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Abstract

For certain correlated electron—photon systems we construct the exact density-to-potential maps,
which are the basic ingredients of a density-functional reformulation of coupled matter-photon
problems. We do so for numerically exactly solvable models consisting of up to four fermionic sites
coupled to a single photon mode. We show that the recently introduced concept of the intra-system
steepening (Dimitrov et al 2016 New J. Phys. 18 083004) can be generalized to coupled fermion-boson
systems and that the intra-system steepening indicates strong exchange-correlation effects due to the
coupling between electrons and photons. The reliability of the mean-field approximation to the
electron—photon interaction is investigated and its failure in the strong coupling regime analyzed. We
highlight how the intra-system steepening of the exact density-to-potential maps becomes apparent
also in observables such as the photon number or the polarizability of the electronic subsystem. We
finally show that a change in functional variables can make these observables behave more smoothly
and exemplify that the density-to-potential maps can give us physical insights into the behavior of
coupled electron—photon systems by identifying a very large polarizability due to ultra-strong
electron—photon coupling.

Introduction

Recent experiments [ 1-9] at the interface of quantum chemistry, material science and quantum optics allow to
tailor the physical and chemical properties of the system by coupling light strongly to the matter, e.g. by placing it
in an optical cavity. The theoretical description of such experiments requires a full quantum treatment of the
entire system including the electronic matter and the electromagnetic field. Common electronic-structure
methods, such as density-functional theory (DFT) [10, 11] allow to efficiently describe the quantum nature of
the electrons while the electromagnetic field is treated as a static and fixed external perturbation. To also include
the electromagnetic field explicitly and thus being able to describe, e.g. chemical systems in an optical cavity,
time-dependent and ground-state DFT have been recently generalized to correlated electron—photon system
[12—15]. This new density-functional framework for coupled matter-photon problems has been termed
quantum electrodynamical density-functional theory (QEDFT) [14, 16, 17]. Similar to DFT, QEDFT is an exact
framework to describe the many-body problem [14, 15]. Both frameworks exploit the one-to-one
correspondence between the internal and external variables that are formally connected via a Legendre
transformation. As a consequence of these so-called density maps, one can determine every observable of the
quantum system as a functional of the internal variables only. While in DFT the internal variable is the one-
particle electron density (conjugate to the external scalar potential), in QEDFT we have two internal variables
(one for the electrons and one for the photons). These variables depend on the form of the electron—photon
Hamiltonian under considerations [14]. In DFT, to calculate the physical density of a many-body system and
thus avoid the numerically infeasible correlated many-body wave function, one usually employs the Kohn—
Sham scheme [10]. In this approach the N-particle Schrodinger equation is replaced by N coupled, nonlinear
one-particle equations, which are numerically tractable. The price to pay is that these effective particles are
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subject to an in general unknown xc potential, which makes up for all the missing many-body effects. Also in
QEDFT we can replace the full electron—photon Schrodinger equation by coupled, nonlinear one-particle
equations. The electronic subsystem is again described by equations for single particles that are subject to a xc
field. In this case, however, the effective field does not only contain contributions from many-body effects due to
the electron—electron interaction but also from many-body effects due to the photon—electron interactions

[13, 14]. Further, the photonic subsystem is described by an inhomogeneous Maxwell equation, where the
inhomogeneity is usually given explicitly by the electronic subsystem [13, 14].

In practice, calculations within the new QEDFT framework require reliable approximations to the unknown
xc potentials. Herein, QEDFT profits from the long-standing search [18] in DFT for more reliable xc potentials
that efficiently mimic the electron—electron interaction. While common xc functionals can be used to describe
the many-body effects due to electron—electron interactions, new functionals that mimic the electron—photon
interaction have to be developed. In this work, we are concerned about the xc potential of the light-matter
interaction, i.e. the potential an electron encounters due to its coupling to the electromagnetic field. For the
electron—photon contributions first approximations for the xc potential along the lines of the optimized
effective potential (OEP) approximation have been already demonstrated to be practical [17, 19]. If, however,
common approximations for the electron-electron many-body effects are used, then clearly QEDFT will face the
same challenges as standard DFT when systems with strong electron—electron correlations are considered. To
better understand such situations in DFT, the impact of static correlation and localization for different exact
density maps has been analyzed in a recent work [20, 21]. By investigating specific integrated quantities of these
maps, e.g. the density difference between two parts of the system 6n, it has been shown that static correlation and
localization can be quantified by the concept of intra-system steepening. This intrasystem steepening measures
electron localization over subsystems within the system. In the limit, where two subsystems are infinitely apart,
the ground-state is degenerate, the intrasystem steepening becomes the well-known intersystem derivative
discontinuity [22]. For én a step can be found that becomes steeper with increasing correlation in the system.
This feature translates to different functionals of the density, and corresponds to the full real-space behavior of
steps and peaks in the exact xc potential [23—-26]. In QEDFT we have besides the electron—electron correlations
also electron—photon correlations. And also for them according step and peak structures in the xc potential
appear in real space and pose a challenge for constructing approximate xc potentials that are reliable for strong
electron—photon correlations [16]. Consequently, can we analyze the correlation and localization in a similar
manner for coupled electron—photon system, and is the intra-system steepening a general feature of correlated
systems?

In this work, we construct the exact density-to-potential maps of ground-state QEDFT [15] and examine the
intra-system steepening related to the real-space properties of the exact xc potentials for correlated electron—
photon systems. For electron—photon model systems we show that the localization of the electrons and the
displacement of the photon mode depends on the ratio between the kinetic energy and the coupling term
between electrons and photons. Features of this intra-system steepening can also be found in other observables,
such as the photon number. A change in functional variables though, e.g., by going from the external to the
conjugate internal variables, can make the behavior of these observables more regular. We further show how the
validity of the mean-field approximation to the electron—photon coupling can be investigated by analyzing the
intra-system steepening. Finally we highlight how density-potential maps in electron—photon systems can be
used also outside of QEDFT to analyze the properties of physical systems by investigating the polarizability of an
electron—photon system when increasing the coupling strength.

Exact maps and the Kohn—-Sham construction in QEDFT

QEDFT allows to describe the quantum nature of electrons and photons on the same footing by reformulating
coupled matter-photon problems in an exact quantum fluid description. In the following we consider the
interaction of a system of n, electrons, e.g., a molecule in Born—-Oppenheimer approximation [27], with r,
quantized modes of a photon field. A typical experimental situation would be to place the matter system inside
an optical cavity, where only specific frequencies are assumed to interact with the multi-particle system. Such a
situation can be described by employing the following Hamiltonian [13, 17, 19]

H(t) = A,(t) + H,®), e
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where R refers to the electronic dipole operator. Note, in this work, we neglect electron-nuclear interactions by
working in the clamped-ion approximation. Therefore, the Hamiltonian given above only couples the
electromagnetic field to the electrons. However, extending the work to the interaction between the ions and the
field is straightforward, but would make the discussion in the present work more cumbersome. Besides the usual
Schrodinger Hamiltonian H, (t) that describes the charged-particle system, we now also have 1, photon modes
with frequencies w, that are coupled in dipole approximation with the electronic system. Here the photon
momenta fj = % \/% (4, — ﬁ;) in terms of the usual creation and annihilation operators are connected to the

magnetic field for mode o, and 4, = lz% (4o + 4))is proportional to the electric displacement field.

Therefore we have to subtract the polarization of the electronic system such that (w, 4, — A, - €R) corresponds
to the electric field. The coupling strength is | A, and A, /| A,| is the polarization vector. Further, )
corresponds to an external dipole moment that drives mode a.

To reformulate the above problem we employ a bijective mapping between the external variables of the
system, i.e., %y (1, ¢) and ]:;) (t), and the conjugate internal variables [12—15] given here by n(r, ¢) and q,,(¢),
ie.,

(et (5, 1), fi (1)) = (n(x, 1), g, (). (5)

While in principle this mapping allows to calculate the exact internal variables by solving a local-force equation
for the charge density nonlinearly coupled to a classical Maxwell equation [12—15], in general we do not know
the exact form of the momentum-stress and interaction forces in such equations [28, 29]. So in practice we have
to use approximations. The standard way to devise such approximations is the use of a non-interacting auxiliary
system, a so-called Kohn—Sham system [30]. In the Kohn—Sham scheme the difference in forces between the
non-interacting and interacting system is subsumed in a mean-field term and the unknown xc potential. In the
case of coupled electron—photon systems the mean-field contribution is the classical Maxwell field, which has
the usual longitudinal Hartree contribution and now also transversal terms, and the xc potential contains the
electron—electron and electron—photon many-body effects. Neglecting the electron—photon many-body effects
in the xc potential in the case of coupled electron—photon systems leads to the mean-field potential that is
identical to a classical Maxwell-Schrodinger simulation [31, 32].

Approximations to the xc potential of the coupled electron—photon system face similar problems to the ones
of purely electronic systems. When increasing the correlation, i.e. increasing the coupling strength |\, the
accuracy of the mean-field or the exchange-only OEP [19] decreases. To improve and construct approximations
that can treat strong-coupling situations more accurately we need a better understanding of the electron—photon
contributions in the strong-coupling limit. To this end we explicitly construct and investigate the exact
fundamental maps that underly the framework of ground-state QEDFT. As model system, we choose the Rabi—
Hubbard model, i.e. a few-site model coupled to a single photon mode. We consider three different setups (i) a
single electron on two sites, where the electron—electron interaction favoring the localization in the system is
equal to zero. (ii) Two electrons on two-sites, where we model the electron—electron repulsion by a Hubbard
interaction term. We analyze both maps in the resonant limit for different coupling strength. (iii) Four electrons
on four sites, here we connect the intra-system steepening and the modification of the electric polarizability for
such systems.

Two-site Rabi-Hubbard model

The model system

The Rabi model [19, 33], which consists of one electron on two sites coupled to one photonic mode, has been
heavily investigated in the context of light—matter interactions [34], e.g. recently in the context of photon
blockade [35]. In this work, we employ a generalized Rabi model with r;sites and that can host up to 21,
interacting electrons (Rabi—Hubbard model). The corresponding model Hamiltonian reads as follows'

We note here, that in the continuum limit, the dipole self-interaction term (A, - eR)?/2 term becomes important, see e.g. the discussion
in[17]. However, in the two-site case the dipole self-energy corresponds to a constant energy shift that we neglect in the discussion of the
two-site model.




I0OP Publishing NewJ. Phys. 19 (2017) 113036 T Dimitrov et al

E=0 v=-1
=1
xi=+1 X2=-1
Figure 1. Schematic view on the two-side model: a negative external potential 1,5, = —1introduces an energy difference between the
two-sites. The electrons in the electronic ground-state become localized on the left side. The external variable for the photon field, j,,,
can be interpret as a classical charge that generates an external potential as well. If j, = — ”72 then the electron is again delocalized.
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where the photon displacement operator is given by § = | zi (@ + 4" (the photon momentum operator

p = % \/g (@ — a")and \introduces a coupling between the electronic and photonic part of the system. The

electronic part is described by the standard Hubbard model with the on-site parameter Uy, the hopping matrix
element t;, and the operators c ,and ¢; , that create or destroy an electron with spin o on site i. The electron

density operator on site 7is glven by i; = ¥, &, & ». We furthermore specify the dipole moment of the
electronic system by d = f dn(r)dr,where the dipole moment operator is given by d= >; difi;, with d;being
the distance of the site i to the center of charge in the system. For two sites this corresponds to on = n; — m, i.e.
the density difference between both sites in the latticeand” d = 6n.

In the case of the above Hamiltonian of equation (6) the pair of conjugate variables are (Vuxs j.,,

)and

(d = (d), g = (§))[15]. A simple way to see that this is true from a purely electronic DFT perspective and that
helps to interpret the external term j, , is by performing a unitary transformation of the above Hamiltonian.
With the coherent-shift operator U[ j,,,] = exp(ij,,,p /w?) we can recast the Hamiltonian of equation (6) into

the unitarily equivalent form

1= 0,0
ns—1
= —1p Z (Clo-cz+1(r+ C1+1UC1 10) + UOanTnzl
i,o=1,| i=1
P Aooa 1
+wa'd — wAgd + (Ad)?*/2 + Vext + _2]ext)d — ] 7)
w 2 4Jext”

Thus, we see that the external dipole j,,, can be recast into an external potential on the electrons by a unitary
transformation. Take, for instance, the case of the two-site problem Rabi-Hubbard model as depicted in figure 1.
If j,,, = 0and anegative external potential 1,; < 0 acts on the system, the external potential localizes the
electron on one site. The external dipole for the photons j,_, introduces a classical positive charge to the system
that can counterbalance the effect of the external potential v.,,. With the usual Hohenberg—Kohn theorem we

know that for any external potential ¥y = (Vext + w%jext) there is one and only one ground-state wave function
Uy’ associated. And from this ground-state we find the corresponding unique wave function of the original
problem by ¥y = D[—j,.]W . Thus purely electronic properties can be reconstructed from the situation with

Jexe = 0, while the photonic observables will in general depend in a non-trivial manner on the j, . Further, as
can be deduced from the equations of motions for the photonic systems (e.g. equation (2) in [16]), we can

establish a direct connection between g and dand j,, for the ground-state (—q = atz q= O)
A 1

q = ;d — Ejext‘ (8)

Using the external variables v and j,_,, we stepwise screen the external potential of the photons and electrons.
For each fixed pair of the external potential (., j.,,)> We diagonalize the Hamiltonian using exact

2 We emphasize that the two-site Rabi-Hubbard Hamiltonian as in equation (6) is exactly identical to a Holstein—-Hubbard Hamiltonian
that is routinely used in the electron—phonon community, e.g. discussed in [36-38].

4
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diagonalization [20, 39] given in equation (6) and obtain the corresponding ground-state wave function of the
system, in the following denoted by Wo(1.y, j,)- Using the exact wave function, we have access to the conjugated
set of variables, i.e. (d, q), by evaluating the corresponding expectation values

d= <\I/E)Vexn]m)| ﬁl\llg/exhlext)> (9)

and
q= <\I,g/exv]ex[)| é\llllg)"exv]ex[)> (10)

corresponding to the electronic dipole and the photonic displacement coordinate. Screening the parameters 1.y
and j,,, allows us to construct the complete map between the conjugated set of variables.

The Kohn-Sham system

For general many-body calculations, we can use the Kohn—Sham approach [10] to simulate the interacting
many-body problem by solving equations for non-interacting particles. In the electron—photon situation that is
presented here, we encounter two interaction terms, i.e. the electron—electron interaction modeled by a
Hubbard on-site interaction and the electron—photon interaction. In general, we can setup a Kohn—Sham
system for non-interacting electrons as presented in [ 14, 16]. However, in this paper we focus on the effects of
the electron—photon interaction on the density-to-potential maps and we therefore include the electron—
electron interaction in the Kohn—Sham system explicitly. Thus, the Kohn—Sham system reads in the case of a
two-site lattice as follows

Hppxs=—t0 Y (& 40,0 + & 561,0)

o=1,]
+ Uy Y Aighy) + vsd, (11)
i=1,2
Hyxs = wi'a Js 5 12
oxs = wd'd + e (12)

The hereby emerging effective Kohn—Sham potential vs and the effective current jg are chosen such that the
ground-state density is equal in the Kohn—Sham systems of equations (11) and (12) and the full interacting
problem of equation (6). While the effective current jg is known explicitly [14, 39], i.e. j; = —w?Ad + j,, the
effective potential vg has to be approximated. To this end, we divide vs as follows

Vs = Vext + VM + Vxo (13)

where vy and v describe the mean-field part and the xc part, respectively.

The mean-field and exact potentials

The simplest approximation to the fully coupled problem and the starting point for the Kohn—Sham
construction in the electron—photon case is the mean-field approximation [ 16] that is given by vy = —wAq and
leads to the following Hamiltonian in the case of a two-site lattice

Hppo=—to > (& 10,0+ & ,8,0) + Uy Y. fAigfi)

o=1,1 i—1,2
— w/\qgl + Vet d, (14)
it o s g
ono = wa'd — wAdd + =24, (15)
w

where d = (d)and g = (g). To obtain the mean-field ground state, equations (14) and (15) have to be solved
either self-consistently, or equation (8) can be exploited leading to the following electronic equation

Hppo = —to > & 6,0 + & 46,0 + Up > Aighi
o= i=1,2
SN A+ 2 At ved, (16)
wz ext ext
In these equations, we apply the classical approximation only to the electron—photon interaction, while the
electron—electron interaction is treated fully correlated. We may expect that such a approximation works well
for the studied model in the weak-coupling regime and in the limit of infinite coupling [19].

To construct the exact v, of equation (13) beyond the mean-field approximation, we can, for instance, use
the Heisenberg equation of motion to find the connection between the electronic density d and vg for the Kohn—
Sham system and between d and vy in the many-body problem. These equation read for the ground state as
follows
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Figure 2. Single electron on a two-site lattice: the electron density d as function of the external variables (1., j.) is shown in the first
row. The second row shows the cut of d (%t j.) as indicated by the dashed line in the upper plot both for different coupling strength
of(@) A =0,(b) A\ = 0.1,and(c) A = 1.
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where in the many-body problem, the many-body wave function has to be employed to calculate observables,
while in the Kohn—Sham system the factorizable Kohn-Sham wave function is employed. Since the electronic
density dis by construction equal in the interacting system and the exact Kohn—Sham system, if the exact Kohn—
Sham potential vs is used, we find for the density-to-potential maps d;[vs] = d [v.x]). By using the inverse
mapping, i.e. v [d, q], we can construct the exact xc potential of equation (13) using [30]

veeld, q1 = v3:°ld, q1 — vauld, q] — valds q). (19)

In the following, we construct the exact density-to-potential maps of d [vex, j,,,] and v [n, ] to get insights how
the electron—photon interaction influences the electronic system and draw conclusions on approximations for
corresponding xc potential.

The single electron case

We start discussing the Rabi—Hubbard model in setup (i), where a single electron is coupled to the photon mode
of frequency w = 1. The first situation we analyze is, when the electron and the photons do not couple, see
figure 2 (a) (A = 0).Inthis case varying j, . has no effect on the density-to-potential map. Therefore, the
density-to-potential map d [v.y] is determined by the external potential v.,; alone. The dependency of d [1.x] on
Vexe 1s shown in the lower plot. We find a continuous and rather smooth mapping. Since, we have restricted
ourselves to a single electron, the dipole corresponding to the density difference between both sites d can have
values in between [—1, 1]. We now consider as intrinsic normal modes in the system, the electronic degree of
freedom along v, (indicated by a dashed line) and the photonic degree of freedom along jey,. In figure 2(b), we
now introduce a finite A, here A = 0.1. In figure 2(b), we plot the two-dimensional density-to-potential map

A [Vexts Joye] fOT Ve = [—5, 5]and j,, = [—50, 50]. The first emerging feature in the plot is thatthe two normal
modes change [17,27], i.e. the photon and electron degrees of freedom become correlated. This electron—
photon correlation tildes the map as shown in figure 3. The rotation can be constructed by T = Ve + A/ w?,y,
and corresponds to the transformation using the coherent-shift operator as in equation (7). The diagonal cut in
the plot is the new polaritonic degree of freedom that is shown in the plot on the bottom. We find a broad
smearing of the density-to-potential map. Figure 2 (c) shows the map for A = 1. The plot is shown for

Vexe = [—5, 5]and j,,, = [—5, 5], hence the photon external variable is narrower. In comparison to A = 0.1,

6
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Figure 3. Change in normal modes: increasing electron—photon coupling strength leads to the rotation of coordinate system.
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Figure 4. Single electron on a two-site lattice: the photon displacement q as function of the external variables (v, j,,) is shown in the
first row. The second row shows the cut of q(Vext, j,,) as indicated by the dashed line in the upper plot both for different coupling
strengthof (a) A = 0,(b) A = 0.1,and(c) A = 1.

we find a steepening of the gradient in the density-to-potential plot that we have earlier introduced as intra-
system steepening [20]. In figure 4, we show the same mapping for the photon displacement variable g as
function of the external variables (1, j,,,). While in (a) for a vanishing electron—photon interaction we find no
photon displacement along the external potential v, we find that for the small electron—photon coupling in (b)
the observable is dominated by the harmonic nature of the photon mode. In (c) for strong electron—photon
coupling, a steepening is appearing in the photonic variable.

To highlight the connection of the steepening to electronic correlation, figure 5 shows the correlation
entropy for the one-electron system, i.e. a good measure for the static correlation and indicates how well the
ground-state wave function is approximated by a single Slater determinant. The correlation entropy is given by

S = Z n;lnn;, (20)

=1

where the occupation numbers 7; are the eigenvalues of the reduced one-body density matrix [40] that is given in
terms of the many-body wave function U(X, %, ..., Xy) as

%W@%:ﬁ%J%W@@M@MK@M@) 1)

In spectral representation, the reduced density matrix can be written in terms of its eigenfunctions and
eigenvalues as [20]

Prrom @ X)) =D ;1 (X) (%), (22)

J

In figure 5 the correlation entropy increases with the coupling between the photonic and electronic part of the
system, while the gradient of the maps as in figure 2 steepens. However, we emphasize that the map within this
setup is still continuous. In contrast, the derivative discontinuity refers to the discontinuous behavior of the
gradient of the density maps along the cut of the particle number at integer value [22]. The discontinuity is an
exact concept for systems with degenerate ground state, where the maps are constructed as convex combination
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Figure 5. Correlation entropy as function of the polaritonic external variables 7 in the first row and as function of the electron
density d in the second row.
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Figure 6. Single electron on a two-site lattice: the xc potential vy as function of the internal variables (d, n) is shown in the first row.
The second row shows the cut of 1, for g = 0 for different coupling strength of (a) A = 0,(b) A = 0.1,and(c) A = 1.

of the degenerate densities belonging to different particle number. The degeneracy of the eigenvalues of the
ground state is due to an external potential within the Hamiltonian that serves as a Lagrange multiplier shifting
the ground-state energy to states with different particle number. In the case of degeneracy, the derivative
discontinuity shows up along the cut of the conjugated variable, e.g in purely electronic systems along N or 6n.
We can conclude that the mapping becomes sharper for increasing electron—photon coupling strength A and
therefore reminiscent to the case of static electronic correlation [20]. We plot the xc potential for this case in
figure 6. In (a), we plot the two-dimensional plot for A = 0 and the the cut for ¢ = 0. Naturally, we find v, = 0
for this case, since electrons and photons do not interact. The case for A = 0.1is shown in (b). The cut along

q = 0shown in the bottom reveals a smooth curve for . as function of . If we compare to the density-to-
potential map from figure 2 (b), we find that 1, has the highest amplitude at the density values that show the
highest derivative in the density-to-potential map. This is to be expected, since the non-interacting auxiliary
system has a rather smooth behavior (see figure 2 (a)), while the fully coupled problem is subject to the intra-
system steepening, and consequently the xc potential functional has to compensate this mismatch. Thus the
intra-system steepening directly translates to the size of the xc potential, which in the case of the two-site Rabi—
Hubbard model implies a large potential step between the sites. This is a reminiscence of the step and peak
structure of the photonic xc potential in full real space.Let us further comment on the sign of the xc potential.
While the full mean-field xc potential of equation (13) is responsible to localize the electron more strongly than
the external potential 1., could, the major part of this task is done by the mean-field potential vy; = —wAq
(compare the sizes of potentials in figure 2 with the xc potentials in figure 6). Together with equation (8) for, e.g.,
Jexe = O, this shows that the mean-field potential has the opposite sign to the dipole moment and therefore leads
to a stronger localization. The xc potential, on the other hand, has to correct for the error that the pure mean-
field introduces and can thus have the same sign as the dipole moment. In (c), we show the mapping for A = 1.
For this case v has larger amplitudes in all regions, but its overall shape remains similar to the A = 0.1 case. We
note, that such a scaling behavior could be employed to construct novel approximations to the xc potential.
Further, we point out that the dependency of 1, on q is below our numerical accuracy, thus very small in the
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Figure 7. Two electrons with Uy = 5 on a two-site lattice: the dipole d as function of the external variables (v, j,,) is shown in the
first row. The second row shows the antidiagonal cut of d (v, j,,,) as indicated by the dashed line in the upper plot both for different
couplingstrength of (a) A = 0.1,(b) A = 1,and (c) A = 2.

considered parameter range. In general g takes values from — 00 to 00 and in the case that q takes such high
values it will affect v, more strongly. The (d, ) behavior of the xc functional will be discussed in a little more
detail at the end of this section. As a conclusion, we find that the steepening that is visible in figure 2 along the
new polaritonic coordinate 7. becomes here visible along d.

The two-electron case

Next, we analyze setup (ii), i.e., the two-site Rabi-Hubbard model in the two-electron subspace. The density-to-
potential map is plotted in figure 7. In (a), we show the mapping for an electron—photon coupling strength of

A = 0.1, hence a weak coupling setup. As in the case of the single electron, we also find here electron—photon
correlation by the appearance of changes in the normal modes. While the upper panel show the two-
dimensional mapping d [V, ji,), in the lower panel, we show an antidiagonal cut along the rotated normal
mode. The most noticeable difference to figure 2 is that d can now acquire values between —2 and 42 and in the
mapping an intermediate step appears, where d ~ 0. This is, of course, due to the fact that we can now have two
particles on one site and thus the total dipole moment can become |2|. If we now increase the electron—photon
coupling strength Ato A = 1, shown in figure 7 (b), we find a steeper density-to-potential map. Also the
intermediate step is reduced in size. In figure 7 (c), we plot the mapping for A = 2. Here, we find that the
intermediate step vanishes and around v = j,,, = 0, the mapping becomes very steep. Since, we find
approximately only two values for d, —2 and +2, meaning that both electrons are on the same side, we can
conclude that the electron—photon interaction is capable of effectively reducing the electron—electron repulsion
of the Hubbard term in equation (15). Formulated differently, the electron—photon interaction mediates an
effective attraction between the two electrons with the effect that both occupy the same site. Physically, we can
interpret that the photons cloud the electrons such that the electron—electron repulsion is reduced. The static
correlation of the electron—photon interaction dominates the correlation of the electron—electron interaction in
this limit. To analyze the interplay between electron—electron interaction and electron—photon interactions, we
vary in figure 8 the value of Uy, while keeping the electron—photon interaction strength A = 1.In (a) we find that
if the value for Uy is small that the electron—photon interaction dominates the system and only a single step in the
density-to-potential map is found. For increasing electron—electron repulsion Uy in (b) and (c), we find that the
intermediate step emerges. We therefore see that the details of the step due to the repulsive Hubbard interaction
depend on the relative strength of the Hubbard U, with respect to the coupling strength . This is very similar to
the competition between U and the hopping term ¢, that depends on the mass of the particles [20]. This
immediately leads to the well-known idea that the effect of the electron—photon coupling can be approximated
by a renormalization of the mass of the charged particles. This is a different way of understanding the interplay
between the electron—photon coupling and the Hubbard repulsion in this model system. Note, however, that
ultimately both are due to electron—photon coupling, but the Hubbard Uy is due to the longitudinal and the
effective coupling strength A due to the transversal photon degrees of freedom [14].

Next, in figure 9 we plot the v, potential for the two electron case with different coupling strengths. As in the
case of a single electron, we find similar cuts for 1 forq = 0in (a) for A\ = 0.1andin (b) for A = 1. Again, the
intra-system steepening is responsible for the large values of the xc potential. In (c), where the coupling is
increased to A = 2, we find that due to the vanishing of the intermediate step, the regions of highest xc
contributions are where the derivative due to the steepening is the largest, i.e., around d = —2 andd = 2.Ifwe
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Figure 8. Two electrons with A = 1 ona two-site lattice: the dipole d as function of the external variables (vex, j,,) is shown in the first
row. The second row shows the antidiagonal cut of d (1., j,,,) as indicated by the dashed line in the upper plot both for different
coupling strength of (a) Uy = 2, (b) Uy = 3,and (c) Uy = 4.
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Figure 9. Two electrons with Uy = 5 a two-site lattice: the xc potential v as function of the internal variables (d, ) is shown in the
first row. The second row shows the cut of 1 for ¢ = 0 for different coupling strength of (a) A = 0.1,(b) A = 1,and (c) A = 2.

compare these results with the ones for the one-electron case in figure 6 we see that the xc potential now switches
signs several times and has to do more than to just make the mean-field potential less localizing. What we find is
that in order to make the steps due to the repulsive Hubbard interaction less pronounced, the xc potential needs
to localize the electrons more strongly around d = 0 and thus counter-acts the repulsion, while for large d the
mean-field potential over-shoots and thus the xc needs to correct this too strong localization. Due to the sign
changes there are several points that have the same value of the xc potential, however, due to the exactly opposite
reason. In, e.g., figure 9(b) we have the same values at roughlyd =0.2and d = —1.8,butatd =0.2 thexc
potential is responsible for more localization whilein d = —1.8 itleads to less.

So far we have constructed the exact mappings. However, in practice we need to employ approximations
since the exact mappings that constitute the Kohn—Sham potential are not known. Let us therefore see how the
simplest approximate treatment of the coupled electron—photon problem, the afore introduced mean-field
approximation of equation (16) performs This will give us insight about the missing xc potential. In figure 10(a),
we plot the results in the regime of weak-coupling (A = 0.1). For the weak-coupling regime, we find a good
agreement with the exact calculations shown in figure 7. The first differences become more pronounced in
figure 10(b). For the stronger coupling of A = 1, we find in comparison to figure 7(b) a broader intermediate
step that is also less steep. The most significant differences are clearly visible in the strong-coupling limit for
A = 2. While in figure 10(c) we have seen the complete disappearance of the intermediate step, we find a
remaining step if the classical approximation to the electron—photon coupling is employed. This clearly shows
the breakdown of the classical approximation. Only in the limit of A — 00, the classical approximation can
correctly predict the vanishing intermediate step. This brings us to the conclusion that this feature is a true
electron—photon xc feature, where approximate xc functionals have to be developed to correctly account for
such features. The missing electron—photon xc potential needs to enhance the steepening, i.e., it needs to model
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Figure 10. Two electrons with Uy = 5 in mean-field approximation on a two-site lattice: the electron density d as function of the
external variables (Vuxt, j,) is shown in the first row. The second row shows the antidiagonal cut of d (v, j,,) as indicated by the
dashed line in the upper plot both for different coupling strength of (a) A = 0.1,(b) A = 1,and(c) A = 2.
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Figure 11. Eigenvalues of the exact Hamiltonian of equation (2) versus the mean field approximation of the electronic energy of
equation (14) for the two-site Rabi—Hubbard model. Indicated in black are all mean-field eigenvalues in the shown range, while in
blue the exact ground-state value is shown.

the missing correlation. This is in agreement with our interpretation of the intra-system steepening and
correlation effects. The failure of the mean-field approximation in the strong-coupling limit around 7y, ~ 12
can be partially understood by comparing the exact eigenvalues versus the mean-field eigenvalues of our model
system in the red-highlighted area in figure 11. For this setup, while the exact energy plotted in blue hasa
continuous and differentiable form, the mean-field energies develops a discontinuity in the red shaded area.
How this discontinuity affects mean-field observables will be discussed in the next section.

Functionals for observables

In the remaining part of this section, we now study the implications of the features of the density-to-potential
map on observables. As a consequence of the density map, in principle, arbitrary observables can be expressed in
terms of the set of internal variables. In practice, however, the functional form of observables such as the photon
number N (g, d) is unknown and the functional development of important observables will push the
framework of QEDFT to a practical level. While first functionals have been developed for simple model systems
[17], most functionals for observables remain unknown. For our model system, we can explicitly construct the
dependency of selected observables on both, i.e. on the set of internal and external variables. Even though, the set
of (Vext> Jiy) is mathematically equivalent to the set (d, q), the dependence on the set (d, g) can be very different to
the dependence on (Ve j.,,)- The first observable we study is the interaction energy Ej;, that can be defined from
—w(4 d).Itis connected to the xc energy by

— Byt = —w((§ d) — q d). (23)

equation (6) by E, =
Exc - Eint

Eine[Vext> Jii] for the two-site Rabi-Hubbard model for two electrons is shown in figure 12 and the corresponding
observable in mean-field approximation is shown in figure 13. In (a), the weak-coupling is shown, respectively.
We find here the rotated normal coordinates and the intermediate step causes a distinguishable behavior around

Jexe ~ 0. This intermediate step becomes smaller for A = 1shown in (b). In the strong-coupling limit, the
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Figure 12. Two electrons with Uy = 5 on a two-site lattice: the interaction energy Ej, = w <q¢§> as function of the external variables
(Vexts Jeyy) 18 shown in the first row. The second row shows the antidiagonal cut of Ej (vexis Ji,) as indicated by the dashed line in the
upper plot. The third row shows the diagonal cut of Ejn (Vexts> jiy,)- All plots are shown for three different coupling strengths (a)
A=0.1,(b) A = l,and(c) A = 2.
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Figure 13. Two electrons with Uy = 5 on a two-site lattice: the interaction energy Ejnmf = wqd in mean-field approximation as
function of the external variables (44xt j,,,) is shown in the first row. The second row shows the antidiagonal cut of Ein,m¢ (Vexts
indicated by the dashed line in the upper plot. The third row shows the diagonal cut of Eing,mf (Vext>
different coupling strengths (a) A = 0.1,(b) A = L,and (c) A = 2.
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interaction energy has a vanishing step in the exact solution of the problem shown in figure 12(c). In contrast the
mean-field solution fails to correctly reproduce the exact sharp feature of the interaction energy leading to large
xc contributions. This failure can be explained by the discontinuity in the energy as discussed in figure 11. The
next observable, we study is the photon number in the system (N') = (4%4). In general, and in difference to
electronic observables, such as d, the photonic observables are not restricted to integer values due to its
underlying bosonic nature in contrast to the fermionic number of particles. In figure 14 (a), we show N as
functional of the external potentials, N [vux, j., |- In (a), in the weak-coupling limit for A = 0.1, we find that the
external potential v, has no large overall influence on this observables and the harmonic nature of this
observable is given by the external current j,,. In the two lower panels, we plot the diagonal and the antidiagonal
cut. Since the observable is unbound, we can excite very high photon numbers, up to 1200 for the studied
examples. Nextin (b), we show the case for A\ = 1.0. Here, we find that the external potential 1, can alter this
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Figure 14. Two electrons with Uy = 5 on a two-site lattice: the photon number N = (474) as function of the external variables

(Vext> Joyy) 18 sShown in the first row. The second row shows the antidiagonal cut of N (v, j,,,) as indicated by the dashed line in the
upper plot. The third row shows the diagonal cut of N (v, j,,)- All plots are shown for three different coupling strengths (a) A = 0.1,
Mb)X = lLand(c) A = 2.
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Figure 15. Two electrons with Uy = 5 on a two-site lattice: the photon number N = (44) as function of the internal variables (d, q)
is shown for different coupling strength of () A = 0.1,(b) A = 1,and (c) A = 2 in the top and bottom for g = 0.

observable in cases, where Nis small. Around j,, ~ 0, we find a funnel-type structure of this observable which
is connected to the intermediate step of the density-to-potential mapping shown in figure 7. In (c), we show the
strong-coupling limit for A = 2. Here, we find for the antidiagonal cut of N [v., j,,,] map a sharp feature
around j, . ~ 0.Again this is connected to the sharp features in the density-to-potential map. Also the rotation
in the normal mode is clearly visible along the antidiagonal.

In figure 15, we now show the dependency of N [d, q] on the internal variables in the top and in the bottom
the cut for ¢ = 0. Here, we find that the appearing normal modes vanish for all three coupling strengths and the
mapping becomes smooth. Qualitatively the weak-coupling A = 0.1 and the strong-coupling for A = 1behave
similarly (a double maximum in the cut), while the mapping for A = 2 has a constricted shape and only a single
minimum in the cut. That the photon-number observable behaves more regularly when written in terms of the
internal variables is an important detail. It suggests that we can find reasonable approximation to non-trivial
functionals of the internal variables despite the intra-system steepening, which would make approximating
much harder. Such non-trivial functionals are important to make QEDFT practical since in many situations it is
not the density or the displacement field that one is interested in but rather, e.g., the energy or correlation
functions of the photon field. We note that after changing to the internal variables, the dependency of N [d, q]
on g becomes only strongly pronounced for high values of q. This implies that for a small amplitude of g, using
functionalsatq = 0 becomes reasonable. This is very similar to the behavior we encountered in the xc potential
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functional. Also there the dependence of 1. on g in the considered parameter range was very small. The weak
dependence on only one parameter would not be the case if we used instead the mathematically equivalent
external functional v [, j,,] that would also allow to determine the dipole moment d in the Kohn—Sham
system. This is a nice example that the choice of the internal functional variables makes approximations much
easier in practice.

Four-site Rabi-Hubbard model

So far we have analyzed the simplest situation of electron—photon coupling and concluded that the intra-system
steepening that appears in the density maps is a simple measure to quantify the electron—photon correlation. In
this section, we now address the questions, whether the steepening also appears in more complex situations. To
this end, we study a four-site Rabi—~Hubbard model coupled to a single photon mode and demonstrate the
implications of the discussed modifications of the density-to-potential map under strong light—matter coupling.
We show how the density-potential map can help to find interesting behavior and explain experimentally
observed effects asin [2], where an large increase in the optical conductivity for organic semiconductors in
strong coupling was observed.

The extension of equation (6) to four sites is straightforward and the Hamiltonian for half-filling (four
electrons) reads

3
Hy=—t Z Z (5:(,—51‘4—1,0 + 5,’11,551‘,0)

i=1o=1,]
! 5o
+ Up Yy fighy| + wd'd — wAgd + =4
i=1 w
+ OAD)?/2 + Verd 24)

withd = do(3n; + ny — n3 — 3ny). Inthis case, 1. effectively is an external electric field, as routinely studied
in electronic-structure calculations. For four sites, we construct the dipole to electric field map. Such a mapping
of an reduced internal variable to an reduced external variable has been proven to be unique and has been
analyzed e.g. in [41]. Physically the gradient of the dipole moment to the external electric field describes the
electric polarizability a [42]. In this spirit, we define the electric polarizability as follows

od

-~ bl
OPext

a[Vext] = (25)

where % = Vet + A/w?,, describes the external electric field applied to the system as defined by equation (24).
We note that for the two-site Rabi~-Hubbard model studied in the previous section, the polarizability « is the
gradient of the density-to-potential map. Thus, the larger the gradient in the mapping becomes, the larger values
for the polarizability are obtained. In conducting polymers, it has been demonstrated that this high polarizability
is directly connected to charge-transfer, i.e. conductivity [42—44].

In figure 16, we show how the electronic dipole moment d and the polarizability « as function of the applied
external potentials 12, and j, , change. Also in this more complex situation, we findthe change in the normal
modes appearing. Thus, in figure 16, we show how #; induces changes under strong light—matter coupling to
the system. Without coupling, shown in (a), we find that the dipole moment develops three quasi-stationary
regions, where the extremal values correspond to situations, where two electrons occupy the outermost sites and
the other two electrons occupy the neighboring site. In the lower panel of figure 16, we plot the polarizability « as
defined in equation (25). We find two peaks in between the stationary regions of the dipole moment. If we now
increase the electron—photon coupling, shown in (b) for the case of A = 1, we find that similarly as reported in
the previous section, the dipole moment as function of the external potential steepens and the step around
Yext ~ 0 becomes narrower. Accordingly, the two peaks in the polarization shown in the bottom panel get close
together and have larger amplitudes in comparison to the setup in (a). For strong-coupling thatis here A = 2
shown in (¢), we find that the middle step becomes even narrower and also the two peaks shown in the bottom
panel become closer with high amplitude. In conclusion, we find that by tuning the electron—photon coupling
strength, the polarizability of the system can be strongly influenced leading to a highly polarizable system.

Summary and outlook

In this paper we have constructed the exact density-to-potential maps for electron—photon model systems and
extended the concept of the intra-system steepening to general fermion-boson systems. We made explicit how
the intra-system steepening can be used to identify large xc potentials and how these effects show up in other

observables. We have identified the appearance ofchanges in the normal modes in the coupled matter-photon
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Figure 16. Four electrons with U = 2 on a four-site lattice: the dipole moment d as function of (Ve jext) is shown in the first row. The
dipole moment d as function of the electric field ¥y is shown in the second row as indicated by the white arrow in the first row. The
third row shows the polarizability v as defined in the main text. All plots are shown for three different coupling strengths (a) A = 0,
Mb)A = lLand(c) A = 2.

system and showed how the density-to-potential maps can be constructed for all possible external pairs from
only knowing the map along the polaritonic external potential #,;. Finally we have highlighted for a four-site
model with four electrons coupled to photons, how the intra-system steepening allows to identify interesting
physical effects such as an increase of the polarizability of the matter system due to ultra-strong coupling to the
photons. The increase in the polarizability is directly relevant for experiments such as in [2], where an increase in
conductivity for organic semiconductors in strong coupling was measured.

The exact maps and the tools to analyze the importance of xc contributions will be helpful to further develop
xc functionals for QEDFT that accurately capture the coupling between the charged particles and the photons.
Also the finding that observables behave more regularly when represented by the internal variables is an
important detail in the development of QEDFT. Such functionals become crucial for the practicability of
QEDFT, as many observables are non-trivial functionals of the internal variables 7 (r) and q,,, e.g., the number of
photons. Their availability will allow for novel applications of density-functional methods in the context of
quantum optics or plasmonics. Further, although the functionals in QEDFT are different to the ones of standard
DFT, insights from a more complete description of real systems, i.e., also treating the photons, might prove
beneficial also for DFT. Especially when going beyond the dipole approximation, the minimal-coupling
prescription forces us to use the full current density to describe the coupling to the photon field. In this context a
current-density functional (CDFT) scheme becomes unavoidable [ 14, 30]. It seems possible by studying coupled
matter-photon systems beyond the dipole approximation that we get novel insight also into CDFT. It would be
very interesting to also investigate the exact density-to-potential maps for a Hubbard system that is coupled via
its charge current to the photons, e.g., via a Peierls substitution. Such results would highlight the necessary
ingredients of xc functionals to describe matter that only locally interacts strongly with photons, in contrast to
the dipole approximation, where all electrons feel the same photon field. This would allow to calculate quantum
local-field effects from first principles.
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