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Abstract
For certain correlated electron–photon systemswe construct the exact density-to-potentialmaps,
which are the basic ingredients of a density-functional reformulation of coupledmatter-photon
problems.We do so for numerically exactly solvablemodels consisting of up to four fermionic sites
coupled to a single photonmode.We show that the recently introduced concept of the intra-system
steepening (Dimitrov et al 2016New J. Phys. 18 083004) can be generalized to coupled fermion-boson
systems and that the intra-system steepening indicates strong exchange-correlation effects due to the
coupling between electrons and photons. The reliability of themean-field approximation to the
electron–photon interaction is investigated and its failure in the strong coupling regime analyzed.We
highlight how the intra-system steepening of the exact density-to-potentialmaps becomes apparent
also in observables such as the photon number or the polarizability of the electronic subsystem.We
finally show that a change in functional variables canmake these observables behavemore smoothly
and exemplify that the density-to-potentialmaps can give us physical insights into the behavior of
coupled electron–photon systems by identifying a very large polarizability due to ultra-strong
electron–photon coupling.

Introduction

Recent experiments [1–9] at the interface of quantum chemistry,material science and quantumoptics allow to
tailor the physical and chemical properties of the systemby coupling light strongly to thematter, e.g. by placing it
in an optical cavity. The theoretical description of such experiments requires a full quantum treatment of the
entire system including the electronicmatter and the electromagnetic field. Common electronic-structure
methods, such as density-functional theory (DFT) [10, 11] allow to efficiently describe the quantumnature of
the electronswhile the electromagnetic field is treated as a static and fixed external perturbation. To also include
the electromagnetic field explicitly and thus being able to describe, e.g. chemical systems in an optical cavity,
time-dependent and ground-state DFThave been recently generalized to correlated electron–photon system
[12–15]. This newdensity-functional framework for coupledmatter-photon problems has been termed
quantum electrodynamical density-functional theory (QEDFT) [14, 16, 17]. Similar toDFT,QEDFT is an exact
framework to describe themany-body problem [14, 15]. Both frameworks exploit the one-to-one
correspondence between the internal and external variables that are formally connected via a Legendre
transformation. As a consequence of these so-called densitymaps, one can determine every observable of the
quantum system as a functional of the internal variables only.While inDFT the internal variable is the one-
particle electron density (conjugate to the external scalar potential), inQEDFTwe have two internal variables
(one for the electrons and one for the photons). These variables depend on the formof the electron–photon
Hamiltonian under considerations [14]. InDFT, to calculate the physical density of amany-body system and
thus avoid the numerically infeasible correlatedmany-bodywave function, one usually employs theKohn–
Sham scheme [10]. In this approach theN-particle Schrödinger equation is replaced byN coupled, nonlinear
one-particle equations, which are numerically tractable. The price to pay is that these effective particles are
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subject to an in general unknown xc potential, whichmakes up for all themissingmany-body effects. Also in
QEDFTwe can replace the full electron–photon Schrödinger equation by coupled, nonlinear one-particle
equations. The electronic subsystem is again described by equations for single particles that are subject to a xc
field. In this case, however, the effective field does not only contain contributions frommany-body effects due to
the electron–electron interaction but also frommany-body effects due to the photon–electron interactions
[13, 14]. Further, the photonic subsystem is described by an inhomogeneousMaxwell equation, where the
inhomogeneity is usually given explicitly by the electronic subsystem [13, 14].

In practice, calculationswithin the newQEDFT framework require reliable approximations to the unknown
xc potentials. Herein, QEDFTprofits from the long-standing search [18] inDFT formore reliable xc potentials
that efficientlymimic the electron–electron interaction.While common xc functionals can be used to describe
themany-body effects due to electron–electron interactions, new functionals thatmimic the electron–photon
interaction have to be developed. In this work, we are concerned about the xc potential of the light–matter
interaction, i.e. the potential an electron encounters due to its coupling to the electromagnetic field. For the
electron–photon contributions first approximations for the xc potential along the lines of the optimized
effective potential (OEP) approximation have been already demonstrated to be practical [17, 19]. If, however,
common approximations for the electron-electronmany-body effects are used, then clearlyQEDFTwill face the
same challenges as standardDFTwhen systemswith strong electron–electron correlations are considered. To
better understand such situations inDFT, the impact of static correlation and localization for different exact
densitymaps has been analyzed in a recent work [20, 21]. By investigating specific integrated quantities of these
maps, e.g. the density difference between two parts of the system dn, it has been shown that static correlation and
localization can be quantified by the concept of intra-system steepening.This intrasystem steepeningmeasures
electron localization over subsystemswithin the system. In the limit, where two subsystems are infinitely apart,
the ground-state is degenerate, the intrasystem steepening becomes thewell-known intersystemderivative
discontinuity [22]. For dn a step can be found that becomes steeper with increasing correlation in the system.
This feature translates to different functionals of the density, and corresponds to the full real-space behavior of
steps and peaks in the exact xc potential [23–26]. InQEDFTwe have besides the electron–electron correlations
also electron–photon correlations. And also for them according step and peak structures in the xc potential
appear in real space and pose a challenge for constructing approximate xc potentials that are reliable for strong
electron–photon correlations [16]. Consequently, canwe analyze the correlation and localization in a similar
manner for coupled electron–photon system, and is the intra-system steepening a general feature of correlated
systems?

In this work, we construct the exact density-to-potential maps of ground-state QEDFT [15] and examine the
intra-system steepening related to the real-space properties of the exact xc potentials for correlated electron–
photon systems. For electron–photonmodel systemswe show that the localization of the electrons and the
displacement of the photonmode depends on the ratio between the kinetic energy and the coupling term
between electrons and photons. Features of this intra-system steepening can also be found in other observables,
such as the photon number. A change in functional variables though, e.g., by going from the external to the
conjugate internal variables, canmake the behavior of these observablesmore regular.We further showhow the
validity of themean-field approximation to the electron–photon coupling can be investigated by analyzing the
intra-system steepening. Finally we highlight howdensity-potentialmaps in electron–photon systems can be
used also outside ofQEDFT to analyze the properties of physical systems by investigating the polarizability of an
electron–photon systemwhen increasing the coupling strength.

Exactmaps and theKohn–Sham construction inQEDFT

QEDFT allows to describe the quantumnature of electrons and photons on the same footing by reformulating
coupledmatter-photon problems in an exact quantumfluid description. In the followingwe consider the
interaction of a systemof ne electrons, e.g., amolecule in Born–Oppenheimer approximation [27], with np
quantizedmodes of a photonfield. A typical experimental situationwould be to place thematter system inside
an optical cavity, where only specific frequencies are assumed to interact with themulti-particle system. Such a
situation can be described by employing the followingHamiltonian [13, 17, 19]
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where R refers to the electronic dipole operator. Note, in this work, we neglect electron-nuclear interactions by
working in the clamped-ion approximation. Therefore, theHamiltonian given above only couples the
electromagnetic field to the electrons. However, extending thework to the interaction between the ions and the
field is straightforward, butwouldmake the discussion in the present workmore cumbersome. Besides the usual
SchrödingerHamiltonian ˆ ( )H te that describes the charged-particle system, we now also have np photonmodes
with frequencies wa that are coupled in dipole approximationwith the electronic system.Here the photon

momenta = -a
w

a a
aˆ ( ˆ ˆ )†p a a

i

1

2
in terms of the usual creation and annihilation operators are connected to the

magnetic field formodeα, and = +a w a a
a

ˆ ( ˆ ˆ )†q a a1

2
is proportional to the electric displacementfield.

Thereforewe have to subtract the polarization of the electronic system such that lw -a a a( ˆ · )q eR corresponds
to the electric field. The coupling strength is la∣ ∣andl la a∣ ∣ is the polarization vector. Further, a ( )j t

ext
corresponds to an external dipolemoment that drivesmodeα.

To reformulate the above problemwe employ a bijectivemapping between the external variables of the
system, i.e., ( )v tr,ext and a ( )( )j t

ext , and the conjugate internal variables [12–15] given here by ( )n tr, and a ( )q t ,
i.e.,

a
a( ( ) ( )) ⟷ ( ( ) ( )) ( )( )v t j t n t q tr r, , , , . 5ext ext 1:1

While in principle thismapping allows to calculate the exact internal variables by solving a local-force equation
for the charge density nonlinearly coupled to a classicalMaxwell equation [12–15], in general we do not know
the exact formof themomentum–stress and interaction forces in such equations [28, 29]. So in practice we have
to use approximations. The standardway to devise such approximations is the use of a non-interacting auxiliary
system, a so-calledKohn–Sham system [30]. In theKohn–Sham scheme the difference in forces between the
non-interacting and interacting system is subsumed in amean-field term and the unknown xc potential. In the
case of coupled electron–photon systems themean-field contribution is the classicalMaxwell field, which has
the usual longitudinalHartree contribution and now also transversal terms, and the xc potential contains the
electron–electron and electron–photonmany-body effects. Neglecting the electron–photonmany-body effects
in the xc potential in the case of coupled electron–photon systems leads to themean-field potential that is
identical to a classicalMaxwell–Schrödinger simulation [31, 32].

Approximations to the xc potential of the coupled electron–photon system face similar problems to the ones
of purely electronic systems.When increasing the correlation, i.e. increasing the coupling strength la∣ ∣, the
accuracy of themean-field or the exchange-onlyOEP [19] decreases. To improve and construct approximations
that can treat strong-coupling situationsmore accurately we need a better understanding of the electron–photon
contributions in the strong-coupling limit. To this endwe explicitly construct and investigate the exact
fundamentalmaps that underly the framework of ground-stateQEDFT. Asmodel system,we choose the Rabi–
Hubbardmodel, i.e. a few-sitemodel coupled to a single photonmode.We consider three different setups (i) a
single electron on two sites, where the electron–electron interaction favoring the localization in the system is
equal to zero. (ii)Two electrons on two-sites, wherewemodel the electron–electron repulsion by aHubbard
interaction term.We analyze bothmaps in the resonant limit for different coupling strength. (iii) Four electrons
on four sites, here we connect the intra-system steepening and themodification of the electric polarizability for
such systems.

Two-site Rabi–Hubbardmodel

Themodel system
TheRabimodel [19, 33], which consists of one electron on two sites coupled to one photonicmode, has been
heavily investigated in the context of light–matter interactions [34], e.g. recently in the context of photon
blockade [35]. In this work, we employ a generalized Rabimodel with ns sites and that can host up to 2ns
interacting electrons (Rabi–Hubbardmodel). The correspondingmodelHamiltonian reads as follows1

1
Wenote here, that in the continuum limit, the dipole self-interaction term la( · )eR 22 term becomes important, see e.g. the discussion

in [17]. However, in the two-site case the dipole self-energy corresponds to a constant energy shift that we neglect in the discussion of the
two-sitemodel.

3
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where the photon displacement operator is given by = +
w

ˆ ( ˆ ˆ )†q a a1

2
(the photonmomentumoperator

= -wˆ ( ˆ ˆ )†p a a
i

1

2
) andλ introduces a coupling between the electronic and photonic part of the system. The

electronic part is described by the standardHubbardmodel with the on-site parameterU0, the hoppingmatrix
element t0, and the operators sˆ†ci, and sĉi, that create or destroy an electronwith spinσ on site i. The electron

density operator on site i is given by = ås s sˆ ˆ ˆ†n c ci i i, , .We furthermore specify the dipolemoment of the

electronic systemby ò= ˆ ( )d dn r rd ,where the dipolemoment operator is given by = åˆ ˆd d ni i i, with di being
the distance of the site i to the center of charge in the system. For two sites this corresponds to d = -n n n1 2, i.e.
the density difference between both sites in the lattice and2 d=d n.

In the case of the aboveHamiltonian of equation (6) the pair of conjugate variables are ( )v j,ext ext and

= á ñ = á ñ( ˆ ˆ )d d q q, [15]. A simple way to see that this is true froma purely electronicDFT perspective and that
helps to interpret the external term jext is by performing a unitary transformation of the aboveHamiltonian.
With the coherent-shift operator w=[ ] ( ˆ )U j ij pexpext ext

3 we can recast theHamiltonian of equation (6) into
the unitarily equivalent form

å å

w wl l
l
w w

¢ =

= - + +

+ - + + + -

s
s s s s

= 

-

+ + =
=

 

ˆ ˆ ˆ ˆ

(ˆ ˆ ˆ ˆ ) ˆ ˆ

ˆ ˆ ˆ ˆ ( ˆ) ( ) ˆ ( )

†

† †

†

H U H U

t c c c c U n n

a a qd d v j d j2
1

2
. 7

i

n

i i i i
i

n

i i

0 0

0
, ,

1

, 1, 1, 1, 0
1

, ,

2
ext 2 ext 4 ext

2

s s

Thus, we see that the external dipole jext can be recast into an external potential on the electrons by a unitary
transformation. Take, for instance, the case of the two-site problemRabi–Hubbardmodel as depicted infigure 1.
If =j 0ext and a negative external potential <v 0ext acts on the system, the external potential localizes the
electron on one site. The external dipole for the photons jext introduces a classical positive charge to the system
that can counterbalance the effect of the external potential vext.With the usualHohenberg–Kohn theoremwe

know that for any external potential = + l
w( )ṽ v jext ext ext2 there is one and only one ground-state wave function

Y ¢0 associated. And from this ground-state we find the corresponding uniquewave function of the original
problemby Y = - Y ¢[ ]D j0 ext 0 . Thus purely electronic properties can be reconstructed from the situationwith

=j 0ext , while the photonic observables will in general depend in a non-trivialmanner on the jext. Further, as
can be deduced from the equations ofmotions for the photonic systems (e.g. equation (2) in [16]), we can
establish a direct connection between q and d and jext for the ground-state = =¶

¶
¶
¶( )q q 0

t t

2

2

l
w w

= - ( )q d j
1

. 8
3 ext

Using the external variables vext and jext, we stepwise screen the external potential of the photons and electrons.
For eachfixed pair of the external potential ( )v j,ext ext , we diagonalize theHamiltonian using exact

Figure 1. Schematic view on the two-sidemodel: a negative external potential = -v 1ext introduces an energy difference between the
two-sites. The electrons in the electronic ground-state become localized on the left side. The external variable for the photon field, jext

can be interpret as a classical charge that generates an external potential as well. If = - w
l

jext

2
then the electron is again delocalized.

2
We emphasize that the two-site Rabi–HubbardHamiltonian as in equation (6) is exactly identical to aHolstein–HubbardHamiltonian

that is routinely used in the electron–phonon community, e.g. discussed in [36–38].

4
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diagonalization [20, 39] given in equation (6) and obtain the corresponding ground-state wave function of the
system, in the following denoted by Y ( )v j,0 ext ext . Using the exact wave function, we have access to the conjugated
set of variables, i.e. (d, q), by evaluating the corresponding expectation values

= áY Y ñ∣ ˆ∣ ( )( ) ( )d d 9v j v j
0

,
0

,ext ext ext ext

and

= áY Y ñ∣ ˆ∣ ( )( ) ( )q q 10v j v j
0

,
0

,ext ext ext ext

corresponding to the electronic dipole and the photonic displacement coordinate. Screening the parameters vext

and jext allows us to construct the completemap between the conjugated set of variables.

TheKohn–Sham system
For generalmany-body calculations, we can use theKohn–Sham approach [10] to simulate the interacting
many-body problemby solving equations for non-interacting particles. In the electron–photon situation that is
presented here, we encounter two interaction terms, i.e. the electron–electron interactionmodeled by a
Hubbard on-site interaction and the electron–photon interaction. In general, we can setup aKohn–Sham
system for non-interacting electrons as presented in [14, 16]. However, in this paperwe focus on the effects of
the electron–photon interaction on the density-to-potentialmaps andwe therefore include the electron–
electron interaction in theKohn–Sham system explicitly. Thus, the Kohn–Sham system reads in the case of a
two-site lattice as follows

å
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The hereby emerging effective Kohn–Shampotential vS and the effective current jS are chosen such that the
ground-state density is equal in theKohn–Sham systems of equations (11) and (12) and the full interacting
problemof equation (6).While the effective current jS is known explicitly [14, 39], i.e. w l= - +j d jS

2
ext, the

effective potential vS has to be approximated. To this end, we divide vS as follows

= + + ( )v v v v , 13S ext M xc

where vM and vxc describe themean-field part and the xc part, respectively.

Themean-field and exact potentials
The simplest approximation to the fully coupled problem and the starting point for theKohn–Sham
construction in the electron–photon case is themean-field approximation [16] that is given by wl= -v qM and
leads to the followingHamiltonian in the case of a two-site lattice

å å
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where = á ñd d and = á ñq q . To obtain themean-field ground state, equations (14) and (15) have to be solved
either self-consistently, or equation (8) can be exploited leading to the following electronic equation
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In these equations, we apply the classical approximation only to the electron–photon interaction, while the
electron–electron interaction is treated fully correlated.Wemay expect that such a approximationworkswell
for the studiedmodel in theweak-coupling regime and in the limit of infinite coupling [19].

To construct the exact vxc of equation (13) beyond themean-field approximation, we can, for instance, use
theHeisenberg equation ofmotion tofind the connection between the electronic density d and vS for theKohn–
Sham system and between d and vext in themany-body problem. These equation read for the ground state as
follows
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where in themany-body problem, themany-bodywave function has to be employed to calculate observables,
while in theKohn–Sham system the factorizable Kohn-Shamwave function is employed. Since the electronic
density d is by construction equal in the interacting system and the exact Kohn–Sham system, if the exact Kohn–
Shampotential vS is used, we find for the density-to-potentialmaps =[ ] [ ]d v d vs S ext . By using the inverse
mapping, i.e. [ ]v d q,ext , we can construct the exact xc potential of equation (13) using [30]

= - -l l l l=[ ] [ ] [ ] [ ] ( )v d q v d q v d q v d q, , , , . 19xc ext
0

ext M

In the following, we construct the exact density-to-potential maps of [ ]d v j,ext ext and l [ ]v n q,xc to get insights how
the electron–photon interaction influences the electronic system and draw conclusions on approximations for
corresponding xc potential.

The single electron case
We start discussing the Rabi–Hubbardmodel in setup (i), where a single electron is coupled to the photonmode
of frequency w = 1. Thefirst situationwe analyze is, when the electron and the photons do not couple, see
figure 2 (a) (l = 0). In this case varying jext has no effect on the density-to-potentialmap. Therefore, the
density-to-potentialmap [ ]d vext is determined by the external potential vext alone. The dependency of [ ]d vext on
vext is shown in the lower plot.Wefind a continuous and rather smoothmapping. Since, we have restricted
ourselves to a single electron, the dipole corresponding to the density difference between both sites d can have
values in between -[ ]1, 1 .We now consider as intrinsic normalmodes in the system, the electronic degree of
freedomalong vext (indicated by a dashed line) and the photonic degree of freedom along jext. Infigure 2(b), we
now introduce afiniteλ, here l = 0.1. Infigure 2(b), we plot the two-dimensional density-to-potential map

[ ]d v j,ext ext for = -[ ]v 5, 5ext and = -[ ]j 50, 50ext . Thefirst emerging feature in the plot is thatthe two normal
modes change [17, 27], i.e. the photon and electron degrees of freedombecome correlated. This electron–
photon correlation tildes themap as shown infigure 3. The rotation can be constructed by l w= +ṽ v jext ext

2
ext

and corresponds to the transformation using the coherent-shift operator as in equation (7). The diagonal cut in
the plot is the newpolaritonic degree of freedom that is shown in the plot on the bottom.Wefind a broad
smearing of the density-to-potentialmap. Figure 2 (c) shows themap for l = 1. The plot is shown for

= -[ ]v 5, 5ext and = -[ ]j 5, 5ext , hence the photon external variable is narrower. In comparison to l = 0.1,

Figure 2. Single electron on a two-site lattice: the electron density d as function of the external variables ( )v j,ext ext is shown in thefirst
row. The second row shows the cut of ( )d v j,ext ext as indicated by the dashed line in the upper plot both for different coupling strength
of (a) l = 0, (b) l = 0.1, and (c) l = 1.

6

New J. Phys. 19 (2017) 113036 TDimitrov et al



wefind a steepening of the gradient in the density-to-potential plot that we have earlier introduced as intra-
system steepening [20]. Infigure 4, we show the samemapping for the photon displacement variable q as
function of the external variables ( )v j,ext ext .While in (a) for a vanishing electron–photon interactionwefind no
photon displacement along the external potential vext, we find that for the small electron–photon coupling in (b)
the observable is dominated by the harmonic nature of the photonmode. In (c) for strong electron–photon
coupling, a steepening is appearing in the photonic variable.

To highlight the connection of the steepening to electronic correlation, figure 5 shows the correlation
entropy for the one-electron system, i.e. a goodmeasure for the static correlation and indicates howwell the
ground-state wave function is approximated by a single Slater determinant. The correlation entropy is given by

å=
=

¥

( )S n nln , 20
j

j j
1

where the occupation numbers nj are the eigenvalues of the reduced one-body densitymatrix [40] that is given in
terms of themany-bodywave function Y ¼

  ( )x x x, , , N2 as

*òr ¢ = Y ¼ Y ¢ ¼
         ( ) ( ) ( ) ( )x x x x x x x x x x, d ... d , , , , , , . 21N N N1RDM

3
2

3
2 2

In spectral representation, the reduced densitymatrix can bewritten in terms of its eigenfunctions and
eigenvalues as [20]

*år f f¢ = ¢
   ( ) ( ) ( ) ( )x x n x x, . 22

j
j j j1RDM

Infigure 5 the correlation entropy increases with the coupling between the photonic and electronic part of the
system,while the gradient of themaps as infigure 2 steepens. However, we emphasize that themapwithin this
setup is still continuous. In contrast, the derivative discontinuity refers to the discontinuous behavior of the
gradient of the densitymaps along the cut of the particle number at integer value [22]. The discontinuity is an
exact concept for systemswith degenerate ground state, where themaps are constructed as convex combination

Figure 3.Change in normalmodes: increasing electron–photon coupling strength leads to the rotation of coordinate system.

Figure 4. Single electron on a two-site lattice: the photon displacement q as function of the external variables ( )v j,ext ext is shown in the
first row. The second row shows the cut of ( )q v j,ext ext as indicated by the dashed line in the upper plot both for different coupling
strength of (a) l = 0, (b) l = 0.1, and (c) l = 1.
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of the degenerate densities belonging to different particle number. The degeneracy of the eigenvalues of the
ground state is due to an external potential within theHamiltonian that serves as a Lagrangemultiplier shifting
the ground-state energy to states with different particle number. In the case of degeneracy, the derivative
discontinuity shows up along the cut of the conjugated variable, e.g in purely electronic systems alongN or dn.
We can conclude that themapping becomes sharper for increasing electron–photon coupling strengthλ and
therefore reminiscent to the case of static electronic correlation [20].We plot the xc potential for this case in
figure 6. In (a), we plot the two-dimensional plot for l = 0 and the the cut for q=0.Naturally, wefind =v 0xc

for this case, since electrons and photons do not interact. The case for l = 0.1 is shown in (b). The cut along
q=0 shown in the bottom reveals a smooth curve for vxc as function of n. If we compare to the density-to-
potentialmap fromfigure 2 (b), wefind that vxc has the highest amplitude at the density values that show the
highest derivative in the density-to-potentialmap. This is to be expected, since the non-interacting auxiliary
systemhas a rather smooth behavior (see figure 2 (a)), while the fully coupled problem is subject to the intra-
system steepening, and consequently the xc potential functional has to compensate thismismatch. Thus the
intra-system steepening directly translates to the size of the xc potential, which in the case of the two-site Rabi–
Hubbardmodel implies a large potential step between the sites. This is a reminiscence of the step and peak
structure of the photonic xc potential in full real space.Let us further comment on the sign of the xc potential.
While the fullmean-field xc potential of equation (13) is responsible to localize the electronmore strongly than
the external potential vext could, themajor part of this task is done by themean-field potential wl= -v qM

(compare the sizes of potentials infigure 2with the xc potentials infigure 6). Together with equation (8) for, e.g.,
=j 0ext , this shows that themean-field potential has the opposite sign to the dipolemoment and therefore leads

to a stronger localization. The xc potential, on the other hand, has to correct for the error that the puremean-
field introduces and can thus have the same sign as the dipolemoment. In (c), we show themapping for l = 1.
For this case vxc has larger amplitudes in all regions, but its overall shape remains similar to the l = 0.1case.We
note, that such a scaling behavior could be employed to construct novel approximations to the xc potential.
Further, we point out that the dependency of vxc on q is belowour numerical accuracy, thus very small in the

Figure 5.Correlation entropy as function of the polaritonic external variables ṽext in thefirst row and as function of the electron
density d in the second row.

Figure 6. Single electron on a two-site lattice: the xc potential vxc as function of the internal variables (d, n) is shown in the first row.
The second row shows the cut of vxc for q=0 for different coupling strength of (a) l = 0, (b) l = 0.1, and (c) l = 1.
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considered parameter range. In general q takes values from-¥ to¥ and in the case that q takes such high
values it will affect vxcmore strongly. The (d, q) behavior of the xc functional will be discussed in a littlemore
detail at the end of this section. As a conclusion, wefind that the steepening that is visible infigure 2 along the
newpolaritonic coordinate ṽext becomes here visible along d.

The two-electron case
Next, we analyze setup (ii), i.e., the two-site Rabi–Hubbardmodel in the two-electron subspace. The density-to-
potentialmap is plotted infigure 7. In (a), we show themapping for an electron–photon coupling strength of
l = 0.1, hence aweak coupling setup. As in the case of the single electron, we alsofind here electron–photon
correlation by the appearance of changes in the normalmodes.While the upper panel show the two-
dimensionalmapping [ ]d v j,ext ext , in the lower panel, we show an antidiagonal cut along the rotated normal
mode. Themost noticeable difference tofigure 2 is that d can now acquire values between−2 and+2 and in the
mapping an intermediate step appears, where »d 0. This is, of course, due to the fact that we can nowhave two
particles on one site and thus the total dipolemoment can become ∣ ∣2 . If we now increase the electron–photon
coupling strengthλ to l = 1, shown infigure 7 (b), we find a steeper density-to-potential map. Also the
intermediate step is reduced in size. Infigure 7 (c), we plot themapping for l = 2. Here, we find that the
intermediate step vanishes and around = =v j 0ext ext , themapping becomes very steep. Since, wefind
approximately only two values for d,−2 and+2,meaning that both electrons are on the same side, we can
conclude that the electron–photon interaction is capable of effectively reducing the electron–electron repulsion
of theHubbard term in equation (15). Formulated differently, the electron–photon interactionmediates an
effective attraction between the two electronswith the effect that both occupy the same site. Physically, we can
interpret that the photons cloud the electrons such that the electron–electron repulsion is reduced. The static
correlation of the electron–photon interaction dominates the correlation of the electron–electron interaction in
this limit. To analyze the interplay between electron–electron interaction and electron–photon interactions, we
vary infigure 8 the value ofU0, while keeping the electron–photon interaction strength l = 1. In (a)wefind that
if the value forU0 is small that the electron–photon interaction dominates the system and only a single step in the
density-to-potentialmap is found. For increasing electron–electron repulsionU0 in (b) and (c), wefind that the
intermediate step emerges.We therefore see that the details of the step due to the repulsiveHubbard interaction
depend on the relative strength of theHubbardU0 with respect to the coupling strengthλ. This is very similar to
the competition betweenU0 and the hopping term t0 that depends on themass of the particles [20]. This
immediately leads to thewell-known idea that the effect of the electron–photon coupling can be approximated
by a renormalization of themass of the charged particles. This is a different way of understanding the interplay
between the electron–photon coupling and theHubbard repulsion in thismodel system.Note, however, that
ultimately both are due to electron–photon coupling, but theHubbardU0 is due to the longitudinal and the
effective coupling strengthλ due to the transversal photon degrees of freedom [14].

Next, infigure 9we plot the vxc potential for the two electron casewith different coupling strengths. As in the
case of a single electron, wefind similar cuts for vxc for q=0 in (a) for l = 0.1and in (b) for l = 1. Again, the
intra-system steepening is responsible for the large values of the xc potential. In (c), where the coupling is
increased to l = 2, wefind that due to the vanishing of the intermediate step, the regions of highest xc
contributions arewhere the derivative due to the steepening is the largest, i.e., around = -d 2 and d=2. If we

Figure 7.Two electrons with =U 50 on a two-site lattice: the dipole d as function of the external variables ( )v j,ext ext is shown in the
first row. The second row shows the antidiagonal cut of ( )d v j,ext ext as indicated by the dashed line in the upper plot both for different
coupling strength of (a) l = 0.1, (b) l = 1, and (c) l = 2.
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compare these results with the ones for the one-electron case infigure 6we see that the xc potential now switches
signs several times and has to domore than to justmake themean-field potential less localizing.Whatwefind is
that in order tomake the steps due to the repulsiveHubbard interaction less pronounced, the xc potential needs
to localize the electronsmore strongly around d=0 and thus counter-acts the repulsion, while for large d the
mean-field potential over-shoots and thus the xc needs to correct this too strong localization. Due to the sign
changes there are several points that have the same value of the xc potential, however, due to the exactly opposite
reason. In, e.g., figure 9(b)wehave the same values at roughly d= 0.2 and = -d 1.8, but at d= 0.2 the xc
potential is responsible formore localizationwhile in = -d 1.8 it leads to less.

So farwe have constructed the exactmappings.However, in practice we need to employ approximations
since the exactmappings that constitute theKohn–Shampotential are not known. Let us therefore see how the
simplest approximate treatment of the coupled electron–photon problem, the afore introducedmean-field
approximation of equation (16)performs This will give us insight about themissing xc potential. Infigure 10(a),
we plot the results in the regime ofweak-coupling (l = 0.1). For theweak-coupling regime, wefind a good
agreementwith the exact calculations shown infigure 7. Thefirst differences becomemore pronounced in
figure 10(b). For the stronger coupling of l = 1, wefind in comparison tofigure 7(b) a broader intermediate
step that is also less steep. Themost significant differences are clearly visible in the strong-coupling limit for
l = 2.While infigure 10(c)wehave seen the complete disappearance of the intermediate step, wefind a
remaining step if the classical approximation to the electron–photon coupling is employed. This clearly shows
the breakdownof the classical approximation.Only in the limit of l  ¥, the classical approximation can
correctly predict the vanishing intermediate step. This brings us to the conclusion that this feature is a true
electron–photon xc feature, where approximate xc functionals have to be developed to correctly account for
such features. Themissing electron–photon xc potential needs to enhance the steepening, i.e., it needs tomodel

Figure 8.Two electrons with l = 1on a two-site lattice: the dipole d as function of the external variables ( )v j,ext ext is shown in thefirst
row. The second row shows the antidiagonal cut of ( )d v j,ext ext as indicated by the dashed line in the upper plot both for different
coupling strength of (a) =U 20 , (b) =U 30 , and (c) =U 40 .

Figure 9.Two electrons with =U 50 a two-site lattice: the xc potential vxc as function of the internal variables (d, n) is shown in the
first row. The second row shows the cut of vxc for q= 0 for different coupling strength of (a) l = 0.1, (b) l = 1, and (c) l = 2.
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themissing correlation. This is in agreement with our interpretation of the intra-system steepening and
correlation effects. The failure of themean-field approximation in the strong-coupling limit around » ṽ 2ext

can be partially understood by comparing the exact eigenvalues versus themean-field eigenvalues of ourmodel
system in the red-highlighted area infigure 11. For this setup, while the exact energy plotted in blue has a
continuous and differentiable form, themean-field energies develops a discontinuity in the red shaded area.
How this discontinuity affectsmean-field observables will be discussed in the next section.

Functionals for observables
In the remaining part of this section, we now study the implications of the features of the density-to-potential
map on observables. As a consequence of the densitymap, in principle, arbitrary observables can be expressed in
terms of the set of internal variables. In practice, however, the functional formof observables such as the photon
number ( )N q d, is unknown and the functional development of important observables will push the
framework ofQEDFT to a practical level.Whilefirst functionals have been developed for simplemodel systems
[17], most functionals for observables remain unknown. For ourmodel system, we can explicitly construct the
dependency of selected observables on both, i.e. on the set of internal and external variables. Even though, the set
of ( )v j,ext ext ismathematically equivalent to the set (d, q), the dependence on the set (d, q) can be very different to
the dependence on ( )v j,ext ext . Thefirst observable we study is the interaction energy Eint that can be defined from

equation (6) by w= - á ñˆ ˆE q dint . It is connected to the xc energy by

w= - = - á ñ -( ˆ ˆ ) ( )E E E q d q d . 23xc int int,mf

[ ]E v j,int ext ext for the two-site Rabi–Hubbardmodel for two electrons is shown infigure 12 and the corresponding
observable inmean-field approximation is shown infigure 13. In (a), theweak-coupling is shown, respectively.
Wefind here the rotated normal coordinates and the intermediate step causes a distinguishable behavior around

~j 0ext . This intermediate step becomes smaller for l = 1 shown in (b). In the strong-coupling limit, the

Figure 10.Two electronswith =U 50 inmean-field approximation on a two-site lattice: the electron density d as function of the
external variables ( )v j,ext ext is shown in thefirst row. The second row shows the antidiagonal cut of ( )d v j,ext ext as indicated by the
dashed line in the upper plot both for different coupling strength of (a) l = 0.1, (b) l = 1, and (c) l = 2.

Figure 11.Eigenvalues of the exactHamiltonian of equation (2) versus themean field approximation of the electronic energy of
equation (14) for the two-site Rabi–Hubbardmodel. Indicated in black are allmean-field eigenvalues in the shown range, while in
blue the exact ground-state value is shown.
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interaction energy has a vanishing step in the exact solution of the problem shown infigure 12(c). In contrast the
mean-field solution fails to correctly reproduce the exact sharp feature of the interaction energy leading to large
xc contributions. This failure can be explained by the discontinuity in the energy as discussed infigure 11. The
next observable, we study is the photon number in the system á ñ = á ñˆ ˆ ˆ†N a a . In general, and in difference to
electronic observables, such as d, the photonic observables are not restricted to integer values due to its
underlying bosonic nature in contrast to the fermionic number of particles. Infigure 14 (a), we showN as
functional of the external potentials, [ ]N v j,ext ext . In (a), in theweak-coupling limit for l = 0.1, wefind that the
external potential vext has no large overall influence on this observables and the harmonic nature of this
observable is given by the external current jext. In the two lower panels, we plot the diagonal and the antidiagonal
cut. Since the observable is unbound, we can excite very high photon numbers, up to 1200 for the studied
examples. Next in (b), we show the case for l = 1.0. Here, wefind that the external potential vext can alter this

Figure 12.Two electronswith =U 50 on a two-site lattice: the interaction energy w= á ñˆ ˆE qdint as function of the external variables
( )v j,ext ext is shown in the first row. The second row shows the antidiagonal cut of ( )E v j,int ext ext as indicated by the dashed line in the
upper plot. The third row shows the diagonal cut of ( )E v j,int ext ext . All plots are shown for three different coupling strengths (a)
l = 0.1, (b) l = 1, and (c) l = 2.

Figure 13.Two electronswith =U 50 on a two-site lattice: the interaction energy w=E qdint,mf inmean-field approximation as
function of the external variables ( )v j,ext ext is shown in thefirst row. The second row shows the antidiagonal cut of ( )E v j,int,mf ext ext as
indicated by the dashed line in the upper plot. The third row shows the diagonal cut of ( )E v j,int,mf ext ext . All plots are shown for three
different coupling strengths (a) l = 0.1, (b) l = 1, and (c) l = 2.
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observable in cases, whereN is small. Around ~j 0ext , wefind a funnel-type structure of this observable which
is connected to the intermediate step of the density-to-potential mapping shown infigure 7. In (c), we show the
strong-coupling limit for l = 2. Here, wefind for the antidiagonal cut of [ ]N v j,ext ext map a sharp feature
around ~j 0ext . Again this is connected to the sharp features in the density-to-potential map. Also the rotation
in the normalmode is clearly visible along the antidiagonal.

Infigure 15, we now show the dependency of [ ]N d q, on the internal variables in the top and in the bottom
the cut for q=0.Here, wefind that the appearing normalmodes vanish for all three coupling strengths and the
mapping becomes smooth.Qualitatively theweak-coupling l = 0.1and the strong-coupling for l = 1behave
similarly (a doublemaximum in the cut), while themapping for l = 2 has a constricted shape and only a single
minimum in the cut. That the photon-number observable behavesmore regularly whenwritten in terms of the
internal variables is an important detail. It suggests that we can find reasonable approximation to non-trivial
functionals of the internal variables despite the intra-system steepening, whichwouldmake approximating
much harder. Such non-trivial functionals are important tomakeQEDFTpractical since inmany situations it is
not the density or the displacement field that one is interested in but rather, e.g., the energy or correlation
functions of the photonfield.We note that after changing to the internal variables, the dependency of [ ]N d q,
on q becomes only strongly pronounced for high values of q. This implies that for a small amplitude of q, using
functionals at q=0 becomes reasonable. This is very similar to the behavior we encountered in the xc potential

Figure 14.Two electronswith =U 50 on a two-site lattice: the photon number = á ñˆ ˆ†N a a as function of the external variables
( )v j,ext ext is shown in the first row. The second row shows the antidiagonal cut of ( )N v j,ext ext as indicated by the dashed line in the
upper plot. The third row shows the diagonal cut of ( )N v j,ext ext . All plots are shown for three different coupling strengths (a) l = 0.1,
(b) l = 1, and (c) l = 2.

Figure 15.Two electronswith =U 50 on a two-site lattice: the photon number = á ñˆ ˆ†N a a as function of the internal variables ( )d q,
is shown for different coupling strength of (a) l = 0.1, (b) l = 1, and (c) l = 2 in the top and bottom for q=0.
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functional. Also there the dependence of vxc on q in the considered parameter rangewas very small. Theweak
dependence on only one parameter would not be the case if we used instead themathematically equivalent
external functional [ ]v v j,xc ext ext that would also allow to determine the dipolemoment d in theKohn–Sham
system. This is a nice example that the choice of the internal functional variablesmakes approximationsmuch
easier in practice.

Four-site Rabi–Hubbardmodel

So farwe have analyzed the simplest situation of electron–photon coupling and concluded that the intra-system
steepening that appears in the densitymaps is a simplemeasure to quantify the electron–photon correlation. In
this section, we now address the questions, whether the steepening also appears inmore complex situations. To
this end, we study a four-site Rabi–Hubbardmodel coupled to a single photonmode and demonstrate the
implications of the discussedmodifications of the density-to-potentialmap under strong light–matter coupling.
We showhow the density-potentialmap can help tofind interesting behavior and explain experimentally
observed effects as in [2], where an large increase in the optical conductivity for organic semiconductors in
strong couplingwas observed.

The extension of equation (6) to four sites is straightforward and theHamiltonian for half-filling (four
electrons) reads

å å

å w wl
w

l

=- +

+ + - +

+ +

s
s s s s

= = 
+ +

=
 

ˆ (ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

( ˆ) ˆ ( )

† †

†

H t c c c c

U n n a a qd
j

q

d v d2 24

i
i i i i

i
i i

0 0
1

3

,
, 1, 1, ,

0
1

4

, ,
ext

2
ext

with = + - -ˆ ( )d d n n n n3 30 1 2 3 4 . In this case, vext effectively is an external electric field, as routinely studied
in electronic-structure calculations. For four sites, we construct the dipole to electric fieldmap. Such amapping
of an reduced internal variable to an reduced external variable has been proven to be unique and has been
analyzed e.g. in [41]. Physically the gradient of the dipolemoment to the external electric field describes the
electric polarizabilityα [42]. In this spirit, we define the electric polarizability as follows
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where l w= + /v v jext ext
2

ext describes the external electricfield applied to the system as defined by equation (24).
We note that for the two-site Rabi–Hubbardmodel studied in the previous section, the polarizabilityα is the
gradient of the density-to-potential map. Thus, the larger the gradient in themapping becomes, the larger values
for the polarizability are obtained. In conducting polymers, it has been demonstrated that this high polarizability
is directly connected to charge-transfer, i.e. conductivity [42–44].

Infigure 16, we showhow the electronic dipolemoment d and the polarizabilityα as function of the applied
external potentials vext and jext change. Also in thismore complex situation, wefindthe change in the normal
modes appearing. Thus, infigure 16, we showhow ṽext induces changes under strong light–matter coupling to
the system.Without coupling, shown in (a), we find that the dipolemoment develops three quasi-stationary
regions, where the extremal values correspond to situations, where two electrons occupy the outermost sites and
the other two electrons occupy the neighboring site. In the lower panel offigure 16, we plot the polarizabilityα as
defined in equation (25).Wefind two peaks in between the stationary regions of the dipolemoment. If we now
increase the electron–photon coupling, shown in (b) for the case of l = 1, we find that similarly as reported in
the previous section, the dipolemoment as function of the external potential steepens and the step around

~v 0ext becomes narrower. Accordingly, the two peaks in the polarization shown in the bottompanel get close
together and have larger amplitudes in comparison to the setup in (a). For strong-coupling that is here l = 2
shown in (c), we find that themiddle step becomes even narrower and also the two peaks shown in the bottom
panel become closer with high amplitude. In conclusion, wefind that by tuning the electron–photon coupling
strength, the polarizability of the system can be strongly influenced leading to a highly polarizable system.

Summary and outlook

In this paper we have constructed the exact density-to-potential maps for electron–photonmodel systems and
extended the concept of the intra-system steepening to general fermion-boson systems.Wemade explicit how
the intra-system steepening can be used to identify large xc potentials and how these effects showup in other
observables.We have identified the appearance ofchanges in the normalmodes in the coupledmatter-photon
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system and showed how the density-to-potential maps can be constructed for all possible external pairs from
only knowing themap along the polaritonic external potential ṽext. Finally we have highlighted for a four-site
model with four electrons coupled to photons, how the intra-system steepening allows to identify interesting
physical effects such as an increase of the polarizability of thematter systemdue to ultra-strong coupling to the
photons. The increase in the polarizability is directly relevant for experiments such as in [2], where an increase in
conductivity for organic semiconductors in strong couplingwasmeasured.

The exactmaps and the tools to analyze the importance of xc contributions will be helpful to further develop
xc functionals forQEDFT that accurately capture the coupling between the charged particles and the photons.
Also thefinding that observables behavemore regularly when represented by the internal variables is an
important detail in the development ofQEDFT. Such functionals become crucial for the practicability of
QEDFT, asmany observables are non-trivial functionals of the internal variables ( )n r and qα, e.g., the number of
photons. Their availability will allow for novel applications of density-functionalmethods in the context of
quantumoptics or plasmonics. Further, although the functionals inQEDFT are different to the ones of standard
DFT, insights from amore complete description of real systems, i.e., also treating the photons,might prove
beneficial also forDFT. Especially when going beyond the dipole approximation, theminimal-coupling
prescription forces us to use the full current density to describe the coupling to the photon field. In this context a
current-density functional (CDFT) scheme becomes unavoidable [14, 30]. It seems possible by studying coupled
matter-photon systems beyond the dipole approximation thatwe get novel insight also intoCDFT. It would be
very interesting to also investigate the exact density-to-potential maps for aHubbard system that is coupled via
its charge current to the photons, e.g., via a Peierls substitution. Such results would highlight the necessary
ingredients of xc functionals to describematter that only locally interacts strongly with photons, in contrast to
the dipole approximation, where all electrons feel the same photonfield. This would allow to calculate quantum
local-field effects from first principles.
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