
Classical and Quantum Gravity

LETTER • OPEN ACCESS

The stochastic gravitational-wave background in the absence of horizons
To cite this article: Enrico Barausse et al 2018 Class. Quantum Grav. 35 20LT01

 

View the article online for updates and enhancements.

This content was downloaded from IP address 194.94.224.254 on 15/10/2018 at 08:54

https://doi.org/10.1088/1361-6382/aae1de
http://oas.iop.org/5c/iopscience.iop.org/64651483/Middle/IOPP/IOPs-Mid-CQG-pdf/IOPs-Mid-CQG-pdf.jpg/1?


1

Classical and Quantum Gravity

The stochastic gravitational-wave 
background in the absence of horizons

Enrico Barausse1 , Richard Brito2 , Vitor Cardoso3,4 , 
Irina Dvorkin2 and Paolo Pani5

1 Institut d’Astrophysique de Paris, CNRS & Sorbonne Universités, UMR 7095,  
98 bis bd Arago, 75014 Paris, France
2 Max Planck Institute for Gravitational Physics (Albert Einstein Institute),  
Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
3 CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade  
de Lisboa, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
4 Perimeter Institute for Theoretical Physics, 31 Caroline Street North Waterloo, 
Ontario N2L 2Y5, Canada
5 Dipartimento di Fisica, ‘Sapienza’ Università di Roma & Sezione INFN Roma1, 
Piazzale Aldo Moro 5, 00185, Roma, Italy

E-mail: barausse@iap.fr

Received 16 July 2018, revised 13 September 2018
Accepted for publication 17 September 2018
Published 3 October 2018

Abstract
Gravitational-wave astronomy has the potential to explore one of the deepest 
and most puzzling aspects of Einstein’s theory: the existence of black holes. 
A plethora of ultracompact, horizonless objects have been proposed to arise 
in models inspired by quantum gravity. These objects may solve Hawking’s 
information-loss paradox and the singularity problem associated with black 
holes, while mimicking almost all of their classical properties. They are, however, 
generically unstable on relatively short timescales. Here, we show that this 
‘ergoregion instability’ leads to a strong stochastic background of gravitational 
waves, at a level detectable by current and future gravitational-wave detectors. 
The absence of such background in the first observation run of Advanced LIGO 
already imposes the most stringent limits to date on black-hole alternatives, 
showing that certain models of ‘quantum-dressed’ stellar black holes can be at 
most a small percentage of the total population. The future LISA mission will 
allow for similar constraints on supermassive black-hole mimickers.
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1. Introduction

According to general relativity and the standard model of particle physics, dark and compact 
objects more massive than  ≈3M� must be black holes (BHs) [1]. These are characterized by 
an event horizon, causally disconnecting the BH interior from its exterior, where observa-
tions take place. In classical gravity, BHs can form from gravitational collapse [2], providing 
a sound and compelling theoretical support for their existence. When quantum effects are 
included at semiclassical level, however, BHs are not completely ‘dark’, but evaporate by 
emitting thermal black-body radiation [3]. For astrophysical BHs, evaporation is negligible. 
Therefore, BHs are commonly accepted to exist—with masses in the ranges from  ∼10M� 
to  ∼60M� (and perhaps larger mass), and from  ∼105M� to  ∼1010M�—and play a fundamen-
tal role in astronomy and astrophysics [4].

It is sometimes not fully appreciated that BHs are truly ‘holes’ in spacetime, where time 
‘ends’ and inside which the known laws of classical physics break down [5]. Furthermore, the 
classical concept of an event horizon seems at clash with quantum mechanics, and the very 
existence of BHs leads to unsolved conundra such as information loss [5]. Thus, in reality, the 
existence of BHs is an outstanding event, for which one should provide equally impressive 
evidence [6–8]. In previous decades several alternatives and arguments have been put forward 
according to which—in a quantum theory—BHs would either not form at all, or would just be 
an ensemble of horizonless quantum states [9–15].

From a theoretical standpoint, BHs therefore lay at the interface between classical gravity, 
quantum theory and thermodynamics, and understanding their nature may provide a portal 
to quantum gravity or other surprises. In the formal mathematical sense, it is impossible to 
ever show that BHs exist, since in general relativity their definition requires knowledge of the 
whole spacetime, including the future [2]. However, the newborn gravitational-wave (GW) 
astronomy allows us to constrain alternatives to BHs to unprecedented level. GW detectors 
can rule out a wide range of models, through observations of inspiralling binaries or the relax-
ation of the final object forming from a merger [6–8, 16–18]. Here, we explore one significant 
effect that follows from the absence of the most salient feature of a BH, the event horizon. 
We will show that compact, horizonless spinning geometries would fill the universe with a 
background of GWs detectable by current and future instruments, through a classical process 
known as the ‘ergoregion instability’ [19, 20].

2. Ergoregion instability

In Einstein’s theory, the unique globally vacuum astrophysical solution for a spinning object 
is the Kerr geometry. It depends on two parameters only: its mass M and angular momentum 
J = GM2χ/c, with G Newton’s constant, c the speed of light and |χ| � 1 a pure number. 
The compact, dark objects in our universe could depart from the Kerr geometry in two dis-
tinct ways. The near-horizon structure might change significantly, while retaining the hori-
zon [21–23]. In coalescing binaries, such effects can be probed by GW measurements of the 
quadrupole moment, the tidal absorption and deformability [7, 8, 24, 25], and especially the 
quasinormal oscillation modes of the remnant object [26, 27]. Here we explore a second (and 
more subtle) scenario, where the geometry is nearly everywhere the same as that of a BH, but 
the horizon is absent. Two smoking-gun effects arise in this scenario. First, the late-time ring-
down consists generically of a series of slowly damped ‘echoes’ [6, 8, 25, 28]. Furthermore, 
by working as a one-way membrane, horizons act as a sink for external fluctuations, including 
those inside the ergoregion, where negative-energy states are possible [20, 29]. Such states are 
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typically associated with instabilities: their existence allows scattering waves to be amplified, 
i.e. positive-energy perturbations can be produced, which can travel out of the ergoregion. 
Energy conservation then requires the negative-energy states inside the ergoregion to grow. 
In a BH, this piling up can be avoided by dumping the negative energy into the horizon, thus 
stabilizing the object. In the absence of a horizon, instead, this process leads to an exponential 
cascade. As a consequence, spinning BHs are linearly stable, but any horizonless object suf-
ficiently similar to a rotating BH is unstable [19, 30–32].

2.1. Canonical model: perfectly reflecting surface

We start by the simplest model of horizonless geometries: a compact body whose exterior is 
described by the Kerr metric, and with a perfectly reflective surface. This spacetime defines a 
natural cavity, i.e. the region between the object’s surface and the potential barrier for mass-
less particles (the ‘photon sphere’) (see figure 1). In this cavity, negative-energy modes, and 
thus instabilities, can be excited [15, 33]. The dynamics is controlled by two parameters: the 
size of the cavity and the object’s angular velocity, which determine how fast the instability 
grows. The cavity size can be parametrized by the light travel time t0 (as observed at infinity) 
between the photon sphere and the object’s surface [6–8, 20]. The timescale t0 also defines a 
set of possible modes, with fundamental frequencies ω = ωR + iωI and ωR ∼ π/t0. The insta-
bility is controlled by the amplification factor |A|2 of the ergoregion at this frequency [20], i.e. 
ωI ∼ |A|2/t0. This follows from a very generic ‘bounce-and-amplify’ argument, which was 
shown to accurately describe specific models [15, 20].

A scalar, electromagnetic, or gravitational perturbation in such a geometry grows exponen-
tially on a timescale τ ≡ 1/ωI. The characteristic unstable modes can be computed numer-
ically and agree well with bounce-and-amplify estimates [15, 34]. When t0 � tH ≡ GM/c3, 
these modes are well described by [15, 32–35]

ωR � − qπ
2t0

+ mΩ, (1)

ωI � −βls
tH
t0
(1 +∆)∆2l (2ωRtH)

2l+1
(ωR − mΩ), (2)

Figure 1. Schematic potential for a non-spinning ultracompact object, as a function 
the tortoise radial coordinate (in practice, the coordinate time t of a photon). For object 
radii r0 ∼ r+, the radiation travel time from the photosphere to the surface scales 
approximately as t0 ∼ tH| log ε|. The travel time from the surface to the interior is 
parametrized as tinterior.
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where ∆ =
√

1 − χ2, Ω(χ) is the object’s angular velocity, β
1/2
ls = (l − s)!(l + s)!/

[(2l)!(2l + 1)!!] for a spin-s perturbation with angular number l [20, 36], and q is a positive 
odd (even) integer for Dirichlet (Neumann) boundary conditions at the surface [34]. Thus, the 
spacetime is unstable for ωR(ωR − mΩ) < 0 (i.e. in the superradiant regime [20]), on a tim-
escale τ ≡ 1/ωI. Here we consider the dominant gravitational mode (l  =  m  =  2) to estimate 
the background of GWs.

Equations (1) and (2) are valid for any object able to completely reflect the incoming radia-
tion. In particular, if the object’s surface sits at a constant (Boyer–Lindquist) radius

r0 = r+(1 + ε), (3)

where r+ = GM(1 +∆)/c2 is the location of the (would-be) event horizon in these coordi-
nates, then the travel time reads [6, 8, 25]

tcanonical
0 ∼ tH| log ε|. (4)

Several different arguments about the magnitude of ε can be made. If quantum-grav-
ity effects become important at Planck timescales tP =

√
�G/c5 , it is natural to set 

ε = tP/tH ∼ 10−39–10−46 for stellar-mass to supermassive dark objects. These objects were 
dubbed ClePhOs in [15], and are impossible to rule out in practice via electromagnetic obser-
vations [8, 15].

2.2. Modelling the interior

The above description effectively decouples the outside geometry from the inside, and is accu-
rate when the flux across the surface vanishes. However, some models may have important 
transmittance. There are thus three different scenarios that need to be discussed in the general 
case:

 i.  The object does not dissipate, and the light travel time inside the object is small (i.e. 
tinterior ∼ tH � t0) . This situation describes most of the known models available in the 
literature, including gravastars [9, 25], for which the Shapiro delay dominates the travel 
time. In such a case, the geometric center of the star effectively works as a perfectly 
reflecting mirror (i.e. ingoing radiation from one side exits on the other side with negli-
gible delay), and the previous results (1)–(4) still apply.

 ii.  The object does not dissipate, and tinterior � t0. This model includes, for instance, ultra-
compact incompressible stars. These have moderate redshift and Shapiro delays in their 
exterior, but the light travel time in their interior can be very long [15, 37]. For these 
objects, a model of the interior is necessary, because even though all ingoing radiation 
will exit on the other side, delays/scattering due to the propagation in the interior will be 
important. To describe this case in a model-independent way, we assume that (1) and (2) 
continue to apply, and we promote t0 to a free parameter, without assuming equation (4).

 iii.  The object dissipates radiation in its interior. In this case, the instability may be com-
pletely quenched if the absorption rate is large [35]. For highly spinning objects, this 
requires at least 0.4% absorption rate for scalar fields, but up to 100% absorption rate for 
gravitational perturbations and almost maximal spins [20, 34, 38]. While these numbers 
reduce to �0.1% for spins χ � 0.7, they are still several orders of magnitude larger than 
achievable with viscosity from nuclear matter [35].

Based on the above arguments, we expect the following results to cover all relevant models 
of BH mimickers.
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2.3. Evolution of the instability

The evolution of the object’s mass and angular momentum, under energy and angular momen-
tum losses, can be computed within the adiabatic approximation (because τ � tH ) [39]. The 
unstable mode is simply draining energy and angular momentum from the object, which we 
assume to have an equation of state such that ε = const during the evolution. From energy and 
angular momentum conservation, the evolution equations for each mode read

Ė = Ė0 e2ωI t, Ṁ = −Ė/c2, J̇ = −mĖ/ωR, (5)

where Ė0 encodes the initial preturbation of the (unstable) system. Since the instability is 
exponential, the overall evolution is insensitive to the precise value of these initial conditions. 
The equations above are valid for a monochromatic mode in a generic stationary and axisym-
metric background. The energy flux can be written as dE/df = Ė/ḟ , where f = ωR/(2π) is 
the frequency associated with the mode. From the evolution equations, we can evaluate Ṁ and 
J̇ and, in turn, ω̇R. To leading order in the ε → 0 limit, we obtain ωR ∼ mΩ, and

dE
df

∼ 16G2π2

m2c4 fM3, (6)

valid for any angular numbers l and m. In the same limit, the critical value of spin above which 
the ergoregion instability occurs reads [34, 35]

χcrit ≈
πq

m| log(ε)|
≈ 0.035 q

m
log−1

( ε

10−40

)
. (7)

Thus, if χ(t = 0) > χcrit , the instability removes energy and angular momentum until 
superradiance is saturated, i.e. χ(t � τ) → χcrit. Note that the small spin value χcrit is com-
patible with the low measured spins of inspiralling compact objects detected via GWs so 
far [40]. Since we are interested in gravitational perturbations, when solving the evolution 
equations (5) and computing the energy flux (6) we only consider the dominant l  =  m  =  2 
mode and neglect higher-modes. For each initial spin χ and travel time t0 we only consider 
the dominant q-mode associated with the shortest instability timescale. Note also that the 
above analysis assumes that the backreaction of these fields on the geometry is negligible. Our 
results indicate that those are always reliable approximations.

2.4. GW stochastic background

A population of GW sources too far and/or weak to be detected individually may still give 
rise to a ‘stochastic’ background detectable by a network of interferometers, e.g. the LIGO/
Virgo network, sensitive to frequency ranging from  ∼10 to  ∼100 Hz [41, 42]; the pulsar-
timing-array experiments [43–47], which are already constraining backgrounds at frequen-
cies  ∼10−9–10−6 Hz; and the future LISA constellation [48], which will be sensitive to 
frequencies between 10−6 Hz and  ∼1 Hz. The background is produced by the incoherent 
superposition, at the detector, of the GW signals from all the unresolved sources in the popula-
tion. The background can be characterized either by (i) its (dimensionless) energy spectrum

Ωgw( fo) =
1
ρc

dρgw

d ln fo
, (8)

(ρgw being the background’s energy density, fo the frequency measured at the detector and ρc the 
critical density of the Universe at the present time), obtained by summing the energies emitted 
by all the unresolved sources in a given frequency bin [49]; or (ii) directly by the characteristic 
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strain hc( fo) observed in the detector, which can be obtained summing in quadrature (and 
binning in frequency) the strain amplitudes of all the unresolved sources [50]. The two quanti-
ties are related by Ωgw( fo) = 2π2 [ fohc( fo)]

2
/(3H2

0), where H0 ≈ 68 km (s Mpc)−1 is the 
Hubble rate. While these two ways of computing the background signal are equivalent [50], 
we have implemented both as a consistency check of our results. This also allows us to check 
that the number of sources contributing in each frequency bin is typically large as long as the 
bin size is �0.01 dex in the LISA band (which ensures that the number of sources contributing 
99% of the signal in each bin ranges from thousands to millions). In the LIGO band, sources 
are even more numerous: frequency bins �0.01 dex yield 109–1014 sources contributing 99% 
of the signal in each bin. (These are mostly extragalactic sources, as Galactic ones give a 

Figure 2. Extragalactic stochastic background for the canonical model in the LIGO/
Virgo (top panel), LISA and PTA bands (bottom panel). The blue band brackets our 
population models (from the most pessimistic to the most optimistic, as explained in the 
main text). The background depends very weakly on ε as long as t0 ∼ tH| log ε| � 1010tH , 
so here we show only the case t0 ∼ tH| log 10−40|. The black lines are the power-law 
integrated curves of [51], computed using noise PSDs for LISA with one year of 
observation time [48], LIGO’s first observing runs (O1), LIGO at design sensitivity 
as described in [52], and an SKA-based pulsar timing array as described in [53]. By 
definition, ρstoch > 2 (ρstoch = 2) when a power-law spectrum intersects (is tangent to) 
a power-law integrated curve.

Class. Quantum Grav. 35 (2018) 20LT01
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negligible contribution to the background.) This in turn implies, in particular, that the back-
ground is expected to be smooth with that frequency binning [50]. When computing the sto-
chastic background of unstable exotic compact objects, the energy flux given by equation (6) 
is defined in the frequency range f ∈ [ fmin, fmax]; fmax can be computed using equation (1) for 
a given initial mass and spin of the compact object, and fmin is computed by solving the evo-
lution equation (5) from the formation redshift of the compact object to the present time.

For the astrophysical populations of isolated BHs, we adopt the same models as in  
[49, 54]. We assume that all such astrophysical BH candidates are actually BH mimickers. 
For stellar-origin BHs we account for both Galactic and extragalactic BHs that form from the 
core collapse of massive (�20M�) stars, by tracking the cosmic star formation history and 
the metallicity evolution of the Universe [55]. We assume a uniform distribution for the initial 
spins with χ ∈ [0, 1] as the most optimistic and χ ∈ [0, 0.5] as the most pessimistic scenario. 
For the massive (∼104–107M�) and supermassive (∼108–1010M�) BHs that emit respectively 
in the LISA and PTA bands, we adopt the semi-analytic galaxy-formation model of [56] (with 
later incremental improvements described in [57–59]), which follows the formation of these 
objects from their high-redshift seeds and their growth by accretion and mergers. This growth 
is triggered in turn by the synergic co-evolution of the BHs with their host galaxies, of which 
we evolve both the various baryonic components and the dark-matter halos. This model is 
optimistic since it predicts a spin distribution skewed towards large spins, at least at low 
masses. To include astrophysical uncertainties in our computation, we also consider models 
in between our most optimistic and most pessimistic assumptions as described in [49] (see 
section 3 therein).

3. Results

Our main results for the GW stochastic background from exotic compact objects are shown 
in figure 2 in the frequency bands relevant for LIGO/Virgo (top panel) and for LISA/an SKA-
based pulsar timing arrays (bottom panel). The top panel suggests that the absence of a sto-
chastic background in LIGO O1 already rules out our canonical model even for conservative 
spin distributions, while LIGO at design sensitivity will be able to rule out our canonical 
model even in more pessimistic scenarios than those assumed here, e.g. even if all BH-like 
objects had initial spin χ < 0.2. Similar results apply in the LISA band, whereas the stochastic 
signal is too small to be detectable by pulsar timing arrays, even in the SKA era6.

The level of the stochastic background shown in figure  2 can also be understood with 
an approximate analytic calculation [54]. The BH-mimicker mass fraction lost to GWs due 
to superradiance is Fsr ∼ O(1%) [49, 61]. Because the signal spans about a decade in fre-
quency (see equation (1)), ∆ ln f ∼ 1, and ΩGW, sr = (1/ρc)(dρGW/d ln f ) ∼ FsrρBH/ρc, with 
ρGW and ρBH the GW and BH-mimicker energy densities. In the mass range 104–107M� 
relevant for LISA, ρBH ∼ O(104)M�/Mpc3, which gives ΩLISA

GW, sr ∼ 10−9. To estimate 
the background in the LIGO band, note that the background from ordinary BH binaries is 
ΩGW, bin ∼ ηGWFmρBH/ρc, with ηGW ∼ O(1%) the GW emission efficiency for BH bina-
ries [62], and Fm ∼ O(1%) [55] the fraction of stellar-mass BHs in merging binaries. This 

6 This is because the frequency given by equation (1) is in the range of pulsar timing arrays only for BH mimickers 
of masses �1011M�, where astrophysical BH candidates are expected to be extremely rare (if any exist) [60], or 
for systems of smaller masses but also lower spins, which either emit GWs very weakly or are stable. These latter 
sources do indeed produce the small background visible in figure 2. Moreover, even if BH mimickers with masses 
�1011M� existed, equation (2) gives instability timescales larger than the Hubble time, i.e. these systems are  
effectively stable.

Class. Quantum Grav. 35 (2018) 20LT01
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gives ΩGW, sr/ΩGW, bin ∼ Fsr/(ηGWFm) ∼ 102 , and because the LIGO O1 results imply 
ΩGW, bin � 10−9–10−8 [52, 63], we obtain ΩLIGO

GW, sr � 10−7–10−6.
As shown in figure 3, LIGO/Virgo and LISA are also able to place model-independent 

constraints on the stochastic signal from exotic compact objects. At design sensitivity, LIGO/
Virgo can detect or rule out any model with t0 < 1014tH, whereas LISA can go as far as 
t0 < 1012tH. In other words, objects across which light takes 1014 or less dynamical timescales 
to travel are ruled out. Finally, we note that although LIGO/Virgo rule out a wider range of the 
parameter space compared to LISA, it is still interesting to consider the constraints from both 
detectors since they probe different BH populations.

4. Discussion

Our results suggest that the current upper limits on the stochastic background from LIGO O1 
already rule out the simplest models of BH mimickers at the Planck scale, setting the strongest 
constraints to date on exotic alternatives to BHs. The most relevant parameter for our analysis 

Figure 3. Same as in figure  2, but for an agnostic model for the compact-object 
(dissipationless) interior, where the light travel time t0 between the light ring and the 
surface is a free parameter.

Class. Quantum Grav. 35 (2018) 20LT01
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is the light travel time within the object, t0. LIGO/Virgo (LISA) can potentially rule out mod-
els where t0 < 1014tH (t0 < 1012tH). These results are not significantly dependent on the astro-
physical uncertainties of the extragalactic BH distributions, and even if exotic compact objects 
are produced all at low spin, the order of magnitude of our constraints is unaffected.

We conclude that all present and future models of exotic compact objects should either 
conform with t0 � 1014tH or represent at most a fraction X of the compact-object population, 
the remaining being BHs. Since equation (8) scales linearly with X, figure 2 implies that the 
O1 upper limits impose X < 50% even if all BH-like objects are formed with low spins. At 
design sensitivity, these constraints could improve to X < 1%.

It might be possible to evade these constraints, by incorporating some (exotic and still unclear) 
mechanism quenching the ergoregion instability, e.g. absorption rates several orders of magni-
tude larger than those of neutron stars [35]. While such quenching mechanism might result 
in thermal or quasi-thermal electromagnetic radiation (which can be constrained by electro-
magnetic observations of BH candidates [64, 65]), quantum-dressed BH mimickers might evade 
such constraints by trapping thermal energy in their interiors for very long timescales [8, 15].

Our results also imply that in the simplest models of non-dissipative exotic ultracompact 
objects, GW echoes [6, 8, 25] can appear in the post-merger phase only after a delay time 
τecho ∼ t0 � 1014tH ≈ 1010[M/(20M�)]s, which is orders of magnitude longer than what was 
claimed to be present in LIGO/Virgo data [66–68] (see also [69]). The latter claims would 
not be in tension with our bounds on the GW stochastic background only if one postulates 
exotic objects that are dissipative enough to absorb at least O(0.1)% of gravitational radiation 
(which is several orders of magnitude more than what typically achievable with nuclear mat-
ter). In this case, the stochastic background from a population of ‘echoing’ merger remnants 
might still be detectable [70].

Finally, our constraints are stronger than those one might infer from BH spin measure-
ments in x-ray binaries (see e.g. [71]). Indeed, those observations can only rule out instability 
timescales shorter than the BH age (in the more likely case in which the spin is natal [72], e.g. 
from supernova explosions) or the Salpeter timescale tS ∼ 107 yr (if the BH spin is produced 
by accretion), otherwise the BH would have no time to spin down under the effect of the 

Figure 4. Instability timescale for l  =  m  =  2 gravitational perturbations as function of 
the BH spin χ, for different values of t0.
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instability. However, the BH age is hard to reconstruct from the observed source properties, 
and in the few high-spin x-ray binaries where it was obtained via population synthesis model-
ling, it is of a few Myr [73, 74]. Therefore, obtaining exact bounds on the instability is tricky 
in the case of natal BH spins. Even if BH spins in x-ray binaries were accretion-produced, 
which is unlikely [72, 73], the obtained bound would simply be tinst � tS, which would still be 
marginally weaker than the constraints presented in this paper (see figure 4).

Let us also add that spin measurements in x-ray binaries are likely affected by unknown 
systematics (in several cases different techniques yield different results, see table 1 in [71]). 
More importantly, the very existence of the ergoregion instability in BHs surrounded by 
gas has never been investigated in detail, and the backreaction of the disk mass and angular 
momentum on the geometry, as well as the viscosity of the gas, may change the character and 
timescale of the instability.

Finally, let us comment on the relation between this work and [61], which computes the 
stochastic background from a hypothetical spin-down mechanism of BH merger remnants (in 
the LIGO/Virgo band only). Besides performing more realistic calculation of the spectrum 
dE/df  due to the ergoregion instability, our work crucially differs from [61] as we com-
pute the background from all BH mimickers in the Universe (including isolated ones), unlike 
[61] which only accounted for objects resulting from binary mergers. Since isolated compact 
objects are expected to be 1/Fm ∼ 100 times more numerous than merging binaries [55], our 
background level is about 100 times larger, which allows constraining BH alternatives with 
current LIGO/Virgo data.
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