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The Kerr nature of a compact-object–coalescence remnant can be unveiled by observing multiple quasi-
normal modes (QNMs) in the post-merger signal. Current methods to achieve this goal rely on matching the
data with a superposition of exponentially damped sinusoids with amplitudes fitted to numerical-relativity (NR)
simulations of binary black-hole (BBH) mergers. These models presume the ability to correctly estimate the
time at which the gravitational-wave (GW) signal starts to be dominated by the QNMs of a perturbed BH.
Here we show that this difficulty can be overcome by using multipolar inspiral-merger-ringdown waveforms,
calibrated to NR simulations, as already developed within the effective-one-body formalism (EOBNR). We
build a parameterized (nonspinning) EOBNR waveform model in which the QNM complex frequencies are free
parameters (pEOBNR), and use Bayesian analysis to study its effectiveness in measuring QNMs in GW150914,
and in synthetic GW signals of BBHs injected in Gaussian noise. We find that using the pEOBNR model gives,
in general, stronger constraints compared to the ones obtained when using a sum of damped sinusoids and
using Bayesian model selection, we also show that the pEOBNR model can successfully be employed to find
evidence for deviations from General Relativity in the ringdown signal. Since the pEOBNR model properly
includes time and phase shifts among QNMs, it is also well suited to consistently combine information from
several observations — e.g., we find on the order of ∼ 30 GW150914-like BBH events would be needed for
Advanced LIGO and Virgo at design sensitivity to measure the fundamental frequencies of both the (2,2) and
(3,3) modes, and the decay time of the (2,2) mode with an accuracy of . 5% at the 2-σ level, thus allowing to
test the BH’s no-hair conjecture.

I. INTRODUCTION

Up to now, apart from the binary neutron star event
GW170817 [1], all the observed GWs from the coalescence
of compact objects by Advanced LIGO and Virgo [2–6] are
entirely consistent with the expected gravitational radiation
emitted during the inspiral, merger and ringdown stages of
a BBH, as predicted by Einstein theory of General Relativ-
ity (GR) [7, 8]. After merger, GR predicts that the remnant
BH is described by the Kerr metric [9], the unique station-
ary, axisymmetric and asymptotically flat BH solution of the
Einstein field equations in vacuum (astrophysical black holes
are thought to be electrically neutral). As detectors with im-
proved sensitivity and longer observation times come online,
the signal-to-noise ratio (SNR) and number of events will in-
crease, and more stringent gravitational tests could put GR at
stake [10, 11], and/or reveal the existence of exotic astrophys-
ical compact objects [12–14] in our Universe.

Consistent with theoretical predictions, the GW sig-
nals of the five BBHs observed so far by Advanced
LIGO, GW150914, GW151226, GW170104, GW170608 and
GW170814, chirp from the inspiral stage, where the orbital
frequency increases as the two objects come closer and closer,
up to merger, where the GW luminosity reaches a peak and
non-perturbative GR effects dominate. After the merger,
the waveform settles to a linear superposition of exponen-
tially damped sinusoidal oscillations (ringdown) or QNMs,
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described by a discrete set of complex frequencies which are
uniquely determined by the nature of the remnant BH and are
independent on how the BH was formed. That BHs, when
formed and/or perturbed, emit GWs described by a very spe-
cific set of QNMs was discovered in the early 70s [15–17].
In the absence of electromagnetic fields, the no-hair conjec-
ture [18–21] implies that in GR the BH’s QNMs depend only
on the BH’s mass MBH and angular momentum (or spin) JBH,
and therefore testing this hypothesis requires the identification
of at least two QNMs in the ringdown waveform [22–27] 1.

The idea of employing spectroscopy of the ringdown stage
of compact-object binary mergers to prove that a BH has been
observed (or better rule out/constrain theories alternative to
GR or other compact objects rather than BHs) and test the
no-hair hypothesis in GR, was first examined in Ref. [22].
Later, Ref. [23] carried out a comprehensive study aimed
at quantifying the accuracy with which the QNM (complex)
frequencies can be measured for GW sources observable by
the laser-interferometer space-based antenna (LISA), and ap-
plied statistical criteria to estimate the resolvability of dif-
ferent modes. The latter was also used in subsequent publi-
cations (e.g., see Refs. [29–32]), which focused also on fu-
ture GW detectors on the ground. An important step in un-
derstanding the feasibility of the BH–spectroscopy program
came with Refs. [24, 25], where the authors applied Bayesian
techniques for the first time, employed parameterized models

1 Strictly speaking, several counter-examples to the no-hair conjecture
within GR exist. However, most of those solutions either lead to instabili-
ties or they require the presence of exotic fields or time-dependent bound-
ary conditions for complex boson fields (see, e.g., Ref. [28]).
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for the ringdown signals and advocated for the use of multi-
ple events to get stronger tests of the GR no-hair conjecture.
More recently, Ref. [26] proposed a strategy to increase the
accuracy of observing a given QNM by constructively sum-
ming the ringdown signal from multiple events, after appro-
priately applying a rescale and time shift such that the QNM
in all signals has the same frequency and phase. The same
idea was proposed in Ref. [27] although only implemented
for the least-damped QNM. We stress, that this recent idea
to extract subdominant modes relies on using the measured
BBH parameters (i.e., masses and spins), and importantly on
knowing in advance the relative phases and amplitudes of the
excited QNMs.

In previous analyses of the BH–spectroscopy program, all
studies were conducted employing for the ringdown signal a
superposition of exponentially damped sinusoids with either
free amplitudes and phases [23, 29, 32, 33] or with ampli-
tudes fitted to NR simulations [24, 25]. Here, by contrast,
we make full use of GW modeling from BBH coalescences
and employ inspiral-merger-ringdown (IMR) waveforms as
developed within the effective-one-body formalism [34, 35],
augmented by NR simulations [36] (EOBNR waveforms, for
short 2). There are two main advantages in doing so. First,
EOBNR waveforms include, by construction, the phase differ-
ence between different QNMs, tuned to NR simulations, thus
avoiding to apply sophisticated techniques to enforce such a
coherence a posteriori (i.e., after the observation [26, 27]).
Second, there is no need to define an a priori unknown time at
which the QNMs start to dominate the post-merger signal (or
select a few arbitrary values, as was done for GW150914 [7]),
because this time is automatically taken into account when
building EOBNR waveforms, so that they match NR wave-
forms with high precision. As we shall see, the apparent limit
in the accuracy of extracting QNM frequencies, as recently
advocated in Ref. [37], does not hold when employing IMR
waveforms.

The rest of this paper is organized as follows. We first in-
troduce our IMR waveform model with free QNM complex
frequencies in Sec. II, and discuss how this model can be used
to measure the ringdown frequencies and damping time of a
BBH-coalescence remnant. In Sec. III we present the statis-
tical method that we employ to measure the QNM complex
frequencies, and test the IMR model against the GW event
GW150914 and NR waveforms. Section IV studies two differ-
ent approaches to measure deviations from GR using the IMR
waveform model. We first perform a Bayesian model selec-
tion study to show that the IMR model is able to find evidence
for deviations of GR in the ringdown. Then, we give some
prospects, using Advanced LIGO and Virgo noise curves at
design sensitivity, on how strongly the model can constrain
deviations from GR by combining several detections. Finally,
we summarize and discuss future improvements in Sec. V.

2 The specific name of the waveform model that we use in the LIGO AL-
GORITHM LIBRARY is EOBNRV2HM.

II. FULL GRAVITATIONAL-WAVE SIGNAL TO EXTRACT
QUASI-NORMAL MODES

We use the IMR waveforms developed within the EOB for-
malism, which provides a faithful and physical, semi-analytic
description of the full coalescence process, and it can be made
highly accurate by including information from NR simula-
tions. In particular, here we employ the multipolar waveform
model for nonspinning BBHs calibrated to NR simulations
in Ref. [36] (henceforth, EOBNR for short). A GW emitted
from a binary into a given sky direction (θ ,φ) can be written
as h+(θ ,φ ; t)− ih×(θ ,φ ; t) = ∑`,m−2Y`m(θ ,φ)h`m(t), where
−2Y`m(θ ,φ) are the −2 spin-weighted spherical harmonics.
Our EOBNR model includes the (`, |m|)= (2,1), (3,3), (4,4),
and (5,5) modes besides the dominant (2,2) mode.

More specifically, for each (`,m), the merger-ringdown
EOBNR modes read

hmerger−RD
`m (t) =

N−1

∑
n=0

A`mn e−iσ`mn(t−t`mmatch) t ≥ t`mmatch , (1)

where n is the QNM overtone number, N is the number of
overtones included in the EOBNR model (e.g., N = 8 in
Ref. [36] 3), and A`mn are complex amplitudes determined by
the procedure that matches the merger-ringdown waveform to
the inspiral-plunge EOBNR waveform hinspiral−plunge

`m (t). Such
a procedure guarantees differentiability at the matching point
t`mmatch. The quantity σ`mn = ω`mn− i/τ`mn, where the oscil-
lation frequencies ω`mn > 0 and the decay times τ`mn > 0,
are numbers associated with each QNM. It was found in
Refs. [36, 38], that in the test-particle limit and comparable-
mass case, the different modes can peak at different times,
depending on mass ratio and spin values. We stress that
the multipolar EOBNR model adopted here does reproduce
this important feature by including appropriate time shifts be-
tween the modes (∆`m

match) in the matching procedure (for de-
tails see Fig. 1 and Sec. IIB in Ref. [36]). Finally, the
inspiral-(plunge-)merger-ringdown EOBNR waveform reads
h`m(t) = hinsp−plunge

`m θ(t`mmatch− t)+hmerger−RD
`m θ(t− t`mmatch).

In Ref. [36], the complex frequencies σ`m were expressed
in terms of the final BH mass and spin [23], and the latter were
related to the BBH’s component masses and spins through an
NR–fitting-formula [36] computed in GR. For concreteness,
in Fig. 1 we show an example where we compare the ampli-
tude of the different modes available in the EOBNR wave-
form, for a BBH with mass ratio q = 6, against the waveform
obtained from a NR simulation 4. Importantly, the model in-
cludes time shifts between the peak of each mode and agrees
very well with NR, even for ` > 2-modes.

Here, to measure the ringdown frequencies and damping
times of different QNMs, we build a parameterized EOBNR

3 We note that some of the high overtones used in Ref. [36] do not have the
frequency and decay time of a BH, and they were included only to make
the merger-ringdown transition as smooth as possible.

4 The NR waveforms used in this paper are from the Simulating eXtreme
Spacetimes (SXS) catalog in Ref. [39]. The modes’ amplitudes shown in
Fig.1 refer to SXS:BBH:0166.
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FIG. 1. Comparison between modes’ amplitudes of the EOBNR
model [36] used here (dashed lines) and the NR waveform (solid
lines) for a BBH simulation with mass ratio q = 6 produced by the
SXS collaboration [39]. In the horizontal axis the time origin is cho-
sen such that it corresponds to the peak of the (2,2) mode.

model by relaxing the assumption that the ringdown signal
is fixed by the NR–fitting-formula in Ref. [36], and instead
promote the QNM (complex) frequencies to be free param-
eters (henceforth, pEOBNR model). In the specific appli-
cations of this paper, we will only allow σ220 and σ330 to
vary freely, while all the other mode frequencies present in
the merger-ringdown waveform coincide to the GR values.
We emphasize that σ220 and σ330 varying freely implies that
the EOBNR waveform at merger (i.e., close to the peak and
at t`mmatch), does not necessarily coincide with the GR predic-
tion, since the matching procedure changes the shape of the
waveform for t > t`mmatch for (`,m) = (2,2) and (3,3). Lastly,
for t < t`mmatch, our EOBNR waveform modes agree with the
inspiral-plunge modes hinspiral−plunge

`m (t) computed in GR. In
the future, as the EOB formalism is extended to modified the-
ories of GR [40, 41], we will include non-GR inspiral-plunge
modes and other possible variations around merger.

In the following, we contrast the results obtained with the
pEOBNR model, with a waveform model that consists of
solely a superposition of damped sinusoids, whose (complex)
frequencies are free parameters [22, 23]. This has been the
most common ringdown model used in the literature to test the
no-hair conjecture and/or extract multiple QNMs. After the
NR breakthrough in 2005, the relative amplitudes and phases
of the QNMs in these models have been constrained using fits
from NR simulations of BBHs [24, 42–44]. More explicitly,
the ringdown model that we employ is (t ≥ 0)

hRD
+ (θ ,φ ; t) = ∑

`,m>0
A`|m| e

−t/τ`m Y `m
+ (θ)cos(ω`mt−φ`m) ,

(2)

hRD
× (θ ,φ ; t) =− ∑

`,m>0
A`|m| e

−t/τ`m Y `m
× (θ)sin(ω`mt−φ`m),

(3)

where Y lm
+ ≡ −2Y lm + (−1)l

−2Y l−m and Y lm
× ≡ −2Y lm −

(−1)l
−2Y l−m, and h+ = h× = 0, for t < 0, t = 0 being the

starting time of the ringdown signal. Since we focus on non-
spinning BBHs, we use for the relative modes’ amplitudes the
NR-fits in Ref. [24], so that the only free parameters are the
mode frequencies ω`m, damping times τ`m, the phases φ`m, the
BBH mass ratio q and an overall amplitude factor (see Eqs.
(5)–(8) in Ref. [24]). One crucial difference of this ringdown
model from the pEOBNR model discussed above, is that the
former assumes that all modes start at the same time, and this
is not observed in NR simulations of BBHs (see Fig. 1 and
Ref. [36]). Furthermore, the pEOBNR model also includes
overtones beyond n = 0, which can be excited around merger,
as also observed in NR simulations [45, 46].

An important difficulty to overcome when using a damped
sinusoid model is the need to define a specific starting time at
which the GW signal is well described by a sum of QNMs.
Since the arrival time of the signal in the different detectors is
a function of the sky position, to correctly define the time at
which the ringdown starts in all detectors, one not only needs
to know the geocentric time at coalescence but also the sky
position of the signal [33]. For a real event these parameters
are a priori unknown and must be obtained from a previous
analysis done with an IMR waveform. In addition to this dif-
ficulty, to avoid biases and accurately recover the ringdown
parameters for an IMR signal, we also find it necessary to
zero out the synthetic GW signals injected in Gaussian noise
prior to the starting time of the damped sinusoid model. This
behavior was already pointed out in Ref. [33], and is related to
matching a model with a cutoff in the time domain to a signal
that includes all the IMR information. These technical dif-
ficulties can be completely avoided by using an IMR model,
and therefore provide an additional motivation for this work.

In summary, focusing on nonspinning BBHs with com-
ponent masses m1 and m2, we consider two different wave-
form models: (i) the pEOBNR waveform built from Ref. [36]
with free parameters ϑGR = {Mc,q,DL,α,δ ,ψ,θ , tc,φc},
where Mc = Mν3/2 is the (redshifted) chirp mass, with ν =
m1m2/(m1 + m2)

2 and M the (redshifted) total mass, q =
m1/m2 > 1 is the mass ratio, DL is the luminosity distance, θ

is the inclination angle of the binary, α , δ and ψ are the right
ascension, declination and polarization angles, respectively,
and tc and φc are the (geocentric) time and phase at coales-
cence, suplemented with free complex QNM frequencies for
the (220) and (330) modes ϑ=ϑGR∪{ω220,τ220,ω330,τ330};
and (ii) the damped sinusoid model given by Eqs. (2) and
(3). In this work we either use only one damped sinusoid,
or use a two-damped sinusoid model with relative ampli-
tudes for the (220) and (330) modes fitted to NR as given in
Ref. [24], neglecting all the other modes. Therefore for the
two-damped sinusoid model the free parameters are ϑRD =
{ω220,ω330,τ220,φ220,τ330,φ330,A,q}, with A an overall am-
plitude, that can be related to the BH final mass and the lumi-
nosity distance, while for the single damped sinusoid model,
the free parameters are simply ϑRD = {ω220,τ220,φ220,A}.
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III. INFERENCE WITH THE PARAMETERIZED
INSPIRAL-MERGER-RINGDOWN MODEL

We now use Bayesian analysis [47, 48] to test the ability
of the pEOBNR model to recover the QNM complex frequen-
cies. In particular, we infer the ringdown-signal’s parameters
of GW150914 [2], which, so far, is the loudest BBH event
detected by Advanced LIGO, and the only event with a non-
negligible amount of SNR in the ringdown, and of a few syn-
thetic GW signals injected in Gaussian noise. For the latter we
employ two nonspinning NR waveforms from the SXS cata-
log [39]: (i) one with mass ratio q = 1.5 (SXS:BBH:0007)
and total mass M = 70M�, which mimics the GW150914-like
event, and (ii) another with mass ratio q= 6 (SXS:BBH:0166)
and total mass M = 84M�, for which modes with l > 2 are
non-negligible — e.g., at merger the (3,3)-mode is ∼ 70%
smaller than the dominant (2,2)-mode in the face-on/off bi-
nary configuration (see Fig. 1).

We estimate the probability density function (PDF) for a
parameter vector ϑ according to the LIGO ALGORITHM LI-
BRARY sampling algorithm in Ref. [49]. We sample the pos-
terior density p(ϑ|h,d) for the model h given the data d as a
function of ϑ using:

p(ϑ|h,d) ∝ L (d|ϑ)× p(ϑ) , (4)

where L (d|ϑ) is the likelihood function of the observed
data for given values of the parameters ϑ, and p(ϑ) is the
prior probability density of the unknown parameter vector
ϑ. To obtain the likelihood function L (d|ϑ), we first gen-
erate the GW polarizations h+(ϑ) and h×(ϑ) according to
the waveform models described above. We then combine
the polarizations into the two Advanced LIGO and Advanced
Virgo detector responses at design sensitivity, h1,2,3, by pro-
jecting them on the detector antenna patterns [50]: hk(ϑ) =

hk
+(ϑ)F(+)

k (ϑ)+ hk
×(ϑ)F(×)

k (ϑ). The likelihood is then de-
fined as the sampling distribution of the residuals, assuming
they are distributed as Gaussian noise colored by the power
spectral density (PSD) for each detector [49]:

L (d|ϑ) ∝ exp

[
−1

2 ∑
k=1,2,3

〈hk(ϑ)−dk|hk(ϑ)−dk〉
]
, (5)

where 〈·|·〉 denotes the noise-weighted inner product [50].
Here for the Advanced LIGO noise spectral density we use
the ZERO DET high P PSD [51], while for Virgo we use the
PSD in Ref. [52]. We use the common ”zero-noise” approxi-
mation, where instead of averaging many PDFs obtained with
different Gaussian noise realizations, we directly obtain this
averaged PDF by setting the noise realisation to be identically
zero.

We follow the choices in Ref. [49] for the prior probabil-
ity density p(ϑ) in Eq. (4). When recovering the signal with
the pEOBNR model, we sample the QNM complex frequen-
cies in the dimensionless parameter GMBHσ`m/c3 with a flat
prior GMBHω`m/c3 ∈ [0.3,1] and GMBH/τ`m/c3 ∈ [0.03,0.2],
where MBH is the mass of the remnant BH. These priors are
chosen such that within this range, the pEOBNR model is rea-

sonably smooth at the matching point between the inspiral-
plunge and merger-ringdown parts. When we use the damped
sinusoids, we employ flat priors for the dimensionful quanti-
ties f`m ∈ [50,500]Hz and 1/τ`m ∈ [50,500]s−1, with 2π f`m =
ω`m.
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FIG. 2. 90% credible interval contours for the dominant QNM, us-
ing the pEOBNR model and a damped sinusoid model at starting
times t0 = 1,3,5 ms after merger. The black solid line shows the
90% credible region for the frequency and decay time of the (220)
QNM inferred from the posterior distributions of the remnant mass
and spin parameters as derived in Ref. [7]. GW150914 is consistent
with the coalescence of two nonspinning BHs, with an inferred total
(redshifted) mass of M/M� = 70.6+4.6

−4.5, mass ratio q= 0.82+0.17
−0.20 and

luminosity distance DL/Mpc = 410+160
−180 [53].

A. Putting the IMR model to test using GW150914

GW150914 [2] was the first and, so far, loudest BBH’s GW
signal detected by Advanced LIGO and Virgo. Constraints
for the frequency and damping time of the dominant QNM
for this event were computed in Ref. [7]. Following the latter,
we use 8 s of data centered around GW150914 from both Liv-
ingston and Hanford LIGO detectors, and infer GW150914’s
parameters using the pEOBNR model. In Fig. 2 we show
the 90% credible intervals of the 2D PDF for the recovery
of the dominant QNM frequency f220 and damping time τ220.
We also compare the results with the constraints that we ob-
tain when using the two damped sinusoid model with dif-
ferent starting times 5. We also show the frequencies as in-
ferred by assuming GR and using the posterior distributions

5 We fix the starting time of the damped sinusoid model to be t0 = tc +1,3,5
ms (in units of the BBH total mass this corresponds to∼ 3M,9M,15M after
merger, respectively), where we choose tc to be given by the maximum like-
lihood GPS time obtained from the run using the pEOBNR model, namely
we use tc = 1126259462.408s. For the sky position we fix the right ascen-
sion α = 1.953rad and declination δ =−1.2rad.



5

230

240

250

260

270
f 2

2
0
(H

z)

NR injection

5 10 15 20

loudness

2

3

4

5

6

7

τ 2
2
0
(m

s)

tRD =15M

tRD =25M

pEOBNR

230

240

250

260

270

f 2
2
0
(H

z)

EOBNR injection

5 10 15 20

loudness

2

3

4

5

6

7

τ 2
2
0
(m

s)

tRD =15M

tRD =25M

pEOBNR

320

340

360

380

400

420

440

f 3
30

(H
z)

5 10 15 20

loudness

3
4
5
6
7
8
9

τ 3
30

(m
s)

tRD =10M

tRD =15M

pEOBNR

320

340

360

380

400

420

440

f 3
30

(H
z)

5 10 15 20

loudness

3
4
5
6
7
8
9

τ 3
30

(m
s)

tRD =10M

tRD =15M

pEOBNR

FIG. 3. 95% credible interval contours for the frequency and damping time of the (220) and (330) modes of a GW event with mass ratio q= 1.5,
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t0 = tc + tRD. In the left panels we show the recovery for an NR injection, while in the right panels we show the recovery for an injection with
an EOBNR waveform with the same parameters.

of the remnant mass and spin parameters as derived in Ref. [7]
(black solid line). Our main conclusion is that the pEOBNR
model gives constraints that are in full agreement with the
ones inferred from the posterior distributions of the remnant
mass and spin parameters, and even slightly stronger than the
damped sinusoid model. In addition, as already emphasized,
the pEOBNR model avoids intrinsic issues inherent with using
a damped sinusoid model such as potential biases due a non-
optimal choice of the a priori unknown starting time for the
ringdown signal. In addition, the uncertainty in the measure-
ment of the time at coalescence and sky position is naturally
included in the pEOBNR model, while such uncertainty can-
not be easily incorporated in the damped sinusoid model (see
Ref. [33] for a proposal on how to include such uncertainty).

B. Putting the IMR waveform model to test using
numerical-relativity waveforms

It was recently claimed in Ref. [37] that there is an intrinsic
limit in the accuracy with which one can extract QNM fre-
quencies, when describing the post-merger signal by a sum of
exponentially damped sinusoids. In particular, Ref. [37] ar-
gued that although a more sensitive detector can probe later
times in the GW signal, it does not necessarily mean one can
get tighter constraints on the ringdown frequencies and damp-
ing times, due to a tension between the need to maximize
the SNR at which one extracts the QNM frequencies, and an
optimal choice for the time at which the signal can be well-
described by a sum of QNMs. The authors speculated that
this effect might be due to residual nonlinearities decaying on
similar timescales to the ringdown signal, but more recently
Ref. [54] argued that this effect is likely due to the increasing
importance of the overtones in the large-SNR limit.

In fact, as we show below and as expected, we do not
find any conclusive evidence of this limitation when using
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the IMR waveform at our disposal. In particular, as already
emphasized, the pEOBNR model includes overtones and nat-
urally encodes information on the starting time of the ring-
down. In addition to these features, the model also includes
crucial information necessary to accurately measure subdom-
inant modes, such as time shifts between the peak of the dif-
ferent modes and their relative phase and amplitude difference
compared to the dominant (220) mode.

To reproduce the features seen in Ref. [37] we inject an
NR waveform with mass ratio q = 1.5 (SXS:BBH:0007) and
total redshifted mass M = 70M� at different distances while
keeping all the other parameters constant6. Following [37] we
define the loudness of the signal as loudness = 500Mpc/DL.
For the injections that we consider, loudness = 1 corresponds
to a network SNR ≈ 50 and SNRRD ≈ 207. We also note
that, everything else being fixed, loudness ∝ SNR. Following
Ref. [37], and to avoid potential errors introduced by the pres-
ence of higher-modes in the NR signal, we inject the (2,2) and
(3,3) modes of the NR waveform separately. To understand
whether potential biases are due to residual nonlinearities in
the NR waveform or simply due to a non-optimal choice of
the starting time for the damped sinusoid model, we also inject
the EOBNR waveform mode [36] with the same parameters of
the NR waveform, for which the ringdown part is exactly de-
scribed by a sum of QNMs (see Eq. (1)). The injected signals
are then recovered using both the pEOBNR model, which has
free QNM complex frequencies, and a single damped sinusoid
model, with different starting times.

Our results are summarized in Fig. 3. As expected, by in-
creasing the loudness (i.e., increasing the SNR of the injected
signal), the error decreases roughly as 1/SNR. As can be seen

6 We use θ = 2.2rad, α = 1.21rad, δ =−1.165rad and tc = 1126259462 s.
7 Here we define the SNR in the ringdown, SNRRD, as the SNR computed

starting from the peak (or merger) of the (2,2) mode.

in the left panels, when recovering the NR signal with a single
damped sinusoid, if one chooses a starting time too early after
merger, one expects the damped sinusoid to recover inaccu-
rate QNM frequencies, while choosing a starting time too late
after merger leads to large statistical errors. We find that one
needs to start the matching at a time after merger of at least
tRD & 20M for the (220) mode and tRD & 15M for the (330)
mode, to get unbiased frequencies and damping times. This is
consistent with recent studies on the starting time of the ring-
down in BBH mergers [55]. On the other hand, the pEOBNR
model recovers both the frequency and damping time of the
NR waveform with a very a good accuracy, although we find
a small bias of ∼ 1% for the (220) frequency compared to the
injected value. This is likely a systematic bias due to model-
ing errors in the inspiral-plunge part of the IMR model [56].
In fact, as can be seen in the right panels, when injecting the
EOBNR waveform, as expected the pEOBNR model recovers
unbiased frequencies and damping times while the behavior of
the damped sinusoid model is similar to what we found for the
NR injection. Therefore, we find no conclusive evidence that
the limitation discussed in Ref. [37] is due to residual non-
linearities in the ringdown part of the NR waveform, and in
particular we find no evidence that the IMR pEOBNR model
has such limitation (aside from modeling errors).

So far, we have assumed that the different modes in the
signal can be distinguished and recovered separately. In a
realistic scenario one would prefer instead to use the IMR
pEOBNR model against the full GW signal, since disentan-
gling the different modes is a very challenging task that would
induce unavoidable systematic errors. Therefore, in Fig. 4
we also show an example where we inject an NR waveform
with all available modes (i.e., up to ` = 8), for mass ra-
tio q = 6 (SXS:BBH:0166) and total (redshifted) mass M =
84M�. We consider an injection with total network SNR≈ 70,
corresponding to a luminosity distance DL = 160Mpc and
SNRRD ≈ 34. We recover again the GW signal using the
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pEOBNR model, with all the modes available in the model,
and contrast it with the recovery when using a two damped-
sinusoid model, with amplitudes fitted to NR[24], using dif-
ferent starting times. Due to the large-mass ratio, in this case
there is a clear hierarchy between the amplitude of different
modes, and higher modes have a non-negligible contribution
to the overall waveform. For this mass ratio the peak am-
plitude of the (3,3)-mode is roughly 70% smaller than the
(2,2)-mode, as can be seen in Fig. 1, and therefore strong
constraints on a second QNM can be obtained even for a rea-
sonable SNR in the ringdown (i.e., ≈ 34). As we see, the
pEOBNR model recovers unbiased results for the ringdown
frequency and damping time, even if the NR waveform in-
cludes more subdominant modes. On the other hand, when
using the two damped-sinusoid model and choosing starting
times that give comparable errors to the pEOBNR model, we
always recover slightly biased QNM parameters. These re-
sults demonstrate the need of including more physical effects
in the more theory-agnostic damped-sinusoid model, if one
wanted to use it to get accurate and precise values for the
QNM frequencies and damping times of BBHs event, and test
the no-hair conjecture.

We note that at the time of this writing, no suitable NR
waveform computed in alternative theories of gravity are
available for testing. While the tests in this section validate
our approach for small deviations from GR, we do hope that
further tests with non-GR waveforms will be performed in the
future.

IV. TESTING THE GENERAL RELATIVISTIC NO-HAIR
CONJECTURE

Having laid down the ability of the pEOBNR waveform
model to measure the ringdown complex frequencies, we now
investigate the capacity of the IMR model to detect small de-
viations from GR in the ringdown part of the signal using two
approaches: (i) a Bayesian model selection scheme, and (ii)
by directly measuring the QNM frequencies using Bayesian
parameter estimation and computing the constraints on devia-
tions from GR.

Such approaches have been used in the past [24, 25], how-
ever focusing on the damped sinusoid model, which as we
have argued above, is prone to technical difficulties and might
not be ideal if one wishes to get as much as possible informa-
tion from the GW signal. Therefore, from now on, we focus
solely on the IMR pEOBNR model.

A. Bayesing model selection

Bayesian model selection has been extensively used in the
context of testing GR [24, 25, 57, 58], and is particularly use-
ful to find statistical evidence for deviations from GR even
when the majority of the GW events have a small SNR, and
parameter estimation alone might not be enough to confi-
dently measure such deviations. Model selection can also nat-
urally be used to get statistical evidence from a small deviation

from GR by combining the information from several observa-
tions [25, 58]. In fact, for most of the BBH events that Ad-
vanced LIGO and Virgo is detecting, we do not expect to be
able to impose strong constraints on the QNM complex fre-
quencies [31], and therefore this is the most promising avenue
to detect deviations from GR, before LISA or third-generation
detectors on the ground, such as Cosmic Explorer and Einstein
Telescope are online.

As said above, similar studies were done in the past in
Refs. [24, 25], but they focused on damped-sinusoid models,
both for the injected GW signal and the waveform model used
to recover it, and they were done using the PSD of Einstein
Telescope. Besides the use of an IMR model to recover the
signal, another crucial difference here, is that we also inject
IMR waveforms. If one would do a Bayesian model selec-
tion study on such population using damped sinusoids as tem-
plates, one would need to deal with the problem of defining
the optimal starting time for the ringdown, that is in general
dependent on the particular binary’s configuration. Using the
IMR model completely avoids this problem. In addition, a
Bayesian model selection with an IMR model also naturally
incorporates the consistency test that both the inspiral-plunge
and merger-ringdown are consistent with GR.

In general, given some observed data d, the support for a
given model hypotheses H can be quantified by integrating
Eq. (4) (with h replaced by H ) over ϑ:

p(H |d) ∝ L (d|H )× p(H ). (6)

To compare two different model hypotheses, say Hi and H j,
in light of the observed data, we compute the ratio of posterior
probabilities also known as the odds ratio [57, 58]:

O i
j =

p(Hi|d)
p(H j|d)

=
p(Hi)

p(H j)

L (d|Hi)

L (d|H j)
=

p(Hi)

p(H j)
Bi

j , (7)

where p(Hi)/p(H j) is the prior odds of the two hypotheses
and Bi

j is the Bayes factor. In the following, we quote directly
the Bayes factor, so that by construction, if Bi

j > 1(< 1) the
data prefers the model i( j). Then, we need to multiply by the
prior odds (which in the case of GR versus non-GR could be
a large effect) to get the odds ratio.

Even though no waveform model that corresponds to a non-
GR theory is currently available, we may ask: “Given the
observed data, are the QNM frequencies and damping times
compatible with GR?”. To address this question, we con-
sider two different hypotheses models: (i) HGR, which cor-
responds to the hypothesis that the events are described by
EOBNR waveforms where QNM frequencies are fixed to the
GR values, and (ii) HnonGR, which corresponds to the hy-
pothesis that the QNM complex frequencies are (additional)
free parameters and are described by pEOBNR waveforms.
Note that the latter also includes GR for a particular choice
of QNM frequencies, however, even if GR is the correct the-
ory, the model is penalized when performing Bayesian model
selection due to the addition of extra parameters that are not
needed to describe the data. For simplicity, in this work, the
model HnonGR uses the hypothesis that only the frequencies
and damping times of the (220) and (330) are not fixed by the
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inspiral parameters as given in GR, but all the other QNMs
included in the model do (i.e., the 21-mode, 44-mode, and
55-mode and their overtones). We note that we could follow
an approach similar to TIGER (Test Infrastructure for GEn-
eral Relativity) [58], where all combinations of possible free
parameters are included in the non-GR hypothesis. This ap-
proach is in general quite robust in finding deviations from
GR even for low SNR systems, but it can be computationally
expensive because several models must be analyzed. The hy-
pothesis that only the frequencies and damping times of the
(220) and (330) are free is the most conservative assumption,
and for practical purposes we consider it here.

To carry out the analysis on a reasonable timescale, we
fix the sky position and the parameters influencing mostly
the inspiral-plunge phase, namely the mass ratio q and chirp
mass Mc. Given that the inspiral is the same for both the GR
(EOBNR) and non-GR (pEOBNR) hypotheses, this is a rea-
sonable assumption that should not influence the qualitative
picture of the results, especially at large SNRs, where the in-
spiral parameters and the sky position are measured with very
good accuracy. However, the model and framework presented
here are not limited to those assumptions, and we plan to relax
them and do a more comprehensive analysis in the near future.

Given a detection, we compute the Bayes factor as:

BnonGR
GR =

BnonGR
noise

BGR
noise

, (8)

where BnonGR
noise and BGR

noise are the Bayes factors for HnonGR and
HGR against the hypothesis that the data contain only noise,
which we obtain using a nested sampling algorithm as imple-
mented in the LIGO ALGORITHM LIBRARY [49].

For the catalogs of injections we construct two popula-
tions of 100 BBH sources, one with GR waveforms using
the EOBNR waveform model [36], that we call the GR pop-
ulation, and a second catalogue with the pEOBNR model
with QNM frequencies given by σ220 = σGR

220(1 + δσ) and
σ330 = σGR

330(1+ δσ) where we fixed δσ = 0.1. Below we
refer to the latter as the non-GR population. We note that de-
viations up to 10% in the QNM frequencies are possible in
some alternative theories to GR. QNM frequencies of spher-
ically symmetric solutions were computed in theories such
as Einstein-Maxwell-dilaton [59], dynamical Chern-Simons
gravity [60], Einstein-dilaton-Gauss-Bonnet gravity [61–63]
and for some solutions in massive (bi)gravity [64–66]. On
the other hand, not much progress has been made to com-
pute QNMs for spinning BHs in alternative theories to GR,
the only exception being the Kerr-Newman case in Einstein-
Maxwell theory [67–70]. Most of the estimates for QNMs of
spinning BHs in modified gravity have instead used the con-
nection between the light ring and QNMs [62, 71–73], which
is formally only valid in the eikonal `→ ∞ limit and known
to fail to describe some families of QNMs when additional
degrees of freedom are present [62].

We draw the component (redshifted) masses of the 100
sources from a uniform distribution between 30 and 180 M�
and maximum total (redshifted) mass 210M�. This choice
implies a distribution for the mass ratios proportional to 1/q2
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FIG. 5. The log Bayes factors for individual sources. The red cir-
cles represent signals with GR waveforms (EOBNR), while the blue
crosses correspond to the non-GR waveforms (pEOBNR). A separa-
tion between the two is visible for SNRRD ∼ 15, and becomes more
pronounced as the SNR increases.

with a maximum value q = 6. We draw the sky position
and orientations (α,δ ,ψ,θ) from uniform distributions on the
sphere. The signals are distributed uniformly in volume with
a network SNR for the IMR signal ranging from SNR = 8
to SNR = 100 (corresponding to luminosity distances from
roughly DL = 100Mpc up to DL = 5000Mpc).

We summarize the results in Fig. 5 where we show the (log)
Bayes factor for the individual sources as a function of the
SNR in the ringdown part of the signal only (SNRRD). Since
the sources are distributed uniformly in volume, the majority
of our signals has an SNRRD < 10. In this region, there is no
clear difference between the log Bayes factor for the GR and
non-GR population. In fact, for SNRRD < 10, even for the
non-GR population the preferred model is the GR waveform
(which follows from the fact that lnBnonGR

GR < 0 for the non-GR
population). This is consistent with the fact that the GR and
non-GR waveforms have the same inspiral. Therefore, since
the SNR in the ringdown is small, and Bayesian model se-
lection naturally incorporates an Occam’s razor selection, the
model with less parameters (i.e., the GR waveform) is favored
in this region. However, for SNRRD & 15 we see a separation
between the GR injections and the non-GR injections and for
SNRRD & 25, the non-GR waveform are always favored for
the non-GR events (i.e., lnBnonGR

GR > 0). As one would expect,
the separation becomes much clearer with increasing SNRRD.
We note that the threshold SNRRD at which deviations from
GR can be detected are dependent on the particular non-GR
deviation. However, this study illustrates the non-trivial fact
that even at relatively low SNRs, Bayesian model selection is
able to find statistical evidence for deviations from GR.
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B. Bounding free parameters of the ringdown signal

Given a set of detected GW signals from BBHs for which
QNM frequencies and damping times can be measured, the
natural steps to follow is to first test the compatibility of the
waveform with GR using Bayesian model selection, as done
in the previous subsection, and then quantify how well we
can constrain deviations from GR using parameter estimation.
This can be done for single GW events, but stronger con-
straints can be obtained by combining the information from
all the detections as shown in Ref. [25]. There, two different
approaches were proposed: (i) the odds ratio obtained in the
previous subsection can be combined by just multiplying the
odds ratio coming from all the events, thus allowing to get
stronger evidence for or against GR. For a large group of N
identical events, this method effectively improves the SNR of
the single event case by a factor∼N 1/4 [26]; and (ii) assum-
ing that the Bayesian model selection test gives no evidence
for deviations of GR, one combines the posterior density dis-
tributions for δσ`m, which measures the fractional deviation
from the QNM complex frequencies of a Kerr BH in GR:

σlm = σ
GR
lm (1+δσlm) . (9)

Given that in GR δσlm = 0, the information from multiple
events can be combined by multiplying the posterior density
distributions of all detections as

p(δσ |H ,d1,d2,d3, . . . ,N )=
1

p(δσ)1−N

N

∏
A=1

p(δσ |H ,dA) ,

(10)
where N denotes the number of detections. For a large group
of N events, the width of this PDF decreases as ∼N −1/2.
We emphasize that when using Eq. (10) one assumes that the
value of δσlm is the same across all events. Therefore, since
for generic theories of gravity the deviations δσ`m could also
be a function of the final BH mass, spin and any other charges
that may be present in the correct theory of gravity, constraints
obtained using this method only make sense if no evidence for
deviations from GR are found after performing the Bayesian
model selection test [25].

More recently Ref. [26] proposed an alternative hypothe-
sis testing method that makes use of the combined informa-
tion from multiple detections and could, in principle, enhance
the efficiency to detect sub-leading modes compared to the
Bayesian model selection method used in Ref. [25]. This
method proposes to make full use of the information com-
ing from the measured BBH parameters, to coherently sum
the ringdown signal of a target mode from multiple events.
It could, in an ideal scenario, effectively improve the SNR
of a single event by a factor ∼ N 1/2, assuming N identi-
cal events [26]. However, implementing the coherent stacking
method of Ref. [26] is technically very challenging. Here, we
follow Ref. [25] and use Eq. (10) to combine the information
from a population of detected BBHs.

Since for each event we sample on the parameter σlm, we
compute the PDFs for δσlm a posteriori by using Eq. (9). To
compute σGR

lm we use the fitting formulas in Ref. [23] (see
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lution for deviations on the QNM frequencies as a function of the
number of events included in the computation of the joint posterior
density distributions, for the population of GR BBHs described in
the subsection IV A.

Appendix E therein) where for the spin and mass of the fi-
nal BH we employ the fitting formulas in Ref. [36] [see Eqs.
(29a) and (29b) therein]. The results for the constraints on
the parameters δσ`m, when considering the GR BBH popu-
lation described in the previous subsection8, are displayed in
Fig. 6. In particular, we show how the median and 95% con-
fidence interval evolve with the number of detections ordered
randomly. Although the constraints from a single event can be
quite uninformative, when all sources are taken into account
the 95% confidence interval shrinks to a maximum error away
from the median of ∼ 0.7%, ∼ 1.6% and ∼ 2.4% , for δ f220,
δ f330 and δτ220, respectively. As expected, we find that at
large N , the error decreases as N −1/2. Overall, our results
are consistent with previous studies [25], although we remind
that Ref. [25] used damped sinusoids for both the injected GW
signal and the recovery, while we injected and recovered with
an IMR waveform that consistently includes time and phase
shifts between QNMs.

It is worth noticing that if we consider only events with (to-
tal) SNR below 30 (which accounts for 60 events of the entire
population), and combine them, we obtain at 95% confidence
that the maximum errors away from the median are ∼ 1.7%
∼ 5.3% and ∼ 6.7%, for δ f220, δ f330 and δτ220, respectively.
Moreover, we find that δ f220 is the quantity for which we gain
less by combining several events, because it is the best mea-
sured quantity — e.g., for some individual events with SNR
less than 30, we get errors on the order of ∼ 5%. By contrast,
if we consider only events with SNR less than 30, the errors
of δ f330 and δτ220 for individual events are always larger than
20%.

Quite interestingly, using Eq. (10) for identical GW150914-
like events with mass ratio q = 1.5, total (redshifted) mass

8 We note that for this study, unlike what was done in the previous subsec-
tion, we keep all waveform’s parameters free.
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M = 70M�, luminosity distance DL = 500Mpc and inclina-
tion θ = 2.2rad (i.e., the EOBNR injection with loudness= 1
in Fig. 3), one can estimate how many such events would
be needed to test the BH’s no-hair conjecture with Advanced
LIGO and Virgo at design sensitivity, assuming that GR is the
correct theory. The posterior density distributions for a sin-
gle event is shown in Fig. 7, where we see that no relevant
constraints can be put on the frequency of the (330) with a
single event, however by combining several observations one
can get interesting constraints. The results are summarized in
Fig. 8 where we plot the 2-σ errors for δ f220, δ f330 and δτ220.
We find that we would need ∼ 20 GW150914-like events to
constrain the frequency of the (220) mode by 1% at the 2-σ
level, while to constrain the damping time of the (220) mode
by 5% one would need ∼ 23 such events. On the other hand,
to constrain the frequency of the (330) by 5% we would need
at least∼ 32 events, and we note that this last number is highly
dependent on the BBH mass ratio and inclination.

V. OUTLOOK

We investigated the advantages of using IMR waveforms,
with respect to damped-sinusoid models, to measure ring-
down frequencies and damping times in the post-merger sig-
nal of a compact-object coalescence. To address this goal, we
built a parameterized multipolar IMR waveform model within
the EOB formalism (pEOBNR), and investigated its ability in
measuring the QNM complex frequencies in GW150914, and
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gle event given in Fig. 7. The dashed black lines correspond to errors
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in several synthetic GW signals injected in Gaussian noise.
We found the following important advantages: (i) using an

IMR model, calibrated to NR waveforms, one does not need
to define an a priori unknown starting time at which the sig-
nal can be described as a sum of exponentially damped si-
nusoids [24, 25, 33, 44, 54, 55], therefore avoiding poten-
tial biases due to a non-optimal choice of the ringdown start-
ing time [37]; (ii) the IMR model avoids technical issues in-
herent to assuming a waveform with a cutoff at a particular
time, namely the need to know in advance the sky position
and time at coalescence [7, 33]; (iii) the IMR model natu-
rally includes important physics, such as phase shifts between
different modes, their relative amplitudes and the presence of
overtones [36, 45]; and (iv) the IMR model generically leads
to stronger constraints on the QNM frequencies compared to
what can be achieved with a damped-sinusoid model.

The approach that we here presented should also be seen
as complementary to previous works on the subject. Be-
sides directly measuring the ringdown frequencies, our IMR
model can also be used to validate the results obtained with
the more agnostic damped-sinusoid models. In particular, as
we showed, the pEOBNR model already provides very inter-
esting constraints on the frequency and damping time of the
dominant QNM of GW150914 [2].

This work can be improved in several fronts and should be
seen as a first step towards more accurate waveform models
that allow to measure deviations from GR. Although we pre-
sented results using a nonspinning BBH waveform model, the
extension to nonprecessing, spinning BBHs is straightforward
and will be done in the future, using the recently developed
multipolar EOBNR model with spins aligned/anti-aligned
with the direction perpendicular to the orbital plane [74].
Given that EOBNR models naturally encodes time shifts
between different modes and their relative amplitudes and
phases, it could in principle be used as a starting point to
perform the coherent stacking proposed in Refs. [26, 27]. A
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proper implementation of the method is, however, challeng-
ing and requires further work. The IMR model here presented
could also be extended to allow GR deviations in the inspiral
phase. In addition, further work in detector noise modelling
is needed to handle non-Gaussianities in the data. We do note
that longer waveform models, such as the ones generated with
our IMR model, are in general more robust against deviations
from Gaussian noise than shorter waveform models, such as
the damped-sinusoid models. We hope to come back to these
relevant issues in the near future.
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