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I. SPECTROSCOPIC ELLIPSOMETRY

We used spectroscopic ellipsometry (SE) to measure
the complex dielectric function of the sample, covering
the spectral range from 1.50 eV to 6.50 eV. The measure-
ments were performed using a Woollam VASE ellipsome-
ter. Rutile TiOs single crystals were purchased from MTI
Corporation, characterized by x-ray Laue diffraction and
polished down to optical grade on their (010) surface.
Subsequently, the samples were mounted in a helium flow
cryostat, allowing measurements from room temperature
(T) down to 10 K. The T-dependent measurements were
performed at <1078 mbar to prevent measurable ice-
condensation onto the sample. Anisotropy corrections
were performed using standard numerical procedures [1].

II. AB INITIO CALCULATIONS

Many-body perturbation theory at the level of the GW
and the Bethe-Salpeter Equation (BSE) [2—4], as im-
plemented within the BerkeleyGW package [5], was em-
ployed to compute the band structure and the dielectric
response of pristine rutile TiO3, on top of eigenvalues and
eigenfunctions obtained from Density-Functional Theory
(DFT). We used the planewave pseudopotential imple-
mentation of DFT as provided by the package Quantum
Espresso [6]. The DFT calculations were performed us-
ing the generalized gradient approximation (GGA) as
in the Perdew-Burke-Ernzerhof (PBE) scheme for the
exchange-correlation functional. For these calculations,
we used normconserving pseudopotentials [7] including
semicore states 3s and 3p (as in Ref. [8] for anatase
TiOz). We used a cutoff of 200 Ry to achieve convergence
of the electronic and optical properties at the many body
level. A coarse grid of 5 x 5 x 7 k-points was used for
PBE and subsequent GW calculations. A more dense,
randomly shifted, grid of 16x16 x20 (with interpolation
of GW energies on the 5x5x7 grid) was implemented
for solving the BSE using Haydock method, to obtain

the absorption spectra. The diagonalization of excitonic
Hamiltonian was done on a randomly shifted fine grid of
10x10x14 k-points. Such diagonalization provides the
analysis of Kohn-Sham orbital contributions and k-points
contributions to excitonic wavefunctions. The excitonic
wavefunctions in three dimensions were also obtained via
direct diagonalization. We used 2498 conduction bands
(CBs) and an energy cutoff of 46 Ry for polarisability
and inverse dielectric matrix, 2498 CBs for self-energy
evaluation, a cutoff energy of 50 Ry and 200 Ry for
screened and bare components of self-energy operator,
respectively. The 10 topmost valence bands (VBs)nd the
10 lowest CBs were included in the BSE solution via Hay-
dock, while the 7 topmost VBs and the 6 lowest CBs were
used for directly diagonalizing BSE Hamiltonian for the
excitons analysis.

Our study goes beyond previous experimen-
tal/computational works on rutile TiOy [9-12] in
that: i) a higher computational convergence is achieved;
ii) a precise identification and characterization of the
peaks in the optical absorption spectrum is made; iii)
the T = 0 calculations can be compared with the low-T
dielectric function of the material, measured directly
via SE and not extracted through a Kramers-Kronig
analysis; iv) T effects are included and discussed.

As far as the T = 0 calculations are concerned, the
GW indirect bandgap (I-R) and direct bandgap (T'-
I') are 3.30 eV and 3.34 eV, respectively. These val-
ues are converged up to 5 meV and are in good agree-
ment with photoemission and inverse-photoemission re-
sults [13]. The present highly-converged value is lower
than the gap given in Ref. [9], where a smaller num-
ber of bands and k-points was used. The excitonic ener-
gies were subsequently obtained by diagonalizing the ex-
citonic Hamiltonian. The first eigenvalue for both light
polarizations correspond to a dark triplet exciton with
energy 3.19 eV. This dark exciton has a major contribu-
tion from the transitions from the VB to the CB at the
I" point. Its binding energy is estimated ~ 150 meV. The
large excitonic peak, for light polarized along the a-axis,
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FIG. S1. Wavefunctions of the fundamental charge excita-

tions in rutile TiO2. Isosurface representation of the elec-
tronic configuration on the (001) plane when the hole of the
considered excitonic pair is localized close to one oxygen atom.
The coloured region represents the excitonic squared modulus
wavefunction. (a) Resonant exciton I at 3.99 €V. (b) Resonant
exciton IV at 4.24 eV.

at 3.99 eV is composed of various eigenvalues with re-
ciprocal space contributions from a broad region around
I". This is a resonant, non-bound exciton. For light po-
larized along the c-axis, the intense and broad excitonic
peak centered at 4.24 eV is composed of various eigen-
values, with reciprocal space contributions from a wider
region around the I' point and strong contributions from
points close to I" along the I'-Z line. Also this peak is
a resonant non-bound exciton, retaining a bulk delocal-
ized character. The excitonic wavefunctions on the (001)
plane are represented in Fig. Sl(a,b). The isosurface
represents the electronic part of the excitonic squared
modulus wavefunction, with the hole fixed at a site close
to one oxygen atom.

To include the T-effects on the electronic and opti-
cal properties of rutile TiO,, we estimated the role of
the deformation potential coupling by performing frozen
phonon GW-BSE calculations. We separately displaced
the ions in the primitive unit cell according to the eigen-
vector of the longitudinal optical (LO) ES) and A,
modes [14]. These phonons are expected to possess the
strongest coupling with the electronic degrees of freedom
along the a-axis of the crystal [15, 16]. The displacement
of atom j was calculated from the harmonic oscillator
mean square displacement at 250 K according to
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where npg = (/8T — 1)~1 is the Bose-Einstein sta-

tistical occupation factor, kg is the Boltzmann constant,
m; is the atomic mass and w is the phonon frequency. We
corrected the GW gap values for the lattice expansion ef-
fect by using the thermal expansion coefficient reported
in Ref. [17]. In particular, the a and c lattice parameters
of rutile TiO2 increase by 0.3 % from 0 to 250 K. The

inclusion of both the phonon-induced and the thermal
expansion-induced effects leads to a net blueshift of the
bandgap of ~ 120 meV (in the case of the EY mode)
and 60 meV (in the case of the Aj, mode). A simi-
lar trend was recently reported in the case of the elec-
tronic gap (evaluated within the thermal lines method for
electron-phonon coupling), which shows a non-monotonic
behaviour with T [18]. When solving the BSE on top of
the T-corrected GW results, we find that, in the case of
the El(l?’) mode at 250 K, exciton I blueshifts by 190 meV
and exciton IV blueshifts by 130 meV. In the case of the
As, mode at 250 K, exciton I blueshifts by 20 meV and
exciton IV blueshifts by 60 meV.

III. FROHLICH INTERACTION

In polar crystals, a major contribution to the electron-
phonon interaction comes from the polarization of the
lattice produced by the polar LO modes. The polariza-
tion in a unit cell, p, can be written as

=¢"(R1 —Ry) (2)

where R; and Ry are the displacements of the positive
and negative ions, respectively, and e* is the effective
charge of the ions, which differs from the fundamental
charge e by the effect of the polarization of the ions as a
result of their displacements. The structure of the polar
electron-phonon interaction has been described by the
theory of Frohlich [19]. The momentum-dependent ma-
trix element of the interaction potential reads
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where M = M;My/(M; + Ms) is the reduced mass, N
is the total number of unit cells in the lattice, a is the
lattice constant (assuming a cubic crystal), wro q is the
frequency of the LO modes at a given momentum ¢ and
npg is the statistical Bose-Einstein occupation factor.

The frequency of a LO mode is approximately constant
as a function of ¢ and it is related to the transverse optical
(TO) mode frequency wro via the Lyddane-Sachs-Teller
relationship [20]

M (q) =

wﬁo = W%O(EO/EOO) (4)

where ¢y and €., are the dielectric constants at ener-
gies well below and above the phonon range, respectively.
The frequency wro itself is related to €y and €., by

Who = 2me*en /Ma® (€ — €x0) (5)

The energy shift of a charge excitation induced by the
Frohlich interaction is

N —A(l - 1) (1+ 2n5p) (6)
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where A is a nearly T-independent prefactor that reads
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where m? (mj) is the electron (hole) effective mass. In
this work, we evaluated this formula along the a- and c-
axis of rutile TiOs, accounting for all polar LO modes in
the crystal and relying on the experimental values of ¢
and €. The values of m} and mj, were estimated from
our ab initio calculations, by performing a parabolic fit at
the I point of the bands involved in the transitions I and
IV (see Section II. B). Along the I'-X line of the Brillouin
zone, we obtain m} = 0.61 m. and m;, = 1.33 me. Along
the I'-Z line of the Brillouin zone, we obtain m} = 0.73
me and mj = 5.20 m.. Substituting all values in Eq.
(6) yields a blueshift of 86 meV for exciton I and of 160
meV for exciton IV. Therefore, the Frohlich interaction
affects the fundamental charge excitations of rutile TiOo,
causing their hardening for increasing T. Indeed, the T
dependence of the charge excitations is encoded in the T
variation of €.

IV. SOFTENING OF EXCITON IV

While the T dependence experienced by all in-plane
charge excitations of rutile TiO5 is anomalous compared
to standard semiconductors and insulators, the behaviour
of exciton IV is instead conventional. Indeed, in the ex-
perimental data, the energy of charge excitation IV un-
dergoes a sizeable softening for increasing T, similarly to
the dependence shown by silicon, germanium and other
band semiconductors. From our theoretical calculations
(see Sections IT and IIT), we highlighted the effect pro-
duced by the DP coupling and the Frohlich interaction
on exciton IV, observing a non-negligible hardening of
the peak for increasing T. In rutile TiOs, the effect of
thermal expansion is not sufficient to explain the origin
of the peak softening, since it is not strong enough to
counterbalance the DP and Frohlich interactions. This
implies that other terms in the electron-phonon inter-
action Hamiltonian are at the origin of the exciton IV
softening.

In the following, we describe the conventional redshift
experienced by exciton IV by fitting the experimental
T dependence with an approximated model. Although
this represents a phenomenological approach, this is the
most advanced model employed in literature other than
ab initio treatments. The most general approach uses a
distribution of phonon energies to describe the impact of
the electron-phonon interaction on the energy (Fex.) of
a charge excitation (i.e. interband transition or excitonic
transition) [21]. The shift of Ex.(T) can be described
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FIG. S2. Temperature behaviour of the peak energy for exci-
ton IV: experimental data are represented as violet dots, the
fit is shown as a red curve.

by
Eo(T) = EO—/dwf(w) {nBE(w,T)—F% —Ew(T) (8)

where Eg is the bare (unrenormalized) excitation en-
ergy at zero T, ngg is the Bose-Einstein statistical fac-
tor (eM/FsT _ 1)=1 f(w) is a weighting factor and the
last term Eyp,(T') accounts for the lattice thermal expan-
sion. The weighting factor f(w) can be decomposed into
a product of the phonon density of states (PDOS) p(w)
and a factor related to the EPI strength. For an isotropic
crystal, the T dependent lattice expansion is given by

a-Eexc T / /
Eth(T)——3B( 5 >T/0 o(T")dT (9)

with «(T) = L=1(0L/JT),, being the linear thermal ex-
pansion coefficient, B the bulk modulus and (0E,/dp)r
is the dependence of F. . on hydrostatic pressure.

Although representing the most complete approach,
Eq. (8) necessitates detailed knowledge of the PDOS
and the coupling constants. Moreover, it requires sig-
nificant computational efforts, making this general treat-
ment rather expensive. This approach can be simplified
when the PDOS is dominated by specific peaks due to
van Hove singularities in the dispersion relation [22]. For
example, along the c-axis, the PDOS of rutile TiO5 is
characterized by the presence of a peak at 12 meV (98
ecm™!) due to transverse acoustic (TA) phonons and a
peak at 58 meV (467 cm™!) due to the branches of the
Ey and E® phonons [23]. As such, the PDOS p(w) can
be approximated by two delta-functions positioned at av-
erage TA and LO frequencies

p(w) = 0(w — wra) + d(w — wLo) (10)

We assume that the coupling constant for TA phonons is
proportional to ¢? whereas for LO phonons is indepen-
dent of gq. Then, the T dependence of Foy(T') can be



written as

2
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where w1 = wra and ws = wro. In the fit, the coupling
constants A; are allowed to change sign and magnitude.
Conversely, the phonon frequencies w; are maintained
fixed. Moreover, the lattice expansion term FEi,(T) is
generalized to the case of an anisotropic (tetragonal)
crystal, using the expressions for the linear thermal ex-
pansion coefficients of rutile TiO2 as in Ref. [17]. The
value of the bulk modulus is taken from Ref. [24], while
the dependence of on hydrostatic pressure is extracted
from Ref. [25]. The results of the fit are shown in Fig.
S2 as a red curve. We observe that the fit reproduces
the experimental T dependence in an excellent way. Im-
portantly, we also underline that our fit is robust with
respect to the number of Bose-Einstein oscillators used
and the choice of the phonon energies at 12 meV and 58
meV. Indeed, the use of different phonon energies other
than 12 meV and 58 meV worsen the fit significantly.
This proves that the modes playing the major role in the
T renormalization of exciton IV are those displaying the
strongest peaks in the c-axis PDOS. Furthermore, from
the fit, we obtain two very interesting and consistent re-
sults: 1) the bare excitation energy at zero T (Ej) is
found at 4.32 eV, which is 170 meV larger than the ex-
perimental excitation energy at 10 K. As such, this value
is in very good agreement with the zero-point renormal-
ization of 150 meV calculated in a recent ab initio study
of the single-particle excitation spectrum of rutile TiOq
[18]; ii) the modes at 58 meV have a coupling that is
by about a factor of 5.5 larger than the one of the 12
meV phonons. This indicates that the effect of the high-
energy LO phonons on the T dependence of exciton IV is
more important than that of the low-energy TA phonons,
in accordance with the relative ratio of the peak heights
(ALo/ATto ~ 5.8) in the calculated c-axis PDOS. De-
spite the excellent parameters retrieved from our fit, we
remark that this phenomenological approach neglects the
detailed g-dependence of the electron-phonon coupling
strength. However, prior to our computational study,
this approximate model represented one of the most ad-
vanced treatments presented in literature.
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