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NOMENCLATURE

AI Artificial intelligence, see Sec. II A
B3LYP Becke, three-parameter, Lee-Yang-Parr, a hybrid

DFT functional
CCSD(T) Coupled cluster with single, double and pertur-

bative triple excitations, an electronic structure
method

DFT Density functional theory, an electronic structure
method

DFTB Density functional theory tight binding, an elec-
tronic structure method

DNN Deep neural network, see Sec. II C
EAM Embedded atom model/method, an interatomic

potential
GAP Gaussian approximation potential, a machine

learning potential
HOMO Highest occupied molecular orbital
KRR Kernel ridge regression, see Sec. II C
LUMO Lowest unoccupied molecular orbital
MAE Mean absolute error, see Sec. II D
MD Molecular dynamics, a simulation technique
ML Machine learning, see Sec. II A
MP2 Møller-Plesset perturbation theory to second

order, an electronic structure method
QM/MM Quantum mechanics/molecular mechanics, a

molecular simulation method
(A)NN (Artificial) neural network, see Sec. II C
QSPR Quantitative structure-property relationship, see

Sec. II A
RMSE Root mean squared error, see Sec. II D
SINDy Sparse identification of nonlinear dynamics, a

machine learning method
SNAP Spectral neighbor analysis potential, a machine

learning potential
SVM Support vector machine, see Sec. II C
tICA Time structure independent component analysis,

see Sec. II C

a)matthias.rupp@fhi-berlin.mpg.de. URL: www.mrupp.info.
b)anatole.vonlilienfeld@unibas.ch
c)kieron@uci.edu

I. INTRODUCTION

Welcome to the Journal of Chemical Physics Special
Topic on data-enabled theoretical chemistry. We expect that
this will be a timely addition to this new and rapidly evolving
field, with a variety of articles from the front lines.

Unless you have disconnected from all social media, you
will have noticed that artificial intelligence, machine learn-
ing, big data, and other vague but computer-driven terms have
invaded many realms of public life. Facial recognition soft-
ware has been revolutionized by machine learning, cars now
drive themselves, the world’s best chess and go players are
algorithms, and perhaps someday soon they will even be able
to recommend a good movie.

The same revolution has also been occurring in many
branches of theoretical and computational chemistry, driven
by the same force: the never-ending increase in data being
generated by computers. Our Special Topic is devoted to
data-enabled chemistry, which we interpret broadly. We cover
essentially all algorithmic developments that fit under the
broad rubric of machine learning, using varying amounts
of data, and driven by applications from small molecule
chemistry to materials science to protein behavior.

In Fig. 1, we show papers being published involving
machine learning and chemistry or materials over the last three

FIG. 1. Number of publications per year from a web of science search for
articles with topics of machine learning and either chemistry or materials,
taken June 5, 2018. The average number of citations per article is 12.
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TABLE I. Overview of contributions to the Special Topic.

Reference Section ML method QM method Systems Keywords

30 III A NN DFT Hydrocarbon molecules Size-independence

31 III A Multilinear regression DFT Small organic molecules Representation, wavelets

32 III A KRR DFT Organic molecules, water, solids Representation, many-body terms

33 III A NN DFT Small organic molecules NN architecture

34 III A NN DFT Small organic molecules Representation, symmetry func-
tions

35 III A Regression DFT Small organic molecules Polynomial fit, active learning

36 III A KRR DFT Small organic molecules Graph-based representation

76 III A NN DFT Organic molecules Covariant compositional networks

37 III B KRR DFT, CCSD(T) Dimers, hydrogen-bonded com-
plexes, and others

Non-covalent interactions

38 III B GPR, NN DFT Liquid water, Al-Si-Mg alloy,
organic molecules

Feature selection

39 III B GPR DFT Li-C guest-host systems Combination of potentials

40 III B NN DFT Small organic molecules Active learning

41 III B NN DFT Small organic molecules Molecular properties

42 III B DNN DFT Organic molecules, bulk crystals,
C20-fullerene

DNN architecture

43 III B GPR DFT, force field Na+, Cl� ion-water clusters Ion-water interactions

44 III B Regularized linear
regression

DFT Tantalum Bispectrum quadratic terms

45 III B GPR DFT Ni nanoclusters Interatomic forces, k-body kernels

46 III B NN DFT Nicotine, water cluster Sampling, meta-dynamics

47 III B NN DFT Cu surface grain boundaries Hybrid QM/ML models

48 III C NN DFT Water/ZnO(101̄0) interface Anharmonic vibrational spectra

49 III C Linear regression CCSD(T) Formic acid dimer Dipole moment surface, infrared
spectrum

50 III C NN, GPR CCSD(T) Water (ice, liquid, clusters) Representation, invariant poly-
nomials

51 III C NN, GPR Force field Formaldehyde Comparison, vibrational spectra

52 III D NN, genetic algorithm DFT LixSi alloys Phase diagrams of amorphous
materials

53 III D Regression trees DFT AB2C2 ternary intermetallics Stable compound search

54 III D Clustering Harris approximation Rigid-molecule crystals Crystal structure prediction

55 III D Monte Carlo tree search EAM Ag, Co grain boundaries Segregation

56 III D Binary classification trees DFT Inorganic crystals Recommender system

57 III D Monte Carlo tree search,
GPR

DFT Boron-doped graphene Stable structure search

58 III E Subset selection, outlier
detection

DFT Main group chemistry Doubly hybrid functional

60 III E NN DFT Model systems Hartree-exchange-correlation
potential

62 III E KRR DFT Organic molecules Representation

63 III E KRR DFT Model systems Exact conditions

64 III E NN DFT Atoms and molecules Kinetic energy density functional

65 III F Sparse regression Analytic potential Model systems Stochastic dynamical equations

66 III F Time-lagged autoencoder Force field Model systems, villin peptide Slow dynamics, dimensionality
reduction

67 III F Markov state model, tICA Force field Dye-labeled polyproline-20 Dynamics, transition probabilities

68 III G None DFT Various (G3/99 test set) Error statistics

69 III G Autoencoder, NN DFT Donor-acceptor polymers Screening, solar cells

70 III G SVM DFT Organic polymers Refraction index

71 III G KRR DFT Perovskite oxides, elpasolite
halides

Lanthanide-doped scintillators

72 III G GPR CCSD(T) Small organic molecules Geometry optimization

73 III G Clustering DFTB Anatase TiO2(001) Global structure optimization

74 III G SVM, graph analysis Force field Tyrosine phosphatase 1E Proteins, dynamic allostery

75 III G Data analysis Force field Antimicrobial peptides Visualization



241401-3 Rupp, von Lilienfeld, and Burke J. Chem. Phys. 148, 241401 (2018)

decades. The absolute rate is rather arbitrary, depending on the
precise search terms, but the rapid growth is robust, as is the
average citation rate of each article. There is no doubt that
data-enabled chemistry is rapidly making a large impact in the
field.

This editorial is designed for non-experts who are outside
this field, and trying to figure out what is going on, and how
they might want to get in on the action. We provide a brief
glossary of machine-learning terms for non-experts in Sec. II,
focusing on the concepts and algorithms used most often in
physical chemistry and materials science. In Sec. III, using the
introduced terminology, we briefly survey the contributions
in this Special Topic, grouped by the physical and chemical
processes and systems to which they are applied.

A nomenclature and a table are provided to aid the reader:
the Nomenclature summarizes the used abbreviations and
Table I presents an overview of all articles in the Special Topic,
acting as a quick guide to the methods (both quantum chemi-
cal and computer science) and the systems included. Not only
is it a quick way to find something in the issue, but it also
represents a snapshot of the state of the field today.

II. SOME DATA-ENABLED TERMINOLOGY

This section is an introduction to common terminology
in machine learning, with an emphasis on those concepts
currently in use in the applications in this Special Topic.
Terms used both in this editorial and throughout the Special
Topic are set in small capitals, followed by their explanation.
This is by no means a comprehensive explanation, and inter-
ested readers should consult further sources for more detailed
explanations.

A. Machine learning and related scientific fields

Machine learning (ML)1,2 is an umbrella term referring to
algorithms that improve with data (“learn from experience”),3

mostly for analysis or prediction. Instead of being explicitly
programmed to solve a specific problem, these algorithms rely
on given data to make statements about new data. An example
for a ML algorithm is regression (Fig. 2): Based on a finite
number of points (examples, samples), a function is inferred
which enables predictions for new examples; the fit gets

FIG. 2. Sketch illustrating the idea of machine learning,4 using prediction of
molecular energies as an example. The horizontal axis represents molecular
space (molecules are points on the axis); the vertical axis represents energy.
Instead of calculating all energies (solid line), only a few reference calculations
are done (dots), and machine learning is used to learn the mapping from
molecule to energy (dashed line).

better the more examples there are. While ML encompasses
many different tasks besides regression, such as classifica-
tion, dimensionality reduction, clustering, anomaly detection,
optimization, and offers a wide variety of specific algorithms,
such as Gaussian process regression, support vector machines,
principal component analysis, (deep) neural networks, the
underlying principle of data-driven improvement remains the
same.

ML is related to, but distinct from, artificial intelli-
gence and data mining. Artificial intelligence (AI)5 is
the study of machines that exhibit intelligent behavior.
The scope of this field is less clear-cut, evidenced by the
lack of a formal definition of intelligence. AI traditionally
involves (symbolic) knowledge representation and logical
reasoning. Data mining is similar to ML but more con-
cerned with extraction of new patterns in large datasets.
Pattern recognition is essentially a synonym for ML. For
the more recent term data science, no consensus has emerged
yet, but it is often used to mean applied ML and statis-
tics.

Two major application areas of ML closely related to
this Special Topic are cheminformatics and materials infor-
matics. Cheminformatics6 (also chemoinformatics) is at the
intersection of chemistry and computer science. In particular,
quantitative structure-property relationships (QSPRs)7

relate molecular features or descriptors to usually experimen-
tal and molecular properties, and virtual screening8 is the
computational screening of large databases for compounds
with desired properties. materials informatics9 is a newer
field at the intersection of materials science and computer
science.

B. Types of problems machine learning address

One way to categorize problem types in ML is according
to the types of examples involved. In supervised learning,
examples are pairs of input x and label y, for example
molecules and their energy and the task is to predict the label
of new examples, that is, to learn the function f : x → y. In
unsupervised learning, only inputs x are given and the task is
to find structure in the data. An example would be identi-
fying a reaction coordinate from molecular dynamics (MD)
data. Mixed forms are possible as well: In semi-supervised
learning, only some examples are labeled, with the idea that
large amounts of unlabeled data can still help with predictions
by characterizing the manifold on which the data lie. An exam-
ple would be a large combinatorial chemistry database of
molecules where only some have been measured or calculated.

Frequent types of problems within supervised learning are
classification and regression. In classification, labels belong
to a finite set of outcomes, where one distinguishes between
two possible labels in binary classification, for example
active and inactive, and, multiple possible labels inmulti-class
classification, for example different phases. The special case
with only one possible label is one-class learning (also
novelty detection, outlier detection, or anomaly detection),
where examples from a single class are given and the task is to
detect whether new examples fall outside of this class or not.
In regression, labels are continuous. Usually, these are scalar
values, but vectors, distributions, or other structured objects



241401-4 Rupp, von Lilienfeld, and Burke J. Chem. Phys. 148, 241401 (2018)

like graphs can also be predicted using structured-output
learning.10

Frequent problem types within unsupervised learning are
dimensionality reduction and clustering. In dimensionality
reduction,11 the goal is to find a subspace or manifold of
low dimension on which the data live. Clustering attempts
to group samples into clusters such that samples within a clus-
ter are more similar to each other than to samples in other
clusters.

There are many other concepts that have found their way
into data-enabled theoretical chemistry and materials science:
In active learning,12 the training data are not sampled ran-
domly but “actively” chosen by the ML algorithm; this often
enables achieving the same prediction error with much smaller
training sets. In reinforcement learning, the ML algorithm
chooses an action from a set of possible actions based on the
state of its environment. It is then rewarded accordingly and
the process repeats. The goal of the algorithm is to maximize
reward.

C. Specific algorithms

Many ML algorithms exist, but the ones used most often
in cheminformatics and materials informatics belong to two
large families, kernel-based ML and (deep) artificial neural
networks.

In kernel-basedML,13,14 inputs x are non-linearly trans-
formed into a higher dimensional space, where problems
can become linear with the right transformation. As working
directly in these high-dimensional feature spaces is imprac-
tical, kernel functions k are used. These are computed in
the original input space, but yield inner product values, and
thus geometric information, in the high-dimensional space.
Since their invention in the 1990s,15,16 many linear ML algo-
rithms have been “kernelized.” Popular algorithms include
support vector machines (SVMs), kernel principal
component analysis,15,16 kernel ridge regression (KRR),17

and Gaussian process regression (GPR)18 (also called Kriging
due to its origins in geostatistics). While KRR is a frequentist
algorithm and GPR is a Bayesian one, their predictions are
formally identical, which is why the terms KRR and GPR are
occasionally used interchangeably in practice.

Artificial neural networks (NNs)19,20 are repeated com-
positions of simple functions, where the inputs of one function
are the weighted outputs of other functions. These functions
are typically arranged in consecutive layers. In graph represen-
tations of NNs, vertices correspond to functions and edges cor-
respond to weighted connections between them. Determining
the weights is a non-convex optimization problem. Deep NNs
(DNNs)21 are characterized by having many functional layers.
This depth enables them to learn internal representations of the
data of increasing complexity and abstraction.

Kernel learning and NN are simply two different ways of
fitting a flexible function to data. Many other learning algo-
rithms exist, including tree-based algorithms such as decision
trees, regression trees, and random forests.

A classic algorithm for dimensionality reduction is
principal component analysis (PCA),22,23 which finds orthog-
onal directions of maximal variance in the data. Many vari-
ants of this idea exist, such as Independent Component

Analysis (ICA), which finds independent latent variables
and explains data as mixtures of these variables. For time-
structure Independent Component Analysis (tICA), these
variables are chosen to maximize autocorrelation. A NN
approach to dimensionality reduction are autoencoder net-
works, where the size of functional layers first decreases,
then increases again and the task is to reproduce the inputs.
Having the data go through a “bottleneck” forces the autoen-
coder NN to find a low-dimensional representation of the
data.

D. Model building

Unlike classical potentials, which are parametrized once
for a class of molecules or materials and then deployed, ML
models, being more flexible mathematical functions, should
be applied only to molecules or materials sampled from
the same distribution as the ones used to train the model—
otherwise, the ML model will operate outside of its domain of
applicability, resulting in uncontrolled and essentially arbi-
trary errors. For this reason, ML models are often retrained,
for example dynamically by adding training data “on-the-fly”
during the course of a simulation. Deciding when to make a
prediction and when to do a reference calculation to update the
model requires uncertainty estimates, that is, assessments of
the reliability of individual predictions.

The root mean squared error (RMSE) is the canonical
measure of how wrong a set of predictions is. It is the RMSE
that is minimized by many algorithms by default. This typ-
ically leads to “full” solutions, such as all coefficients in an
expansion being non-zero. By contrast, sparsity of solutions,
that is, solutions with most coefficients zero, can be achieved
by minimizing the mean absolute error (MAE) or L1-norm
instead.

For validation of a ML model, the errors reported must
always be on out-of-sample data, that is, data not used for
training the model, including any pre-processing steps. An
easy way to achieve this is to set aside a hold-out set in the
beginning, to be used only for validation, and only after the
ML model’s training is complete. For small datasets, where this
might not be feasible, statistical validation techniques such as
cross-validation can be used. These essentially reuse the data
by splitting it multiple times into the training and hold-out set
and then average over the results.

The training or model-building process can include
steps such as optimizing free parameters, often called
hyperparameters, or, feature selection, where only some
of the descriptors or variables used to represent the inputs
are retained. Hyperparameter optimization usually is a non-
convex optimization problem, but well-behaved in practice.
For few parameters, it can be addressed via grid search, mini-
mizing the hold-out RMSE over a logarithmic grid; alternatives
are maximizing the likelihood of the model given the data, or
choosing good values via heuristics.

The out-of-sample error of ML models must decay with
training set size (otherwise it would not be machine learning).
For many models, the leading error term varies as a/Nb, where
N is number of training data.24–26 Learning curves are plots of
the out-of-sample prediction error as a function of N, usually
on a log-log scale.
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III. SURVEY OF AREAS COVERED

We next survey the areas covered by the articles in our
Special Topic. We have organized them according to the type
of chemical problem being addressed, as far as is possible.
This makes it easier to see both the breadth of the problems
and which topics have the most interest, as well as to compare
different ML approaches to the same problem.

A. Prediction of energies and other properties
throughout chemical compound space

Chemical space is astronomically vast.27,28 Given some
molecule, defined by its number of electrons and the set of
nuclei at their equilibrium geometries, we can typically pre-
dict its observables with satisfying accuracy using ab initio
quantum chemical methods such as CCSD(T) in a sufficiently
large basis. This is feasible for smaller molecules, and DFT
can be used (less reliably) for larger ones. But even DFT
(or computationally less demanding semi-empirical quantum
chemistry methods) is not fast enough to search all of chemical
compound space, whose size grows combinatorially with the
number of atoms and distinct elements. Thus, an important
problem is to search chemical compound space to find new
drugs (and materials space to find new materials) with desired
functionalities.

A basic property is the ground-state energy of a molecule.
But there are also many other interesting properties at the
ground-state configuration, such as dipole moments, ioniza-
tion potentials, and vibrational frequencies. Some of these
can be extracted from the same electronic structure calcula-
tion from which the molecule’s energy was obtained, while
others require additional computation. Given the impossibil-
ity of calculating all properties of all possible molecules, it is
interesting to ask if a ML algorithm, trained on known exam-
ples, can be used to predict the properties of new molecules
at much reduced computational cost.29 If so, chemical com-
pound space can be searched orders of magnitude more
quickly. Many groups are therefore formulating ways to do
this.

Note that often researchers use DFT (or even DFTB)
results for both training and testing their algorithms. In those
cases, the ML algorithm is tested against the DFT calcula-
tions, not experiments or more accurate quantum chemical
methods. The idea is that, once an algorithm is sufficiently
robust and useful, it can then be trained on more accurate
data and, presumably, work just as well. These days, many
ML approaches already produce MAE below those typical of
density functionals.

Yang et al.30 introduce a size-independent NN model of
heats of formation trained on small organic molecules that
can be applied to large molecules. For these, the MAE from
reference B3LYP numbers is reduced to 1.7 kcal/mol.

On the other hand, Eickenberg et al.31 introduce a ML
model based on a solid harmonic wavelet scattering represen-
tation of organic molecules and demonstrated competitive per-
formance for predicted atomization energies. Meanwhile, Hy
et al.76 use a new kind of NN, called a covariant compositional
network, to deduce properties from molecular graphs alone,
yielding promising results on databases of small molecules.

Often, the efficiency of a ML algorithm depends crucially
on the way the data are represented. Faber et al.32 introduce
a many-body representation of atoms in their environment
and reported “chemical accuracy” (1 kcal/mol) for energies
of organic molecules and solids with few thousand training
points. Interpolation across the periodic table even enables
prediction of energies of molecules with elements that were
not included in the training set.

Lubbers et al.33 introduce a hierarchical NN approach
with competitive performance for predicting atomization ener-
gies of organic molecules, as well as energies and forces of
thousands of snapshots of benzene, malonaldehyde, salicyclic
acid, and toluene. Their method can also be applied to MD
simulations and gives a measure of model uncertainty automat-
ically. Gastegger et al.34 develop element-specific weighting
functions for atom-centered symmetry function-based repre-
sentations in NN. Upon use of the weighting functions, they
showed that less symmetry functions are necessary and the
prediction error of atomization energies in organic molecules
is systematically reduced.

Gubaev et al.35 conceive a local tensor based ML approach
which depends on the property being intensive or exten-
sive, and they combined it with active learning in order to
achieve state-of-the-art performance for atomization energies,
polarizabilities, and HOMO/LUMO eigenvalues in organic
molecules. Collins et al.36 show that graph-based molecular
representations profit from inclusion of interatomic distance
information while remaining size-independent, as evinced
for competitive prediction errors of atomization energies in
organic molecules.

B. Interatomic potentials

Classical MD simulations with interatomic potentials
can handle a million atoms or more and are used to study
dynamic processes in biology and chemistry. Unfortunately,
the necessary computational efficiency is sometimes obtained
only at the expense of predictive power. Typically, relying
on complex classical force fields, which ignore the underly-
ing electronic structure and dynamics, can produce inconsis-
tent answers to important questions. This limitation becomes
especially acute when covalent bonds are formed or broken,
when atoms vary their hybridization state, or during consid-
erable changes in chemical environments, as in, for example,
molten alloys. Then developing and testing force fields for
all possible configurations become an unsurmountable task.
Given this challenge, and the relevance of a dynamic descrip-
tion of atomistic processes throughout the exact sciences, a
large number of articles in the Special Topic are devoted to
the question if and how interatomic potentials can be con-
structed via ML, for example by training on (usually) DFT
calculations.

Bereau et al.37 predict parameters for intermolecular force
fields throughout chemical space. These parameters include
atomic charges, dipole moments, quadrupole moments, polar-
izabilities, atomic electron density screening factors, and
normalization constants. Out-of-sample predictions on well-
established van der Waals benchmark datasets indicate errors
below or about 1 kcal/mol.
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A crucial consideration for ML methods is the way that the
inputs are represented, which can have a strong impact on per-
formance. Imbalzano et al.38 provide an automated protocol
for feature selection, showing how this can simplify con-
struction of ML potentials. They illustrated their procedure on
NN potentials for water and aluminum ternary alloys, as well
as a GPR potential for formation energies of molecules.

Gaussian approximation potentials (GAPs) are one of the
success stories of ML in chemistry. They provide an automated
approach to constructing accurate interatomic potentials that
recreate the underlying electronic structure energetics at a frac-
tion of the computational cost. Fujikake et al.39 study the issue
of guest atoms in host structures, with the specific case of Li
in C, showing how to add the Li interactions to a pre-existing
GAP potential for C.

An important question, usually left to human bias and
intuition, is the selection of data upon which to train: When
generating an interatomic potential, which sets of electronic
structure calculations do you perform to create the database to
train on and test against? Smith et al.40 present a fully auto-
matic way of generating datasets for the specific purpose of
training ML potentials. Query-by-committee active learning
uses disagreements between predictions of different models
to improve sampling and reduce the amount of data needed
over random sampling. Results are given on a new COMP6
database of small organic molecules containing CHNO.

Unke and Meuwly41 are focused on creating methods that
span both configurational space and chemical space. Their
method decomposes energy into local atomic contributions,
with prediction errors on atomization energies on the order of
half a kcal/mol after training on 35 000 organic molecules.
They demonstrate predictive capability on both reactive and
non-reactive MD simulations.

Advanced deep learning methods are applied by Schütt
et al.42 They present SchNet, a DNN that learns chemically
relevant information about atom types across the periodic
table. It is general and flexible and uses deep learning to avoid
the need for clever choices of descriptors. It can be applied to
both molecules and materials and has been shown to reduce
the computational cost of DFT-MD simulations of fullerenes
by 3–4 orders of magnitude.

Another type of ML method is GPR or Kriging, and
Di Pasquale et al.43 use it to predict energies of ions sol-
vated in water. Energies are based on atomic energies obtained
from the topological partitioning called interacting quantum
atoms. This method provides accurate results and is part of an
advanced force field development, FFLUX.

Spectral Neighbor Analysis Potentials (SNAPs) express
the energy of an atom linearly in terms of bispectrum compo-
nents of neighboring atoms. Wood and Thompson44 show that
accuracy can be improved by including quadratic contributions
at a modest increase in cost, making it particularly suitable for
large-scale MD simulations of materials.

Metallic nanoclusters are important in many areas of
chemistry, but realistic simulations are limited by the com-
putational cost of DFT-MD. Zeni et al.45 study such systems
via classical n-body potentials derived from ML (“M-FFs”)
by constructing n-body kernels that can be exactly mapped to
non-parametric classical potential forms such as 3D splines.

This circumvents summing over training set entries for predic-
tions, accelerating simulations by orders of magnitude. They
find that 2-body potentials are insufficiently accurate to capture
the behavior of Ni clusters, but 3-body potentials are. Choice
of training data also plays an essential role.

Another important question is which regions of config-
uration space to sample when constructing a ML force field.
Herr et al.46 explore application of metadynamics to training
sets prior to selection for training. Metadynamics avoids the
problem of being stuck in the vicinity of local minima. In com-
parison to data retrieved from MD or normal-mode analysis
based sampling, the resulting NN exhibits improved or more
efficient performance.

Finally, QM/MM schemes are popular in computational
molecular biology but often suffer from limitations of the
MM model and ambiguities at the interface. Zhang et al.47

review this field for the specific case of a ML force field for
the MM contribution. They point out both advantages and
disadvantages of the ML approach.

C. Potential energy surfaces of specific molecules

This section could arguably be part of the previous one.
But in this section, the molecule is fixed, and a highly accurate
potential energy surface is desired, for a fixed number of atoms.

A difficult problem is the simulation of water on oxide
surfaces, as measured by infrared spectroscopy of OH anhar-
monic stretches. MD simulations at the DFT level should be
sufficiently accurate but are too expensive computationally.
Quaranta et al.48 use a NN potential trained on such cal-
culations to perform MD and solve the nuclear Schrödinger
equation for a large number of configurations to determine
vibrational spectra. They found that many different species
contribute in overlapping regions of the spectrum and that
the stretching frequencies depend strongly on the hydrogen
bonding.

For many purposes, DFT-level calculations suffice but
not for the infrared spectrum of weakly bound dimers. The
potential energy surface is a function of all 45 internuclear
distances and must be calculated at CCSD(T) levels of accu-
racy in order to accurately reflect the anharmonic couplings.
Qu and Bowman49 present a novel fit to the dipole moment and
solve the nuclear Schrödinger equation using various levels of
anharmonic theory to generate the infrared spectrum.

Nguyen et al.50 perform a careful study of the general
methodology for constructing interatomic potentials, focusing
on two- and three-body interactions in water using coupled-
cluster energies. They compare different approaches: GAP,
NN, and permutation-invariant polynomials, finding compa-
rable levels of accuracy in the fit.

In a related way, Kamath et al.51 study the potential energy
surface of formaldehyde, in order to compare NN with GPR,
using exactly the same data. In each case, they calculate vibra-
tional spectra. They found GPR to perform better for a fixed
number of data points, with a relatively accurate spectrum from
as few as 300 data points.

D. Stability of solids

Another important field is the relative stability of differ-
ent arrangements of atoms in solids, be they metallic alloys
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or molecular crystals. Searching all possible arrangements is
again a Herculean task, which could be tremendously accel-
erated if the patterns of the output could be machine-learned
instead of having to be recalculated over and over.

Artrith et al.52 address the problem of creating atomic
potentials for alloys. There are a few cases where good poten-
tials have been intuited in the past, but the essentially infinite
number of possibilities and simulation conditions leads to
a strong need for automation. Essentially, direct simulation
with first-principles methods is hopelessly expensive for many
problems and properties of interest. They use NN to speed up
the sampling for amorphous and disordered materials and use
the subsequent potential to calculate the phase diagram.

On the other hand, Schmidt et al.53 scan many materials,
looking specifically at ternary compounds to find the most sta-
ble structures. Here they find that ML reduces the calculational
cost by about a factor of 4, but the high accuracy needed for
such predictions limits the benefits of the ML approach to this
problem.

An important problem is that of finding stable polymorphs
of molecular crystals. Li et al.54 introduce Genarris, a Python
package that does inexpensive approximate DFT calculations
and analyzes results with a relative coordinate descriptor devel-
oped specifically for this task. It uses ML for clustering and
can be targeted for various outcomes, ranging from random
structure generation to finding a maximally diverse set of
structures to seed a genetic algorithm.

A quite different problem is that of grain boundaries in
materials, where all sorts of non-stoichiometric defects appear.
Kiyohara and Mizoguchi55 use a Monte Carlo tree search to
model grain-boundary segregation and test it on silver impu-
rities in copper. They find that the search algorithm reduces
the number of evaluations by a factor of 100 and yields insight
into the nature of the most relevant sites.

Returning to searching chemical compound space, Seko
et al.56 look at all possible inorganic crystals, which is a
much vaster space than those that have been discovered so far.
They propose descriptors to estimate the relevance of chemical
composition to stability. They train and test on experimental
databases and also estimate phase stability from first-principles
calculations.

Graphene is a promising material for future electronic
applications. Dieb et al.57 consider doping graphene with
boron atoms. High levels of doping have been recently made
and measured. Their aim is to find the most stable struc-
tures, using first principles calculations and ML to perform
the search. They find useful patterns and predict properties as
a function of boron doping.

E. Finding new density functionals

Density functional theory (DFT) calculations are cur-
rently of limited accuracy and reliability, and often fail badly
for materials that are of key technological interest. Several
of the papers in this Special Topic address the idea of using
ML to improve existing functionals or to create entirely new
ones.

Mardirossian and Head-Gordon58 develop ML technol-
ogy to optimize exchange-correlation functionals at different
levels on Jacob’s ladder59 of increasing sophistication. Their

work is at the highest rung, in which a double-hybrid functional
is optimized (but not overfitted) to a dataset of nearly 5000
molecular energies, screening trillions of possible function-
als, but ending up with only 14 parameters. This might prove
an invaluable combination of accuracy and computational
efficiency.

Another place where ML methods can be fruitfully
applied is to find the exact (or at least a much more accu-
rate) exchange-correlation functional, without fitting a given
form of approximation. Nagai et al.60 take small model prob-
lems, in which the exact density and energy are known, and
use inversion techniques to find the exact Hartree-exchange-
correlation energy and potentials. In the framework of Levy
and Zahariev,61 they then train and test a NN for this object.
This work can be classified as going beyond the existing
approximations used currently in DFT.

On the other hand, Ji and Jung62 use a grid-based local
representation of various electronic properties to predict DFT
energies, densities, and exchange-correlation potentials for 16
small main-group molecules, with errors below 1 kcal/mol
when trained for each molecule separately. The errors rise only
to 4 kcal/mol if a small subset of the molecules is used for train-
ing, holding out the promise of a transferable method sensitive
to the chemical environment.

The work of Hollingsworth et al.63 is focused on whether
or not simple exact conditions, which have been highly use-
ful in guiding human-based functional design, are useful for
improving learning curves of ML functional approximations.
While they examine the question for the Kohn-Sham kinetic
energy of simple models, their results should provide a guide
for applications to the exchange-correlation energy, such as
in the work of Nagai et al.60 They find that, while exact con-
ditions do improve learning rates, the improvement is only
significant when there is similarity in the densities within the
training manifold.

Seino et al.64 work with approximate forms for the energy
density of the Kohn-Sham kinetic energy to improve over
existing approximations to orbital-free DFT. They expanded in
higher gradients than are typically included in human approxi-
mations, and use ML to find coefficients and density dependen-
cies, and compare their accuracies to many existing orbital-free
functionals.

F. Analyzing molecular dynamics simulations

Even with classical force fields, there is tremendous inter-
est in speeding up specific aspects of MD simulations, such
as rare-event sampling or slow, long-term motions of long
molecules. A related interest is the extraction of information
from the large amounts of data generated by MD simulations.

The work of Boninsegna et al.65 is focused on finding
collective variables to determine long-time and coarse-grained
motions from MD data. There is substantial history of ad hoc
intuitive approaches to these problems, but their Sparse Iden-
tification of Nonlinear Dynamics (SINDy) approach does this
automatically, and they prove the correctness of their approach
in the limit of infinite data. A similar problem is tackled
by Wehmeyer and Noé66 using a DNN autoencoder, which
finds low-dimensional features (that is, the slow dynamics of
the underlying stochastic processes) embedded in a higher
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dimensional feature space. They test their methodology on
simple model systems and a 125 µs trajectory of the fast-
folding peptide villin.

Finally, Matsunaga and Sugita67 approach this topic from
a different viewpoint. They construct a Markov state model
from MD trajectories and then refine that model using ML
methods applied to experimental data. Thus their methodology
attempts to overcome the inherent limitations of the MD force
field model by comparison with experiments, whereas the
other contributions are focused on speeding up a calculation,
but entirely within the MD simulation itself.

G. Everything else

Not everything fits into simple categories and that is espe-
cially true in this field, including attempts to improve geom-
etry optimization, to analyze the statistics behind benchmark
datasets, and applications to larger biopolymers. In fact, there
are many, many more possible applications of data-enabled
chemistry, many of which are not included in this Special Topic
and so are beyond the scope of this editorial.

Pernot and Savin68 perform an in-depth study of the
methods currently being used to benchmark approximations
against datasets, an important topic as ever larger datasets
are being generated. They question the summary statistics
typically reported, such as RMSE or MAE, showing that
because the error distributions are not simple, little can be
inferred about error probabilities from these numbers alone.
They advocate more informative measures and show their
usefulness.

The position of the LUMO and the width of the optical gap
in polymers for solar cells are important for power conversion
efficiency. Jørgensen et al.69 perform first-principles calcu-
lations on about 4000 monomers and show that a grammar
variational autoencoder using a simple string representation
makes quite accurate predictions, reducing the cost of a search
by up to a factor of 5. Afzal et al.70 model the refraction index
of organic polymers by combining first-principles calculations
with ML to predict packing fractions of the bulk polymers.

Again, along the lines of solving a material- and property-
specific problem, Pilania et al.71 study the effect of lanthanide
dopants in inorganic scintillation counter materials. They use
ML on some key experimentally measured parameters and
combine the results with high-throughput electronic structure
calculations to perform screening for materials that exhibit
optimized levels of the dopant relative to the gap of the host
material.

Another important problem is that of geometry optimiza-
tion, sometimes at a high level of theory. Schmitz and Chris-
tiansen72 use GPR to optimize geometries using numerical
gradients. They use lower levels of electronic structure cal-
culations, such as Hartree-Fock or MP2, and then calculate
differences to higher level theory. The interpolation introduces
errors of no more than microHartrees.

In a similar vein, Sørensen et al.73 also perform geometry
optimization but on materials at an approximate DFT level.
They find that unsupervised learning can be used to catego-
rize atoms in many diverse partially ordered surface structures
of anatase titanium oxide. They also perform gradient-based
minimization of a summed cluster distance resulting from this

analysis which allows escape from meta-stable basins and so
helps find global minima more quickly.

On the other hand, in a totally different system and regime,
Botlani et al.74 use MD to simulate dynamic allostery, in which
regulator-induced changes in protein structure are compara-
ble to thermal changes. Thus the data must be mined to find
patterns in a very high dimensional space to identify mecha-
nisms. Unsupervised clustering shows that regulator binding
strongly alters the protein’s signalling network, not by chang-
ing connections between amino acids as one might naively
imagine, but rather by changing the connectivity between
clusters.

Antimicrobial peptides interact with simple phospholipid
membranes, which is relevant for rational drug design. Cipci-
gan et al.75 introduce new tools for analyzing the k-mer spec-
trum encoded in antimicrobial databases and ways to visualize
membrane binding and permeation of helical peptides.

IV. SUMMARY

We hope you have found this editorial a useful guide to
the important content, the papers in our Special Topic. We end
with some remarks about the nature of the field. ML has been
scoring some impressive successes in various areas of human
activity. There is tremendous hope for similar successes in
applications to physical sciences. However, progress in this
direction requires discovering more subtle rules than in many
other arenas. So it takes time for researchers to find the best
ways to apply ML to their problems. But practical chemists and
materials scientists can now create a dazzling array of differ-
ent molecular structures and alloys. Once the progress reported
here moves beyond development and proof-of-principle, per-
haps we can look forward to new materials and drugs designed
with ML methods that build on human intuition but apply it to
more possibilities than a human could ever imagine. We shall
see.
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