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Abstract

We derive a new variational principle and a new multisymplectic formulation for a family of
equations de�ned on the Virasoro-Bott group using the inverse map (also called `back-to-labels'
map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm,
and Hunter-Saxton equations.

1 Introduction

The family of equations

α(ut + 3uux) − β(uxxt + 2uxuxx + uuxxx) + auxxx = 0, (1.1)

where a, α, β are real nonnegative parameters, was introduced in [29] as equations of the geodesic
�ow associated to di�erent right-invariant metrics on the Virasoro-Bott group (see also [30], [38]).
Various hydrodynamical approximations are special cases of (1.1): for α = 1 and β = 0 it becomes
the Korteweg-de Vries equation ([31], [16])

ut + 3uux + auxxx = 0, (1.2)

whereas for α = β = 1 we obtain the Camassa-Holm equation ([8], [9], [23])

ut − uxxt + 3uux − 2uxuxx − uuxxx + auxxx = 0, (1.3)

and for α = 0 and β = 1 we get the Hunter-Saxton equation ([26], [27])
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uxxt + 2uxuxx + uuxxx − auxxx = 0. (1.4)

The main goal of this paper is to derive a new canonical variational principle for the family of
equations (1.1), and further determine their new multisymplectic formulation. By doing so, we
obtain uni�ed variational and multisymplectic characterizations of the well-known KdV, CH, and
HS equations.

Variational principles have proved extremely useful in the study of nonlinear evolution PDEs.
For instance, they often provide physical insights into the considered problem, facilitate �nding
conserved quantities by relating them to symmetries via Noether's theorem, allow one to determine
approximate solutions to PDEs by minimizing the action functional over a class of test functions
(see, e.g., [11]), and provide a way to construct a class of numerical methods called variational
integrators (see [35], [36]). A canonical variational principle for the KdV equation expressed in
terms of the velocity potential was �rst proposed by Whitham [47]; see also [11], [16], [28], [34].
In fact, there is an in�nite family of such Lagrangians, as shown by Nutku [41]. Two canonical
variational principles for the dispersionless CH equation (a = 0) were introduced in [12] and [32].
Two variational structures are also known for the HS equation with a = 0 (see [1], [26], [27]).

Multisymplectic structures of Hamiltonian PDEs were �rst considered by Bridges [5] as a nat-
ural generalization of the symplectic structure of Hamiltonian ODEs. Among other applications,
multisymplectic formalism is useful for, e.g., the stability analysis of water waves (see [5], [6]) or
construction of a class of numerical methods known as multisymplectic integrators (see [7], [35]). It
was observed in the literature that similar to symplectic integrators for Hamiltonian ODEs, multi-
symplectic integrators demonstrate superior performance in capturing long time dynamics of PDEs
(see [40]). To the best of our knowledge, only one multisymplectic formulation of the KdV equation
has been considered so far (see [6], [50]). Four di�erent multisymplectic formulations are known
for the dispersionless CH equation (see [10], [12], [32]). Two multisymplectic structures for the HS
equation with a = 0 were described in [39].

Main content The main content of the remainder of this paper is, as follows.

In Section 2 we review the Euler-Poincaré theory on the Virasoro-Bott group and then construct
a new canonical variational principle in terms of the inverse map. The main results of this
section are Theorem 2.2 and the variational principle (2.24).

In Section 3 we derive the multisymplectic form formula associated with our variational principle
and then deduce a new multisymplectic formulation of the family of equations (1.1). The
main result of this section is Theorem 3.1.

Section 4 contains the summary of our work and the discussion of the directions in which it can
be extended.

2 The inverse map and Clebsch representation

Equation (1.1) was �rst introduced in the Lie-Poisson context (see [29], [30], [38]). In this section
we take the Lagrangian point of view and formulate (1.1) as the Euler-Poincaré equation on the
Virasoro-Bott group. Further, we construct a canonical variational principle that will later allow us
to determine a multisymplectic formulation of (1.1).
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2.1 Euler-Poincaré equation on the Virasoro-Bott group

Let S1 = R/2πZ = {θ ∈ [0,2π)} denote the circle group, and let Di�(S1) be the di�eomorphism group
of S1. The tangent bundles can be identi�ed as TS1 = S1 × R and TDi�(S1) = Di�(S1) × X(S1),
where X(S1) = {χ ∶ S1 Ð→ R} is the set of all smooth vector �elds on S1. In particular, the Lie
algebra of S1 is R, and the Lie algebra of Di�(S1) is X(S1). The Virasoro-Bott group is the central
extension D̂i�(S1) = Di�(S1) × S1 with the group operation

(ψ1, θ1) ⋅ (ψ2, θ2) = (ψ1 ○ ψ2,B(ψ1, ψ2) + θ1 + θ2), (2.1)

where the 2-cocycle B(ψ1, ψ2) is given by

B(ψ1, ψ2) =
1

2
∫
S1

log
∂(ψ1 ○ ψ2)

∂x
d log

∂ψ2

∂x
. (2.2)

The tangent bundle of the Virasoro-Bott group is T D̂i�(S1) = D̂i�(S1) ×X(S1) ×R. The Virasoro
algebra vir is the Lie algebra of the Virasoro-Bott group and can be identi�ed as vir = X(S1) ×R.
The Lie algebra bracket (or adjoint action) on vir is given by

ad(u,a)(v, b) = [(u, a), (v, b)] = ( − uvx + uxv,∫
S1
uxvxx dx) (2.3)

for (u, a), (v, b) ∈ vir. Identify the dual of vir with vir by the L2 inner product

⟨(u, a), (v, b)⟩ = ab + ∫
S1
uv dx. (2.4)

With respect to this inner product the coadjoint action ad∗(u,a) ∶ virÐ→ vir can be represented as

ad∗(u,a)(v, b) = (2vux + uvx + buxxx,0). (2.5)

For more information on the Virasoro-Bott group and the Virasoro algebra we refer the reader to
[30] and [34].

Suppose a Lagrangian system is de�ned on T D̂i�(S1) by specifying the right-invariant La-
grangian L ∶ T D̂i�(S1) Ð→ R. Rather then on the full tangent bundle, the dynamics of such a
system can be analyzed on the Lie algebra vir via the process called Euler-Poincaré reduction (see
[24], [34]). We consider the reduced Lagrangian ` ∶ vir Ð→ R de�ned by `(u, a) = L(id,0, u, a) and
the reduced variational principle

δ∫
tb

ta
`(u(t), a(t))dt = 0, (2.6)

using variations of the form δ(u, a) = ∂
∂t(v, b) − [(u, a), (v, b)], where (v(t), b(t)) vanish at the

endpoints. This variational principle leads to the Euler-Poincaré equation

d

dt

δ`

δ(u, a)
+ ad∗(u,a)

δ`

δ(u, a)
= 0, (2.7)

where the variational derivatives and the coadjoint action are computed with respect to the inner
product (2.4). Below we demonstrate that (1.1) can be written as the Euler-Poincaré equation.
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Theorem 2.1. Let the reduced Lagrangian be de�ned as

`(u, a) = 1

2
a2 + 1

2
∫
S1

(αu2 + βu2
x)dx, (2.8)

where α,β ≥ 0. Then the corresponding Euler-Poincaré equations take the form

da

dt
= 0,

α(ut + 3uux) − β(uxxt + 2uxuxx + uuxxx) + auxxx = 0. (2.9)

Proof. The case α = 1 and β = 0 is shown in [34]. The case α,β ≥ 0 is a straightforward generalization.

The �rst equation in (2.9) implies a = const, and therefore the second equation is equivalent to (1.1).

2.2 Reconstruction equations and the inverse map

A solution (u(t), a(t)) of (2.7) describes the evolution of the (right-invariant) Lagrangian system in
the Virasoro algebra vir. One can reconstruct the evolution on the whole Virasoro-Bott group by
�nding a curve (ψ(t), θ(t)) ∈ D̂i�(S1) which right-translates its tangent vector back to (u(t), a(t)),
i.e., in short-hand notation (u(t), a(t)) = (ψ̇(t), θ̇(t)) ⋅ (ψ(t), θ(t))−1. More precisely,

(u(t), a(t)) ≅ (id,0, u(t), a(t)) = T(ψ(t),θ(t))R(ψ−1(t),−θ(t)) ⋅ (ψ(t), θ(t), ψ̇(t), θ̇(t)), (2.10)

where R denotes right translation on the Virasoro-Bott group and TR its tangent lift (see [24], [34]).
By using (2.1) and (2.2), we obtain the reconstruction equations

u(t) = ψ̇(t) ○ ψ−1(t),

a(t) = θ̇(t) + d

ds
∣
s=t
B(ψ(s), ψ−1(t)). (2.11)

In the context of incompressible �uid dynamics, a time-dependent di�eomorphism ψ(t) ∈ Di�(S1)
maps some reference con�guration to the �uid domain at each instant of time, i.e., ψ(t,X) rep-
resents the position at time t of the �uid particle labeled by X. On the other hand, the inverse
map l(t) = ψ−1(t) maps from the current con�guration of the �uid to the reference con�guration,
i.e., l(x, t) is the label of the �uid particle occupying the position x at time t. The Eulerian veloc-
ity �eld u(x, t) gives the velocity of the �uid particle that occupies the position x at time t, i.e.,
ψ̇(X, t) = u(ψ(X, t), t). This is precisely the meaning of the �rst of the reconstruction equations in
(2.11). It will be convenient for us to rewrite the reconstruction equations in terms of the inverse
map. One can check via a straightforward calculation that the �rst equation in (2.11) is equivalent
to

lt + ulx = 0. (2.12)
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Using the de�nition of the 2-cocycle (2.2), we further calculate

d

ds
∣
s=t
B(ψ(s), ψ−1(t)) = 1

2
∫
S1

∂(ψ̇(t) ○ ψ−1(t))
∂x

d log
∂ψ−1(t)
∂x

= 1

2
∫
S1
ux d log lx (2.13)

= 1

2
∫
S1

uxlxx
lx

dx,

where in the second equality we used the �rst reconstruction equation in (2.11) and the de�nition
of the inverse map. Therefore, the reconstruction equations in terms of the inverse map take the
form

lt + ulx = 0,

a(t) = θ̇(t) + 1

2
∫
S1

uxlxx
lx

dx. (2.14)

Given a solution (u(t), a(t)) of (2.7), one can easily solve (2.14) for l(x, t) and θ(t).

2.3 Clebsch variational principle

2.3.1 General reduced Lagrangian

As discussed in Section 2.1, Equation (1.1) has an underlying variational structure. However, the
Euler-Poincaré variational principle (2.6) imposes constraints on the variations of the functions u
and a, which may be inconvenient in some applications, for instance, when one is interested in
deriving variational integrators, or determining the underlying multisymplectic structure, as is our
goal in this work. One can circumvent this issue by considering an augmented action functional
which includes the reconstruction equations as constraints. This idea was formalized in the context
of variational Lie group integrators in [4]. The idea of using the inverse map l(x, t) (also called
`back-to-labels' map) and the advection condition (2.12) appeared in [20], and was later used in [12]
to construct multisymplectic formulations of a class of �uid dynamics equations. We extend these
ideas to systems de�ned on the Virasoro-Bott group.

The Clebsch variational principle (also known as the Hamilton-Pontryagin principle) enforces
stationarity of the action S = ∫ `(u, a)dt under the constraint that the reconstruction equations
(2.14) are satis�ed. De�ne the augmented action functional

S[u, a, l, θ, π, λ] = ∫
tb

ta
`(u, a)dt+∫

tb

ta
∫
S1
π(lt+ulx)dxdt+∫

tb

ta
λ(θ̇−a+ 1

2
∫
S1

uxlxx
lx

dx)dt, (2.15)

where π = π(x, t) and λ = λ(t) are Lagrange multipliers, and consider the variational principle

δS = 0 (2.16)
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with respect to arbitrary variations δu, δa, δπ, δλ, and vanishing endpoint variations δl and δθ, i.e.,
δl(x, ta) = δl(x, tb) = δθ(ta) = δθ(tb) = 0. The resulting Euler-Lagrange equations are

δθ ∶ λ̇ = 0, (2.17a)

δa ∶ λ = ∂`(u, a)
∂a

, (2.17b)

δλ ∶ θ̇ = a − 1

2
∫
S1

uxlxx
lx

dx, (2.17c)

δu ∶ δ`(u, a)
δu

+ πlx =
1

2
λ
∂

∂x

lxx
lx
, (2.17d)

δπ ∶ lt + ulx = 0, (2.17e)

δl ∶ πt +
∂

∂x
(πu − 1

2
λ
uxx
lx

) = 0, (2.17f)

where δ`
δ(u,a) = ( δ`

δu ,
∂`
∂a

). We will now show that the dynamics generated by the system (2.17) are

equivalent to the dynamics generated by the Euler-Poincaré equation (2.7).

Theorem 2.2. Suppose the functions u(x, t), a(t), l(x, t), θ(t), π(x, t), and λ(t) satisfy the Euler-
Lagrange equations (2.17). Then the functions u(x, t) and a(t) satisfy the Euler-Poincaré equation

(2.7).

Proof. Let (w, c) be an arbitrary element of the Virasoro algebra vir. Let us calculate

⟨ d
dt

δ`

δ(u, a)
, (w, c)⟩ = ∫

S1
( ∂
∂t

δ`

δu
) ⋅wdx + ( ∂

∂t

∂`

∂a
) ⋅ c, (2.18)

where the inner product ⟨⋅, ⋅⟩ was de�ned in (2.4). By using (2.17a), (2.17b), and (2.17c), we further
have

⟨ d
dt

δ`

δ(u, a)
, (w, c)⟩ = ∫

S1

∂

∂t
(1

2
λ
∂

∂x

lxx
lx

− πlx) ⋅wdx

= ∫
S1

(1

2
λ
∂

∂x

ltxxlx − lxxltx
l2x

− πtlx − πltx) ⋅wdx. (2.19)

We now use (2.17e) and (2.17f) to eliminate the time derivatives in the integrand, which yields

⟨ d
dt

δ`

δ(u, a)
, (w, c)⟩ = ∫

S1
[1

2
λ
∂

∂x

−lx ∂2

∂x2
(ulx) + lxx ∂

∂x(ulx)
l2x

+ lx
∂

∂x
(πu − 1

2
λ
uxx
lx

) + π ∂

∂x
(ulx)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⋅wdx.

(2.20)

Note that the expression A contains the functions u, l, π, λ, and their spatial derivatives. On the
other hand we have
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⟨ad∗(u,a)
δ`

δ(u, a)
, (w, c)⟩ = ∫

S1
[2
δ`

δu
ux + u

∂

∂x

δ`

δu
+ ∂`
∂a
uxxx] ⋅wdx

= ∫
S1

[(λ ∂

∂x

lxx
lx

− 2πlx)ux + u
∂

∂x
(1

2
λ
∂

∂x

lxx
lx

− πlx) + λuxxx]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

⋅wdx, (2.21)

where in the �rst equality we used (2.5), and in the second equality we used (2.17b) and (2.17d).
Note that the expression B contains the functions u, l, π, λ, and their spatial derivatives. After
rather tedious, albeit straightforward algebraic manipulations we �nd that A + B = 0. Therefore,
we have that for all (w, c) ∈ vir

⟨ d
dt

δ`

δ(u, a)
+ ad∗(u,a)

δ`

δ(u, a)
, (w, c)⟩ = 0, (2.22)

which completes the proof, since the inner product is nondegenerate.

2.3.2 Separable reduced Lagrangian

The variational principle (2.16) simpli�es signi�cantly when one considers separable Lagrangians of
the form

`(u, a) = 1

2
a2 + ¯̀(u). (2.23)

In that case Equations (2.17a) and (2.17b) imply λ = a = const. Treating a as a constant, we can
eliminate the variables θ and λ from the action functional (2.15). Consider the action functional

S[u, l, π] = ∫
tb

ta
(¯̀(u) + a

2
∫
S1

uxlxx
lx

dx)dt + ∫
tb

ta
∫
S1
π(lt + ulx)dxdt. (2.24)

The stationarity condition δS = 0 with respect to arbitrary variations δu, δπ, and vanishing endpoint
variations δl, yields the Euler-Lagrange equations

δu ∶ δ ¯̀(u)
δu

+ πlx =
a

2

∂

∂x

lxx
lx
, (2.25a)

δπ ∶ lt + ulx = 0, (2.25b)

δl ∶ πt +
∂

∂x
(πu − a

2

uxx
lx

) = 0. (2.25c)

It is straightforward to see that the system (2.17) reduces to (2.25) for Lagrangians of the form
(2.23).
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Remark. The action functional (2.24) provides a new variational formulation for Equation (1.1)
when the Lagrangian (2.8) is considered. For a = 0 this action functional reduces to the action
functional for the dispersionless CH equation (α = β = 1) introduced in [12] and one of the action
functionals for the HS equation (α = 0 and β = 1) described in [27]. For α = 1 and β = a = 0 we also
get a variational principle for Burgers' equation.

3 Inverse map multisymplectic formulation

The action functional and variational principle introduced in Section 2.3.2 allow the identi�cation
and analysis of a new multisymplectic formulation of the family of equations (1.1). Multisymplectic
geometry provides a covariant formalism for the study of �eld theories in which time and space are
treated on equal footing. Multisymplectic formalism is useful for, e.g., the stability analysis of water
waves (see [5], [6]) or construction of structure-preserving numerical algorithms (see [7], [35]). The
multisymplectic form formula was �rst proved by Marsden & Patrick & Shkoller [35] and provides
an intrinsic and covariant description of the conservation of symplecticity law, �rst introduced by
Bridges [5] in the context of multisymplectic Hamiltonian PDEs. In Section 3.1 we review the
multisymplectic geometry formalism and derive the multisymplectic form formula associated with
(2.24). We further make a connection with Bridges' approach to multisymplecticity in Section 3.2
and determine a multisymplectic Hamiltonian form of the Euler-Lagrange equations (2.25).

3.1 Multisymplectic form formula and conservation of symplecticity

The multisymplectic form formula is the multisymplectic counterpart of the fact that in �nite-
dimensional mechanics, the �ow of a mechanical system consists of symplectic maps. It was �rst
proved for �rst-order �eld theories in [35], and later generalized to second-order �eld theories in
[32]. Since the �eld theory described by the action functional (2.24) with the Lagrangian (2.8) is
second-order, we follow the theory developed in [32]. For the convenience of the reader, below we
brie�y review multisymplectic geometry and jet bundle formalism necessary for our discussion.

Let X = S1 ×R represent spacetime and denote the local coordinates by (xµ) = (x1, x0), where
x1 ≡ x is the spatial coordinate and x0 ≡ t is time. De�ne the con�guration �ber bundle τXY ∶
Y Ð→ X as Y = X × S1 × R × R. Denote the �ber coordinates by (yA) = (y1, y2, y3) with y1 ≡ l,
y2 ≡ u, and y3 ≡ π. Physical �elds are sections of the con�guration bundle, that is, continuous
maps φ ∶ X Ð→ Y such that τXY ○ φ = idX . In the coordinates (xµ, yA) a �eld φ is represented as
φ(x, t) = (xµ, φA(xµ)) = (x, t, l(x, t), u(x, t), π(x, t)).

For a k-th order �eld theory, the evolution of the �eld takes place on the k-th jet bundle JkY .
The �rst jet bundle J1Y is the a�ne bundle over Y with the �bers J1

yY de�ned as

J1
yY = {ϑ ∶ T(x,t)X → TyY ∣ TτXY ○ ϑ = idT(x,t)X} (3.1)

for y ∈ Y(x,t), where the linear maps ϑ represent the tangent mappings T(x,t)φ for local sections φ

such that φ(x, t) = y. The local coordinates (xµ, yA) on Y induce the coordinates (xµ, yA, vAµ) on

J1Y . Intuitively, the �rst jet bundle consists of the con�guration bundle Y , and of the �rst partial
derivatives of the �eld variables with respect to the independent variables. We can think of J1Y as
a �ber bundle over X. Given a section φ ∶X Ð→ Y , we can de�ne its �rst jet prolongation
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j1φ ∶X ∋ (x, t) Ð→ T(x,t)φ ∈ J1Y, (3.2)

in coordinates given by

j1φ(xµ) = (xµ, φA(xν), ∂φ
A(xν)
∂xµ

), (3.3)

which is a section of the �ber bundle J1Y over X. For higher-order �eld theories we consider higher-
order jet bundles, de�ned iteratively by Jk+1Y = J1(JkY ). We denote the local coordinates on J2Y
by (xµ, yA, vAµ,wAµν). The second jet prolongation j2φ ∶ X Ð→ J2Y is given in coordinates by

j2φ(xµ) = (xµ, φA, ∂φA/∂xµ, ∂2φA/∂xµ∂xν). Let (xµ, yA, vAµ,wAµν , sAµνσ) denote the coordinates

on J3Y . The third jet prolongation j3φ is de�ned similar to j1φ and j2φ. For more information
about the geometry of jet bundles see [43] and [19].

In the jet bundle formalism introduced above, the action functional (2.24) with the reduced
Lagrangian (2.8) can be written as

S[φ] = ∫
U
L(j2φ)d2x, (3.4)

where U = S1 × [ta, tb], d2x = dx ∧ dt, and the Lagrangian density L ∶ J2Y Ð→ R is

L(xµ, yA, vAµ,wAµν) =
α

2
(y2)2 + β

2
(v2

1)2 + a
2

v2
1w

1
11

v1
1

+ y3(v1
0 + y2v1

1). (3.5)

Hamilton's variational principle seeks �elds φ(x, t) that extremize S, that is,

d

dλ
∣
λ=0

S[ηλY ○ φ] = 0 (3.6)

for all ηλY that keep the boundary conditions on ∂U �xed, where ηλY ∶ Y Ð→ Y is the �ow of a
vertical vector �eld V on Y . This leads to the Euler-Lagrange equations

∂L
∂yA

(j2φ) − ∂

∂xµ
( ∂L
∂vAµ

(j2φ)) + ∂2

∂xµ∂xν
( ∂L
∂wAµν

(j2φ)) = 0, (3.7)

where Einstein's summation convention is used. With the Lagrangian density (3.5), these Euler-
Lagrange equations take the form (2.25). For more information on multisymplectic geometry and
jet bundle setting of �eld theories see [18], [19], [32], and [35].

For a second-order �eld theory, the multisymplectic structure is de�ned on J3Y (see [32]). Given
the Lagrangian density L one can de�ne the Cartan 2-form ΘL on J3Y , in local coordinates given
by

ΘL = ( ∂L
∂vAµ

−Dν(
∂L

∂wAµν
))dyA ∧ dxµ +

∂L
∂wAνµ

dvAν ∧ dxµ

+ (L − ∂L
∂vAµ

vAµ +Dν(
∂L

∂wAµν
)vAµ −

∂L
∂wAνµ

wAνµ)d2x, (3.8)
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where dxµ = ∂µ⌟d2x, i.e., dx0 = −dx and dx1 = dt, and the formal partial derivative in the direction
xν of a function f ∶ J2Y Ð→ R is de�ned in coordinates as

Dνf = ∂f

∂xν
+ ∂f

∂yA
vAν +

∂f

∂vAµ
wAµν +

∂f

∂wAσµ
sAσµν . (3.9)

For the Lagrangian density (3.5), the Cartan form is

ΘL = − y3dy1 ∧ dx + (y3y2 − a
2

w2
11

v1
1

)dy1 ∧ dt + (βv2
1 +

a

2

w1
11

v1
1

)dy2 ∧ dt

+ a
2

v2
1

v1
1

dv1
1 ∧ dt + (α

2
(y2)2 − β

2
(v2

1)2 − a
2

v2
1w

1
11

v1
1

+ a
2
w2

11)dx ∧ dt. (3.10)

The multisymplectic 3-form ΩL is then de�ned as the exterior derivative of the Cartan form:

ΩL = dΘL = dy1 ∧ dy3 ∧ dx − y3dy1 ∧ dy2 ∧ dt − y2dy1 ∧ dy3 ∧ dt − a

2

w2
11

(v1
1)2

dy1 ∧ dv1
1 ∧ dt

+ a

2v1
1

dy1 ∧ dw2
11 ∧ dt − βdy2 ∧ dv2

1 ∧ dt +
a

2

w1
11

(v1
1)2

dy2 ∧ dv1
1 ∧ dt

− a

2v1
1

dy2 ∧ dw1
11 ∧ dt −

a

2v1
1

dv1
1 ∧ dv2

1 ∧ dt + αy2dy2 ∧ dx ∧ dt

− (βv2
1 +

a

2

w1
11

v1
1

)dv2
1 ∧ dx ∧ dt +

a

2

v2
1w

1
11

(v1
1)2

dv1
1 ∧ dx ∧ dt

− a

2

v2
1

v1
1

dw1
11 ∧ dx ∧ dt +

a

2
dw2

11 ∧ dx ∧ dt. (3.11)

Let P be the set of solutions of the Euler-Lagrange equations, that is, the set of sections φ satisfying
(3.6) or (3.7). For a given φ ∈ P, let F be the set of �rst variations, that is, the set of vector �elds V
on Y such that (x, t) → ηεY ○φ(x, t) is also a solution, where ηεY is the �ow of V . The multisymplectic
form formula for second-order �eld theories (see [32]) states that if φ ∈ P then for all V and W in
F ,

∫
∂U

(j3φ)∗(j3V ⌟ j3W ⌟ΩL) = 0, (3.12)

where (j3φ)∗ denotes the pull-back by the mapping j3φ, and j3V is the third jet prolongation of
V , that is, the vector �eld on J3Y whose �ow is the third jet prolongation of the �ow ηεY for V , i.e.,

j3V = d

dε
∣
ε=0
j3ηεY . (3.13)

Consider two arbitrary �rst variation vector �elds V , W , in the local coordinates (xµ, yA) repre-
sented by (V µ(xµ, yA), V A(xµ, yA)) and (Wµ(xµ, yA),WA(xµ, yA)), respectively. Let us work out
the form of the formula (3.11) for τXY -vertical �rst variations, i.e., V

µ(xµ, yA) = Wµ(xµ, yA) = 0.
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Denote the components of j3V as (0, V A, V A
µ, V

A
µν , V

A
µνσ), and similarly for j3W . The multisym-

plectic form formula then becomes

∫
∂U

−F (x, t)dx +G(x, t)dt = 0, (3.14)

with

F (x, t) = −W 1V 3 +W 3V 1,

G(x, t) = − π(W 1V 2 −W 2V 1) − u(W 1V 3 −W 3V 1) − a
2

uxx
l2x

(W 1V 1
1 −W 1

1V
1)

+ a

2lx
(W 1V 2

11 −W 2
11V

1) − β(W 2V 2
1 −W 2

1V
2) + a

2

lxx
l2x

(W 2V 1
1 −W 1

1V
2)

− a

2lx
(W 2V 1

11 −W 1
11V

2) − a

2lx
(W 1

1V
2
1 −W 2

1V
1
1), (3.15)

where the vector components are evaluated at j3φ(x, t). By applying Stokes' theorem and using
the fact that U is arbitrary, the multisymplectic form formula (3.14) can be rewritten equivalently
as the conservation law

∂

∂t
F (x, t) + ∂

∂x
G(x, t) = 0. (3.16)

This kind of a conservation law was �rst considered by Bridges [5]. In Section 3.2 we make a
further connection with Bridges' theory and �nd a multisymplectic PDE form of the Euler-Lagrange
equations (2.25).

3.2 Multisymplectic Hamiltonian PDE formulation

Bridges [5] introduced the notion of multisymplecticity by generalizing the notion of Hamiltonian
systems to Partial Di�erential Equations (PDEs). A multisymplectic structure (M, ω, κ) consists
of the phase spaceM= Rn, and pre-symplectic 2-forms ω and κ, where pre-symplectic means that
the 2-forms are closed, but not necessarily nondegenerate. A multisymplectic Hamiltonian system
is a PDE of the form

M(z)zt +K(z)zx = ∇H(z), (3.17)

where z ∶X ∋ (x, t) Ð→ z(x, t) ∈ M is a function of the spacetime variables x and t, H ∶ M Ð→ R is
the Hamiltonian, and M(z), K(z) are n × n antisymmetric matrices de�ned by

ω(W̄, V̄ ) ≡ ⟨M(z)W̄, V̄ ⟩M, κ(W̄, V̄ ) ≡ ⟨K(z)W̄, V̄ ⟩M, (3.18)

where V̄ , W̄ are arbitrary vector �elds onM, and ⟨⋅, ⋅⟩M is the standard Euclidean inner product
onM= Rn.

We will use the multisymplectic form formula (3.14) to deduce the multisymplectic Hamilto-
nian PDE form (3.17) of the Euler-Lagrange equations (2.25). We note that for a > 0 the vector
components that appear in (3.15) only correspond to the 7 coordinate directions y1, y2, y3, v1

1,

11



v2
1, w

1
11, w

2
11 on J3Y . We will therefore consider M = R7 and denote the coordinates on M as

(l, u, π,∆,Θ,Ξ,Π). De�ne the projection map

FL ∶ J3Y ∋ (xµ, yA, vAµ,wAµν , sAµνσ) Ð→ (y1, y2, y3, v1
1, v

2
1,w

1
11,w

2
11) ∈ M. (3.19)

The suitable entries for the matrices M(z) and K(z) can be read o� from (3.15) as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, K(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 π u a
2

Π
∆2 0 0 − a

2∆

−π 0 0 −a2
Ξ

∆2 β a
2∆ 0

−u 0 0 0 0 0 0

−a2
Π

∆2
a
2

Ξ
∆2 0 0 a

2∆ 0 0
0 −β 0 − a

2∆ 0 0 0
0 − a

2∆ 0 0 0 0 0
a

2∆ 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.20)

With that choice, we have F (x, t) = ω(W̄, V̄ ) and G(x, t) = κ(W̄, V̄ ), where W̄ = TFL ⋅ j3W and
V̄ = TFL ⋅ j3V . The Hamiltonian H can be read o� from the dx ∧ dt term in (3.10) as

H(z) = α
2
u2 − β

2
Θ2 − a

2

ΘΞ

∆
+ a

2
Π. (3.21)

Below we show that the Euler-Lagrange equations (2.25) indeed can be given the multisymplectic
structure (3.17).

Theorem 3.1. Suppose a > 0. Then the Euler-Lagrange equations (2.25) with the Lagrangian (2.8)
are equivalent to the multisymplectic Hamiltonian system (3.17) with the matrices (3.20) and the

Hamiltonian (3.21). That is, if φ(x, t) = (x, t, l(x, t), u(x, t), π(x, t)) is a solution of (2.25), then
z(x, t) = FL○ j3φ(x, t) is a solution of (3.17), and conversely, if z(x, t) is a solution of (3.17), then
φ(x, t) = (x, t, z1(x, t), z2(x, t), z3(x, t)) = (x, t, l(x, t), u(x, t), π(x, t)) is a solution of (2.25).

Proof. Substituting (3.20) and (3.21) in (3.17) yields the system of equations

πt + πux + uπx +
a

2

Π

∆2
∆x −

a

2∆
Πx = 0, (3.22a)

−πlx −
a

2

Ξ

∆2
∆x + βΘx +

a

2∆
Ξx = αu, (3.22b)

−lt − ulx = 0, (3.22c)

−a
2

Π

∆2
lx +

a

2

Ξ

∆2
ux +

a

2∆
Θx =

a

2

ΘΞ

∆2
, (3.22d)

−βux −
a

2∆
∆x = −βΘ − a

2

Ξ

∆
, (3.22e)

− a

2∆
ux = −

a

2

Θ

∆
, (3.22f)

a

2∆
lx =

a

2
. (3.22g)

Equation (3.22g) implies ∆ = lx and Equation (3.22f) implies Θ = ux. Then, Equations (3.22e) and
(3.22d) imply Ξ = lxx and Π = uxx, respectively. By substituting these identities in the remaining
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equations (3.22a)-(3.22c), we obtain a system equivalent to (2.25), which completes the proof.

Bridges [5] showed that the conservation of symplecticity law

∂

∂t
ω(W̄, V̄ ) + ∂

∂x
κ(W̄, V̄ ) = 0 (3.23)

is satis�ed for solutions z(x, t) of (3.17), where W̄ , V̄ are arbitrary �rst variations of z(x, t). This is
an equivalent statement of (3.16), since ifW and V are �rst variations for (3.7), then W̄ = TFL⋅j3W
and V̄ = TFL ⋅ j3V are �rst variations for (3.17).

Remark. Equations (3.17), (3.20), and (3.21) provide a new multisymplectic formulation for the
family of equations (1.1) with a > 0. For a = 0 several special cases can be obtained. If β > 0, then
Equations (3.22d), (3.22f), and (3.22g) become trivial, and it is enough to consider the variables
z = (l, u, π,Θ). The matrices M and K then take the form

M =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, K(z) =

⎛
⎜⎜⎜
⎝

0 π u 0
−π 0 0 β
−u 0 0 0
0 −β 0 0

⎞
⎟⎟⎟
⎠
, (3.24)

and the Hamiltonian becomes H(z) = α
2u

2 − β
2 Θ2. For α = β = 1 this reproduces the multisyplectic

structure for the dispersionless CH equation found in [12], and for α = 0, β = 1 we obtain a new mul-
tisymplectic formulation of the HS equation with a = 0. If in addition β = 0, then Equation (3.22e)
also becomes trivial, and a further simpli�cation is possible: we consider the variables z = (l, u, π)
with the matrices

M =
⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠
, K(z) =

⎛
⎜
⎝

0 π u
−π 0 0
−u 0 0

⎞
⎟
⎠
, (3.25)

and the Hamiltonian H(z) = α
2u

2. This provides a multisymplectic formulation for Burgers' equa-
tion.

4 Summary and future work

In this paper we have introduced a new type of Clebsch representation that extends the previous
general formulation for �uid dynamics in Cotter, Holm & Hydon [12] to the case when the group
actions governing Lagrangian �uid paths include 2-cocycles. Physically, this means that linear
dispersion with third order spatial derivatives can be included, as required for investigating the
multisymplectic structures of the Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton equations.
Moreover, the multisymplectic form formula was shown to persist and derived explicitly for this
important class of equations, by using our new type of Clebsch representation, derived as the
momentum map associated with particle relabeling with group actions which include 2-cocycles.
In addition, symplecticity was found to be conserved in this new class of �ows. Consequently,
new types of structure-preserving numerics for soliton equations with linear dispersion can now
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be developed. Multisymplectic integrators are methods that preserve a discrete version of the
symplectic conservation law (3.23). There is numerical evidence that these schemes locally conserve
energy and momentum remarkably well (see, e.g., [2], [3], [7], [10], [39], [46], [48], [49], [50]), which is
a much stronger property than merely global conservation over the whole spatial domain (see [37]).
Variational integrators are based on discrete variational principles and provide a natural framework
for the discretization of Lagrangian systems (see, e.g., [33], [35], [36], [42], [44], [45]). A discrete
action functional can be obtained by discretizing the functional (2.24) on a spacetime mesh. A
variational numerical scheme is then derived by extremizing the discrete action with respect to the
discrete set of the values of the �elds l, u, and π. Variational integrators satisfy a discrete version
of the multisymplectic form formula (3.12), and are therefore multisymplectic. Moreover, in the
presence of a symmetry, they satisfy a discrete version of Noether's theorem, as a consequence of
which they retain exactly some of the conservation laws of the continuous system.

Furthermore, the new type of Clebsch momentum map admits a new type of interplay among
nonlinearity, dispersion and noise. This opens a new class of problems based on dynamics of
`wobbling' solitons governed by SPDEs with stochastic mass/label transport. Consider a stochastic
deformation of the action functional (2.24) such that the velocity �eld u in the reconstruction
equation (2.12) is replaced with u + ξ(x) ○ Ẇ (t), where Ẇ (t) denotes the white noise and the
prescribed function ξ(x) represents the spatial correlations of the noise. The action functional
(2.24) then takes the form

S[u, l, π] = ∫
tb

ta
(¯̀(u) + a

2
∫
S1

uxlxx
lx

dx)dt + ∫
S1
∫

tb

ta
π( ○ dl + ulx dt + ξ(x)lx ○ dW (t))dx, (4.1)

where W (t) is the standard Wiener process, and ○ denotes Stratonovich integration. This kind of
stochastic deformations has been proposed for the Camassa-Holm equation, electromagnetic �eld
equations, and �uid dynamics equations (see [13], [14], [15], [17], [21], [22], [25]), and appears
to retain a number of the properties of the unperturbed equations, such as soliton solutions of
the Camassa-Holm equation or the Kelvin circulation theorem for �uid dynamics. In particular, for
certain functional forms of ξ(x), the introduction of this type of noise can preserve the deterministic
isospectral problem and thereby produce stochastic inverse scattering methods for determining the
soliton solutions of SPDEs. It would therefore be of interest to investigate the e�ects of the stochastic
term in (4.1) on the dynamics of the KdV, CH, and HS equations, and construct related stochastic
variational and multisymplectic integrators.
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