CODE. Even though CODE solves for the entire distribution (full-f), it is
a linearized tool. As will be shown in the follow-up section, the collision operator is
linearized around a Maxwellian, meaning that the particles collide with a Maxwellian
described by n. and T. Non-linear tools have been developed recently (for instance
NORSE [30]), but are out of the scope of this thesis.

Unlike the density and temperature, the effective ion charge, the electric and magnetic
field can be set to zero. Hereby individual physical effects can be segregated, e.g. B =0
corresponds to a situation without synchrotron losses, Z = 0 is eliminating electron-
ion collisions, while £ = 0 can be used to take a look into rethermalization processes.
Same goes for bremsstrahlung and avalanche-operators, which can both be turned off.
The electric field normalization is such, that electrons are accelerated towards positive
parallel momentum

P —elE

MeVthVee
with the Braginskii electron collision frequency [28]

4v/2me*n InA
Veg = ———————.
3/m.13/2

Main numerical parameters include V¢, which gives the number of Legendre-Polynomials,
N,, which sets the number of points on the discretized momentum-grid and ymax, be-
ing the maximum extent on the parallel grid axis. The spacing of the grid can be
non-monotonic, giving a high resolution for the densely populated low-energy bulk and
diluting for the high-energy tail, where the distribution function varies only on large
scales. The resulting size of the matrix M is roughly given by N, x N¢. The discretiza-
tion parameters can be extended automatically by CODE itself, once the distribution
at the end of the grid rises above a certain threshold. For long-term runs with growing
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energy-tails this can save a lot of calculation time during the early stages of the evolu-
tion[49].

In time-dependent mode, the number of parameters extend by two, where ¢,,., is the
calculation time and dt is the time-stepping. dt is mainly determined by the speed of the
evolution of the distribution and should be set such, that abrupt changes in f, cannot
induce numerical errors. CODE advances the calculation using backward Euler method
and will advance in time using a single matrix inversion.

Once a time-dependent temperature is chosen, CODE features reference normalization to
improve the run-time. Hereby the grid y = yv /vy, and the reference Maxwellian (eq.(9)
are normalized to the constant reference temperature (and density) grid T,.; = T and
Nyer = N. This means that the grid does not need to be rebuild in each and every step
dt. For large variations of the temperature it is recommended to frequently adjust the
reference density and temperature. The time-stepping can also be chosen as a function
of instantaneous reference collision times.

3.1.1. Collision operator

In CODE, the ion-species is approximated as being a stationary Maxwellian for particles
of infinite mass. This greatly simplifies the electron-ion collision operator in first approx-
imation, to be only dependent on Z.g [22]. In pursuit of describing electrons colliding,
we introduce a small perturbation f; to the Maxwellian fy; = f — fi, enabling to write
the Fokker-Planck electron-electron collision operator in its linearized form [46],

Ceel f} = Cee{f} = C2 + CL, (10)

where tp and fp respectively denote the test-particle and the field-particle terms and can
be classified as follows: (a) the test-particle term C*®{ f;, fas} represents the perturbation
f1 colliding with the bulk fy; and (b) the field-particle term C®{fy, fi} shows the
reaction of the bulk to this very perturbation. Both terms are therefore of 1st order in
f1, while the 2nd order C{f, f1} is neglected in the linearzation. Oth order cancels out
as the collision operator vanishes for a Maxwellian. Introduced in Papp et al. [50], the
original collision operator implemented in CODE was a relativistic test-particle term
C* valid for arbitrary energies

Tlee o _ 1 2 c F

cr = Wy (0 [ (L0« 2 rl g pa-ef). ap
where the bars denote a quantity to be normalized to its reference value (for reasons
mentioned in section 3.1). Furthermore, the quantity ¢¢ = Z + ® — ¥ + 926*2?/2 is
being used with ® = ®(z/v.) and ¥ = V(z/v,.) = 02 [® — v 'z d®/d(z/v.)] /22*, which
respectively are the Error and Chandrasekhar functions, including the normalized speed
x = y/y = v/t and § = 7y, /c. Hereby the assumption of a small § is being made,
correctly representing a non-relativistic thermal population only. The (11) test particle
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operator however was developed for test particle studies. Therefore it does not conserve
momentum or energy, just the number of particles. Meaning that a sudden loss of elec-
tric field strength is abruptly followed by a relaxation of the distribution function to its
Maxwellian, if only this test-particle operator is considered.

The conservation of energy and momentum can be restored by adding the non-relativistic
field-particle term

Ve _-—2.2 222 0°G 2
e | 2 ZH 4 AnF 12
ar v 022 02 e (12)

using the Rosenbluth potentials of the distribution

p _
Cee -

’V2H = —47F, 9°V3G =2H.

Its limit of validity lies in the non-relativistic assumption of the field-particle term. In
Figure 5 I show, how the relativistic collision operator Cﬁg, which solely contains the
test-particle term, does not reproduce the Spitzer conductivity [51]

nee? B 3 T3/2
ZeiMelee  20/2mmoe? ZoglnA’

but only roughly half its value (as predicted by Helander and Sigmar [22]). The field-
particle term is crucial for the conductivity o = j/F, for it is responsible for the bulk’s
characteristics. The property to “conduct” can in the end be understood as the current-
response of the distribution to an electric field £. This meaning of conductivity in-
creasingly fades with growing E/FEp, as a rising number of runaway electrons produced
contribute to the current itself (see section 5.4).

O'SPEZ

(13)
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Figure 5: Conductivity, normalized to the Spitzer value ogp for two different collision opera-
tors (see section 3.1.1) over time given in collision times (red: E/Ep = 1%, green: E/Ep = 5%,
blue: E/Ep = 6%). The conductivity o = j/FE is evaluated using the current j, which is taken
from the first moment of the distribution. Parameters are 7 = 1 keV, n = 2-10'9 m™3 and
Z =1, and no avalanche generation has been used for reasons of simplicity.

The non-relativity of the field-particle term can be justified, since the bulk is not rel-
ativistic in tokamak flat-tops and post-disruptive plasmas. For the simulations of this
thesis, I will use the fully conservative collision operator, when self-consistent treatment
of the electric field is necessary.

3.1.2. Operators for radiation losses

The synchrotron loss operator for the radiation reaction force originates from the Abraham-
Lorentz-Dirac force acting on an electron [32]. Under the assumption that the particle
is accelerated predominantly perpendicular to its velocity (dominant magnetic forces),
the expression yields [24]

poo— A=) pe | VI E (14)

syn syn
Tr YT

Herby 7, = 6meg(mec)®/e*B? is the radiation-damping timescale. As evident from the
expression, the force vanishes for parallel and antiparallel movement ({ = +1) and is
proportional to B2.
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In CODE, bremsstrahlung is included in two different ways, the first one being a simple
average mean force [52]

dpj 4 2 2 1
— = = —m, (Zeg +1 log2y — = |, 15
g = 1B = ggrmecrene(Zen +1)7 ( log2y — 3 (15)
where r, is the classical electron radius. Note that, while the synchrotron radiation is
proportional to the square of both the magnetic field strength B and the major radius
R [53], bremsstrahlung is independent of those.

The second description is a kinetic one, where the radiation emission is modeled as a
binary collision between two charged particles, spontaneously creating a photon as a
result [48]. Absorption of already existing photons and stimulated bremsstrahlung emis-
sions are neglected, as their impact is calculated to only be important for dense, or large
plasmas, barely affecting electron runaway distributions in tokamak disruption scenar-
ios [54]. The main feature of the kinetic description is taking the energy distribution
of the emitted photons into account. The calculations lead to the somewhat counter-
intuitive result, that low-energy photons can significantly contribute to large angular
deflection of the electrons. The mean force model however uses a high-energy limit of
photons for the cross-section, forming a rather sharply peaked distribution function,
unlike the Boltzmann-model, where the large-angle deflections cause the population to
extend further in perpendicular momentum. The Boltzmann-model bremsstrahlung op-
erator therefore synergizes with the synchrotron operator due to the p? -proportionality
of the latter.

In this thesis I will use the (15) pitch-independent one, since mainly integral quantities
will be of interest.

3.1.3. Operators for large angle collisions (avalanche)

Since large angle collisions cannot be captured by the Fokker-Planck formalism, close
Coulomb scattering is implemented in CODE via the source term S to the kinetic equa-
tion (2). Of this, there are two different source-operators (Rosenbluth-Putvinski [41]
and Chiu [55]).

The Rosenbluth-Putvinski operator in the momentum space coordinate (y,§) for an
electron with the relativistic mass factor v was derived as [41]

A 3
st<y,s>:"ijn2(3”‘5 O(€ - &) gy —— ) (16)

16InA Y /1 + 0242

inherently carrying the important property of proportionality to the runaway electron
number density nzgr and using the Dirac d p-function to assume the creation of secondary
particles to only take place on the curve £ = & = 0y /(14 /1 + 62y?). Latter originates
from the simplifying assumption that the momentum of all the incoming particles is
infinite (p = yv/c = dy > 1) and its pitch-angle equal zero (§ = 1). This source-operator
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however, does not take the energy distribution of the runaway electrons into account,
making it possible to create electrons with an energy higher than any of the electrons
available. Another issue arises during the discretization of ¢ into Legendre-modes, since
the Dirac dp-function succumbs to the Gibbs phenomenon, creating oscillations in pitch
[46].
A more advanced operator for close-angle scattering in CODE is a source-operator given
by Chiu et al. [55] L

Sen(1:€) = 7oy ™y F(pia) 27, ). a7)

2
M3 Vee

where the Mgller scattering cross section

2
Y;
XY, Yin) = g *
(Ve = (v = D2 (in —7)?

o= 1)7(27” = (292, 4 25— 1= (7 = D — 7))

(%n - 1>2 -

is multiplied with the pitch-angle-averaged distribution f of incoming runaways with
relativistic mass factor 7;, and momentum p;,, therefore includes the energy distribu-
tion of the incoming particles. This avalanche-operator has been advanced by a full
Boltzmann-treatment by Embréus [56], taking full pitch-dependence into account.

Both operators are compared to each other in figure 6. The (a) Rosenbluth-Putvinski
operator is non-vanishing only along the trajectory & and creates numerical noise due
to the Gibbs phenomenon. The (b) Chiu operator takes the energy distribution of the
incoming particle into account by restricting the source operator to the region

fmin S g S gmax

€ = (7 = 1) (Ymax +1) e— JO=DOm+Y)

OV (D) (max — 1) Y+ DOm =17 7 Vy+1
In order to prevent double-counting of small and large angle collisions, both operators
are restricted to a high-energy regime, where small-angle collisions fade in importance.
This cut-off boundary is usually chosen as the critical momentum trajectory y,, but can
also be changed. Considering the fact that the source magnitude grows for decreasing
momenta, lowering the cut-off boundary has to be done with care. The standard choice
of the cut-off boundary to be the critical momentum y,. is reinforced by calculations of
Nilsson et al. [57]. These state (shown for the Rosenbluth-Potvinski operator), that
even if a secondary generated particle is placed on the momentum scale at v, < y < ye,
it is most likely to be slowed down into the bulk again. The other option would be

the diffusion of this very particle into the runaway region, thereby artificially increas-
ing the Dreicer flux based solely on the choice of the cut-off momentum ycut_of. Since

with
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Figure 6: Contour plots of the source magnitudes log;,S of (a) eq.(16) and (b) eq.(17) in mo-
mentum space of the same electron distribution. y. is the critical momentum, below which the
source magnitudes are zero to prevent double counting with small-angle collisions. Parameters
are T =1keV,n =510 m™3, Zsg =1, E =1 V/m, tmax = 300 [1/vee] and ymax = 70. This
illustration is taken from the “CODE improvements paper” [46].

the avalanche multiplication factor v4 is shown to fulfill v4(yeut—ofr)/va(ye) — 0 for
Yeut—off — Ye, the cut-off momentum is best chosen to be the critical momentum.

The source magnitude of the Rosenbluth-Putvinski operator can also be driven by “fast
particles” rather than runaways. Fast particles are defined as particles above a cer-
tain momentum threshold or as part of the distribution, where the deviation from the
Maxwellian is above a threshold f./fy > const.. Investigation of scenarios, where
E < E¢ occurs (e.g. during post-disruption runaway decay in low inductance toka-
maks) is therefore made possible, but also becomes sensitive to the definition of “fast
particles”. But unless otherwise stated, the Rosenbluth-Putvisnki operator will be driven
by runaways.

3.2. Basic physical validation
3.2.1. Runaway process

A runaway electron distribution in its simplest form is described as a population of
electrons beyond some velocity v, (see figure 3), above which an electric field £ > E,
always surmounts the friction force. Since the velocities these electrons can reach are a
significant portion of the speed of light, it is more practical to talk in terms of normalized
momentum p = yv/c. The second coordinate of our system to solve (eq. (2)), is the
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cosine of the pitch angle £ = p|/p, making it customary to illustrate the results by means
of pj and p;. Due to symmetry, only positive values of perpendicular momentum will be
plotted. The preferential direction of the electric field introduces a pitch-dependence to
the critical momentum p. = 7.v./c [58]. In order to define the separatrix, i.e. this pitch-
dependent momentum trajectory p, in phase-space that separates the bulk from the
runaway region, CODE demands force-balance between electric field F, collisional elec-
tron friction F, and synchrotron radiation-reaction F! gyn for each coordinate ¢ € {p,{}
[24]. Tt holds ps — p. for & — 1 (positive parallel axis).

The shape, magnitude and dynamic of a distribution function reveals a lot of the proce-
dure forming it. I will use this in order to explain the runaway process in its most general
kind. Figure 7 shows the time-evolution of an initially isotropic distribution, under the
influence of an electric field (figure 7a), seconded by a stepwise growing magnetic field
(figure 7(b-c)). By comparison, figure 7(d-e) illustrates, how the distribution would have
evolved without synchrotron losses (B = 0).

At first, only electric field acceleration and collisions are present in the system (figure
7a). The constant electric force drags particles from the main bulk parallel to the axis
in positive direction. At this point, only collisional friction is counteracting this motion
and can therefore be increased by a larger electron density. After only ¢t = 200 [1/v,e] =
0.01 s, the average energies have grown substantially

Eqopur(t = 200) [keV] 6.1 Euy,rp(t = 200) [keV] 180
Bavpur(t =0) [keV] 45" Ege(t=0) [keV] — 36’
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Figure 7: An electron distribution under the influence of an electric field (a-e). Plots (b-c)
show how the distribution in plot (a) evolves being supported by a magnetic field in comparison
to the electric field only case (d-e). Magnitudes of the magnetic field at given times can be
found in plot (f) and are chosen extreme for ease of illustration. Indicated with a cyan, dashed
line is the pitch-dependent critical momentum p,(§), which defines the runaway region. The
axes show perpendicular and parallel normalized momentum p = yv/c at a certain number of
collision times 7 = 6.9 x 107 s of the electrons. Plot (f) compares the runaway fraction n,./n.
of (b-c) (blue, continuous) and (d-e) (orange, dashed). Input parameters are 7' = 3000 eV,
ne =510 m™3, Z =1, and E = 0.35 [V/m] or E/E, = 8.4. Calculated using the relativistic
test particle collision operator, and no avalanche source.
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mainly contributing to the runaway region itself. The distribution is also extending in
perpendicular direction, due to energy transfer from pitch-angle scattering. As seen in
figure 7f, a runaway fraction of around 1% is quickly reached. At this point in time, a
strong magnetic field is set, allowing synchrotron losses to take part in influencing the
shape. In a simplified single particle picture, the total emitted synchrotron power of a
electron gyrating in a homogeneous magnetized plasma scales with [24]

Ptot X B2pia

leading to energy losses in perpendicular direction. The effect becomes apparent when
comparing the results to the distributions, which evolved without magnetic field. The
runaway fractions of both cases are shown in figure 7f. Synchrotron losses do not directly
affect the runaway growth rate in a significant way, but when using the pitch-dependent
definition of the runaway region, an exaggerated magnetic field is capable of “removing”
particles from the runaway region, because the separatrix is not a vertical line at p,.
but a trajectory (figure 7, cyan, dashed lines). They also change the maximum energy
runaways can reach, and change the shape of the distribution, which is influential when
considering other physical effects.

3.2.2. Convergence scans

The choice of numerical parameters is a balance act of necessary precision and compu-
tation time. For long lasting simulations to work properly, a feeling for parameters to
set has to be established beforehand. For N, and N, figure 8 shows two convergence
scans in a steady state calculation of CODE. Assuming the blue lines to be a converged
solution (Vg = 25, N, = 150), the resulting matrix size is 3726 and the time to assemble
and solve the system is respectively ~ 0.03 s. This proportion of N¢ to N, is a good a
rule of thumb.
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Figure 8: Convergence of distributions in (a) N¢ and (b) N, for a CODE steady state calcula-
tion. Input parameters are: T = 1000 eV, B=3 T, n. =10 m™3, Z =1 and £ = 0.2 V/m.
Blue and black lines overlay completely. Lines abruptly ending indicate insufficient numerical
parameters creating negative values in the distribution, which are ignored in the logarithmic
plot.

Complexity is added though time-dependency, bremsstrahlung and large-angle collision
operators. Matrix sizes increase to millions of entries for high energy problems, and
elevate the computation time up to several days for advanced real-life applications.
Once the calculation is independent of the grid, the time-step dt in time-advance mode
has to be sufficient enough as well. In time-advance mode, CODE has the ability to
adjust its own resolution parameters to a certain degree.

3.2.3. Time-evolution and rethermalization

Figure 9a depicts a time-evolving simulation of a distribution together with the steady
state solution for the same physical parameters, showing excellent convergence. The
negative parallel momentum-space is magnified in figure 9b. The deviation from 7 = 0,
which is the starting Maxwellian, indicates particles to be scattered faster in angle
than they scatter in energy, meaning the thermalization is succumbed to small-angle
Coulomb-scattering. Some particles “turn around” faster than they can thermalize to
the initial distribution during evolution, giving rise to this backwards tail. Figure 9c
shows how the electron population then returns to its Maxwellian form after the electric
field strength is set to zero. The timescale of the process affirms the previous observation,
that the cumulative effect of many small angle scatterings qualitatively dominate the
thermalization.
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Figure 9: a): Convergence of the parallel distribution function over time to the steady state
solution. b): A closer look at the negative tail. ¢): Rethermalization after turning the electric
field off. Time 7 is given in units of electron collision frequency v, = 7.8 x 10* s7! and the y-
axis shows the distribution function normalized according to F' = (ﬁmvth)g ng1f. The arrows
indicate the direction of the time-evolution. Input parameters are: T' = 500 eV, B = 2 T,
ne =210 m™3 Z=1and £ =0.8 V/m

3.2.4. Validation with previously published data

Classical results, such as the ones calculated by Kulsrud et al. [59] are met by CODE
in figure 10. The calculations are non-relativistic (Dreicer generation occurs close to the
thermal bulk, 7, ~ 1) and do not include close-angle collisions, wherefore

C y R
Ve \ 1+ (52y2

holds. With the assumptions above, the discretized kinetic formula (appendix, eq. (27))
reduces for the zeroth Legendre-Mode L = 0 to

0—0, z=

OFy (B0 . 3T (\If(y) O L 20(y) | dVy) 9y - ‘P(y)ﬁ) R— S,
ot 3y 4 y 0y? Y dy y? dy

Now the operation 47~1/2 fyio y? dy is applied for some boundary value 13, above which
the source is assumed to be negligible. Defining the number of runaway electrons
nrp as particles in velocity space above this boundary value y > vy, gives nrp =
2m fniveyb p? dp f:ll f d¢ and finally yields the runaway growth rate

1 d?’LRE 4 E 9 0
= = F 3| ¥ 2V F 18
ThE = 7 3V 1(yb)+ (yb)ybay +20(y)y2 | Fo(y).  (18)
electromagnetlc part collisic;lral part
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Figure 10: (a) Benchmarking the runaway growth rate of CODE against results obtained by
Kulsrud et al. [59] in the non-relativistic limit. As in the paper that is being compared to,
yp = 10 has been used. Markers correspond to the Kulsrud values. Excellent agreement is
archived. (b) shows the vanishing importance of the collisional influence on the growth rate in
this regime. Subscript F stands for the electromagnetic part and C for the collisional part in

eq.(18).

To obtain this result, it has to be assumed, that for y, < y — 0o, the Legendre mode Fi,
as well as the collisional diffusion in velocity space vanishes, corresponding to (¢(yp) —
U(yy)) — 0. For reasonably high y, this can justifiably be done. From eq. (18) the
runaway growth rate in the non-relativistic limit can therefore be computed from the
zeroth and first Legendre mode. Fj, responsible for the collisional part, is hereby even
reasonably negligible as shown in figure 10b. The electric field defined in the original
paper by Kulsrud is given by

2 - 2eF
E ulsrud = —F =
Kulsrud 3T 3V TM Vi Vee

Slightly changing the normalization (Kulsrud defined thermal velocity as vy, = +/T/m
without the factor 2) eventually makes the Kulsrud growth rates comparable with CODE
methods

IV

Vo 9
VYRE = —%Eyiﬂ(yb) V3 (‘I’(yb)yba—y + N’(%)ZJ?) Folys)

and shows excellent agreement.
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4. Experimental comparison to flat-top scenario

A flattop scenario refers to the plasma current being in a steady state. This stable op-
eration technique allows access to a robust RE population, which can be investigated in
a more controlled and predictive manner than in cases of RE-generation during disrup-
tions. Considering the relative importance of collisions and radiative effects on runaway
dynamics, current flat-top plasmas are a close match to ITER post-disruption regimes.

4.1. Specific Frascati Tokamak Upgrade case

The Frascati Tokamak Upgrade (FTU) is a compact (R = 0.935 m, a = 0.3 m) device
with high field configuration (By,, < 8 T) [60] reaching plasma currents of [, < 1.6 MA.
In the pursuit to enhance mitigation schemes and control systems for tokamaks, a new
measurement system, the Runaway Electron Imaging and Spectrometry (REIS), has
been implemented [61]. REIS provides a measured synchrotron spectrum containing
information about the runaway distribution. It is proposed, that an algorithm would
then iteratively search for the best plasma parameters to fit the provided spectrum with
spectra obtained by the SYRUP code [62]. The synchrotron emission is calculated by
SYRUP using a distribution function, e.g. from CODE. The whole process is a non-
trivial method, because it is an inverse problem: one searches in a 1D spectrum for
a possible origin of a 2D distribution given. Several distributions can lead to similar
synchrotron spectra. For the expensive iterative scheme to work, a good initial guess
is required. The goal of the following work was to see, if the fast running linearized
CODE is able to provide this initial guess, and if later it can be used for the iterative
process. Otherwise, more expensive tools, such as LUKE [18] or NORSE [30], might be
necessary. After receiving experimental data from the specific flattop-shot #39464 of
FTU, CODE is applied on this data and investigated throughout. In parallel, it also
served as a starting point for me to better learn the handling of CODE, before the more
complex disruption cases treated in chapter 5.

4.2. Data Analysis

The experimental Data (figure 11) shows 8 graphs, 5 of which, namely toroidal magnetic
field strength, line-integrated electron density, temperature, effective charge and parallel
electric field strength, will be used as an input for CODE. Details about the diagnostics
can be found in the paper by Esposito et al. [63] as well as in the references mentioned
therein. One can compare the CODE-calculated value to the measured plasma current
(figure 11a) and hereby verify the applicability of the simulation. Since the only RE
measurement (figure 11e, see below) is qualitative rather than quantitative we do not
compare direct runaway specific measurements. CODE evaluates the total current us-
ing the first Legendre-mode and integrating over the whole grid. To obtain the current
carried by runaways, a mask is implemented, restricting the integration to the part of
the grid, which meets the definition condition for REs. A current profile for the FTU
measurement is given, obtained through equilibrium reconstructions. At the core, it
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Figure 11: Experimental data from FTU shot number #39464. The x-axis corresponds to
the time of the event in units of seconds.

varies from 3.4 to 6 [MA]. As reference value, the current Ipry = 5 [MA] will be set.
The electron density (figure 11b) is given as core line averaged. The graph on the top
right (figure 11e) shows measurement of a neu213-scintillator and a BF3 detector (boron
trifluoride). The scintillator registers X-ray radiation as well as neutrons, while bf3 de-
tects neutrons only. Since REs emit X-rays, the deviation of the neu213 measurement
from the bf3-line increasingly shows the existence of runaways. The X-rays originate
from bremsstrahlung, but it is not distinguishable whether from REs hitting the wall
or colliding in the plasma. The temperature data (figure 11f) is obtained by Thomson
scattering. I was told that the diagnostic has a tendency to produce oscillatory signals.
Rounding errors in the analog-digital converter cause the recorded toroidal field signal
(figure 11g) to slightly oscillate.

In order to use the data for my initial CODE calculations using time-independent input
parameters, the arithmetic mean for line averaged density, electric field, effective charge
and temperature in ¢ € [0.5, 1.5] s is calculated. The mean values are

7 =6.446, n [10"” m3) =2.517, T [keV]=2444, FE [V/m]=0.253.

Also, a polynomial fit (figure 12) is done to obtain a basis for time-dependent plasma
parameter runs. The magnetic field strength will hereby be considered constant at
B =4.12 T. For time-dependent calculations, 50 input data points are generated using
the polynomial fit. The choice for the number of points is set in a way, that the resulting
graph is smooth.
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Figure 12: Physical input parameters for CODE as given by the experimental data of FTU
shot #39464, plotted over time together with a polynomial fit (details in table) and the arith-

1.5

metic mean. The arithmetic mean is used for both steady state and a time-evolving runs with

constant parameters, while the polynomial fit deducts input data to run with time-dependent

plasma parameters.

The plasma current, an integral quantity, is of special interest to the analysis. Therefore,
if not otherwise stated, the energy-dependent Chiu source operator (see section 3.1.3)
will be used as well as the relativistic test particle collision operator (see section 3.1.1).
Latter is adequate for the purpose present, because we focus on runaways and do not

estimate bulk quantities.
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Figure 13: Arithmetic mean values as calculated in figure 12, processed by CODE in steady-
state and time-dependent calculation with a duration of ¢t =1 s and dt = ¢/100. The runaway
fraction is high, because the critical momentum p. &~ 0.3 defining the runaway region is low for
this case. For illustration reasons, the critical momentum is not displayed in this figure, but can
be found as a pitch-dependent trajectory in the 2D-distribution in figure 15. Numerical input
parameters are: Ne = 125, N, = 1950 and yyq, = 1680, and the Chiu avalanche operator Scy,
without pitch-dependence was used.

4.3. Steady-state calculations

Before time-evolution is considered, it is useful to calculate the steady state solution first
and take a first glance at whether reasonable values for growth rate, runaway fraction
and current are archived. It can be assumed, that the steady state results will overesti-
mate the real event due to the timescale of the flattop-scenario (~ 1 s), up to which the
equilibrium condition may not necessarily be reached.

Indeed, this I show in figure 13. Mean values from figure 12 for all parameters have
been used, showing that after 1 second, which is the duration of the flattop scenario,
the electron distribution has not reached steady state. The steady state solution has a
non-monotonic feature, a synchrotron bump [47], which can be defined as particles piling
up in momentum-space due to synchrotron losses increasing with electron energy (see
Flaq, figure 3).
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Figure 14: The growth rate for five different temperatures is plotted against a growing elec-
tric field strength to cover the whole range of parameters as given by the experimental data
(figure 12). The y-axis is chosen such, because growth rate given by CODE is normalized to n.
and ve.. For the linearization of CODE to be valid, E/Ep must not overcome a few percent.
Red crosses ((x)) indicate the value range obtained by eq. (21), verifying the CODE growth
rate.

I carried out a wide parameter scan for all the important parameters to assess the sen-
sitivity of runaway evolution and to study the effects of the measurement uncertainties.
To take a first glance at possible results, a simple case is run, using the arithmetic
means of the density, electric charge and magnetic field strength as calculated above.
Electric field strength and temperature are used as variables covering the whole range of
the experimental data, since the outcome is expected to be most sensitive to these two
parameters. Without avalanche (which cannot be evaluated in a “steady state” calcula-
tion) and bremsstrahlung mechanism, the growth rate produces reasonable values and
an asymptotic behavior (figure 14). It grows significantly with electric field and temper-
ature, which affects in this case primary generation solely. For the purpose of validation,
the runaway growth rate as calculated by CODE from the first Legendre-mode (see sec-
tion 3.2.4) is compared to the relativistic Dreicer generation growth rate, as calculated
by the commonly used Connor & Hastie formula [27]. Here the approximation uses the
non-relativistic limit

d : 1 1+ Z,
Z?R = Ik = Crevipe 16072 oxp [_E — % (19)
to obtain the relativistic case
T {1 _, 2 _3/2 1/2
YR X INR €XP (—meCQ {gﬁ +3€ (1 + Zest) ; (20)
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exT YR (Zeﬂ‘ = 645) /")/R (Zeﬁ“ = 1)
0.010 0.000215

0.025 0.0106

0.050 0.0596

0.075 0.116

0.100 0.164

Table 1: Growth rate in the approximation of Connor & Hastie [27] for various temperatures.
It shows how impurities in the plasma composition (Zeg) change the primary growth rates of
runaway population. At roughly € = 0.1 the linearization of CODE is expected to be broken.

where C' is an constant of order unity, undetermined by the analytical model,

neetlnA

3

UVth —= ——5 5 o
2,2
dregmzvy,

the thermal collision frequency of electrons with their own species, and e = E/Ep < ET.
The range of temperature and electric field strength provides e = [0.028 — 0.097] (figure
14). Calculating g for this very range using eq. (20), yields

Yr (€ =0.097) _

me T 3.1 x 108 21
i (€ = 0.028) S (21)

and is drawn into the figure as red crosses, backing the numerical results. Runaway gener-
ation is nonlinearly sensitive to these crucial plasma parameters (£ and 7). The formula
for Dreicer growth rate does not take losses into account, therefore the bremsstrahlung
operator was disabled for this plot. Synchrotron losses are not taken into consideration
either, but as was mentioned in section 3.2.1, its direct influence on the runaway growth
rate is mostly insignificant. The saturation in this primary generation only plot is math-
ematically speaking due to the fact, that the growth rate in eq. (20) is exponentially
suppressed with € o< E'T, which is seen in the converging curves for both electric field
strength and temperature.

Due to the unusually high effective charge in this FTU-scenario (Ze.s = 6.446), it is
of special interest to consider the effect of impurities on the plasma. Evident from
eq. (20), the plasma composition does not only affect bremsstrahlung losses [64] (see
eq.(15)), but also directly reduces the primary growth rate of runaway electrons. Table 1
demonstrates how the production of runaways is influenced by this degree of impurity for
various temperatures. The effect originates from electron-ion collisions. Even assuming
fully elastic interactions with the ions, the pitch-angle deflection effectively hinders the
electric field acceleration, since latter has a preferred direction.

The accumulative change in momentum due to electron-ion collisions can be described
as [9]

op “ p 2r—3
4 — Y 72732 22
< (5'[; > Tei X ! ( )

coll
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using the electron-ion momentum relaxation time

dmeo\? 3v/3Bm T3/
Tei =
e? 4 Z2n;InA
for an ion number density n;. It has to be noted that the latter expression of proportion
oc T73/% in eq. (22) is not strictly true, since A oc 7%/2 holds, but this can be neglected
reasonably in the logarithm.

So given the assumptions above, the negative effect that impurities have on the growth
rate of runaway electrons fade significantly with electron temperature.

4.4. Time-evolved calculations

Since it has been shown that the steady state calculations overestimate the evolution of
the distribution, the next logical step is to consider a time-evolving system with constant
plasma parameters. The question of efficiently choosing numerical parameters has been
eased with the knowledge from my previous study. Limiting the run to the duration
of the flattop scenario of 1 s and taking the mean plasma parameters as calculated in
figure 12, the runaway fraction, total and runaway current evolve as shown in figure 15a.
Nearly all the current is driven by runaways by the end of the calculation. Below, the
final distribution after 1 s in 2D momentum-space is shown. The Chiu source operator
and mean stopping force bremsstrahlung operator have been used. Neither account for
pitch dependency, but since the quantity of interest is an integral one, calculation time
can be saved using these simpler operators.

The total current density jio; ~ 1.48-108 [A/mz] output by CODE, vastly exceeds the
measured value of jppy = Ipry/ma® ~ 5-10° [A]/ma® ~ 1.77-107 [A/m?] by one order
of magnitude. To see if this discrepancy can be sorted out, the plasma parameters
themselves will be considered time-dependent in the next step. Since runaway dynamics
are of interest to this thesis and jrg & jiot in the calculations, focus will be laid on the
runaway current from now on.
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Figure 15: Final distribution function (b), runaway fraction, total (dashed) and runaway
(solid) current density (a) of shot #39464 in time advance. After 1 s practically all of the
current is driven by runaways. ps(§) resembles the pitch-dependent trajectory defining the
runaway region. The energy-dependent Chiu source operator has been used and a mean stop-
ping force bremsstrahlung operator. The numerical parameters and operators are chosen as in
figure 13.
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4.5. Time-dependent plasma parameters

Time-dependent plasma parameters significantly increase the computational time of the
simulation. Every time a parameter changes, the differential operator matrix represent-
ing the system needs to be rebuilt and refactorized. Whether the additional computa-
tional cost is justified, will be seen by the impact of the time evolution of the plasma
parameters T', Z, E/ and n. One by one, the influence of their time-dependency on run-
away fraction and runaway current is investigated (figure 17(a-d)). Figure 12 containing
the time-dependent parameters is replicated in figure 16 to ease the read.

The polynomial fit for the electric field oscillation mea-
sured (figure 16a) does not deviate much from the arith-
metic mean and nor does the runaway fraction for the
time-dependent E-input (figure 17a). The similarity
has the benefit, that the definition of “runaways” is con-
sistent throughout the calculation, and the introduction
of “fast particles” is not necessary. The comparatively
high density at the beginning of the flattop-scenario
(figure 16b) effectively suppresses runaway growth rate
(E/Ec < n_;!, Fg « n,), leading to the runaways only
carrying a calculated current of 2.5-10% [A/m] after one
second (figure 17b). Similar behavior is shown by the
temperature scan (figure 17c). Here, the below av-
erage T (figure 16¢) negatively influences the Dreicer
growth rate (E/Ep o« T). Quite the opposite trend is
observed with the time-dependent effective charge Z.g
(figure 17d). Turning the bremsstrahlung operator off
does not significantly effect the outcome, so the influ-
ence is mostly due to electron-ion collisions.

From the figures it seems, that the runaway growth
rate is most sensitive in the initial phase and requires
time-dependent treatment especially when the devia-
tion from its mean is in the beginning of the calcula-
tion. Looking further into it, I repeated the density
and temperature scan (figure 17(f-g)), but the time-
axis reversed (backwards in time). This way, the overall
deviations from the average remain the same, but the
initial phase of the runaway generation is subject to
respectively below average density/temperature. The
influence on the simulation results are significant. The
question, whether there is demand of time-dependent
treatment of the plasma parameters, is answered most
easily during the early behavior of the parameter in
question.
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Figure 17: (a-d): Biaxial plots of runaway fraction and runaway current density for the
particular plasma parameter input time-dependently as given by the polynomial fit (continuous
line). A simulation for all plasma parameters simultaneously being time-dependent is shown
in (e). For reference, the time-evolved solution with mean values is always depicted (dashed).
The input parameter that is being referred to can be found in figure 12. (f-g) shows the same
procedure for density and temperature, but with the time-direction reversed.
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Even though the time-dependency of electron density, temperature and effective charges
is found to be influential, the combination of all seem to cancel out in the case of FTU
shot #39464 (figure 17e). The desired value in runaway current density is still overstated
by roughly one order of magnitude.

The runaway generation in the regime investigated is highly sensitive to the electric field
at this point. A reduction of the electric field by 15% to E = 0.22 V/m reproduces
the desired current (see figure 18, black dashed line) and leads to a more reasonable
E/Ep = 0.0487 for small tokamak devices. Further focus to explain the discrepancy has
been laid onto the high effective charge.

First, a scan for various Z.g has been produced to quantify the influence of the charge
and is depicted in figure 18. Remaining plasma parameters are set to their mean ones,
independently in time, as it has been shown that the effect of their combined time-
dependency is minor (figure 17e). The results strain across many orders of magnitude
and a converging behavior for growing Z.g is observed. An effective charge of Z.g4 ~ 10
would be required to reproduce the current of FTU, roughly twice the value measured.
In the pursuit of finding the origin of the overestimation of the current, various combina-
tion of settings had been tried out. The Chiu and Rosenbluth-Putvinski source operator
are compared in figure 18. The statement, that the Rosenbluth-Putvisnski operator can
collide electrons to an energy higher than that of any of the electrons available (section
3.1.3), has to be kept in mind looking at figure 18b. Contrary to that, the Chiu operator
(figure 18a), which is assumed to be generally more valid, takes the energy distribution
into account. Not creating the aforementioned (unphysical) high energy particles does
seem to allow the electron distribution to reach an equilibrium for high effective charges.
In the regime of 1 < Z.g < 10 the variation due to the source operator is however barely
noticeable (figure 18¢). The difference in the Z regime above that is larger, up to a factor
of ~ 30 for Z.g = 40, but declines again for charges higher than that. The same trend
is reproduced when turning the bremsstrahlung operator off.
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Figure 18: Scans for high effective charges with the Chiu (a) and Rosenbluth-Putvinski (b)
avalanche operators (see section 3.1.3). Density n is given in 10 m~3 and the y-axis shows the
logarithmic values of the runaway current density in [A/m]. Also included is the reference FTU-
current density jpry = 1.77-107 [A/m?] and an attempt to reach it by reducing the electric
field strength (black, dashed line for Z.s = 6.446). Graph (c) shows a comparison of both
operators by dividing the current densities from above through each other. The continuous
arrow indicates the difference growing with Z, the dashed arrow illustrates the trend decreasing
again for 50 < Z.g < 70.
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It came to suspicion that a high tungsten (74W) concentration, scraped off from the
plasma-facing components, might be present in the fusion plasma. In the temperatures
available, tungsten is not fully ionized [65]. This could significantly change the electron
dynamics: Heavy ions, not fully ionized, have to be accounted for as partially-screening
[66]. High-energy runaways are hereby subject to the internal electron structure of those
still bound, experiencing an increased damping strength. This was thought to be the
mechanism able to explain the overestimated runaway current density. Calculations to
determine the number density of tungsten particles and their ionization state had been
started to simulate the FTU case with partial-screening. However, before these could
be finished, it was confirmed, that actually the source of high-Z in this discharge was
soMo-impurity, and not W. Taken from figure 1b in [67], the ion charge of molybde-
num at a temperature of roughly 2500 eV estimates at about 32. With only 10 bound
electrons, Mo®?* is better represented by the Z.z than W would be. At this point,
the effect of screening would put the effect between using Z.g = 32 and Z.g = 42 and
as shown in figure 18 the difference is only a factor of ~ 2x. Also, accurately calcu-
lating the effect is not possible, since the atomic data (obtained by density functional
theory calculations) necessary to account for the screening effect, is not yet available [68].

At this point, no further reasons were found to explain the overstatement of the runaway
current-density by CODE, except that the 0D approach might not be applicable to this
flattop case. Due to the comparably low generation of REs in flat-top of small tokamak
machines like FTU, even relatively small loss rates, which would be negligible in dis-
ruption scenarios, might become comparable to the generation rate. The importance of
transport of runaways, not covered by CODE, has to be discussed.
Weak loss of particles due to magnetic perturbations have been reported for post-
disruption cases in JET [69], as well as threshold effects for particle transport losses
in ITER-like plasmas (see Papp et al. [70] and Féhér et al. [71] and the references
therein). For flap-top operations specifically, the research topic is still under current
investigation. A team working with the 1D Fokker-Planck-solver LUKE on flat top run-
aways, has — in parallel to our work — quantified the importance of diffusion of particles
on the runaway current for the TCV tokamak [72] (which is similar in size to FTU).
During a 1 s simulation, the runaway current jrr seemed to roughly scale with the radial
diffusion coefficient D, as

jRE X D;3/2. (23)

The diffusion coefficient D, ,,, due to magnetic perturbations can be estimated e.g. by
using the work of Hauff and Jenko [73], where the coefficient is evaluated for TEXTOR
parameters (best comparable to FTU from the cases presented in the paper) as a function
of kinetic energy. For the time-evolution simulation using mean values (see figure 13),
the average runaway energy as given by CODE, reaches ~ 13 MeV. Assuming turbulence
similar to the one in the aforementioned study [73] I can estimate the diffusion coefficient
to reach values as high as ~ 20 m?/s (peaking at roughly 0.3 MeV). Runaway electrons
are very sensitive to transport processes due to their velocity. With eq.(23), this would
mean a decrease in runaway current because of transport down to 1%, in comparison
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to a case with no transport at all. The effect of transport on RE seed generation is
an open question and currently under research (see e.g. papers by Sarkimaki [74] and
Sommariva [75]).

4.6. Conclusion

CODE has in its history been successfully applied to many scenarios. There are cases
where a linearized Fokker-Planck solver can be applied, and for these cases the com-
paratively fast run-times of CODE is an advantage over more complex tools. Particle
and energy loss due to transport processes, which are not captured by CODE, did not
seem to limit its applicability on big tokamak disruptions|66], as the high runaway gen-
eration rate outweighs particle diffusion for most of the duration of the disruption|[75].
The idea of simulating electron distributions on the compact tokamak FTU required an
efficient solver, since a fast computation was desired when iteratilvey fitting measured
synchrotron spectra with forward calculated ones. For the data given, CODE however
could not reproduce the plasma current and overstated it by one order of magnitude.
On the other hand, due to the high sensitivity of the runaway growth rate in this pa-
rameter regime, just a slight change of the electric field by 15% is capable of matching
the measurement. The possibility of measurement errors should therefore be investi-
gated. Otherwise it turns out, that the 0D limitation was less justified on FTU due to
the runaway generation being comparable in its magnitude with the radial transport of
particles [72].

Based on this work and as long as no measurement errors can be confirmed, we would rec-
ommend to employ CODE for the suggested synchrotron measurement fit with caution.
It could become a better possibility, once e.g. a “local transport” model is implemented,
or if the iteration is started with altered plasma parameters. As I showed, a slight
reduction of the electric field, or an increase in Z.g can be enough. A more complete
model using a 1D Fokker-Planck solver can be obtained, if reasonable estimates about
the transport can be given.
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5. Disruption cases

The FTU-scenario as given in chapter 4 is considered to be a flattop-case. This section,
however, is dealing with a disruption scenario, and its purpose is to show up to which
extent CODE, with its linearization, is applicable to disruptive scenarios.

For tokamaks of size comparable to AUG or larger, a full current quench with full-f
kinetic tools using self-consistent electric field has not been simulated yet. Research
has been done either on smaller sized tokamaks (e.g. TEXTOR [49]) or with delta-f
methods [40], where the distribution is not resolved as a whole, but split into thermal
and superthermal (RE) parts. The plasma parameters in the simulations to come are
therefore set to be typical to AUG disruptions, especially taking the specific cases of
shot #33939 and #34075 into reference.

Simulations for big tokamaks have been attempted using nonlinear tools (NORSE [30,
31]), but it was found, that the feedback mechanism provided by the self-consistent
treatment is highly dependent on the exact details of the heat sink mechanism. A disad-
vantage of nonlinear kinetic solvers is that the kinetic equation matrix has to be rebuilt
in every iteration step (i.e. at every thermal collision time) which makes these simula-
tions significantly more expensive than linearized solvers. It is therefore of interest, to
investigate at which point a nonlinear treatment becomes an unavoidable necessity. The
goal of this section is to investigate, up to what degree can we model a quench scenario
in an AUG sized machine using linearized tools, and at which point simulations break
down. We can envisage a hybrid approach for the future, where the initial stages of
the evolution are followed by a linearized Fokker-Planck solver, and the more expensive
nonlinear solvers take over the calculations just when it is necessary.

In this section I will present simulations of thermal and current quenches for a toka-
mak (see section 2.3). For this purpose, (a) initial distributions have to be created,
(b) an attempt to model a disruption using externally supplied electric field evolution
is being made, followed by (c) the introduction of self-consistent treatment of the elec-
tric field. A fully inclusive evolution of the disruption would require a self-consistent
treatment of the background plasma as well [76, 69], but is out of the scope of this thesis.

5.1. Creating an initial distribution to disrupt

For the purpose of being more controlled and easier to reproduce, a distribution is ini-
tialized separately, which, for the disruptions to follow, will be used as a starting point.
This corresponds to a ”flat-top” current carrying distribution, which is then forced to
undergo a thermal quench. In order to do so, a Maxwellian with j = 0 shall be exposed
to an electric field, to drive a j # 0 Ohmic current. To keep calculation times tractable
also in later stages, the grid should be kept as small as possible, while still providing the
necessary resolution. Since we consider a regular flat-top initial distribution, the pres-
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ence of a high energy tail is not necessary. As the possibility of steady-state solution is
not implemented in CODE for the fully conservative collision operator, a time-dependent
calculation is necessary, using a low electric field, slowly evolving to the desired current
density. The collision operator of choice in this chapter is the momentum-conserving,
non-relativistic field-particle term (see section 3.1.1), as we are interested in the distri-
bution bulk response (see section 5.4).

MGI-induced post-disruption runaway electron generation has been sporadically ob-
served on AUG at a central electron temperature as low as ~ 1.3 keV (#34075). The
typical runaway scenario on AUG however reaches ~ 10 keV core temperature, to aid
RE generation (see the example presented in figure 4). I will present three different
initial distributions with initial temperatures of T,y = [1,2.5,5] keV. A 10 keV initial
distribution has also been created using CODE, but could not be fully processed (due to
limits in available computational time) until the thesis deadline. The validity of using
a non-relativistic field particle operator at a T, ~ 10 keV high temperature distribution
has not been evaluated. Creating it in the first place required addition of the relativistic
test-particle operator, which also required a sizable grid and smaller time-stepping, as a
significant amount of bulk-particles (test-particles) become relativistic.

Three distributions (T, = 1 keV) deformed by various electric fields are shown in
figure 19. The discrepancy between the current (a) calculated though the Spitzer-
conductivity (eq.(13)) and (b) obtained from CODE-output (first moment of the distri-
bution function) grows, as the electron population bulk is distorted. Current, which is
expressed as the first moment of the distribution, stems from asymmetry in the distri-
bution.

A radial average current density typical for AUG is of order 10° [A/m?]. With the
current profile peaking at the axis, which is also where the runaway generation most
dominantly takes place, I choose the current density of 5-10° [A/m?] according to the
E/E¢c = 5.25 case in figure 19 for all three of my initial distributions. Although E > E¢
creates a number of runaway electrons (=~ 107'3) for 7,0 = 1 keV, the grid can be kept
small sized due to their number and current being negligible.

At first I validated that the distribution would rearrange to a 7 = 0 Maxwellian in the
absence of an electric field. This also provides the reference to the current relaxation
without an induced electric field (e.g. a uniform plasma). The current density evolves
as shown in figure 20, when continuing the distribution without external and no self-
induced electric fields. For the high-temperature distributions the current takes longer
to settle. Current is being caused by an asymmetry in the distribution, and under equal
circumstances the reshaping to the (symmetric) Maxwellian takes more time when the
initial temperature was higher.
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Figure 19: Distribution functions as distorted from their j = 0 symmetric Maxwellian forms
by various electric field strengths. The legend contains the output total current density (as
given by the first moment of the distribution) as well as the current density calculated by eq.
(13). Input parameters are: 7 = 1000 eV, B =0T, n, = 3- 101 m™3, Z = 1, N = 20,
Ny = 90, Ymaz = 8, tmaz = 5000 [1/ve] and dt = t,,,4,/350. Back-tail scattering as already
observed and explained in figure 9b is again observed on the negative momentum axis for the
E/Ec = 10 case. The reference Maxwellian on the negative side of the momentum scale is
overlapped by the E/Eqc = 2 line.
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Figure 20: Drop in current density on a logarithmic timescale for the three initial distributions
without self-induced electric field feedback, no external electric field, using the momentum-
conserving collision operator.
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5.2. Disruption events with measured electric field

As both temperature and electric field strength are usually observed during a disruption,
one could try to model such a scenario with CODE, using the measured E(t) as an
external field input. Data for T'(t) and E(t) from AUG shot #33108 (figure 4) will be
used to demonstrate the issues arising with this approach. Thermal and current quench,
as well as the fitted graphs are shown in figure 21a. Note that the initial temperature
in the actual AUG discharge is higher, because I only show a clip of the whole scenario
(and on a different time axis).

There are multiple issues with using experimental parameters. First is the spatial incon-
sistency. The temperature profile evolution can be measured with reasonable spatiotem-
poral resolution and accuracy, thus making the core T,o(t) evolution available. On the
other hand, electric field is either calculated in a 0D fashion, or is measured via voltage
loops at the plasma edge. The other issue is the temporal inconsistency. Since any
electric field measurement or evaluation is global, this can cause a time delay between
the measured temperature and the electric field evolutions. Furthermore, experimental
jitter and time sampling issues can also be present. The fundamental issue is when the
supplied electric field is too low compared to the temperature provided for the given
time point, there will be no RE generation in the simulation. On the other hand, if the
electric field is too high for the respective measured temperature, significant RE over-
production (and even immediate slide-away) can occur. The time delay between these
two quantities can therefore set the RE conversion virtually anywhere between 0% and
100%.

To illustrate this effect, I represent the time lag between measured To(t) and E(t) by
an offset in the data points obtained for a fit onto both parameters. The offset of one
data point equals roughly 0.09 ms. Dreicer runaway generation, being dependent on
E/Ep o« ET can be influenced heavily when shifting e.g. the peak electric field closer
to the initial temperature (figure 21b). The values obtained here (E/Ep > 1) would
even create an immediate slide-away (see section 2.2). It is problematic to resolve this
spatiotemporal inconsistency between the input parameters, which makes the use of
direct experimental data complicated, and a self-consistent modeling of the electric field
becomes necessary.

As a first step, a “quasilinear” treatment will be followed, for illustration purposes.
Here we are going to use an electric field evolution calculated self-consistently for a
given temperature drop using the 1D “fluid” disruption-runaway code GO [69], and feed
it as input to CODE in time-dependent mode. Although self-consistent coupling of GO
and CODE had been implemented earlier [76], using that model — which also requires
significantly larger computational resources — is outside the scope of this thesis.
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Figure 21: (a) Electric field and temperature evolution during thermal and current quench
of AUG shot #33108 (figure 4). Dotted lines are the fitted graphs, represented by 60 data
points. Figure (b) shows E/Ep o« ET with various offsets in the data. An offset is the amount
of data points, by which the electric field is shifted left on the x-axis. As the 60 data points
are equidistant and the total duration is 0.53 ms, an offset by 1 means an offset by roughly
0.09 ms.
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5.3. GO code calculated self-consistent electric field input

GO is a 1D-tool, capable of computing the evolution of the radial electric field profile
during runaway evolution (approximated by “fluid” generation rates) self-consistently
[69]. For a distribution with an initial temperature of T,p = 1 keV, an exponential
temperature drop to Ty = 1 eV is prescribed in time ¢ via

7(0) =Ty + (1~ Typesp (-2 )

To

where 7j is the exponential decay time, chosen similar to the thermal quench timescale.
As CODE assumes a uniform (0D) plasma, the obtained E-field evolution E(t) is taken
at a constant point in space (near axis). Choosing 79 = 0.25 ms, the electric field re-
sponse to the drop in current originating from the rising resistivity due to temperature
decay, is shown in figure 22a.
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Figure 22: (a) Shows the input to CODE as obtained by the GO code, (b) the normalized
electric field outputs by CODE, (c) the fraction of fast particles and the fraction of current
carried by them, and (d) the total current density. Note that (c¢) and (d) are depicted on a
shorter time scale. In (e) and (f) illustrated are the first few distribution functions on the

parallel momentum axis.

Negative values are generally depicted with dotted lines.
parameters are: n, = 3:10° m™3, Z = 1, B = 3 T, Ny = 5000, N¢ = 50, Ymax

Input
= 50

and dt = tmax/200. The combined non-relativistic field particle and relativistic test particle
collision operator was used, as well as the Chiu source operator without pitch-dependency.
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Modeling a disruption case with CODE has to be done with care due to the usage of
reference temperature (see section 3.1). Physically, the reference temperature relates to
the background plasma temperature. The grid normalization is defined by the refer-
ence temperature 7. However, the actual temperature which describes the Maxwellian
bulk in the collision operator uses the instantaneous temperature. To sustain numeri-
cal accuracy, the reference temperature should not be far from the instantaneous one.
Due to the implementation, the reference temperature cannot be changed during one
instance of a CODE run. As a disruption involves a temperature drop of many orders of
magnitude, the reference temperature would have to be adapted continuously. For this
purpose, CODE has to be restarted multiple times during the temperature drop (thermal
quench), each time choosing the reference to be close to the instantaneous temperature,
and continue the evolution of the distribution obtained in the time interval before. In
this case, CODE has been restarted at every timepoint of E(t), taking the instantaneous
temperature as reference temperature.

Also required for evaluating disruptions, is the usage of “fast particles” (see section 3.1.3,
last paragraph). As electric field changes in time, so does the definition of the critical
momentum p, = yv./¢, which is commonly being used to identify the runaway region.
In order to avoid inconsistency through time and numerical instabilities, particles in
momentum space with either (a) v > 0.25¢ or (b) f(p)/fam(p) > 1000 will be counted
as “fast particles” instead of the regular definition of REs. Definition (b) represents the
“tail” of the distribution, which has to differ from the Maxwellian f3; by a factor of 1000
and (a) can be seen in the distribution plots at roughly pj = yv/c ~ 0.25, depending on
relativistic mass factor v and pitch. The avalanche source operators which are usually
restricted to a high-energy region above p, in momentum-space (see section 3.1.3) are
also adjusted to this definition.

Figure 22b shows the normalized electric fields E/Ep and F/E¢ and how the restarting
procedure affects the calculation. As dictated by the high values of E/Ep a significant
runaway tail forms, bringing the distribution far from a Maxwellian, where the lineariza-
tion is no longer valid. This eventually leads to unphysically high fast particle fractions
Ngast /1 (t > 0.5 ms) > 1 (figure 22¢). This misbehavior stems from the linearized collision
operator, and cannot be prohibited by any increase of numerical parameters. The overall
current density stemming from the growing asymmetry of the distribution is illustrated
(on a shorter time basis) in figure 22d.

Distribution functions for £ = 1 are shown in figure 22e. Dotted lines show the absolute
of actually negative values in the distribution as seen in the back-tail. Generally, this
has not to be considered an error, since the linearized collision operator simply does not
conserve positivity (without losing mathematical validity). Yet problems might arise,
when the negative values cover a significant fraction of the distribution. The density
conservation, trying to maintain the normalization, over-corrects the positive part of the
population, as seen by the distributions exceeding F'(p = 0) = 1. As the electric current
is heavily influenced by the asymmetry of the function, a slight change in the densely-
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populated bulk has a significant impact on the current density (figure 22d). A current
quench is not observed, instead the current rises by up to 3 orders of magnitude. Since a
fast-particle fraction of below 1% is generally handled correctly by CODE, it is assumed
that the negative back-tail and the subsequent rise of the distribution, troubles the
result. Increasing time or space resolution does not get rid of them. Those appearances
will have to be watched out for carefully.

As we see, it is necessary to calculate the electric field self-consistently with the evolution
of the distribution within CODE itself. However, based on the above examples we can
expect that for AUG-like disruption cases the linearization of CODE might break down.

5.4. Disruption events with self-consistent electric field treatment

In order to simulate a disruption self-consistently, the initial distributions above (sec-
tion 5.1) are evolved with an exponential drop in temperature, corresponding to the
thermal quench in a tokamak. As the resistivity p increases with 77%/2, an electric field
is induced (Lenz’s law), trying to maintain the initial current I,. Given the right cir-
cumstances, a large enough electric field may be induced, which is capable of driving
REs. The circumstances are favored by a short timescale of the temperature drop and
a high initial temperature & current. If REs are produced during the disruption, they
contribute to the total current, thereby reducing the electric field, leading to a conver-
gence in post-disruptive current. Eventually, the total post-disruption plasma current
can be driven by runaways, which is the case of a runaway beam. This runaway beam
would then slowly decay with F ~ ET [77, 68].

Mathematically, the the induction of the electric field due to a change in the plasma
current can be explained by looking at the loop voltages present in a tokamak. Apart
from an externally given loop-voltage U, which is driven by a change in magnetic flux
through the central solenoid (see figure 1), a self-induced voltage is present,

al,

dt’

where, for a toroidal conductor and a completely homogeneous current density the in-
ductance L is approximated by

- malo ()

Here, 1 is the vacuum permeability, R and a are the major and minor radius of the toka-
mak, respecively. Now, since the electric field and the overall loop-voltage are connected
via

Uself =—L

U = U + Uselr = 2rRE,

the electric field strength is bound to the time-derivative of the plasma current I,.
Eventually the electric field is given by

_ —ma’Ldj | Uk

- 2TR dt  27R

(24)
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with the current density j = I,,/(wa?). This process is self-inductive when assuming the
plasma to follow Ohm’s law j = E/p. The exact solution to eq.(24) is

Uex ~ tpa®
B — _
+ Cexp ( 2LR>

with some constant C. Tt resembles the solution of an electric circuit with the effective
resistivity peg = pa®/2R.

In CODE, the inductance is normalized as

en, A

et 25
2m, Rm5/2 (25)

Lcope = L
with the plasma cross-section A. This has to be remembered for calculations with time-
dependent densities, as the normalized inductance becomes time-dependent. Assuming

A = 7ma?, the inductance for AUG (R =1.65 m, a = 0.5 m) is Layg = 6.6uH.

The self-consistent module in CODE has been implemented recently by the main de-
velopment team, and the details of the implementation are currently being written up
for a publication. The main complication when evolving the kinetic equation with a
self-consistent electric field is that any explicit time advance scheme will become uncon-
ditinally unstable. To numerically work around this issue it becomes necessary to solve
for the distribution and the electric field at the same time. Consequently, time-advance
can no longer be obtained by single matrix inversion (see section 3.1), but instead re-
quires Newton’s iteration method, significantly elevating computational power demand.
For a simple benchmarking calculation using

tmax

100’

the computational time on a standard double-core desktop pc is 2.8 s in time-dependent
mode, which increases to 118.7 s in self-consistent treatment with one Newton iteration
step during time-advance. For respectively two and three iteration steps, the computa-
tion time is 235.0 s and 390.1 s. The number of iterations required to get a numerically
converged electric field response will become as high as 3 for the disruption calculations
to come.

N, =500, Ne=050, Ymax =10, tmax =10 [1/ve], dt =

Self-consistent electric field calculations with CODE

Using the self-consistent electric field module of CODE, the three initial distributions
(Teo = [1,2.5,5] keV) will undergo a temperature drop to 1 eV without an external
electric field, for L = Layg and a temperature decay time of 79 = 0.25 ms. As the exter-
nally driven loop voltage is small compared to the self-induced one, in order to reduce
the number of free parameters, it is set to Fe = 0 throughout this thesis. Roughly
resembling the density evolution (from MGI) from AUG shot#33108 (figure 4) the elec-
tron density will be increased linearly in time. This actually reduces complexity of the

o8



1000

900

800

700

600

500

T[eV]

400

300

200

100

time [s] x10 3

Figure 23: Exponential temperature drop T'(¢), stepwise being chopped into time-steps At to
respectively choose new T,y for CODE restart with the previous distribution. Nyegtart = 9.

simulation, as the rise in density is expected to mitigate RE generation and therefore
reduce the grid sizes required.

In these particular runs, I have implemented the following restart procedure (necessary
to keep the reference temperature close to the instantaneous one). With Negart I intro-
duce the number of restarts during the simulation of the thermal quench. This number
determines the amount of equidistant points in log7'(t). During the according time pe-
riod At, the temperature is set to T'(t) while the reference temperature is chosen to be
the mean. An example of this is illustrated in figure 23 for Negtart = 9. As the density
is chosen time-dependently and is also a reference value, same restart procedure is un-
dergone for it. For the disruption simulations to come, the number of restarts ranges
from 200 to 400. With the generally demanding self-consistency of the calculations and
multiple grid extensions, simulations take several days on the “TOKB” cluster nodes,
which have 48 CPUs and 1 GB of system memory each. The restarting procedure also
bears the advantage, that an ongoing calculation showing errors does not have to be
redone all over again, but can instead be restarted from a valid state with e.g. increased
numerical parameters or different operators. This is especially of interest for these self-
consistent runs, because occurring errors are likely to be carried through the rest of the
calculation due to the nature of the approach.

With the expectations that the CODE calculations will presumably break down at some
point, the three modeled disruptions are paragraphed in the following. All simulations
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are undergone with the Chiu source operator, the mean force bremsstrahlung operator
and the combined linearized collision operator. Modeling the cases had been a challenge
regarding numerical parameters. Due to the self-consistent calculation being generally
so demanding, time and space resolution had to be kept as low as possible. For every
restart, the provided “new” initial distribution had to be reshaped onto the grid due
to the change in temperature, which can be done in a scripted way, but not always
suited for the temperature scope given here. Oftentimes the grid had to be adjusted
manually. The aforementioned problems with the bulk (see figure 22(e-f)) could often
not be resolved by increasing the resolution.

1 keV thermal quench

The results obtained from a 2 ms simulation of a 1 keV disruption are depicted in
figure 24. The electric field reaching values of roughly 10 [V/m] (figure 24d) are similar
to the electric field values obtained by GO (see section 5.3). They are not expected to
match, as GO includes the radial dependence and the radial dissipation of the electric
field. Without external fields, the induced electric field is proportional to the negative
of the time-derivative of the current (eq.(24)) and matches the expected trend. As seen
in the time-evolution of the distribution (figure 24e) and in figure 24c, no fast particles
have been generated. A certain amount of fast particles is observed in the first ms, but
this is due to the fact that in the beginning, the bulk partly meets the condition for fast
particles (v > 0.25¢ = p; = 0.25). One can see the distribution collapsing over time,
while a small tail is dragged out towards higher energies. Yet the only generation of fast
particles takes place at 0.3 ms< ¢ < 0.5 ms (ngs ~ 107°), before succumbing to the effect
of increasing density and energy losses. The current (figure 24d) is therefore expected to
collapse completely after that, as shown previously in figure 20 and on a similar timescale
(~ 1 ms). However this is not the case. The initial current depreciates only by roughly
5% and saturates, when the calculation is continued after 2 ms (not included in figure).
Negative back-tails were again observed (seen as missing parts of the distribution) during
calculation, but could not be dispelled. Beginning at roughly ¢ ~ 1.2 ms the bulk of the
distribution rises above F' = 1. As seen in the final distribution function (figure 24f),
the main bulk around p = 0 becomes negative, lifting its surroundings due to density
conservation. This is found to be the culprit for the wrongly maintaining current.

60



1keV thermal quench
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Figure 24: Simulation of a temperature drop from 1 keV to 1 eV in 2 ms with increasing
density (a). (b) Shows normalized electric fields, (c) fraction of number density and current
density carried by fast particles, and (d) the evolution of the total current density jior and
the electric field induced. The time-evolution of the distribution function is indicated by a
colorbar in (e) and (f) illustrates the last distribution of the simulation, with the negative
values represented by dotted lines. Input parameters are B = 3 T, Z = 1, Fexternal = 0,
Nrestart = 150 and the number of Newton iteration steps is 2. Resolution parameters are
adjusted during calculation and reach final values of N, = 4000, N¢ = 30, Ymax = 20.
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2.5 keV thermal quench

For the initial temperature of T; = 2.5 keV, the disruption simulation is represented in
figure 25. Because the exponential decay time is the same as in the 1 keV-case, but the
initial temperature is higher, the electric field response (figure 25d) is delayed compared
to prior case. This generates a generally flatter E/Ep profile (figure 25b).

Compared to the 1 keV drop case, the amount of fast particles generated is around an
order of magnitude higher ng, (0.6 ms < ¢t < 1 ms) ~ 3-107° (figure 25¢). As before, the
number density of fast particles in the beginning of the calculation is due to the bulk
meeting the definition conditions of fast particles. Yet, since the current density fraction
Jrast /J10t(0.6 ms < t < 1 ms) shows a maximum of 3% in that time period, it cannot
explain how the current (figure 25d) can be maintained at 95% of its original value.
The same issue with negative back-tails and growing distributions is observed again. To
prove that the bulk is responsible for the unphysical results, I set Y. constant. Shown
in figure 25e is how the tail of fast particles, that was generated during the drop, leaves
the computational domain and is no longer accounted for. In the same time-period, the
current density drops by Ajiay from 4.83 [MA/m?| to 4.715 [MA /m?], corresponding to
2.4%.
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2.5keV thermal quench
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Figure 25: Simulation of a temperature drop from 2.5 keV to 1 eV in 1.8 ms with increasing
density (a). (b) Shows normalized electric fields, (c) fraction of number density and current
density carried by fast particles, and (d) the evolution of the total current density jiot and the
electric field induced. The time-evolution of the distribution function is indicated by a colorbar
in (e). Input parameters are B =3 T, Z = 1, Eexternal = 0, Nrestart = 290 and the number of
Newton iteration steps is 1. Resolution parameters are adjusted during calculation and reach
final values of N, = 5700, N¢ = 50, Ymax = 350. pmax indicates the end of the computation
domain.

63



5 keV thermal quench

The thermal quench of the T,g = 5 keV initial distribution is shown in figure 26. The
runaway tail, that is being generated in the process (figure 26e) is of considerable pro-
portion compared to the size of the bulk, however, the linearization is not yet broken
because the fast particle density fraction is low enough at < 0.1%. Due to the non-
monotonic feature in the distribution — a result of the time-evolving electric field — and
the size of the tail, I used a simple, uniform grid spacing. This way, oscillations in the
beginning of the tail (p| ~ 0) near the end of the calculations have been avoided. The
fraction of fast particles (figure 26¢) after 0.8 ms reaches a stable 0.1%. The continuous
acceleration of the separated tail due to the electric field, converts most of the collapsing
total current into fast particle current. At the end of the simulation, 93.2% of the initial
5 [MA/m?] current density is sustained by the fast electrons (figure 26d). Prior issues
with the bulk could be resolved during the calculation.

This case illustrates one possible usecase for CODE, and represent the first full quench
calculation undertaken with a full-f kinetic solver for an AUG-like disruption using a
self-consistent electric field. Despite the significant runaway production and almost all
current carried by runaways, the calculation remained stable, with the appropriate choice
of numerical parameters. The ~ 0.1% runaway density fraction is small enough such
that the linearization still holds. Therefore this present case can be considered a possible
starting scenario for further investigations into AUG-like disruptions via CODE.

We have to note that the observed runaway current density conversion is high at 93.2%.
A similar trend is observed for the on-axis current density when running the same case
with GO. This large current conversion, in the absence of high-Z impurities in the
calculation, spatial transport, or electric field diffusion, is consistent with our present
understanding of runaway generation (hot-tail, Dreicer and avalanche mechanisms). For
experimental comparisons, more scans will be necessary to study the effect of the afore-
mentioned phenomena. Direct comparisons for the calculated distribution function will
be possible using synthetic diagnostics (hard X-ray emission, synchrotron radiation, etc)
in the future.

This work suggests that with a carefully selected set of numerical parameters, optimized
resolution and a meticulous restart scheme, a full disruption cycle (thermal + current
quench) can be calculated with CODE for an AUG-like set of physical paramters. As
long as the runaway number density remains sufficiently low, the linearization does not
break down. This study paves the way for further investigation into runaway generation
in AUG disruptions using a linearized kinetic solver.
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5keV thermal quench
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Figure 26: Simulation of a temperature drop from 5 keV to 1 eV in 1.8 ms with increasing
density (a). (b) Shows normalized electric fields, (c) fraction of number density and current
density carried by fast particles, and (d) the evolution of the total current density jior and
fast fast current density ji.ot. The time-evolution of the distribution function is indicated by
a colorbar in (e). Input parameters are B =3 T, Z = 1, FEexternal = 0, Nrestart = 300 and the
number of Newton iteration steps is 2. Resolution parameters are adjusted during calculation
and reach final values of Ny = 6000, N¢ = 40, ymax = 300.

65



6. Summary

Tokamak disruptions pose an intolerable risk to large devices such as ITER and beyond.
Under some circumstances that are yet to be completely understood, disruptions may
generate beams of runaway electrons (RE) with energies in the multi-MeV range. This
process is of great concern for large tokamaks, where beams carrying up to several MA
currents could severely damage the first wall if they are suddenly lost [11, 12].

The main subject of this thesis is the numerical investigation of runaway electron dy-
namics. After an introduction into the theory of kinetic modeling, I introduced the main
tool used in this thesis, CODE (“COllisional Distribution of Electrons”) [45, 46]. CODE
has been widely used in the past years to study basic runaway-related phenomena [78,
68, 66, 48, 76]. After performing some basic validation and testing (which also served as
a way to learn to use the solver) I have proceeded to model two different experimentally
relevant scenarios.

First, I applied CODE to flap-top runaway cases on the FTU tokamak [63]. Follow-
ing an extensive parameter scan study, I have concluded that using the experimentally
supplied plasma parameters CODE will significantly overpredict runaway production. I
have found, that due to a high sensitivity of the runaway electron generation in that
parameter regime, a reduction of the mean given electric field strength by about 15%
would reproduce the observed current density. Similar results are obtained with an in-
crease of the mean effective charge. An other possible explanation to the discrepancy is
runaway transport in the flat-top scenarios [70, 73, 72], where the generation rates are
much lower than in post-disruption.

The second — and more complicated — case to investigate were ASDEX Upgrade post-
disruption runaway beams [17]. This requires a self-consistent treatment of the electric
field, which introduces numerical complications and significantly increased run times.
The main question was if CODE can be applied to a medium sized tokamak disruption,
and we expected the linearization to break during the course of the current quench [70].
Several cases I ran indeed ended up with numerical issues which I could not resolve given
the thesis time frame. In case of a thermal quench simulation starting at 5 keV, I have
successfully followed the complete duration of the thermal- and current quench. This
case resulted in a runaway beam that carries 93.2% of the initial current density, but
because the runaway number density is only about 0.1%, the linearization is not broken.
This case, which is the first time a full-f Fokker-Planck solver was applied successfully
for a whole AUG disruption using self-consistent electric field, can serve as the basis of
research into better understanding runaway dynamics on AUG.
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7. Outlook

Due to the advantage of the relatively low computational cost of CODE, it is of interest
to be able to simulate as much as possible using this linearized, 0D tool. Although more
complete models are available and are under active development (such as the 1D LUKE
[18] or the fully nonlinear relativistic solver NORSE [30, 31]), detailed and large-scale
parameter scans require fast runs where CODE can hold an advantage.

One of the possible extensions to CODE can be a “local transport” model. Here the
radial transport of runaway electrons would be accounted for, achieving a more thorough
simulation of flaptop scenarios, like the FTU case in chapter 4. For the sake of complete-
ness, the effect of partial-screening by the Mo impurities during the FTU shot #39464
should be quantified. In order to conclude to a distribution matching the synchrotron
radiation observed by the REIS system, one could set the initial values differently. In
this specific case, adjusting the electric field to be just 85% of the measured value, was
enough to obtain a distribution with a runaway current as in the experiment. Therefore
a distribution generated with such a setting can serve as the starting point for iterative
fits using synthetic diagnostics.

In the case of disruption studies, not all issues could be resolved in the time frame of this
thesis work. With further adjustments it might be possible to avoid the bulk instabilities
observed in the low temperature scenarios. On the other end of the temperature scale,
the 10 keV case have to be investigated using NORSE. It might be possible to adjust the
CODE parameters to be able to follow the evolution of this relatively high temperature
case as well, which stands the closest to the typical AUG RE experiments.

The 5 keV initial temperature cases provided a nice example where CODE can be used
for a full quench (thermal and current) calculation for a tokamak the size of AUG.
Currently RE generation is somewhat overpredicted. This is partially because we have
not yet considered the effect of argon impurities introduced by the MGI. For this effect,
the recent screening model by Hesslow et al. [66, 68] will be applied in the future. Also,
the effect of seed losses [75] will have to be investigated.

On a longer timescale, both 0D hybrid calculations (using NORSE [30, 31]) and coupled
1D calculations (such as coupling with GO [76]) can be considered, for a more thorough
(albeit more resource-intensive) modeling.
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A. Appendix

A.1. Kinetic equation

The kinetic equation for a test-particle collision operator only (see section 3.1.1, eq.
(11)) can written dimensionless with the normalized electric field F = —eE/(mevelee)
the normalized time ¢ = vt and normalized source term S = Sm3v37%/2 /(veen,) as [45]

OF OF  ~1—&0F
B LB 7
of "oy y 0
3ym 1 0 2 \Il(x) OF
1 28y r oy +2VU(x)F
) —

§*2%] 0 ) .
v+ T S a-e) -5 e

3ym 1
S AR
4 2xy? { TRRIC

Expanding F' in Legendre polynomials P (&)

= Z Fr(y)PL(§)

and using the operation
2L +1

[ e a

yields the final, discretized equation

8FL - L 9
Z{ {QL Y 15L‘”] dy

0
g (L +1)(L+2) 5
y 2L +3 M op—1 Y
3T (z) . 9% 37 [2¥(x) dxdV¥
— 0L 3 + oL
4 =z E)y 4

1

0L+

3vm [1dxd¥  2U(z) W(x)dr 0
4 L’ dy dy + vy 22 dy +20() | oy dy
3 52 .
+8£ [Z + ¢(x) — U(z) + ; ] L(L+1)6p,} 7 = St (27)

68



References

[1] European Physical Society position paper. “Energy for the future - EPS posi-
tion paper on the nuclear option” (2007). URL: http://archive . iupap.org/
epspositionpaper.pdf.

[2] J. Wesson and D.J. Campbell. Tokamaks. International Series of Monogr. OUP
Oxford, 2011. 1SBN: 9780199592234. URL: https://books.google.de/books?id=
BHOvx-1iDI74C.

[3] F.Chen. An Indispensable Truth: How Fusion Power Can Save the Planet. Springer
New York, 2011. 1SBN: 9781441978202. URL: https://books.google.de/books?
1d=D2CZf0nmKq8C.

[4] C. F. V. Weizsdcker. “Zur Theorie der Kernmassen”. Zeitschrift fur Physik 96
(July 1935), pp. 431-458. DOL: 10.1007/BF01337700.

[5] U.Stroth. Plasmaphysik: Phinomene, Grundlagen, Anwendungen. Vieweg-+Teubner
Verlag, 2011. 1SBN: 9783834883261. URL: https://books.google.de/books?id=
wkEpBAAAQBAJ.

6] T.C.Hender et al. “Chapter 3: MHD stability, operational limits and disruptions”.
Nuclear Fusion 47.6 (2007), S128. URL: http://stacks.iop.org/0029-5515/
47/1=6/a=S03.

[7] B.B. Kadomtsev. “Behaviour of disruptions in Tokamaks”. Plasma Physics and
Controlled Fusion 26.1A (1984), p. 217. URL: http://stacks.iop.org/0741~
3335/26/i=1A/a=320.

[8] S.E.Kruger, D. D. Schnack, and C. R. Sovinec. “Dynamics of the major disruption
of a DIII-D plasma”. Physics of Plasmas 12.5 (2005), p. 056113. pDo1: 10.1063/
1.1873872. eprint: https://doi.org/10.1063/1.1873872. URL: https://doi.
org/10.1063/1.1873872.

9] A. Kallenbach et al. “Scrape-off layer radiation and heat load to the ASDEX
Upgrade LYRA divertor”. Nuclear Fusion 39.7 (1999), p. 901. URL: http://
stacks.iop.org/0029-5515/39/1i=7/a=307.

[10] H. Dreicer. “Electron and Ion Runaway in a Fully Tonized Gas. I”. Phys. Rev. 115
(2 1959), pp. 238-249. DOL: 10.1103/PhysRev.115.238. URL: https://link.
aps.org/doi/10.1103/PhysRev.115.238.

[11] E. M. Hollmann et al. “Status of research toward the ITER disruption mitigation
system”. Physics of Plasmas 22 (2 2015), p. 021802. 1SsN: 1070-664X. URL: http:
//dx.doi.org/10.1063/1.4901251

[12] M. Lehnen et al. “Disruptions in ITER and strategies for their control and mit-
igation”. Journal of Nuclear Materials 463 (2015), pp. 39 —48. 1sSN: 0022-3115.
DOI: http://dx.doi.org/10.1016/j . jnucmat .2014.10.075. URL: http:
//www.sciencedirect.com/science/article/pii/S0022311514007594.

69


http://archive.iupap.org/epspositionpaper.pdf
http://archive.iupap.org/epspositionpaper.pdf
https://books.google.de/books?id=BH9vx-iDI74C
https://books.google.de/books?id=BH9vx-iDI74C
https://books.google.de/books?id=D2CZf0nmKq8C
https://books.google.de/books?id=D2CZf0nmKq8C
http://dx.doi.org/10.1007/BF01337700
https://books.google.de/books?id=wkEpBAAAQBAJ
https://books.google.de/books?id=wkEpBAAAQBAJ
http://stacks.iop.org/0029-5515/47/i=6/a=S03
http://stacks.iop.org/0029-5515/47/i=6/a=S03
http://stacks.iop.org/0741-3335/26/i=1A/a=320
http://stacks.iop.org/0741-3335/26/i=1A/a=320
http://dx.doi.org/10.1063/1.1873872
http://dx.doi.org/10.1063/1.1873872
https://doi.org/10.1063/1.1873872
https://doi.org/10.1063/1.1873872
https://doi.org/10.1063/1.1873872
http://stacks.iop.org/0029-5515/39/i=7/a=307
http://stacks.iop.org/0029-5515/39/i=7/a=307
http://dx.doi.org/10.1103/PhysRev.115.238
https://link.aps.org/doi/10.1103/PhysRev.115.238
https://link.aps.org/doi/10.1103/PhysRev.115.238
http://dx.doi.org/10.1063/1.4901251
http://dx.doi.org/10.1063/1.4901251
http://dx.doi.org/http://dx.doi.org/10.1016/j.jnucmat.2014.10.075
http://www.sciencedirect.com/science/article/pii/S0022311514007594
http://www.sciencedirect.com/science/article/pii/S0022311514007594

[13]

[14]

[15]

[16]

[22]

23]
[24]

[25]

C. Reux et al. “Runaway electron beam generation and mitigation during disrup-
tions at JET-ILW”. Nuclear Fusion 55.9 (2015), p. 093013. URL: http://stacks.
iop.org/0029-5515/55/1=9/a=093013.

B. Esposito et al. “Avoidance of disruptions at high 5 N in ASDEX Upgrade with
off-axis ECRH”. Nuclear Fusion 51.8 (2011), p. 083051. URL: http://stacks.
iop.org/0029-5515/51/i=8/a=083051

B. Esposito et al. “Disruption avoidance by means of electron cyclotron waves”.
Plasma Physics and Controlled Fusion 53.12 (2011), p. 124035. URL: http://
stacks.iop.org/0741-3335/53/i=12/a=124035.

Allen H. Boozer. “Theory of runaway electrons in ITER: Equations, important
parameters, and implications for mitigation”. Physics of Plasmas 22.3 (2015),
p. 032504. por: 10.1063/1.4913582. eprint: https://doi.org/10.1063/1.
4913582. URL: https://doi.org/10.1063/1.4913582.

G. Pautasso et al. “Disruption mitigation by injection of small quantities of no-
ble gas in ASDEX Upgrade”. Plasma Physics and Controlled Fusion 59.1 (2017),
p. 014046. URL: http://stacks.iop.org/0741-3335/59/i=1/a=014046.

Decker J and Peysson Y. DKE: A fast numerical solver for the 3D drift kinetic
equation. Euratom-CEA Report EUR-CEA-FC-1736. 2004.

Marshall N. Rosenbluth, William M. MacDonald, and David L. Judd. “Fokker-
Planck Equation for an Inverse-Square Force”. Phys. Rev. 107 (1 1957), pp. 1-6.
DOI: 10.1103/PhysRev.107.1. URL: https://link.aps.org/doi/10.1103/
PhysRev.107.1.

O Embréus, A Stahl, and T Filop. “Effect of bremsstrahlung radiation emission
on fast electrons in plasmas”. New Journal of Physics 18.9 (2016), p. 093023. URL:
http://stacks.iop.org/1367-2630/18/1i=9/a=093023.

S. Chapman and T.G. Cowling. The Mathematical Theory of Non-uniform Gases:
An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Dif-
fusion in Gases. Cambridge Mathematical Library. Cambridge University Press,
1970. 1SBN: 9780521408448. URL: https : // books . google . de / books 7 id =
CbpbJP20TrwC.

P. Helander and D.J. Sigmar. Collisional Transport in Magnetized Plasmas. Cam-
bridge Monographs on Plasma Physics. Cambridge University Press, 2005. ISBN:
9780521020985. URL: https://books.google.de/books?id=nm-VO1EOH2MC.

F. R. Elder et al. “Radiation from Electrons in a Synchrotron”. Physical Review
71 (June 1947), pp. 829-830. pO1: 10.1103/PhysRev.71.829.5.

Adam Stahl. “Momentum-space dynamics of runaway electrons in plasmas”. PhD
thesis. Charlmers University Of Technology, 2017.

[. M. Pankratov. “Analysis of the synchrotron radiation spectra of runaway elec-
trons”. Plasma Physics Reports 25 (Feb. 1999), pp. 145-148.

70


http://stacks.iop.org/0029-5515/55/i=9/a=093013
http://stacks.iop.org/0029-5515/55/i=9/a=093013
http://stacks.iop.org/0029-5515/51/i=8/a=083051
http://stacks.iop.org/0029-5515/51/i=8/a=083051
http://stacks.iop.org/0741-3335/53/i=12/a=124035
http://stacks.iop.org/0741-3335/53/i=12/a=124035
http://dx.doi.org/10.1063/1.4913582
https://doi.org/10.1063/1.4913582
https://doi.org/10.1063/1.4913582
https://doi.org/10.1063/1.4913582
http://stacks.iop.org/0741-3335/59/i=1/a=014046
http://dx.doi.org/10.1103/PhysRev.107.1
https://link.aps.org/doi/10.1103/PhysRev.107.1
https://link.aps.org/doi/10.1103/PhysRev.107.1
http://stacks.iop.org/1367-2630/18/i=9/a=093023
https://books.google.de/books?id=Cbp5JP2OTrwC
https://books.google.de/books?id=Cbp5JP2OTrwC
https://books.google.de/books?id=nm-V01E0H2MC
http://dx.doi.org/10.1103/PhysRev.71.829.5

[26]

[27]

28]

[29]

[30]

A. Stahl et al. “Synchrotron radiation from a runaway electron distribution in
tokamaks”. Physics of Plasmas 20.9, 093302 (Sept. 2013), p. 093302. por1: 10.
1063/1.4821823. arXiv: 1308.2099 [physics.plasm-ph].

J.W. Connor and R.J. Hastie. “Relativistic limitations on runaway electrons”.
Nuclear Fusion 15.3 (1975), p. 415. URL: http://stacks.iop.org/0029-5515/
15/i=3/a=007.

S.I. Braginskii. “Transport Processes in a Plasma”. Reviews of Plasma Physics 1
(1965), p. 205.

B. Coppi et al. “Slide-away distributions and relevant collective modes in high-
temperature plasmas”. Nuclear Fusion 16.2 (1976), p. 309. URL: http://stacks.
iop.org/0029-5515/16/i=2/a=014.

A. Stahl et al. “NORSE: A solver for the relativistic non-linear Fokker-Planck
equation for electrons in a homogeneous plasma”. Computer Physics Communica-
tions 212 (Mar. 2017), pp. 269-279. DOT: 10.1016/j.cpc.2016.10.024. arXiv:
1608.02742 [physics.plasm-ph].

A. Stahl et al. “Runaway-electron formation and electron slide-away in an ITER
post-disruption scenario”. Journal of Physics: Conference Series 775.1 (2016),
p. 012013. URL: http://stacks.iop.org/1742-6596/775/i=1/a=012013.

W. Pauli. Theory of Relativity. Dover Publications, New York, 1981.

T. Filop and G. Papp. “Runaway Positrons in Fusion Plasmas”. Phys. Rev. Lett.
108 (22 2012), p. 225003. DOI: 10.1103/PhysRevLett.108.225003. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.108.225003.

G. D. Holman. “DC Electric Field Acceleration of Ions in Solar Flares”. 452 (Oct.
1995), p. 451. DOIL: 10.1086/176316.

O. Embréus et al. “Numerical calculation of ion runaway distributions”. Physics
of Plasmas 22.5, 052122 (May 2015), p. 052122. DO1: 10.1063/1.4921661. arXiv:
1502.06739 [physics.plasm-ph].

H. Smith et al. “Runaway electron generation in a cooling plasma”. Physics of
Plasmas 12.12 (2005), p. 122505. DOT: 10.1063/1.2148966. eprint: https://
doi.org/10.1063/1.2148966. URL: https://doi.org/10.1063/1.2148966

H. M. Smith and E. Verwichte. “Hot tail runaway electron generation in tokamak
disruptions”. Physics of Plasmas 15.7 (2008), p. 072502. DOI: 10.1063/1.2949692.
eprint: https://doi.org/10.1063/1.2949692. URL: https://doi.org/10.
1063/1.2949692.

Pavel Aleynikov and Boris N. Breizman. “Generation of runaway electrons during
the thermal quench in tokamaks”. Nuclear Fusion 57.4 (2017), p. 046009. URL:
http://stacks.iop.org/0029-5515/57/i=4/a=046009.

T. Fehér et al. “Simulation of runaway electron generation during plasma shutdown
by impurity injection in ITER”. Plasma Physics and Controlled Fusion 53.3 (2011),
p. 035014. URL: http://stacks.iop.org/0741-3335/53/1=3/a=035014.

71


http://dx.doi.org/10.1063/1.4821823
http://dx.doi.org/10.1063/1.4821823
http://arxiv.org/abs/1308.2099
http://stacks.iop.org/0029-5515/15/i=3/a=007
http://stacks.iop.org/0029-5515/15/i=3/a=007
http://stacks.iop.org/0029-5515/16/i=2/a=014
http://stacks.iop.org/0029-5515/16/i=2/a=014
http://dx.doi.org/10.1016/j.cpc.2016.10.024
http://arxiv.org/abs/1608.02742
http://stacks.iop.org/1742-6596/775/i=1/a=012013
http://dx.doi.org/10.1103/PhysRevLett.108.225003
https://link.aps.org/doi/10.1103/PhysRevLett.108.225003
https://link.aps.org/doi/10.1103/PhysRevLett.108.225003
http://dx.doi.org/10.1086/176316
http://dx.doi.org/10.1063/1.4921661
http://arxiv.org/abs/1502.06739
http://dx.doi.org/10.1063/1.2148966
https://doi.org/10.1063/1.2148966
https://doi.org/10.1063/1.2148966
https://doi.org/10.1063/1.2148966
http://dx.doi.org/10.1063/1.2949692
https://doi.org/10.1063/1.2949692
https://doi.org/10.1063/1.2949692
https://doi.org/10.1063/1.2949692
http://stacks.iop.org/0029-5515/57/i=4/a=046009
http://stacks.iop.org/0741-3335/53/i=3/a=035014

[40]

[41]

[42]

[43]

[44]

[49]

[50]

[51]

Pavel Aleynikov and Boris N. Breizman. “Generation of runaway electrons during
the thermal quench in tokamaks”. Nuclear Fusion 57.4 (2017), p. 046009. URL:
http://stacks.iop.org/0029-5515/57/i=4/a=046009.

M.N. Rosenbluth and S.V. Putvinski. “Theory for avalanche of runaway electrons
in tokamaks”. Nuclear Fusion 37.10 (1997), p. 1355. URL: http://stacks.iop.
org/0029-5515/37/1=10/a=I03.

C. Reux et al. “Runaway electron beam generation and mitigation during disrup-
tions at JET-ILW”. Nuclear Fusion 55.9 (2015), p. 093013. URL: http://stacks.
iop.org/0029-5515/55/1=9/a=093013.

M. Shimada et al. “Progress in the ITER Physics Basis Chapter 1: Overview and
summary”. Nuclear Fusion 47.6 (2007), S1. URL: http://stacks.iop.org/0029-
5515/47/1=6/a=S01.

T. Fiilop et al. “Destabilization of magnetosonic-whistler waves by a relativistic
runaway beam”. Physics of Plasmas 13.6 (2006), p. 062506. por: 10.1063/1 .
2208327. eprint: https://doi.org/10.1063/1.2208327. URL: https://doi.
org/10.1063/1.2208327.

M. Landreman, A. Stahl, and T. Fiilop. “Numerical calculation of the runaway
electron distribution function and associated synchrotron emission”. Computer
Physics Communications 185 (Mar. 2014), pp. 847-855. DOT: 10.1016/j . cpc.
2013.12.004. arXiv: 1305.3518 [physics.plasm-ph].

A. Stahl et al. “Kinetic modelling of runaway electrons in dynamic scenarios”.
Nuclear Fusion 56.11 (2016), p. 112009. URL: http://stacks.iop.org/0029-
5515/56/i=11/a=112009.

A. Stahl et al. “Effective Critical Electric Field for Runaway-Electron Generation”.
Physical Review Letters 114.11, 115002 (Mar. 2015), p. 115002. po1: 10.1103/
PhysRevLett.114.115002. arXiv: 1412.4608 [physics.plasm-ph].

O. Embréus, A. Stahl, and T. Fiilop. “Effect of bremsstrahlung radiation emis-
sion on fast electrons in plasmas”. New Journal of Physics 18.9, 093023 (Sept.
2016), p. 093023. por: 10.1088/1367-2630/18/9/093023. arXiv: 1604 .03331
[physics.plasm-ph].

“Towards self-consistent runaway electron modeling”. 42nd European Physical So-
ciety Conference on Plasma Physics, EPS 2015. European Physical Society (EPS).

G. Papp et al. “Runaway electron drift orbits in magnetostatic perturbed fields”.
Nuclear Fusion 51.4 (2011), p. 043004. URL: http://stacks.iop.org/0029-
5515/51/i=4/a=043004.

Robert S. Cohen, Lyman Spitzer, and Paul McR. Routly. “The Electrical Con-
ductivity of an Ionized Gas”. Phys. Rev. 80 (2 1950), pp. 230-238. po1: 10.1103/
PhysRev.80.230. URL: https://link.aps.org/doi/10.1103/PhysRev.80.230.

72


http://stacks.iop.org/0029-5515/57/i=4/a=046009
http://stacks.iop.org/0029-5515/37/i=10/a=I03
http://stacks.iop.org/0029-5515/37/i=10/a=I03
http://stacks.iop.org/0029-5515/55/i=9/a=093013
http://stacks.iop.org/0029-5515/55/i=9/a=093013
http://stacks.iop.org/0029-5515/47/i=6/a=S01
http://stacks.iop.org/0029-5515/47/i=6/a=S01
http://dx.doi.org/10.1063/1.2208327
http://dx.doi.org/10.1063/1.2208327
https://doi.org/10.1063/1.2208327
https://doi.org/10.1063/1.2208327
https://doi.org/10.1063/1.2208327
http://dx.doi.org/10.1016/j.cpc.2013.12.004
http://dx.doi.org/10.1016/j.cpc.2013.12.004
http://arxiv.org/abs/1305.3518
http://stacks.iop.org/0029-5515/56/i=11/a=112009
http://stacks.iop.org/0029-5515/56/i=11/a=112009
http://dx.doi.org/10.1103/PhysRevLett.114.115002
http://dx.doi.org/10.1103/PhysRevLett.114.115002
http://arxiv.org/abs/1412.4608
http://dx.doi.org/10.1088/1367-2630/18/9/093023
http://arxiv.org/abs/1604.03331
http://arxiv.org/abs/1604.03331
http://stacks.iop.org/0029-5515/51/i=4/a=043004
http://stacks.iop.org/0029-5515/51/i=4/a=043004
http://dx.doi.org/10.1103/PhysRev.80.230
http://dx.doi.org/10.1103/PhysRev.80.230
https://link.aps.org/doi/10.1103/PhysRev.80.230

[52]

[53]

M. Bakhtiari, G. J. Kramer, and D. G. Whyte. “Momentum-space study of the
effect of bremsstrahlung radiation on the energy of runaway electrons in tokamaks”.
Physics of Plasmas 12.10 (2005), p. 102503. DO1: 10.1063/1.2065368. eprint:
https://doi.org/10.1063/1.2065368. URL: https://doi.org/10.1063/1.
2065368.

M. Bakhtiari, G. J. Kramer, and D. G. Whyte. “Momentum-space study of the
effect of bremsstrahlung radiation on the energy of runaway electrons in tokamaks”.
Physics of Plasmas 12.10 (2005), p. 102503. DO1: 10.1063/1.2065368. eprint:
https://doi.org/10.1063/1.2065368. URL: https://doi.org/10.1063/1.
2065368.

O. Oxenius. Kinetic Theory of Particles and Photons. Springer, 1986. 1SBN: 978-
3-642-70728-5. DOI: 10.1007/978-3-642-70728-5.

S.C. Chiu et al. “Fokker-Planck simulations mylb of knock-on electron runaway
avalanche and bursts in tokamaks”. Nuclear Fusion 38.11 (1998), p. 1711. URL:
http://stacks.iop.org/0029-5515/38/i=11/a=309.

O. Embréus, A. Stahl, and T. Fiilop. “On the relativistic large-angle electron
collision operator for runaway avalanches in plasmas”. Journal of Plasma Physics
84.1, 905840102 (Feb. 2018), p. 905840102. por: 10.1017/5002237781700099X.
arXiv: 1708.08779 [physics.plasm-ph].

E. Nilsson et al. “Kinetic modelling of runaway electron avalanches in tokamak
plasmas”. Plasma Physics and Controlled Fusion 57.9 (2015), p. 095006. URL:
http://stacks.iop.org/0741-3335/57/1=9/a=095006.

J. Decker et al. “Numerical characterization of bump formation in the runaway
electron tail”. Plasma Physics and Controlled Fusion 58.2 (2016), p. 025016. URL:
http://stacks.iop.org/0741-3335/58/1=2/a=025016.

Russell M. Kulsrud et al. “Runaway Electrons in a Plasma”. Phys. Rev. Lett.
31 (11 1973), pp. 690-693. DOT: 10.1103/PhysRevLett .31 .690. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.31.690.

FTU website. http://ftu.frascati.enea.it. Accessed: 2018-04-3.

G. Ferro, (...), A. Lier, et al. “Adaptive control design and energy distribution
estimation via nonlinear observer for runaway electron in FTU”. Furophysics
Conference Abstracts. Vol. 41F. 2017, P5.156. URL: http://ocs . ciemat . es/
EPS2017PAP/pdf/P5.156 . pdf.

A. Stahl et al. “Synchrotron radiation from a runaway electron distribution in
tokamaks”. Physics of Plasmas 20.9, 093302 (Sept. 2013), p. 093302. por1: 10.
1063/1.4821823. arXiv: 1308.2099 [physics.plasm-ph].

B. Esposito et al. “Runaway electron generation and control”. Plasma Physics and
Controlled Fusion 59.1 (2017), p. 014044. URL: http://stacks.iop.org/0741~
3335/59/i=1/a=014044.

73


http://dx.doi.org/10.1063/1.2065368
https://doi.org/10.1063/1.2065368
https://doi.org/10.1063/1.2065368
https://doi.org/10.1063/1.2065368
http://dx.doi.org/10.1063/1.2065368
https://doi.org/10.1063/1.2065368
https://doi.org/10.1063/1.2065368
https://doi.org/10.1063/1.2065368
http://dx.doi.org/10.1007/978-3-642-70728-5
http://stacks.iop.org/0029-5515/38/i=11/a=309
http://dx.doi.org/10.1017/S002237781700099X
http://arxiv.org/abs/1708.08779
http://stacks.iop.org/0741-3335/57/i=9/a=095006
http://stacks.iop.org/0741-3335/58/i=2/a=025016
http://dx.doi.org/10.1103/PhysRevLett.31.690
https://link.aps.org/doi/10.1103/PhysRevLett.31.690
https://link.aps.org/doi/10.1103/PhysRevLett.31.690
http://ftu.frascati.enea.it
http://ocs.ciemat.es/EPS2017PAP/pdf/P5.156.pdf
http://ocs.ciemat.es/EPS2017PAP/pdf/P5.156.pdf
http://dx.doi.org/10.1063/1.4821823
http://dx.doi.org/10.1063/1.4821823
http://arxiv.org/abs/1308.2099
http://stacks.iop.org/0741-3335/59/i=1/a=014044
http://stacks.iop.org/0741-3335/59/i=1/a=014044

[64]

[65]

[66]

[67]

[68]

[74]

[75]

O. Embréus et al. “Effect of bremsstrahlung radiation emission on distributions
of runaway electrons in magnetized plasmas”. ArXiv e-prints (Nov. 2015). arXiv:
1511.03917 [physics.plasm-ph].

T. Piitterich et al. “Modelling of measured tungsten spectra from ASDEX Upgrade
and predictions for ITER”. Plasma Physics and Controlled Fusion 50.8 (2008),
p. 085016. URL: http://stacks.iop.org/0741-3335/50/1=8/a=085016.

L. Hesslow et al. “Effect of Partially Screened Nuclei on Fast-Electron Dynamics”.
Physical Review Letters 118.25, 255001 (June 2017), p. 255001. po1: 10.1103/
PhysRevLett.118.255001. arXiv: 1705.08638 [physics.plasm-ph].

K.B. Fournier et al. “Calculation of the radiative cooling coefficient for molybde-
num in a low density plasma”. Nuclear Fusion 38.4 (1998), p. 639. URL: http:
//stacks.iop.org/0029-5515/38/i=4/a=513.

L. Hesslow et al. “Effect of partially ionized impurities and radiation on the ef-
fective critical electric field for runaway generation”. ArXiv e-prints (May 2018).
arXiv: 1802.00717v3 [physics.plasm-ph].

G. Papp et al. “The effect of ITER-like wall on runaway electron generation in
JET”. Nuclear Fusion 53.12 (2013), p. 123017. URL: http://stacks.iop.org/
0029-5515/53/i=12/a=123017.

G. Papp et al. “Energetic electron transport in the presence of magnetic pertur-
bations in magnetically confined plasmas”. Journal of Plasma Physics 81 (05 Oct.
2015), p. 475810503. 1SSN: 1469-7807. por: 10.1017/50022377815000537. URL:
http://journals.cambridge.org/article_S0022377815000537.

T. Fehér et al. “Simulation of runaway electron generation during plasma shutdown
by impurity injection in ITER”. PPCF 53.3 (2011), p. 035014. URL: http://
stacks.iop.org/0741-3335/53/1=3/a=035014.

J. Decker et al. “Runaway Electron Physics and Modelling”. EUROfusion Science
Meeting. 2017.

T. Hauff and F. Jenko. “Runaway electron transport via tokamak microturbu-
lence”. Physics of Plasmas 16.10 (2009), p. 102308. DO1: 10.1063/1.3243494.
eprint: https://doi.org/10.1063/1.3243494. URL: https://doi.org/10.
1063/1.3243494.

Konsta Sarkimaki et al. “An advection-diffusion model for cross-field runaway
electron transport in perturbed magnetic fields”. Plasma Physics and Controlled
Fusion 58.12 (2016), p. 125017. URL: http://stacks.iop.org/0741-3335/58/
i=12/a=125017.

C. Sommariva et al. “Test particles dynamics in the JOREK 3D non-linear MHD
code and application to electron transport in a disruption simulation”. Nuclear
Fusion 58.1 (2018), p. 016043. URL: http://stacks.iop.org/0029-5515/58/i=
1/a=016043.

74


http://arxiv.org/abs/1511.03917
http://stacks.iop.org/0741-3335/50/i=8/a=085016
http://dx.doi.org/10.1103/PhysRevLett.118.255001
http://dx.doi.org/10.1103/PhysRevLett.118.255001
http://arxiv.org/abs/1705.08638
http://stacks.iop.org/0029-5515/38/i=4/a=513
http://stacks.iop.org/0029-5515/38/i=4/a=513
http://arxiv.org/abs/1802.00717v3
http://stacks.iop.org/0029-5515/53/i=12/a=123017
http://stacks.iop.org/0029-5515/53/i=12/a=123017
http://dx.doi.org/10.1017/S0022377815000537
http://journals.cambridge.org/article_S0022377815000537
http://stacks.iop.org/0741-3335/53/i=3/a=035014
http://stacks.iop.org/0741-3335/53/i=3/a=035014
http://dx.doi.org/10.1063/1.3243494
https://doi.org/10.1063/1.3243494
https://doi.org/10.1063/1.3243494
https://doi.org/10.1063/1.3243494
http://stacks.iop.org/0741-3335/58/i=12/a=125017
http://stacks.iop.org/0741-3335/58/i=12/a=125017
http://stacks.iop.org/0029-5515/58/i=1/a=016043
http://stacks.iop.org/0029-5515/58/i=1/a=016043

[76]

[77]

[78]

G. Papp et al. “Generation and suppression of runaway electrons in ASDEX Up-
grade disruptions”. ECA. Vol. 39E. 2015, P1.173. 1SBN: 2-914771-98-3. URL: http:
//ocs.ciemat.es/EPS2015PAP/pdf/P1.173.pdf.

Boris N. Breizman. “Marginal stability model for the decay of runaway electron
current”. Nuclear Fusion 54.7 (2014), p. 072002. URL: http://stacks.iop.org/
0029-5515/54/1=7/a=072002.

E. Hirvijoki et al. “Radiation reaction induced non-monotonic features in runaway
electron distributions”. Journal of Plasma Physics 81.5 (2015). boIl: 10. 1017/
S0022377815000513.

75


http://ocs.ciemat.es/EPS2015PAP/pdf/P1.173.pdf
http://ocs.ciemat.es/EPS2015PAP/pdf/P1.173.pdf
http://stacks.iop.org/0029-5515/54/i=7/a=072002
http://stacks.iop.org/0029-5515/54/i=7/a=072002
http://dx.doi.org/10.1017/S0022377815000513
http://dx.doi.org/10.1017/S0022377815000513

	IPP 2018-15 Titel
	IPP 2018-15 Text
	Introduction
	Kinetic plasma theory
	Collision operator
	Runaway phenomenon
	Disruptions

	Simulation of an electron distribution in momentum-space
	CODE
	Collision operator
	Operators for radiation losses
	Operators for large angle collisions (avalanche)

	Basic physical validation
	Runaway process
	Convergence scans
	Time-evolution and rethermalization
	Validation with previously published data


	Experimental comparison to flat-top scenario 
	Specific Frascati Tokamak Upgrade case
	Data Analysis
	Steady-state calculations
	Time-evolved calculations
	Time-dependent plasma parameters
	Conclusion

	Disruption cases
	Creating an initial distribution to disrupt
	Disruption events with measured electric field
	GO code calculated self-consistent electric field input
	Disruption events with self-consistent electric field treatment

	Summary
	Outlook
	Appendix
	Kinetic equation

	References




