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In previous works, we have demonstrated that the path integral for real, Lorentzian

four-geometries in Einstein gravity yields sensible results in well-understood physical

situations, but leads to unstable fluctuations when the “no boundary” condition

proposed by Hartle and Hawking is imposed. In order to circumvent our result, new

definitions for the gravitational path integral have been sought, involving specific

choices for a class of complex four-geometries to be included. In their latest proposal,

Diaz Dorronsoro et al. [1] advocate integrating the lapse over a complex circular

contour enclosing the origin. In this note we show that, like their earlier proposal,

this leads to mathematical and physical inconsistencies and thus cannot be regarded

as a basis for quantum cosmology.
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I. INTRODUCTION

The no-boundary proposal of Hartle and Hawking [2] has been an influential idea in

theoretical cosmology for more than three decades, and with good reason: it puts forth

a proposal for the initial state of the universe, from which everything else is supposed to

follow. If true, it would do no less than explain the origin of space and time. What is

more, the proposal involves only semi-classical gravity, i.e., a theoretical framework already

within reach of contemporary physics, without requiring the development of a full theory of

quantum gravity. Given the magnitude of this claim, it should be analyzed with care. In

previous works [3, 4] we attempted to put the no-boundary proposal on a sound mathematical

footing by defining the gravitational path integral more carefully. Unfortunately, we found

as a consequence that the no-boundary proposal leads to a universe with large fluctuations

which are out of control. Our work led Diaz Dorronsoro et al. to propose a new definition

of the no-boundary proposal, involving an inherently complex contour in the space of four-

metrics, i.e., one which cannot be deformed to an integral over real four-metrics and hence

has no geometrical interpretation. In particular, they chose to integrate the lapse N over

a complex contour running below the origin in the complex N -plane, from negative to
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positive infinite real values [5]. In follow-up work [6], we demonstrated the inconsistency of

this proposal. Very recently, Diaz Dorronsoro et al. have proposed yet another definition of

the no-boundary proposal, this time in a particular truncation of Einstein gravity and taking

instead a complex contour for the lapse which encircles the origin [1]. In this note we show

that this latest incarnation of the no-boundary idea also leads to physical and mathematical

inconsistencies.

II. PHYSICAL MOTIVATION

The path integral over four-geometries provides a well-motivated framework for the study

of semi-classical quantum gravity. In analogy with Feynman’s path integral formulation

of quantum mechanics, one attempts to define transition amplitudes between two three-

geometries h
(0)
ij , h

(1)
ij by summing over all four-geometries that interpolate between the initial

h
(0)
ij and final boundary h

(1)
ij , i.e.,

G[h
(1)
ij , h

(0)
ij ] =

∫ ∂g=h
(1)
ij

∂g=h
(0)
ij

DgeiS[g]/~ , (1)

where g denotes the four-metric. In this note, as in the work of Diaz Dorronsoro et al. , we

study a simplified model in which S[g] is taken to be the usual action for Einstein’s theory

of gravity plus a positive cosmological constant Λ.

In our previous works [3, 6] we demonstrated that, somewhat to our surprise, the path

integral, over real, Lorentzian four-geometries yields well-defined and unique results as it

stands, when evaluated semiclassically and in cosmological perturbation theory, i.e., when

we treat the four-geometry as a homogeneous, isotropic background with small, but other-

wise generic, perturbations. In contrast, we found the path integral over Euclidean four-

geometries (as originally advocated by Hartle and Hawking [2]), even at the level of the

homogeneous, isotropic background, to be a meaningless divergent integral. The key to

our work was the use of Picard-Lefschetz theory, a powerful mathematical framework that

allows one to rewrite highly oscillatory and only conditionally convergent integrals (such

as (1) turns out to be) as absolutely convergent integrals. To do so, one regards the inte-

gral (1) over real four-metrics as being taken over a real subspace in the space of complex

four-metrics. Cauchy’s theorem then allows one to deform the original, real integration
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domain into a complex domain consisting of one or more steepest descent integrals, which

are each absolutely convergent and whose sum yields the same result as the original inte-

gral. Note that Picard-Lefschetz theory, and the analytical continuation to complex metrics,

are merely a convenient (although very powerful) calculational tool, used to evaluate the

original, uniquely defined integral over real, Lorentzian four-geometries, in a saddle point

approximation.

One frequently raised question is the range over which the lapse N should be integrated

over in the path integral. The Lorentzian four-geometries we consider may be parameterized

with the line element −N2(t, x)dt2 + hij(t, x)dxidxj, where 0 ≤ t ≤ 1 is a good time-like

coordinate, i.e., a one to one, invertible map from the manifold into the closed unit interval.

The lapse N accounts, for example, for the proper time interval τ between two spacetime

points (t1, x
i) and (t2, x

i), both at fixed xi: one has τ =
∫ t2
t1
N(t, xi)dt. Note that the

coordinate t already defines an orientation for the integral: the lapse N is simply a local

rescaling, which must therefore be taken strictly positive as long as the coordinate chart

and the manifold are both nonsingular. Stated more generally, assigning a non-singular

coordinate system to a four-manifold already introduces an orientation, allowing one to

define integrals such as the action or measures of volume, area or length. Writing the metric

as usual by gµν = eAµ e
B
ν ηAB, with eAµ the frame field and ηAB the Minkowski metric, only

one continuously connected component of non-singular frame fields eAµ – for example the

component with strictly positive eigenvalues – is needed in order to describe a general,

nonsingular four-geometry. To sum over additional components (for example to sum over

both positive and negative lapse functions N while taking the determinant h to be positive)

is not only unnecessary, it represents an overcounting which is unjustified from a geometrical

point of view. Furthermore, although arbitrarily small N should be allowed, one should not

include the point N = 0 in the sum since it does not describe a four-geometry. Finally,

integrating over all Lorentzian four-geometries requires only real (and positive) values of N .

If that fundamental, geometrical definition can be deformed into a mathematically equivalent

integral over complex metrics which is easier to calculate, as Picard-Lefschetz theory and

Cauchy’s theorem allow, that is all well and good. But it makes little geometrical sense to

take an integral over complex lapse functions N as a fundamental definition of the theory.

In their most recent paper, Diaz Dorronsoro et al. [1] misrepresent our work by stating

that we “have recently advanced a larger class of wavefunctions that extend the original”
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no boundary wavefunction. Quite to the contrary, what we explained in our earlier papers

is that the integral over Lorentzian four-geometries is actually unique! This allowed us

to compute the only geometrically meaningful “no boundary wavefunction.” The fact that

calculation failed to give an observationally acceptable result is not the fault of the path

integral for gravity, but rather that of imposing the “no boundary” idea in this particular

model, attempting to describe the beginning of the universe in the context of inflationary

scenarios.

In fact, it is Diaz Dorronsoro et al., not us, who are “advancing a larger class of wave-

functions” in an attempt to rescue the no boundary proposal. As we have explained, there

is no geometrical justification for taking an integral over complex metrics as a starting point

for the theory. Yet this is exactly what they propose [1]. They consider metrics of the axial

Bianchi IX form

ds2 = −N
2

q
dt2 +

p

4
(σ2

1 + σ2
2) +

q

4
σ2
3 , (2)

where p(t), q(t) are time dependent scale factors and σ1 = sinψdθ − cosψ sin θdϕ, σ2 =

cosψdθ+ sinψ sin θdϕ, and σ3 = −(dψ + cos θdϕ) are differential forms on the three sphere

with 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. For real N > 0, this metric describes

Bianchi IX spacetimes on the axes of symmetry. In the well-known notation of Misner [7]

this corresponds to the line β− = 0. Diaz Dorronsoro et al. now propose to define the

gravitational path integral as a sum over real values of p and q, supplemented by a sum over

values of the lapse function N , taken along a complex circular contour enclosing the origin.

In our view this proposal is quite arbitrary, as it is not motivated by any fundamental

physical principle. What does it mean to integrate over metrics with complex proper time

intervals? In [1], this sum over specific complex metrics is regarded not merely as a calcula-

tional device, but as the starting definition of the theory. Furthermore, this definition seems

context dependent. Such a definition will neither allow one to calculate meaningful transi-

tion amplitudes between two large three-geometries nor to understand how quantum field

theory on curved space-time emerges when the scale factor evolves classically. It is unclear

how this definition should be implemented for more general metrics – for instance, in some

contexts the lapse integral will contain poles at various locations, leading to an ambiguity

about which of these poles the proposed circular contour should enclose [8]. Given its poor
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motivation, we find it unsurprising that this definition ultimately leads to mathematical and

physical inconsistencies, as we shall explain in the remainder of this note.

III. NORMALIZABILITY

With the metric (2), the action for gravity plus a cosmological constant Λ, in units where

8πG = 1, is given by

S/(2π2) =

∫ 1

0

dt

[
− 1

4N

(
qṗ2

p
+ 2ṗq̇

)
+N

(
4− q

p
− pΛ

)]
, (3)

where the integrals over the angular directions yields a factor of 16π2. We here evaluate the

classical action and subsequently apply Picard-Lefschetz theory to approximate the path

integral. We finish with a discussion on the normalizability of the resulting “wavefunction”.

A. The classical action

The equations of motion corresponding to the variation of q and p are given by

2pp̈− ṗ2 = 4N2 , (4)

q̈ +
ṗ

p
q̇ = N2

(
2Λ− 4q

p2

)
. (5)

The constraint following from the variation of N is given by

1

4

(
q

p
ṗ2 + 2ṗq̇

)
+N2

(
4− q

p
− pΛ

)
= 0 . (6)

The equation of motion for p, with the boundary conditions p(t = 0) = p0, p(t = 1) = p1,

has two solutions [1]

p(t) = p0 − 2
(
p0 ±

√
p0p1 −N2

)
t+
(
p0 + p1 ± 2

√
p0p1 −N2

)
t2 . (7)

In the case of no-boundary conditions, we assume the initial volume of the universe to vanish
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and set p0 = 0. The corresponding classical action takes the form [1]

S/(2π2) =

∫ 1

0

dt

(
− 1

2N

d

dt
(ṗq) +N (4− pΛ)

)
(8)

=
1

N

(
−p1q1 ∓

√
−N2q1

)
+N

(
4− Λ

3
p1 ±

Λ

3

√
−N2

)
, (9)

with the boundary conditions q(t = 0) = 0, q(t = 1) = q1.

We thus obtain a classical action, up to an ambiguity, as we must decide which classical

solution for p dominates the integral. For large |N | the classical action is dominated by

the last term. With the convention that
√
−N2 = +iN, we are forced to choose the upper

sign solution of equation (7) in order to obtain a convergent path integral or the integration

domain (0,∞) for N , yielding

Sconv/(2π
2) = −p1q1

N
− iq1 +N

(
4− Λ

3
p1

)
+ i

Λ

3
N2 . (10)

This choice is in conflict with the “momentum constraint” imposed in [1] (in fact it corre-

sponds to the opposite “momentum constraint”), but it is mandatory, as the original integral

over real fields was already convergent. In order to be able to comment on some aspects of

the calculations in [1] we will also consider their choice of solution for p, i.e., the lower sign

in (7), which leads to the complex conjugate of the action shown in (10),

Sdiv/(2π
2) = −p1q1

N
+ iq1 +N

(
4− Λ

3
p1

)
− iΛ

3
N2 . (11)

B. Picard-Lefschetz theory

Having reduced the path integral to an ordinary integral over the lapse function N, we

are now in a position to evaluate it in the saddle point approximation. Figures 1 and 2 show

the locations of the saddle points and steepest ascent/descent lines emanating from them for

the two choices of the action given in (10) and (11) respectively. It is straightforward to see

that the integral over real Lorentzian metrics (in Fig. 1) can be deformed into the steepest

descent contour J1 passing through saddle point 1. The location of this saddle point for

various values of p1 and fixed q1 is shown in Fig. 3. For large anisotropies it moves closer
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Figure 1: The location of the saddle points and flow lines for the action we advocate, Eq. (10),

for which the Lorentzian integral is convergent. The saddle points are indicated by the orange

dots. Green regions have a lower magnitude of the integrand than at the adjacent saddle point,

red regions have a higher magnitude and yellow regions have a magnitude in between two saddle

point values. If N approaches the singular point at infinity or the essential singularity at N = 0

along a contour in a green region, we obtain a convergent integral. Conversely, if N approaches

these points along a contour in a red region, the integral diverges.

and closer to the real N line, without however ever reaching it. The induced weighting is

shown by the blue curve of the left panel in Fig. 4, where it can be seen that the isotropic

boundary conditions (here p1 = q1 = 10000) receive the lowest weighting. In other words, the

model is unstable, as more anisotropic geometries are favoured. This is in agreement with

our earlier findings regarding small fluctuations around the isotropic background solution

[4, 6]. It is evident that for very small p1 the weighting becomes unbounded. However, at

large p1 the behaviour is also pathological, as the weighting tends to a constant. One can

derive simple analytical approximations to the saddle point location and the corresponding

action in the limit where both p1 and q1 are large, (directly related expressions were already

presented in [1]),

N1 ≈
√

3q1
Λ

+ i
3

Λ

q1
p1
, p1, q1 �

3

Λ
(12)

Sconv(N1) ≈ −2

√
Λ

3

√
q1p21 + 4i

3

Λ

q1
p1
, p1, q1 �

3

Λ
. (13)
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Figure 2: The location of the saddle points and flow lines for the action in Eq. (11), for which

the Lorentzian path integral diverges, but which is chosen by Diaz Dorronsoro et al. [1]. For a

description of the colour scheme, see the caption of Fig. 1. Note that, as this Figure shows, it would

also have been possible to define a purely Euclidean contour along the positive imaginary axis for

this choice of action, and this would have led to only saddle point 3 contributing. This latter saddle

point leads to a purely Euclidean geometry, without any classical Lorentzian evolution.

At large p1 these expressions confirm that the relevant Lorentzian saddle point becomes

almost real, and that the imaginary part of the action approaches zero. Hence an integral

of the weighting e−2Im(Sconv)/~ over p1 is unbounded, so that one obtains a non-normalizable

probability distribution. Note that the saddle point approximation becomes more and more

accurate at large p1, as the second derivative around the saddle point becomes larger – see the

right panel in Fig. (4). Thus, we can reliably conclude that the theory is not only unstable,

but is also non-normalizable. We attribute this pathology to a failure of the no-boundary

condition, similar to that we have previously identified, while the authors of [1] attribute

this pathology to a wrong choice of integration contour for the lapse function together with

a wrong choice in the solution (7). We have already argued in favour of our choices above,

but it is instructive to see that the very same issue of non-normalizability also occurs for

the choices made by Diaz Dorronsoro et al. [1].

As shown by Diaz Dorronsoro et al., when choosing a circular contour around the essential

singularity at N = 0 for the action (11), this contour can be deformed to a sum over the

two steepest descent paths J1 and J2 in Fig. 2. These saddle points lie respectively at the



10

complex conjugate and negative values of the Lorentzian saddle point 1 in Fig. 1 (and whose

asymptotic location at large p1 is given by (12)). The weighting of these saddle points is

just the inverse of the weighting of the Lorentzian saddle point, and is shown by the orange

curve in the left panel of Fig. 4. For these the isotropic configuration p1 = q1 is indeed

the configuration with the highest weighting. However, having a maximum is not enough

to ensure normalizability. Indeed, just as for the Lorentzian saddle point, the weighting

of these saddle points tends to a constant at large values of p1 (the inverse of a constant

being another constant), so that again an integral of the weighting e−2Im(Sdiv)/~ over p1 is

unbounded, and the corresponding wavefunction is non-normalizable. Thus if one regards

normalizability as a crucial criterion, the new circular contour must also be discarded.

For reasons that are not clear to us, the authors of [1], even though they also noticed the

unboundedness of the integral, simply chose to truncate the inconvenient integral by hand.

The stated reason was that the approximations involved in the calculation break down. We

find this statement puzzling, as the axial Bianchi IX model is attractive precisely because it

allows one to calculate the action analytically, and moreover the saddle point approximation

becomes better and better at large p1 (see again the right panel of Fig. 4, which also applies

to the saddle points in question). Thus the implied non-normalizability seems robust to

us, to the extent that normalizability can be rigorously established at all. In this context

it should be emphasized however that normalizability is in fact rather difficult to define

precisely, until much more becomes known about measures in quantum gravity. For now,

we simply record that the the new no-boundary proposal offers no advance in this regard.

IV. MATHEMATICAL AND PHYSICAL CONSISTENCY

We now come to what we regard as the biggest flaw in the proposal of Diaz Dorronsoro

et al., namely that it seems to us to fail some simple tests of physical and mathematical

consistency. When we take the limit in which the final three-geometry is isotropic, it seems

reasonable to expect that we should recover the result of the truncated, isotropic theory, at

least in the semi-classical limit where quantum backreaction is negligible. Likewise, if we

add an additional metric perturbation mode to the final three-geometry, for example one of

an inaccessibly small wavelength, this should not immediately lead to inconsistent results.

We will discuss these two tests of their proposal, in turn.



11

0

10

100

1000

10000
100000

0 20 40 60 80 100
Re[Ns]

5

10

15

20

25

30
Im[Ns]

Figure 3: The location of the relevant saddle point, for fixed q1 = 10000 and as a function of

0 < p1 < 100000. Some indicative values of p1 are shown next to the curve. At large values of p1
the saddle point remains complex but moves very close to the real N line.

20000 40000 60000 80000 100000
p1

-4

-2

0

2

4

Re[iS]

20000 40000 60000 80000 100000
p1

500

1000

1500

2000
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Figure 4: Left: The Morse function −Im(Sconv,div) for fixed q1 = 10000 and as a function of

0 < p1 < 100000 both for the relevant Lorentzian saddle point (blue) and for one of the saddle

points advocated by Diaz Dorronsoro et al. (orange). Right: The absolute value of the second

derivative at the same saddle points for fixed q1 = 10000 (with Λ = 3) and as a function of

0 < p1 < 100000. For large p1 the saddle point approximation becomes better and better.

First, consider the isotropic limit, where p1 = q1. Here we would expect the axial Bianchi

IX model to reproduce the results of an isotropic FLRW minisuperspace model, defined using

the same integration contour for the lapse function. Certainly, for Lorentzian integrals, this

is the case and the model implied by Eq. (10) indeed reproduces our earlier isotropic results
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N

Figure 5: An example of a circular contour in the presence of a branch cut (in blue), for a two-

sheeted integrand. The contour must complete two loops before it can close.

of [3]. When p1 = q1, the relevant saddle point of the action (10) is located at

N iso
s1 =

√
3

Λ

√
q1 −

3

Λ
+ i

3

Λ
, (14)

i.e., it resides at the same value of N as for the isotropic model, where the action is given

by a different function of N, namely [3, 9]

Siso(N)/2π2 =

[
N3Λ2

36
+N

(
3− Λ

2
q1

)
− 3q21

4N

]
. (15)

Moreover, at the isotropic saddle point (14), the values of the axial Bianchi IX action (10)

and the isotropic action (15) agree,

Sconv(N
iso
s1 ) = Siso(N iso

s1 ) = 2π2

(
−2
√

3

Λ
(Λq1 − 3)3/2 + i

6

Λ

)
. (16)

Thus we find a well-behaved isotropic limit, as we believe we should, since in the isotropic

limit we are describing the same physical situation.

However, when we take the circular contour advocated by Diaz Dorronsoro et al., a
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problem arises. In the isotropic case, the path integral reduces to an ordinary integral over

the lapse function of the form [3, 9]

G[q1, 0] =

√
3πi

2~

∫
dN√
N
eiS

iso(N)/~ . (17)

The prefactor, which arises from the integral over the isotropic scale factor, contains a factor

of 1/
√
N, so that there is a branch cut in the integrand, emanating from the origin. This

branch cut requires that a circular contour must complete two loops around the origin before

it can close – see Fig. 5. However, on the second loop the factor 1/
√
N will acquire a minus

sign relative to its value on the first loop, so that the contributions from the second loop

exactly cancel those of the first loop. The result is that, for isotropic boundary conditions,

a closed circular contour yields precisely zero! Hence there is blatant disagreement with the

isotropic limit of the Bianchi IX model, although the physical situation being described is

identical. (One may easily verify that the saddle points contributing to the path integral

with final boundary p1 = q1 also have p(t) = q(t) throughout the entire geometry 0 ≤ t ≤ 1).

Hence this choice of contour fails to satisfy our consistency check.

The second inconsistency manifests itself in the following, closely related manner. In

minisuperspace models, when we include n deformations of the metric in addition to the

lapse, the prefactor generally takes the form 1/Nn/2 [9]. For n odd, the integrand will thus

be taken around a branch point at N = 0 and a closed contour about the origin will again

yield a vanishing result. But the results of our calculations should not depend on how

many possible deformations we include as long as the same physical situation is described.

One should be able to add a possible deformation and then consider boundary conditions

in which this additional deformation is zero – and the results should, at this leading semi-

classical level, be unchanged. A straightforward example is to use the full Bianchi IX metric

and then restrict to boundary conditions corresponding to the axial Bianchi IX truncation

studied in this paper. Once again this does not lead to consistent results, as the Bianchi

IX metric contains one additional deformation, so that a closed contour enclosing the origin

again leads to a vanishing wavefunction.
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V. DISCUSSION

When constructing theories of the very early universe, the difficulty of making direct ob-

servations means that mathematical and physical consistency requirements must necessarily

play a critical, guiding role. In our view, the new path integral for semi-classical gravity

advocated by Diaz Dorronsoro et al. [1], involving a closed integral for the complexified lapse

function, seems inadequate in this regard: it has no geometrical interpretation as it involves

metrics with complex proper times. Likewise, it abandons any notion of causality from the

outset. Furthermore, when describing the same physical situation using different trunca-

tions of the degrees of freedom in the spacetime metric, it yields vastly different results. The

clearest example is provided by truncating the model to an isotropic, one-dimensional min-

isuperspace, for which a closed contour about the origin yields a vanishing “wavefunction.”

More generally, such a closed contour fails to yield a meaningful wavefunction for any odd-

dimensional truncation of minisuperspace – violating the seemingly reasonable requirement

that including one additional mode, for example one with an inaccessibly small wavelength,

should not change any physical result.

In contrast, the Lorentzian path integral for gravity stands out for its remarkable physical

and mathematical consistency [3, 4, 6]. The fact that it leads to unstable fluctuations when

no-boundary conditions are imposed in an attempt to define initial conditions for inflation,

should be regarded as a failure of the no boundary proposal in this context, rather than one

of the path integral for gravity.
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