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Abstract. The F-statistic is an established method to search for continuous
gravitational waves from spinning neutron stars. Prix et al. [1, (2011)] introduced
a variant for transient quasi-monochromatic signals. Possible astrophysical
scenarios for such transients include glitching pulsars, newborn neutron stars
and accreting systems. Here we present a new implementation of the transient
F-statistic, using pyCUDA to leverage the power of modern graphics processing
units (GPUs). The obtained speedup allows efficient searches over much wider
parameter spaces, especially when using more realistic transient signal models
including time-varying (e.g. exponentially decaying) amplitudes. Hence, it can
enable comprehensive coverage of glitches in known nearby pulsars, improve the
follow-up of outliers from continuous-wave searches, and might be an important
ingredient for future blind all-sky searches for unknown neutron stars.

1. Introduction

Spinning neutron stars (NSs), when non-axisymmetrically deformed, emit weak but
potentially detectable gravitational waves (GWs) [2]. Many searches [3] with the LIGO
and Virgo detectors [4, 5] focus on continuous wave (CW) signals that are persistent
over a whole observation run, but there are also scenarios for shorter signals from
transiently perturbed NSs. If those signals are slowly evolving in frequency and last on
the time scale of hours to months, analysis methods adapted from CW searches are well
suited to their detection. In [1] (hereafter also referred to as ‘PGM’), the astrophysical
motivation for such transient signals was discussed and a matched-filter search method
proposed. It is based on the established F-statistic, which was introduced in [6, 7]
and used in many CW searches [recently e.g. in 8–10].

Matched-filter searches for weak signals from unknown sources (or those with
imperfectly known parameters) are computationally very expensive since a wide
parameter space needs to be densely covered with templates. Starting from a typical
CW search that covers a certain parameter space in signal frequency, spindown and
sky location but assumes a constant signal amplitude, the addition of new unknown
parameters to describe the transient evolution further increases computational cost.
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However, the attractiveness of the transient F-statistic algorithm from [1] is
that it starts from time-discretised quantities already computed for the standard
CW F-statistic and then only needs to take partial sums of these to study the set
of possible transient signals. Still, for long total observation times the evaluation of
these partial sums can easily dominate over the original computational cost, especially
if the templates have a non-trivial amplitude evolution, e.g. exponential decay.

The task of multiple partial sums of some input data can obviously benefit from
massive parallelisation. Here we present a straightforward translation of the algorithm
from [1] to pyCUDA code [11] running on graphics processing units (GPUs). It is
implemented in the framework of the PyFstat package [12, 13].‡

In the following, we briefly review the formalism from [1] to define the transient
F-statistic (section 2), then describe its pyCUDA implementation (section 3). We test
the speed and memory requirements (section 4) and compare with the original CPU
implementation from LALSuite [14]. The paper ends with a brief discussion (section 5)
of how the achieved speedup widens the scope of feasible searches for long CW-like
gravitational wave transients. This includes enabling a comprehensive coverage of
glitch events in nearby known pulsars, improving the sensitivity of all-sky CW searches
through following up more outliers with transient analyses, and the potential use as
an ingredient in future blind all-sky searches for unknown disturbed NSs.

2. Formalism

We present a straightforward pyCUDA implementation of PGM’s ‘atoms-based’
transient F-statistic algorithm from Appendix A1 of [1]. It is based on a discretised
method to compute the overall F-statistic introduced in [15] and described in detail
in [16].

The F-statistic (for transient or continuous signals) is essentially a likelihood-ratio
test for a time series x(t), comparing a signal hypothesis

HtS : x(t) = n(t) + h(t, λ,A, T ) (1)

against the alternative hypothesis of pure Gaussian noise,

HG : x(t) = n(t) . (2)

The waveform model h(t, λ,A, T ) = $(t, T )h(t, λ,A) for a slowly-evolving signal
separates into a transient window function $(t, T ) and the standard CW
waveform h(t, λ,A). The latter depends on a set of phase evolution parameters
λ = {α, δ, f, ḟ , f̈ , . . .} (sky position, frequency, and frequency derivatives or
‘spindowns’) and on four amplitude parameters A = {h0, cos ι, ψ, φ0}. See [1, 6, 16]
for details on these parameters. For the transient part, we currently consider either
rectangular or exponential window functions, with parameters T = {t0, τ} where t0 is
the start time of a signal and τ is a duration parameter:

$rect(t, t0, τ) :=

{
1 if t ∈ [t0, t0 + τ ]
0 otherwise ,

(3)

$exp(t, t0, τ) :=

{
e−(t−t0)/τ if t ∈ [t0, t0 + 3τ ]
0 otherwise .

(4)

‡ Latest source code and examples also available from https://gitlab.aei.uni-hannover.de/

GregAshton/PyFstat/.

https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat/
https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat/
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The cutoff of $exp at 3τ was introduced in [1] in the understanding that the signal-
to-noise ratio (SNR) after this point will be negligible.

The (transient) F-statistic is then proportional to the log odds between HtS and
HG, after maximising over A (or marginalising, see [1, 17, 18] for details):

eF(x,λ,T ) ∝ P (HtS|x, λ, T , I)

P (HG|x, I)
. (5)

It can be written as

F(x, λ, T ) =
1

2
x′µ(λ, T )M′µν(λ, T )x′ν(λ, T ) , (6)

where the indices µ, ν run over the four amplitude parameters A,M′µν is the antenna
pattern matrix, x′µ are projections of the data onto the model waveforms, and the
prime denotes transient windowing. (See Eqs. (32–36) of [1].)

The standard algorithm used in F-statistic searches for continuous signals splits
a data set starting at T0 and of length Tobs into several Short Fourier Transforms
(SFTs) of length TSFT. [16] describes how to approximate (6) from the per-SFT, per-
detector discretised versions of M′µν and x′µ; in practice we consider the equivalent
set of quantities {aj , bj , Faj , Fbj} as the atoms of our F-statistic computation, where
the j index runs over SFTs.

The aj and bj atoms are summed up to yield the discretised antenna pattern

matrix elements Â, B̂, Ĉ [defined in Eq. (130) of 16] and their determinant

D̂ = Â B̂ − Ĉ2, and together with the summed data-dependent complex quantities
Fa, Fb [Eq.(129) of 16] they yield the F-statistic as:

F(x, λ, T ) = D̂−1 (B̂ [<2(Fa) + =2(Fa) ] + Â [<2(Fb) + =2(Fb) ] (7)

− 2Ĉ [<(Fa)<(Fb) + =(Fa)=(Fb) ] ) .

(All quantities on the right hand side are understood as depending on λ and T , too.)
For persistent CWs, this is evaluated summing all atoms over the full Tobs. To

search for transient signals, we define a grid in {t0, τ} space indexed by m for the t0
dimension and n for the τ dimension. We indicate the resolutions of this grid as dt0
and dτ ; a natural choice is dt0 = dτ = TSFT though a coarser or even variable sampling
is also possible. Then our goal is to compute, for each λ and a specific window choice
$, the matrix

Fmn(λ) := F(x, λ,$, t0m, τn) , (8)

which we also refer to as the transient F-statistic map. Computing it this way is
convenient because the set of atoms {aj , bj , Faj , Fbj} is only computed once, over the
full Tobs, and this is already done for the CW F-statistic anyway. Subsequently, the
transient Fmn map is obtained by evaluating (7) for partial sums of the atoms.

3. Implementation

PyFstat is a python package primarily developed for the MCMC follow-up [12, 13] of
CW candidates, but it also provides general modular access to CW search functionality
in the LALPulsar package (written in C) of the LALSuite [14] collection, called through
SWIG C-to-python wrappers. For the transient F-statistic, we first call a standard
algorithm for computing the CW F-statistic over the whole data set [16]§, which takes

§ As of the writing of this paper, documentation is available at:
https://lscsoft.docs.ligo.org/lalsuite/lalpulsar/group___compute_fstat__h.html

https://lscsoft.docs.ligo.org/lalsuite/lalpulsar/group___compute_fstat__h.html
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care of the data read-in, barycentring, and computation of the per-SFT matched-filter
atoms. The only change is that we ask the ComputeFstat() routine to also return the
atoms.

The input data for computing the transient F-statistic map Fmn consists then of
only the atoms (a set of vectors of NSFT elements each) and the parameters describing
a transient window function and grid in {t0, τ} space. The inputs are the 3 real vectors
a2(t), b2(t) and a(t) ·b(t) and the 2 complex vectors Fa(t), Fb(t). These are transferred
to the GPU as a 7×NSFT real matrix.

The basic idea of massively-parallelised computation on a GPU is to run a grid
of identical kernels, each processing the subset of data identified by the kernel’s
(multi-)index. We provide two structurally different kernels for rectangular and
exponential windows. To account for the general case where resolutions in t0 or τ
different from TSFT might be desirable, or where there are gaps in the data, we use
Nt0 and Nτ for the number of grid points in each dimension, which need not be equal
to each other nor to NSFT.

In the rectangular case, an obvious optimisation was already pointed out in
[1] and is implemented in LALPulsar: For each starting time t0m, one can compute
Fmn for all durations τn by keeping the partial sums of each atom up to each τn′ in
memory and only adding the atoms with index n′ + 1 in the next step. It would thus
be wasteful to run a full Nt0 × Nτ grid of kernels on the GPU, and instead we only
launch Nt0 kernels, each of which internally loops over τ and keeps the partial sums
in local memory.

In the exponential case, no such simple trick is possible, since the contribution
to each partial sum at each timestep includes amplitude-weight factors (see Eq. (4))
depending on the τ currently being evaluated. Hence, we employ a brute-force grid
of Nt0 ×Nτ kernels on the GPU, each of which only computes the partial sums for a
single Fmn.

In both cases, the last steps, still done inside the GPU kernel, are to compute the
antenna pattern matrix determinant D̂ and the transient Fmn-statistic from Eq. (7).

4. Tests

In this section, we describe tests of the speedup obtained with the pyCUDA version, its
memory requirements, and its numerical faithfulness to the original implementation.

4.1. Speed

We have tested the speed of the pyCUDA implementation relative to the standard
LALPulsar code on several systems. These all have Intel CPUs: a laptop with a Core
i5-6200U at 2.30 GHz, a workstation with a Xeon X5675 at 3.07 GHz and two LIGO
Caltech cluster nodes with Xeons E5-2630 and E5-2650 at 2.20 GHz each. The pyCUDA
code was benchmarked on several GPUs from the Nvidia GeForce GTX family (1050,
1060, 1070 and 1080Ti, with 2–11 GB RAM) and on a Nvidia Tesla V100-PCIE (16 GB
RAM), all installed on the same workstation and cluster nodes.

We consider observation times Tobs from 1 hour up to 1 year, with no gaps in the
data. Gaussian noise and a transient signal with τ = 0.5Tobs are simulated through
PyFstat, though the speed of calculating F-statistics does not depend on whether
the data contains a signal. The SFTs are taken at TSFT = 1800 s and Fmn is sampled
at dt0 = dτ = TSFT over a grid of t0 ∈ [T0, Tobs − 2TSFT] and τ ∈ [2TSFT, Tobs]. The
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Figure 1. Timing results for both rectangular and exponential transient
windows, from CPU (LALPulsar) and GPU (pyCUDA) implementations on various
devices. The vertical axis gives the average run time per template λ. (Most test
runs used 100 frequency bins, and a few used 1000 to check the consistency of
averages.) Each solid/dashed line connects results from a specific implementation
on a specific device, averaging over 3 or more runs at fixed Tobs, and background
shading indicates a specific window run on a family of related architectures. The
exp(CPU) and rect(CPU) families collect results from the four different systems
mentioned in Sec. 4.1, while exp(GTX) labels results from different Nvidia Geforce
GXT 10x0 family devices, the single line labelled exp(Tesla) is from a Nvidia
Tesla V100, and the rect(GTX/Tesla) results are plotted together as they are not
significantly different.

upper limit on t0 and lower limit on τ are set because the low-level implementation
requires at least 2 SFTs per Fmn computation.

Since GPU results for a single-template (fixed λ) analysis might be too pessimistic
because of startup overheads, and in practice speedups are only relevant for searches
over broad λ regions anyway, we time searches over 100 frequency bins; though
for simplicity we assume a fixed sky location and no spindown. Timing results
are summarised in figure 1, as average runtime per λ template. As an additional
cross-check, these results also include some runs at 1000 frequency bins, which yield
consistent timings per template. Note that this is the total runtime of the search (per
template), including the initial LALPulsar computation of the atoms which always
runs on the CPU.

We find that the pyCUDA version provides speedups of at least an order of
magnitude on GPUs of the Geforce GTX 10x0 family compared to the original
LALPulsar code on contemporaneous CPUs, both for exponential and rectangular
windows. In the exponential case, the Tesla V100 provides another similar jump
in speed over the GTX family, bringing the cost of exponential-window transient
searches over hundreds of days down to a similar cost as with the standard rectangular
LALPulsar CPU implementation.

We can also more directly compare these measurements to the timing model from
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Table 1. Timing results from figure 1, fit assuming dominant Nt0 Nτ scaling for
rectangular windows and Nsums scaling for exponential windows, and converted
to the timing constants cr, ce as introduced by [1]. Fit errors are < 1%. See
Appendix A for details and for complementary example fits of the more general
timing model.
Note that ce < cr for the GPUs does not mean that the overall search for an
exponential window is faster than for a rectangular window, as these constants
are multiplied with different summation counters, see (A.1) and (A.2).

CPU/GPU cr [s] ce [s]

Core2Duo 2.6 GHz 4.2 · 10−8 1.3 · 10−7 from [1]
i5-6200U 6.4 · 10−8 1.1 · 10−7

Xeon X5675 3.5 · 10−8 7.0 · 10−8

Xeon E5-2630 3.4 · 10−8 5.7 · 10−8

Xeon E5-2650 3.6 · 10−8 6.0 · 10−8

GTX-1050 6.1 · 10−9 1.4 · 10−9

GTX-1060 4.8 · 10−9 9.1 · 10−10

GTX-1070 4.2 · 10−9 7.3 · 10−10

GTX-1080 4.4 · 10−9 6.2 · 10−10

Tesla-V100 4.3 · 10−9 4.6 · 10−11

Appendix A3 of [1]. We find that to cover arbitrary combinations of {Tdata, Nt0 , Nτ},
we need to somewhat generalise the model. This is done in detail in our Appendix A.
However, for the timings presented in figure 1, we are in regimes where the cost for
rectangular windows is dominated by the Nt0 Nτ scaling and the cost for exponential
windows is dominated by the Nsums scaling. The results, converted to the ‘timing
constants’ as introduced in [1], are listed in table 1, and are generally consistent with
fits of the more general timing model.

4.2. Memory

GPU applications are often memory-limited. However, for the transient F-statistic
map, we do not expect GPU memory to be a significant constraint, as we see in the
following. With the current approach, the input atoms need to be transferred to GPU
memory only for a single λ parameter space point at a time, then the Fmn(λ) matrix
is computed and returned. Hence, the peak GPU memory usage of input plus output
matrices is expected to be

M [bytes] = 4 ( 7NSFT +Nt0Nτ ) , (9)

where 4 bytes is the base size of a real32 number in the underlying NumPy [19] package.
While the input array size grows only linearly with NSFT, assuming dt0 = dτ = TSFT
the Fmn matrix grows quadratically and will dominate memory usage at long Tobs.
However, in practice one might want to choose an undersampling of t0, τ .

A comparison of this expectation with practical memory usage measurements is
presented in figure 2. For TSFT = 1800 s and dt0 = dτ = TSFT, the memory usage
reaches only about 1.1 GB for a year of data, and with undersampling even much
longer data sets would remain easily feasible on current GPUs, even when multiple
jobs need to run on a single device.
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Figure 2. GPU memory usage on a GeForce
GTX 1070 (8 GB RAM) with CUDA V8.0.61.
Measured with TSFT = 1800 s and a resolution
of dt0 = dτ = TSFT at all Tobs. Each data
point is the difference between the output of
a call to pycuda.driver.mem get info() right
before allocating input and output arrays with
pycuda.gpuarray, and a call right afterwards.
The dashed line is the expected 4(7NSFT +
Nt0Nτ ) scaling (in bytes). As Tobs → 0, we
find that the base memory use for the kernel
itself (and any other possible overheads) seems
to be only about 2–4 MB.

4.3. Accuracy

The original LALPulsar implementation is already using single precision for the atoms
and the F-statistic itself, so in contrast to some other GPU use cases [20] it was not
necessary to reduce the code’s internal precision for the pyCUDA version. However, the
F-statistic algorithm is already known to produce slightly different numerical results
on different CPU platforms, so it is worth checking the typical amount of differences
in the transient F-statistic between LALPulsar and pyCUDA versions.

As demonstrated for a particular test case in figure 3, we typically find negligibly
small differences, not larger than other implementation- and platform-dependent
variations in the F-statistic known from other work (e.g. [21]).

One implementation detail to note is that in the exponential case the LALPulsar

implementation uses a lookup-table (LUT) based ‘fast exponential’ function.‖ This
can actually lead to differences with pyCUDA of up to ∼ 10%, but figure 3 shows
results after replacing it with the exp() function of the C standard library, thus
verifying that the difference did not come from a loss of accuracy with the new pyCUDA

implementation.

5. Conclusion and applications

The significant speedup achieved with our pyCUDA implementation of the transient
F-statistic will allow for a wider scope of searches for long-duration transient GWs.
We now discuss a few example applications that would be hard resource-wise, or even
prohibitive, on CPUs but could become viable with GPUs.

Let us first consider the natural use case of a GW data analysis triggered by
radio observations of a pulsar glitch. Quasi-monochromatic GW emission, which
the F-statistic is sensitive to, could be associated with the post-glitch relaxation.
Depending on the pulsar, this can have timescales of days to months [22, 23].
As a simple transient search setup, assume we look at a single fixed t0 and at
τ ∈ [2TSFT, Tobs = 4 months] with δτ = TSFT = 1800s. With these parameters, we

‖ As of the writing of this paper, with git tag d0d28012640f649bd910367c027385556689ed38 of the
https://git.ligo.org/lscsoft/lalsuite/ repository.

https://git.ligo.org/lscsoft/lalsuite/
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Figure 3. Comparison of Fmn computed with the LALPulsar and pyCUDA

implementations. Each histogram gives the differences ∆Fmn between the two
implementations for a certain transient window, and either for pure Gaussian
noise or also including a (confidently detectable, max 2F ≈ 263) signal injection
with matching window function. The histograms are taken over all individual
Fmn values for 1000 frequency bins over a 1-day data set with TSFT = 1800. The
GPU for this test was a GeForce GTX 1070.

find a Tesla-V100 GPU outperforms a Xeon-E5 CPU by a runtime factor of ≈ 10 for
rectangular windows and ≈ 2300 for exponential windows. Still, with a single GW
search template matching the post-glitch radio timing solution (at fGW = 2fspin),
such an analysis would be computationally trivial even on a single CPU (≈ 1700s for
exponential windows).

However, it would be reasonable to allow for some mismatch between the radio
timing and GW frequency evolution due to the perturbed state of the NS after a
glitch. For comparison, the ‘narrow-band’ search for CWs from known pulsars in the
first aLIGO run [10] (using 121 days of data) covered some ranges in frequency f and
spindown ḟ for each of its 11 targets, with totals of e.g. 2.2 · 106 templates for the
Vela pulsar and 1.68 · 108 for the crab pulsar.¶

Multiplying these numbers of templates with the per-template transient F-
statistic cost (which in this setup again dominates over the rest of the F-statistic
search code), we find that a single Tesla-V100 GPU could perform an exponential-
window transient analysis over the Vela band in less than 3 weeks, while the same
analysis would take 120 years on a single Xeon-E5-like CPU; or equivalently would
require over 2300 CPUs to only take the same 3 weeks as the single GPU.

Meanwhile, for the wider Crab analysis range (which is due to its strong
spindown), even the GPU would still need 4 years (compared to 9000 years for a
single CPU). While we can trivially further parallelise the problem by splitting the
(f, ḟ) space over multiple GPUs, only a small number of such devices are available
on current computing clusters. We can gain some more speed-up by reducing the
sampling in τ , but in the end the parameter space for the Crab would need to be
somewhat reduced in practice.

In summary, performing routine transient F-statistic analyses of all observed

¶ The nf column in Table I of [10] contains some typos; the correct total number of templates for

each target is obtained as nf nḟ = ∆f
δf

∆ḟ

δḟ
with δf = 9.5 · 10−8 Hz and δḟ = 9.15 · 10−15 Hz/s.
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glitches in known galactic pulsars during a GW observation run – with reasonably
wide f and ḟ bands (similar to those used in [10], or only slightly reduced) – becomes
feasible with a few dedicated GPU systems.

Similar estimates apply when considering the follow-up [12, 24, 25] of significant
or marginal detection candidates produced by wide-parameter space CW searches [3].
Even though those searches target perfectly persistent signals, they can also produce
candidates if there are sufficiently strong transient events in the data [26]. A
comprehensive transient-aware follow-up, with the goal of either verifying the
presumed persistent nature or uncovering a transient signal instead, needs to not only
target the exact phase-evolution parameters λ of the candidate, but search a wider
band around it to account for degeneracies with the transient evolution parameters.
Reducing the computational cost of each candidate’s follow-up directly translates into
a larger number of candidates that can be analysed, so that the overall threshold of
the CW search can be lowered and a better search sensitivity can be achieved.

The data length and {t0, τ} ranges in this scenario can be longer than in the EM-
triggered post-glitch scenario: the aLIGO runs O1–O3 took data for / are scheduled
for 4, 9 and 12 months respectively [27], and for the follow-up of a strong candidate
data from multiple observing runs could get combined. The range of phase evolution
parameters λ that should be searched for full coverage depends on the exact setup of
the CW search and on possible intermediate follow-up steps; but the scaling of the
transient F-statistic cost is similar as in the EM-triggered case (see Appendix A for
the full timing model) and the improvements in accessible search volume using a small
number of GPUs over CPUs will be similar.

In the longer term, untriggered all-sky searches for long-duration transients are
of high interest. Similarly to all-sky CW searches, they have the potential to discover
a population of electromagnetically dark NSs, for example glitching pulsars with
their beam pointed away from Earth. The sensitivity of all-sky searches is directly
limited by how densely they can cover the λ parameter space at a fixed computational
budget. [28, 29]. Hence, adding transient parameters at first significantly reduces the
overall sensitivity of a blind search. But speeding up the transient part by orders of
magnitude could still make a combined search for CWs and transients feasible in the
long run, when large numbers of GPUs become available in high-performance clusters
or through Einstein@Home [30]. In practice, though, the more promising approach
for blind transient searches might be to apply a cheap add-on transient modification,
like that introduced in [26], to a semi-coherent CW algorithm as a first search stage,
then apply the fully-coherent transient F-statistic only in a follow-up step.

In any of these scenarios, while we have focussed on the fact that the pyCUDA

version can bring down the cost of exponential-windowed transients significantly, the
cost for rectangular windows always remains smaller, so that in practice whenever
exponential windows are feasible, it is also cheap and natural to run both analyses
and evaluate a posteriori which one fits the data better. Different window functions
for the amplitude evolution could also be considered, and would generically follow the
GPU kernel grid setup and timing model for the exponential window, since it does
not assume any function-specific optimisations.
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Appendix

Appendix A. Generalising the PGM2011 timing model

Here we revisit the timing model for computing Fmn maps introduced in Appendix
A3 of [1]. Their equations (A13) and (A14) give the computing cost for a single-λ
Fmn map with either exponential

ceFmap ≈ ce
∆t0
dt0

∆τ

dτ

(τmin + ∆τ/2)

TSFT
≈ ceNt0 Nτ

(τmin + ∆τ/2)

TSFT
(A.1)

or rectangular window functions:

crFmap = cr
∆t0
dt0

(τmin + ∆τ)

TSFT
≈ crNt0

(τmin + ∆τ)

TSFT
= crNt0

τmax

TSFT
. (A.2)

The timing constants ce and cr are interpreted as the cost to compute the (weighted)
sums over atoms at each step. The exponential model corresponds to a ‘generic’ case
where all quantities have to be re-evaluated at each step, while the rectangular case
reuses partial sums as discussed before.

We note now that this formulation of the timing model does not explicitly include
the cost of computing the antenna pattern matrix determinant D̂ and the F-statistic
itself, which is done once for each (m,n) pair after all sums have been computed and
hence is independent of the window function choice.+ We can include this contribution
by adding a term +cF Nt0Nτ to both cases. It will be very subdominant for exponential
windows, where the summations term grows much faster than Nt0Nτ , but can be
relevant for rectangular windows where the summations term is more efficient.

Another small contribution to the timing model is from setup and index-lookup
costs that scale with the total number of SFTs handed to the F-statistic-map function;
for completeness we include a common term cSFTsNSFT.

In addition, Eqs. (A.1) and (A.2) only hold true if the full range of transient signal
durations explored by the Fmn map is fully contained within the available data range,
that is when t0max + τmax < T0 + Tdata. (We call this the ‘embedded’ case below.)
Otherwise, i.e. if some of the transient windows overlap the end of the available data,
by convention the LALPulsar code still returns results for the full rectangular Fmn
matrix, but truncates the atoms summations. Thus, the total computing cost in such
cases is lower than estimated by Eqs. (A.1), (A.2) and using them to fit the timing
constants from runtime measurements as in Sec. 4.1 would yield inconsistent results.

Hence, we generalise the PGM timing model by introducing Nsums as the effective
number of summation steps for an Fmn map, which depends on the window type, Tdata,
and the ranges of both t0 and τ :

ceFmap ≈ cSFTsNSFT + cesumsN
e
sums + cF Nt0 Nτ , (A.3)

+ In its scalings, this extra cost is degenerate with the marginalisation cost cmarg of PGM’s Eq. (15),
in search code executions were both Fmn maps and marginal Bayes factors are computed; so it was
effectively included in PGM’s overall code timing, but just attributed to a different part of the model.



GPU transient F-statistic 11

crFmap ≈ cSFTsNSFT + crsumsN
r
sums + cF Nt0 Nτ . (A.4)

For rectangular windows, we have

N r
sums =

Nt0∑
m=1

min(Tdata − t0m, τmax)

TSFT
, (A.5)

which reduces to PGM’s N r
sums = Nt0τmax/TSFT in the special ‘embedded’ case

that PGM considered, and to N r
sums = 0.5Nt0τmax/TSFT in the special case of

Nt0dt0 = Nτdτ = Tdata − 2TSFT that we used for the timing results in Sec. 4.1.
For exponential windows, we also need to note that the current code’s convention,

as introduced in Eq. (18) of [1], is that an exponential window with duration parameter
τ covers an effective length of 3τ/TSFT atoms. (The exponential decay is not cut off
after only one, but after three e-folds, where the remaining SNR would be much more
negligible.) Hence, PGM’s original timing constant ce effectively contains a factor of
3 (from counting all steps in τ) that we now include in N e

sums instead:

N e
sums =

Nt0∑
m=1

Nτ∑
n=1

min(Tdata − t0m, 3 τn)

TSFT
. (A.6)

In the ‘embedded’ case this reduces to 3Nt0
Nτ∑
n=1

τn/TSFT = 3Nt0Nτ (τmin + 0.5∆τ)/TSFT,

equivalent to PGM’s result up to the factor of 3.
In practice, on each architecture we can use these more general equations (A.3)–

(A.6) to fit the four timing constants {cSFTs, cF , c
r
sums, c

e
sums} from a variety of setups

(in terms of Tdata, [t0min, t0max], [τmin, τmax]), then consider the special ‘embedded’
case∗ (and Nτ � 1, τmax � τmin) to directly compare to [1] by

cr = crsums +
TSFT
τmax

(
cSFTs

NSFT

Nt0
+ cF Nτ

)
≈ crsums + cF , (A.7)

ce = 3cesums +
TSFT

τmin + 0.5∆τ

(
cSFTs

NSFT

Nt0Nτ
+ cF

)
≈ 3cesums +

2

Nτ
cF ≈ 3cesums .(A.8)

Using a set of timing runs that in addition to those in section 4.1 also cover many
different combinations of {Tdata, Nt0 , Nτ}, and also measuring only the executation
time of the actual F-statistic map function (while in section 4.1 the whole search
call is timed, including the contribution of computing the atoms, which is usually
subdominant but not in the limit of low Nt0 Nτ and Nsums), we do a detailed fit of
the full timing model of (A.3) and (A.4), in the following iterative steps to ensure
convergence:

(i) fit the cSFTsNSFT term only to short data sets with Nsums ≤ 100

(ii) using this fixed cSFTs, fit crsumsN
r
sums + cF Nt0 Nτ for rectangular windows

(iii) using fixed cSFTs and cF , fit cesumsN
e
sums for exponential windows

∗ The example used for timing in Appendix A3 of [1] is 1 year of data with τ ∈ [0.5, 14.5] days; which
means that with t0 close to the end of the year and τmax = 14.5 days the overlap is at most 4% and
the deviations from the fully-embedded special case used for this comparison are smaller than typical
timing uncertainties.
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We find e.g.

crFmap ≈ ((2.80± 0.03)NSFT + (0.96± 0.08)N r
sums + (5.59± 0.06)Nt0Nτ ) 10−8 s (A.9)

ceFmap ≈ ((2.80± 0.03)NSFT + (3.55± 0.03)N e
sums + (5.59± 0.06)Nt0Nτ ) 10−8 s(A.10)

for the i5-6200U laptop CPU (corresponding to PGM constants cr = (6.36± 0.08)10−8

and ce = (1.07± 0.01)10−7); and

crFmap ≈ ((2.59± 0.02)NSFT + (0.27± 0.02)N r
sums + (3.09± 0.02)Nt0Nτ ) 10−8 s(A.11)

ceFmap ≈ ((2.59± 0.02)NSFT + (2.22± 0.03)N e
sums + (3.09± 0.02)Nt0Nτ ) 10−8 s(A.12)

for the Xeon X5675 workstation CPU (corresponding to PGM constants
cr = (3.26± 0.02)10−8 and ce = (6.67± 0.08)10−8). These results agree reasonably
well with those obtained on the same systems, but with fixed Nt0 , Nτ in relation to
Tdata and with simplified fits, as presented in table 1. While the error bars from fitting
alone appear too small to explain the remaining differences of 0.5–7%, it is likely that
variations in system configuration and load between timing runs are the main culprit.

References

[1] Prix R, Giampanis S and Messenger C 2011 Phys. Rev. D 84 023007 [arXiv:1104.1704]

[2] Prix R (for the LIGO Scientific Collaboration) 2009 Gravitational Waves from Spinning
Neutron Stars (Astrophys. Space Sci. Lib. vol 357) (Springer Berlin Heidelberg) chap 24,
pp 651–685 ISBN 978-3-540-76964-4 URL https://dcc.ligo.org/LIGO-P060039/

public

[3] Riles K 2017 Mod. Phys. Lett. A32 1730035 [arXiv:1712.05897]

[4] Aasi J et al. (LIGO Scientific Collaboration) 2015 Class. Quant. Grav. 32 074001
[arXiv:1411.4547]

[5] Acernese F et al. (Virgo Collaboration) 2015 Class. Quant. Grav. 32 024001
[arXiv:1408.3978]

[6] Jaranowski P, Królak A and Schutz B F 1998 Phys. Rev. D 58 063001 [arXiv:gr-
qc/9804014]

[7] Cutler C and Schutz B F 2005 Phys. Rev. D 72 063006 [arXiv:gr-qc/0504011]

[8] Aasi J et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2015 Astrophys.
J. 813 39 [arXiv:1412.5942]

[9] Zhu S J et al. 2016 Phys. Rev. D 94 082008 [arXiv:1608.07589]

[10] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2017 Phys.
Rev. D 96 122004 [arXiv:1707.02669]
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