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Elucidating the details of the electron-phonon coupling in semiconductors and insulators is a topic
of pivotal interest, as it governs the transport mechanisms and is responsible for various phenomena
such as spectral-weight transfers to phonon sidebands and self-trapping. Here, we investigate the
influence of the electron-phonon interaction on the excitonic peaks of rutile TiO2, revealing a strong
anisotropic polarization dependence with increasing temperature, namely an anomalous blueshift for
light polarized along the a-axis and a conventional redshift for light polarized along the c-axis. By
employing many-body perturbation theory, we identify two terms in the electron-phonon interaction
Hamiltonian that contribute to the anomalous blueshift of the a-axis exciton. Our approach paves
the way to a complete ab initio treatment of the electron-phonon interaction and of its influence on
the optical spectra of polar materials.

The temperature (T) dependence of elementary exci-
tations is a central subject in condensed matter physics,
as it provides insightful information on the microscopic
details of many-body interactions and correlations. To
this end, over the past five decades, considerable efforts
have been devoted to studying the T-effects on the opti-
cal spectra of materials, where elementary excitations in
the long-wavelength regime possess a clear spectroscopic
fingerprint. In this regard, an old topic is represented by
the T-dependence of interband transitions and excitons
in standard band semiconductors and insulators [1, 2].
The energy of these excitations (Eexc) typically under-
goes a sizeable softening with increasing T, but in a few
exceptional cases, the opposite effect or more complex
T dependences have been observed [3–5]. Part of this
renormalization is accounted for by the thermal expan-
sion of the lattice, but the major contribution arises from
the structure of the electron-phonon interaction (EPI).

To model the measured dependences of Eexc, simple
algebraic expressions have been initially used, the most
common of which is the empirical Varshni law [6]. More
accurate fits were obtained by using Bose-Einstein statis-
tical factors with average acoustic and optical phonon fre-
quencies, an approach that finds theoretical justification
in pseudopotential theory [7]. Within this framework,
anomalous T-dependences of Eexc can be described by as-
suming that the contributions due to phonons with low-
and high frequencies retain opposite signs [8]. A more
rigorous generalization of this approach, using a distri-
bution of phonon energies, was proposed [9], in which
Eexc(T ) can be described as

Eexc(T ) = E0−
∫
dωf(ω)

[
nBE(ω, T )+

1

2

]
−Eth(T ) (1)

where E0 is the energy gap at zero T, nBE is the Bose-
Einstein statistical factor (e~ω/kBT - 1)−1, f(ω) is a weigh-
ing factor and the last term Eth(T ) accounts for the lat-
tice thermal expansion. The weighing factor f(ω) can
be decomposed into a product of the phonon density of
states (PDOS) and a factor related to the EPI strength.
However, this method suffers from intrinsic complexity,
requiring detailed knowledge of the measured/calculated
PDOS and EPI constants. Approximated models have
been employed in isotropic materials where the PDOS is
characterized by van Hove singularities associated with
specific phonon modes [10]. In summary, the strength
of these models lies on their ability to reveal the gross
features of the EPI, albeit at a phenomenological level.
As a result, these methods lose track of the microscopic
details of the EPI, for which a full ab initio treatment is
needed. A step further in this respect involves the de-
scription of different sources contributing to the EPI in
materials with an intrinsic degree of optical anisotropy.

In this Letter, we perform T-dependent spectroscopic
ellipsometry (SE) measurements on the polar insulator
rutile TiO2. To our knowledge, this is the first study to
report the low-T spectra of this material and it reveals
an anomalous anisotropic T-dependence of its resonant
excitons. By applying state-of-the-art many-body per-
turbation theory calculations, we go beyond the estab-
lished phenomenological models, identifying two terms
of the EPI Hamiltonian which lead to the exciton hard-
ening for increasing T. Our study paves the way to a
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FIG. 1. Measured T dependence of the dielectric function of a rutile TiO2 single-crystal in (a) a-axis and (b) c-axis polarization.
Behaviour of the peak energy for the charge excitations (c) I and III and (d) IV as a function of T.

complete quantitative treatment of the EPI in strongly
interacting semiconductors and insulators, an aspect of
pivotal importance for the design of future electrical and
optoelectronic devices.

The SE measurements were performed on a (010)-
oriented rutile TiO2 single crystal. SE provides signif-
icant advantages over conventional reflection methods:
(i) it is self-normalizing and does not require reference
measurements; (ii) ε1(ω) and ε2(ω) are obtained directly
without a Kramers-Kronig (KK) transformation; (iii) in
the ultraviolet, SE is less affected by the surface rough-
ness of the sample than normal-incidence reflectivity.
Many-body perturbation theory at the level of the GW
and the Bethe-Salpeter Equation (BSE) [11, 12] was em-
ployed to compute the band structure and the dielec-
tric response of rutile TiO2. Details of the experimental
methods and the ab initio calculations are reported in
the Supplementary Material (SM) section.

Figures 1(a,b) show the spectra of the real and imag-
inary parts of the dielectric function, ε1(ω) and ε2(ω),
along the a- and c-axis, respectively, at different T’s. As
expected, the substantial difference between the lattice
constants a = 4.59 Å and c = 2.96 Å results in a strong
anisotropy of the optical properties. The low-T ε2(ω)
spectra along the a-axis (Fig. 1(a)) are dominated by a
narrow excitation at 3.93 eV (I), followed by a weaker
shoulder at 4.51 eV (II) and a broader feature at 5.42
eV (III). This allows us to resolve the presence of feature
II, which disappears for increasing T. In contrast, all the
other excitations are clear cut at 250 K. The c-axis spec-
tra (Fig. 1(b)) consist instead of a single broad feature
peaking at 4.15 eV (IV). The T-evolution of peak ener-
gies I and III is shown in Fig. 1(c), while that of peak
IV is in Fig. 1(d). Remarkably, we observe a large qual-
itative difference in the T behaviour of the excitations.
Transitions I and III along the a-axis display a sizeable
blueshift of 36 ± 6 meV with increasing T, while excita-
tion IV along the c-axis undergoes an opposite redshift of
42 ± 6 meV. To our knowledge, this is the first example
of a band insulator showing an opposite T behaviour of
the excitations along the two polarization channels. In

rutile TiO2, the thermal expansion along both axis has
a regular T dependence and thus should contribute to a
softening of the optical transition energies as the lattice
expands with increasing T [13]. Thus, the evolution of
peak I and III with T is anomalous and is likely related
to peculiar effects of the EPI at finite T.

To rationalize our data, we present ab initio cal-
culations both at zero and finite T, including many-
body electron-hole correlations and the effect of the EPI,
on top of Density-Functional Theory results. We first
compute ε2(ω) at zero T with and without many-body
electron-hole correlations. Figures 2(a,b) compares the
SE data at 10 K (blue lines) with the optical spectra
in the uncorrelated-particle picture (red lines) obtained
within the random-phase approximation (RPA) on top
of GW, and the many-body optical spectra (violet lines)
calculated by solving the BSE (see SM for computational
details). As previously reported, only the inclusion of
many-body correlations leads to the correct description
of the experimental data [14–17]. However, already at
this stage, the present combined experimental-theoretical
effort has two clear advantages over previous studies: (i)
the experimental ε2(ω) is measured directly via SE at 10
K, in contrast with the one extracted by a KK analysis at
300 K [18], and (ii) our GW-BSE spectra are calculated
with a higher degree of convergence than previously [14–
17], using a fine k-point grid of 16×16×20 and including
10 valence bands (VBs) and 10 conduction bands (CBs).
As a consequence, we get an excellent agreement between
the low-T SE spectra and the BSE calculations. Along
the a-axis, the sharp absorption maximum at 3.99 eV lies
very close to band I (3.93 eV). A shoulder emerges around
4.57 eV, which clearly corresponds to feature II (4.51 eV).
This excitation was previously not resolved in either the
experimental data (obscured at 300 K) [18, 19] or in the
theoretical spectra (due to the lower convergence) [14–
17]. Finally, a transition at 5.37 eV is also apparent, cor-
responding to the experimental peak III (5.42 eV). Along
the c-axis, a doublet structure appears, whose centre of
mass at 4.24 eV can be associated with the experimen-
tal peak IV (4.15 eV). Importantly, all these excitations
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FIG. 2. (a-b), Calculated imaginary part of the dielectric
function at 10 K with the electric field polarized along (a) the
a-axis and (b) the c-axis. The experimental data are shown in
blue, the calculated spectra in the RPA-GW scheme at zero
T in red and the calculated spectra in the BSE-GW scheme
at zero T in violet. The quasiparticle direct gap Edir = 3.34
eV is indicated by a dashed vertical line.

lie above the direct VB-to-CB optical transition evalu-
ated at the GW level (3.34 eV, indicated by a dashed
vertical line in Figs. 2(a,b)) and can therefore be de-
scribed as resonant excitons. Our calculations also find
a bound exciton at 3.19 eV along both axes. However,
it is optically dark and arises from transitions between
the VB maximum and the CB minimum at the Γ point
of the Brillouin zone. The detailed real and reciprocal
space analysis of all the optical excitations is presented
in § II.B of the SM.

We now address the observed anomalous T-behaviour
of excitons I and III and identify its possible sources.
Capturing the T-dependence of the exciton peaks re-
quires to go beyond the zero T and frozen lattice approxi-
mations, including the zero-point renormalization (ZPR)
as well as effects of finite T. This becomes a formidable
task, as there is a plethora of ways the electrons interact
with the lattice degrees of freedom in a crystal [2, 20].
An assumption that is usually made involves the trun-
cation of the electron-phonon perturbation theory series
after the second-order terms [1]. Within this approxi-
mation, the most important contribution is the effect of
the first-order EPI Hamiltonian to second-order in per-
turbation theory (the so-called Fan-Migdal terms). For a
simple semiconductor with parabolic and non-degenerate
VB and CB, the Fan-Migdal matrix elements lead to the
well known “Varshni effect” [6], namely a redshift of the
bandgap with increasing T (note that more complex elec-
tronic band structures might very occasionally lead to
a blueshift). Depending on the details of the electron-
phonon matrix element, different effects arise [20]. In the
long-wavelength limit, transverse acoustic (TA) and lon-
gitudinal acoustic (LA) phonons typically couple to the
electrons via the deformation potential and the piezo-
electric interactions, while transverse optical (TO) and
longitudinal optical (LO) modes couple via the defor-

mation potential interaction only. An additional con-
tribution to the first-order EPI Hamiltonian at q ∼ 0
arises in polar or partially ionic materials, since polar
LO phonons can yield a macroscopic polarization, de-
scribed in terms of the Fröhlich interaction [21]. Beyond
Fan-Migdal terms, also the effect of second-order EPI
in first-order perturbation theory (the so-called Debye-
Waller or Yu-Brooks terms) have been demonstrated to
provide a non-negligible contribution [22].

A complete analysis of the EPI requires to assess the
impact of ZPR and T effects on the elementary charge
excitations. As far as the ZPR is concerned, recent the-
oretical calculations on rutile TiO2 estimated a decrease
of 150 meV for the zero T single-particle gap and pre-
dicted its blueshift as a function of T (in contrast to the
redshift shown by other insulators) [2, 23]. Unraveling
the role of T is instead complicated by the presence of
a higher degree of complexity compared to conventional
isotropic and non-polar materials. We first rule out any
involvement of piezoelectric coupling, since rutile TiO2

belongs to the D4h space-group. On the contrary, a sig-
nificant contribution is expected from the deformation
of the electronic potentials due to the atomic displace-
ments. Its sign is determined by the lattice structure
and the electronic states forming the VB and the CB.
Its magnitude depends on the amplitude of the atomic
displacement u, which in the harmonic approximation
is related to the atomic effective mass µ, the eigenfre-
quency of the phonon mode ω and the occupation factor
nBE, according to < u2 > = ~(1 + 2nBE)/ 2µω where
< ... > means a thermal average. The resulting shift of
an exciton/interband transition energy (Eexc) is nearly
constant at kBT � ~ω where it is dominated by the
quantum lattice fluctuations, it starts deviating around
kBT ∼ ~ω, and is proportional to T at kBT � ~ω. To
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account for the contribution of the deformation potential
to the EPI at finite T, we calculate the single- (GW) and
two-particle (BSE) excitation spectra when the ions in
the primitive unit cell are displaced statically according
to specific eigenvectors of interest. Similarly to the case
of anatase, also in rutile TiO2 the high-frequency LO
Eu

(3) mode at 829.6 cm−1 and the A2u mode at 796.5
cm−1 are expected to possess the strongest coupling to
the electronic degrees of freedom, at least in the a-axis
response [24–26]. We estimate their deformation poten-
tials to provide a possible explanation for the observed
anomalous exciton blueshifts. We find that: i) all ex-
citons strongly react to a unit cell displacement along
the eigenvector of the Eu

(3) mode from zero-T to 250 K,
showing a pronounced blueshift of 190 meV along the a-
axis and of 130 meV along the c-axis (blue curves); ii)
the a-axis excitons are barely blueshifted (∼ 20 meV) by
a unit cell displacement along the eigenvector of the A2u

mode, while peak IV shows a sizeable blueshift of 60 meV
(red curves). As a result, we conclude that the deforma-
tion potential interaction between the Eu

(3) LO phonon
and the in-plane charge excitations is so strong that it
can account for part of the unconventional blueshift dis-
played by excitons I and III in the experimental spectra.

Since rutile TiO2 is a polar material, also the Fröhlich
interaction is expected to play a major role [21]. To quan-
tify its influence on the charge excitations, we recall that
the energy shift induced by this interaction is [21, 27]

∆Eexc,ν = −Aν(ε−1∞,ν − ε−10,ν)(1 + 2nBE) (2)

where ν = (a,c) depending on the crystal axis, ε∞,ν and
ε0,ν are the dielectric constants at energies well above
and below the phonon range, respectively. Aν is a nearly
T-independent prefactor that reads

Aν = e2
∑
i

√
~ωLO,iε∞,ν

(√
2m∗e
~

+

√
2m∗h
~

)
(3)

where e is the fundamental charge and m∗e (m∗h) is the
electron (hole) effective mass. The sum runs over all the
i polar LO phonons with frequency ωLO, which in rutile

TiO2 are represented by the E
(1)
u , E

(2)
u , E

(3)
u and A2u

modes [28]. In Eqs. (2)-(3), ε∞,ν and ωLO are nearly
T-independent while ε0,ν strongly varies with T. As a re-
sult, for kBT � ~ω, where nBE is nearly constant, the
T dependence of ∆Eexc,ν due to the Fröhlich interac-
tion is determined by the T behaviour of ε0,ν . In rutile
TiO2, capacitance measurements [29] determined ε0,a to
decrease from 115 to 90 when T is raised from 4 K to 300
K. Analogously, ε0,c reduces its value from 251 to 167 for
the same T increase. From our data in Figs. 1(a,b), we
establish ε∞,a ∼ 5.8 and ε∞,c ∼ 8. Finally, from our ab
initio calculations, we extract the values of m∗e and m∗h
by performing a parabolic fit of the bands involved in the
transitions contributing to excitons I and IV (see SM).

Substituting all values in Eq. (2) yields a blueshift of 86
meV for exciton I and of 160 meV for exciton IV.

In summary, our calculations identify that both the
deformation potentials of the LO Eu

(3) and A2u normal
modes and the Fröhlich interaction lead to a pronounced
blueshift of all excitons in rutile TiO2. As such, these
two effects lie at the origin of the experimental shift re-
trieved along the a-axis, albeit the latter is smaller than
predicted by our calculations. This discrepancy can be
related to the simultaneous contribution of other modes
producing a sizeable redshift, as well as to the action of
the Debye-Waller terms of the EPI Hamiltonian, which
are all neglected in our treatment. Moreover, we re-
mark that Eq. (2) does not account for the presence
of strong electron-hole Coulomb interaction. The lat-
ter is also expected to vary with T, since the ionic con-
tribution to its screening (embodied by ε0,ν) is highly
T dependent. In contrast, the blueshift predicted along
the c-axis is not experimentally observed, and exciton IV
undergoes a conventional redshift for increasing T. This
implies that the Fan-Migdal terms of the EPI Hamilto-
nian contributing to the redshift of this exciton are much
more efficient along the c-axis. Such a behaviour can
depend on the anisotropic structure of the PDOS or on
the anisotropic strength of the EPI. To explain this soft-
ening, a close inspection of the partial PDOS in rutile
TiO2 is needed [28, 30]. While the a-axis PDOS retains
a complex structure with different modes extending be-
tween 98 and 838 cm−1, the c-axis PDOS mainly shows
a lower peak at 98 cm−1 due to TA modes and a very
prominent peak at 467 cm−1. The latter is a van Hove
singularity caused by the branches of the Raman-active

Eg mode and the polar E
(2)
u LO mode, and it is absent

in the a-axis PDOS. As such, we expect the anisotropic
deformation potential coupling to these modes to be the
main cause behind the softening of exciton IV. This sce-
nario can be confirmed phenomenologically by using an
approximated model based on Eq. (1), which yields an
excellent and robust fit only when two Bose-Einstein os-
cillators at 98 cm−1 and 467 cm−1 are imposed (see §IV
and Fig. S2 of the SM). From the fit, we obtain that the
high-frequency modes have a ∼ 5.5 larger coupling than
the one of the low-frequency mode. This indicates that
the effect of the LO phonons on the T dependence of ex-
citon IV is more important than that of the TA phonons,
in accordance with the relative ratio of the peak heights
(ALO/ATO ∼ 5.8) in the c-axis PDOS [30]. A complete ab
initio electron-phonon calculation, i.e. including ZPR,
T-effects and electron-electron correlations, and follow-
ing some of the approaches recently introduced in Refs.
[23, 31, 32], should confirm this trend.

In conclusion, in this work we unraveled the anisotropic
evolution of the exciton peaks of rutile TiO2 with T
and reproduced the optical response of the material
via many-body perturbation theory. From first princi-
ple calculations, we evaluated different contributions of
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the electron-phonon coupling that lead to an anomalous
blueshift/redshift of the excitonic peaks with increasing
T. Our approach paves the way to a complete micro-
scopic treatment of the electron-phonon coupling and of
its influence on the optical spectra of polar semiconduc-
tors, which is of pivotal importance for optimizing their
applications.
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Gobierno Vasco (IT578-13), COST Actions CM1204
(XLIC), MP1306 (EUSpec) and European Unions H2020
program under GA no.676580 (NOMAD).
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S1. SPECTROSCOPIC ELLIPSOMETRY

We used spectroscopic ellipsometry (SE) to measure
the complex dielectric function of the sample, covering
the spectral range from 1.50 eV to 6.50 eV. The measure-
ments were performed using a Woollam VASE ellipsome-
ter. Rutile TiO2 single crystals were purchased from MTI
Corporation, characterized by x-ray Laue diffraction and
polished down to optical grade on their (010) surface.
Subsequently, the samples were mounted in a helium
flow cryostat, allowing measurements from room temper-
ature (T) down to 10 K. The T-dependent measurements
were performed at <10−8 mbar to prevent measurable
ice-condensation onto the sample. Anisotropy correc-
tions were performed using standard numerical proce-
dures [33].

S2. AB INITIO CALCULATIONS

Many-body perturbation theory at the level of the GW
and the Bethe-Salpeter Equation (BSE) [11, 12, 34], as
implemented within the BerkeleyGW package [35], was
employed to compute the band structure and the dielec-
tric response of pristine rutile TiO2, on top of eigenval-
ues and eigenfunctions obtained from Density-Functional
Theory (DFT). We used the planewave pseudopoten-
tial implementation of DFT as provided by the pack-
age Quantum Espresso [36]. The DFT calculations were
performed using the generalized gradient approximation
(GGA) as in the Perdew-Burke-Ernzerhof (PBE) scheme
for the exchange-correlation functional. For these cal-
culations, we used normconserving pseudopotentials [37]
including semicore states 3s and 3p (as in Ref. [26] for
anatase TiO2). We used a cutoff of 200 Ry to achieve
convergence of the electronic and optical properties at
the many body level. A coarse grid of 5 × 5 × 7 k-points
was used for PBE and subsequent GW calculations. A
more dense, randomly shifted, grid of 16×16 ×20 (with
interpolation of GW energies on the 5×5×7 grid) was im-
plemented for solving the BSE using Haydock method, to
obtain the absorption spectra. The diagonalization of ex-
citonic Hamiltonian was done on a randomly shifted fine
grid of 10×10×14 k-points. Such diagonalization pro-
vides the analysis of Kohn-Sham orbital contributions
and k-points contributions to excitonic wavefunctions.
The excitonic wavefunctions in three dimensions were
also obtained via direct diagonalization. We used 2498
conduction bands (CBs) and an energy cutoff of 46 Ry
for polarisability and inverse dielectric matrix, 2498 CBs
for self-energy evaluation, a cutoff energy of 50 Ry and
200 Ry for screened and bare components of self-energy
operator, respectively. The 10 topmost valence bands
(VBs) and the 10 lowest CBs were included in the BSE
solution via Haydock, while the 7 topmost VBs and the
6 lowest CBs were used for directly diagonalizing BSE

Hamiltonian for the excitons analysis.

Our study goes beyond previous experimen-
tal/computational works on rutile TiO2 [14–17] in
that: i) a higher computational convergence is achieved;
ii) a precise identification and characterization of the
peaks in the optical absorption spectrum is made; iii)
the T = 0 calculations can be compared with the low-T
dielectric function of the material, measured directly
via SE and not extracted through a Kramers-Kronig
analysis; iv) T effects are included and discussed.

As far as the T = 0 calculations are concerned, the
GW indirect bandgap (Γ-R) and direct bandgap (Γ-
Γ) are 3.30 eV and 3.34 eV, respectively. These val-
ues are converged up to 5 meV and are in good agree-
ment with photoemission and inverse-photoemission re-
sults [38]. The present highly-converged value is lower
than the gap given in Ref. [15], where a smaller num-
ber of bands and k-points was used. The excitonic ener-
gies were subsequently obtained by diagonalizing the ex-
citonic Hamiltonian. The first eigenvalue for both light
polarizations correspond to a dark triplet exciton with
energy 3.19 eV. This dark exciton has a major contribu-
tion from the transitions from the VB to the CB at the
Γ point. Its binding energy is estimated ∼ 150 meV. The
large excitonic peak, for light polarized along the a-axis,
at 3.99 eV is composed of various eigenvalues with re-
ciprocal space contributions from a broad region around
Γ. This is a resonant, non-bound exciton. For light po-
larized along the c-axis, the intense and broad excitonic
peak centered at 4.24 eV is composed of various eigen-
values, with reciprocal space contributions from a wider
region around the Γ point and strong contributions from
points close to Γ along the Γ-Z line. Also this peak is
a resonant non-bound exciton, retaining a bulk delocal-
ized character. The excitonic wavefunctions on the (001)
plane are represented in Fig. S1(a,b). The isosurface
represents the electronic part of the excitonic squared
modulus wavefunction, with the hole fixed at a site close
to one oxygen atom.

To include the T-effects on the electronic and opti-
cal properties of rutile TiO2, we estimated the role of
the deformation potential coupling by performing frozen
phonon GW-BSE calculations. We separately displaced
the ions in the primitive unit cell according to the eigen-

vector of the longitudinal optical (LO) E
(3)
u and A2u

modes [28]. These phonons are expected to possess the
strongest coupling with the electronic degrees of freedom
along the a-axis of the crystal [24, 25]. The displacement
of atom j was calculated from the harmonic oscillator
mean square displacement at 250 K according to

< |uj(t)|2 >=
~(1 + 2nBE)

2mjω
(4)

where nBE = (e~ω/kBT − 1)−1 is the Bose-Einstein sta-
tistical occupation factor, kB is the Boltzmann constant,



7

FIG. S1. Wavefunctions of the fundamental charge excita-
tions in rutile TiO2. Isosurface representation of the elec-
tronic configuration on the (001) plane when the hole of the
considered excitonic pair is localized close to one oxygen atom.
The coloured region represents the excitonic squared modulus
wavefunction. (a) Resonant exciton I at 3.99 eV. (b) Resonant
exciton IV at 4.24 eV.

mj is the atomic mass and ω is the phonon frequency. We
corrected the GW gap values for the lattice expansion ef-
fect by using the thermal expansion coefficient reported
in Ref. [13]. In particular, the a and c lattice parameters
of rutile TiO2 increase by 0.3 % from 0 to 250 K. The
inclusion of both the phonon-induced and the thermal
expansion-induced effects leads to a net blueshift of the

bandgap of ∼ 120 meV (in the case of the E
(3)
u mode)

and 60 meV (in the case of the A2u mode). A simi-
lar trend was recently reported in the case of the elec-
tronic gap (evaluated within the thermal lines method for
electron-phonon coupling), which shows a non-monotonic
behaviour with T [23]. When solving the BSE on top of
the T-corrected GW results, we find that, in the case of

the E
(3)
u mode at 250 K, exciton I blueshifts by 190 meV

and exciton IV blueshifts by 130 meV. In the case of the
A2u mode at 250 K, exciton I blueshifts by 20 meV and
exciton IV blueshifts by 60 meV.

S3. FRÖHLICH INTERACTION

In polar crystals, a major contribution to the electron-
phonon interaction comes from the polarization of the
lattice produced by the polar LO modes. The polariza-
tion in a unit cell, p, can be written as

p = e∗(R1 −R2) (5)

where R1 and R2 are the displacements of the positive
and negative ions, respectively, and e∗ is the effective
charge of the ions, which differs from the fundamental
charge e by the effect of the polarization of the ions as a
result of their displacements. The structure of the polar
electron-phonon interaction has been described by the

theory of Fröhlich [21]. The momentum-dependent ma-
trix element of the interaction potential reads

M (q) =
1√
MN

2πee∗

a3q

√
~

2ωLO,q

√
nBE + 1 (6)

where M = M1M2/(M1 + M2) is the reduced mass, N
is the total number of unit cells in the lattice, a is the
lattice constant (assuming a cubic crystal), ωLO,q is the
frequency of the LO modes at a given momentum q and
nBE is the statistical Bose-Einstein occupation factor.

The frequency of a LO mode is approximately constant
as a function of q and it is related to the transverse optical
(TO) mode frequency ωTO via the Lyddane-Sachs-Teller
relationship [39]

ω2
LO = ω2

TO(ε0/ε∞) (7)

where ε0 and ε∞ are the dielectric constants at ener-
gies well below and above the phonon range, respectively.
The frequency ωTO itself is related to ε0 and ε∞ by

ω2
TO = 2πe∗2ε∞/Ma3(ε0 − ε∞) (8)

The energy shift of a charge excitation induced by the
Fröhlich interaction is

∆Eexc = −A

(
1

ε∞
− 1

ε0

)
(1 + 2nBE) (9)

where A is a nearly T-independent prefactor that reads

A = e2
√
~ωLOε∞

(√
2m∗e
~

+

√
2m∗h
~

)
(10)

where m∗e (m∗h) is the electron (hole) effective mass. In
this work, we evaluated this formula along the a- and c-
axis of rutile TiO2, accounting for all polar LO modes in
the crystal and relying on the experimental values of ε0
and ε∞. The values of m∗e and m∗h were estimated from
our ab initio calculations, by performing a parabolic fit at
the Γ point of the bands involved in the transitions I and
IV (see Section II. B). Along the Γ-X line of the Brillouin
zone, we obtain m∗e = 0.61 me and m∗h = 1.33 me. Along
the Γ-Z line of the Brillouin zone, we obtain m∗e = 0.73
me and m∗h = 5.20 me. Substituting all values in Eq.
(6) yields a blueshift of 86 meV for exciton I and of 160
meV for exciton IV. Therefore, the Fröhlich interaction
affects the fundamental charge excitations of rutile TiO2,
causing their hardening for increasing T. Indeed, the T
dependence of the charge excitations is encoded in the T
variation of ε0.

S4. SOFTENING OF EXCITON IV

While the T dependence experienced by all in-plane
charge excitations of rutile TiO2 is anomalous compared
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to standard semiconductors and insulators, the behaviour
of exciton IV is instead conventional. Indeed, in the ex-
perimental data, the energy of charge excitation IV un-
dergoes a sizeable softening for increasing T, similarly to
the dependence shown by silicon, germanium and other
band semiconductors. From our theoretical calculations
(see Sections II and III), we highlighted the effect pro-
duced by the DP coupling and the Fröhlich interaction
on exciton IV, observing a non-negligible hardening of
the peak for increasing T. In rutile TiO2, the effect of
thermal expansion is not sufficient to explain the origin
of the peak softening, since it is not strong enough to
counterbalance the DP and Fröhlich interactions. This
implies that other terms in the electron-phonon inter-
action Hamiltonian are at the origin of the exciton IV
softening.

In the following, we describe the conventional redshift
experienced by exciton IV by fitting the experimental
T dependence with an approximated model. Although
this represents a phenomenological approach, this is the
most advanced model employed in literature other than
ab initio treatments. The most general approach uses a
distribution of phonon energies to describe the impact of
the electron-phonon interaction on the energy (Eexc) of
a charge excitation (i.e. interband transition or excitonic
transition) [9]. The shift of Eexc(T ) can be described by

Eexc(T ) = E0 −
∫
dωf(ω)

[
nBE(ω, T ) +

1

2

]
− Eth(T )

(11)
where E0 is the bare (unrenormalized) excitation en-
ergy at zero T, nBE is the Bose-Einstein statistical fac-
tor (e~ω/kBT - 1)−1, f(ω) is a weighting factor and the
last term Eth(T ) accounts for the lattice thermal expan-
sion. The weighting factor f(ω) can be decomposed into
a product of the phonon density of states (PDOS) ρ(ω)
and a factor related to the EPI strength. For an isotropic
crystal, the T dependent lattice expansion is given by

Eth(T ) = −3B

(
∂Eexc

∂p

)
T

∫ T

0

α(T ′)dT ′ (12)

with α(T) = L−1(∂L/∂T)p, being the linear thermal ex-
pansion coefficient, B the bulk modulus and (∂Eg/∂p)T
is the dependence of Eexc on hydrostatic pressure.

Although representing the most complete approach,
Eq. (8) necessitates detailed knowledge of the PDOS
and the coupling constants. Moreover, it requires sig-
nificant computational efforts, making this general treat-
ment rather expensive. This approach can be simplified
when the PDOS is dominated by specific peaks due to
van Hove singularities in the dispersion relation [10]. For
example, along the c-axis, the PDOS of rutile TiO2 is
characterized by the presence of a peak at 12 meV (98
cm−1) due to transverse acoustic (TA) phonons and a
peak at 58 meV (467 cm−1) due to the branches of the

4.16

4.14

4.12

4.10

E I
V 

(e
V)

250200150100500
Temperature (K)

FIG. S2. Temperature behaviour of the peak energy for exci-
ton IV: experimental data are represented as violet dots, the
fit is shown as a red curve.

Eg and E
(2)
u phonons [30]. As such, the PDOS ρ(ω) can

be approximated by two delta-functions positioned at av-
erage TA and LO frequencies

ρ(ω) = δ(ω − ωTA) + δ(ω − ωLO) (13)

We assume that the coupling constant for TA phonons is
proportional to q2 whereas for LO phonons is indepen-
dent of q. Then, the T dependence of Eexc(T ) can be
written as

Eexc(T ) ≈ E0 −
2∑
i=1

Aiωi(2nBE + 1) + Eth(T ) (14)

where ω1 = ωTA and ω2 = ωLO. In the fit, the coupling
constants Ai are allowed to change sign and magnitude.
Conversely, the phonon frequencies ωi are maintained
fixed. Moreover, the lattice expansion term Eth(T ) is
generalized to the case of an anisotropic (tetragonal)
crystal, using the expressions for the linear thermal ex-
pansion coefficients of rutile TiO2 as in Ref. [13]. The
value of the bulk modulus is taken from Ref. [40], while
the dependence of on hydrostatic pressure is extracted
from Ref. [41]. The results of the fit are shown in Fig.
S2 as a red curve. We observe that the fit reproduces
the experimental T dependence in an excellent way. Im-
portantly, we also underline that our fit is robust with
respect to the number of Bose-Einstein oscillators used
and the choice of the phonon energies at 12 meV and 58
meV. Indeed, the use of different phonon energies other
than 12 meV and 58 meV worsen the fit significantly.
This proves that the modes playing the major role in the
T renormalization of exciton IV are those displaying the
strongest peaks in the c-axis PDOS. Furthermore, from
the fit, we obtain two very interesting and consistent re-
sults: i) the bare excitation energy at zero T (E0) is
found at 4.32 eV, which is 170 meV larger than the ex-
perimental excitation energy at 10 K. As such, this value
is in very good agreement with the zero-point renormal-
ization of 150 meV calculated in a recent ab initio study
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of the single-particle excitation spectrum of rutile TiO2

[23]; ii) the modes at 58 meV have a coupling that is
by about a factor of 5.5 larger than the one of the 12
meV phonons. This indicates that the effect of the high-
energy LO phonons on the T dependence of exciton IV is
more important than that of the low-energy TA phonons,
in accordance with the relative ratio of the peak heights
(ALO/ATO ∼ 5.8) in the calculated c-axis PDOS. De-
spite the excellent parameters retrieved from our fit, we
remark that this phenomenological approach neglects the
detailed q-dependence of the electron-phonon coupling
strength. However, prior to our computational study,
this approximate model represented one of the most ad-
vanced treatments presented in literature.
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[21] H. Fröhlich, H. Pelzer, and S. Zienau, The London, Ed-
inburgh, and Dublin Philosophical Magazine and Journal
of Science 41, 221 (1950).

[22] P. Allen and M. Cardona, Physical Review B 23, 1495
(1981).

[23] B. Monserrat, Phys. Rev. B 93, 100301 (2016).
[24] N. A. Deskins and M. Dupuis, Phys. Rev. B 75, 195212

(2007).
[25] S. Moser, L. Moreschini, J. Jaćimović, O. Barǐsić,
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