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Abstract

Volkov states and Volkov propagator are the basic analytical tools to investigate QED processes

occurring in the presence of an intense plane-wave electromagnetic field. In the present paper we

provide alternative and relatively simple proofs of the completeness and of the orthonormality at

a fixed time of the Volkov states. Concerning the completeness, we exploit some known properties

of the Green’s function of the Dirac operator in a plane wave, whereas the orthonormality of the

Volkov states is proved, relying only on a geometric argument based on the Gauss theorem in four

dimensions. In relation with the completeness of the Volkov states, we also study some analytical

properties of the Green’s function of the Dirac operator in a plane wave, which we explicitly prove

to coincide with the Volkov propagator in configuration space. In particular, a closed-form expres-

sion in terms of modified Bessel functions and Hankel functions is derived by means of the operator

technique in a plane wave and different asymptotic forms are determined. Finally, the transfor-

mation properties of the Volkov propagator under general gauge transformations and a general

gauge-invariant expression of the so-called dressed mass in configuration space are presented.

PACS numbers: 12.20.Ds, 41.60.-m

∗ dipiazza@mpi-hd.mpg.de

1

http://arxiv.org/abs/1802.03202v1
mailto:dipiazza@mpi-hd.mpg.de


I. INTRODUCTION

The exact solution of the Dirac equation in the presence of a background plane-wave

electromagnetic field (indicated below also as “laser field”) was found by V. D. Volkov well

before the invention of the laser [1]. The corresponding one-particle electron states have

been widely employed in order to describe quantum electrodynamical processes occurring in

the presence of a strong laser field, starting from the pioneering papers by H. R. Reiss [2],

by I. I. Gol’dman [3], by L. S. Brown and T. W. B. Kibble [4], and by A. I. Nikishov and V.

I. Ritus [5]. In the present context, the “strength” of a laser field depends on the value of

the so-called classical intensity parameter ξ0 = |e|E0/mω0, where E0 and ω0 are the electric

field amplitude and the central angular frequency of the laser field, respectively, and where

e < 0 and m are the electron charge and mass, respectively (units with ~ = c = 4πǫ0 = 1

and α = e2 ≈ 1/137 are employed throughout). If ξ0 & 1, in fact, the laser field is able

to transfer to an electron an energy corresponding to multiple laser photons in the typical

QED length λC = 1/m = 3.9 × 10−11 cm (Compton wavelength), implying that nonlinear

effects in the laser intensity cannot be neglected in the study of the corresponding quantum

processes. The inclusion of such nonlinear effects can be carried out from the beginning

by treating the laser field as a classical background field and by employing the Volkov

states to quantize the electron-positron field. This represents a special application of the

so-called Furry picture [6–8], which has been widely employed recently, especially due to the

development of high-power laser systems. In fact, unprecedented intensities of the order of up

to 1022 W/cm2 have already been reported in the literature [9] and ultra-strong laser facilities

under construction like Apollon 10 PW [10], the Extreme Light Infrastructure (ELI) [11], and

the Exawatt Center for Extreme Light Studies (XCELS) [12] aim at exceeding the present

record by one/two orders of magnitudes. It is worth pointing out, in fact, that for optical

laser facilities as those mentioned above, the parameter ξ0 exceeds unity already at laser

intensities of the order of 1018 W/cm2. Apart from the pioneering papers cited above and

by also referring the reader to the reviews [13–17], we mention here several investigations on

nonlinear Compton scattering [18–31], on nonlinear Breit-Wheeler pair production [18, 32–

39], on nonlinear Bethe-Heitler pair production [40–46], on electron-positron annihilation

[47], and on higher-order processes like nonlinear double Compton scattering [48–51] and

trident pair production [52, 53]. In order to calculate a second-order process like nonlinear
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double Compton scattering, the corresponding Feynman propagator in a plane-wave field

(Volkov propagator) has to be employed [4, 13, 14, 54–57]. The latter is also essential

to study radiative corrections in the presence of a laser field based on the determination

of, e.g., the mass operator [58] and the polarization operator [59, 60] (see also [61]). The

representation of the mass operator and of the polarization operator found in [58] and in [60],

respectively, exploits the operator technique [62], which was later employed to investigate

photon splitting in a plane wave [63]. The mass operator and the polarization operator have

been later widely used to investigate radiative corrections and vacuum-polarization effects in

plane-wave fields [64–69] and the total rate of nonlinear Breit-Wheeler pair production via

the optical theorem [70] (see also [71]). As an alternative approach to study QED processes

in an intense plane wave, still based on the Volkov states, we mention here the Wigner

formalism investigated in [72]. Before passing to the results of the present paper, we also

recall recent extensions with respect to the Volkov-based approach to study QED processes

occurring in tightly focused laser beams [73–79], in counterpropagating plane waves [80],

and to take into account the back-reaction onto the laser field in QED processes [81].

Below, we first study the structure of the Green’s function G(x, x′) of the Dirac equation

in an arbitrary plane wave background field in configuration space. Boundary conditions

corresponding to the Feynman prescription m → m − i0 are understood [7]. The Green’s

function is derived by means of the operator technique as in [58, 60] and then explicitly

expressed in terms of modified Bessel functions and Hankel functions. A direct evaluation

of the Green’s function in configuration space in terms of the free Green’s function G0(x, x
′)

and its derivatives can be found in [4] (see also [82]). Some of the properties of the Green’s

function G(x, x′) like its transformation properties under general gauge transformations

and its asymptotic expressions depending on the space-time separation (x − x′)2 are also

investigated below, where the meaning of the wording “general gauge transformations” will

be clarified. In addition, an expression of the so-called dressed mass in configuration space

is obtained, which is manifestly invariant under a general gauge transformation. Then, the

Green’s function so obtained is related to the exact Feynman propagator in the plane-wave

field (Volkov propagator). By expressing the former function as an integral over the Volkov

states with positive- and negative-energy, we show in a relatively straightforward way the

completeness of the Volkov states themselves at a fixed time. We also point out that this

completeness relation has been already proved by a direct calculation in [83], whereas the
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completeness of the Volkov states at a fixed light-cone time has been demonstrated in [84].

Finally, we will also prove the orthonormality of the Volkov states at a fixed time by means

of a geometrical reasoning, which only exploits the Gauss theorem in four dimensions. It is

worth stressing that the orthonormality of Volkov states has also been proved already by a

direct calculation in [14, 83] and, in a mathematically more rigorous way, in [85]. We also

refer to the recent notes in [86], where useful details and observations on the derivations in

[14, 83] are presented.

II. THE GREEN’S FUNCTIONOF THE DIRAC EQUATION IN A PLANE WAVE

As we have mentioned in the Introduction, the present study focuses on the dynamics

of electrons (and positrons) in a plane-wave field. The latter is described by the four-

vector potential Aµ(φ), which only depends on the light-cone time φ = t − n · x. Here,

the unit vector n defines the propagation direction of the plane wave, which can be used

to introduce two useful four-dimensional quantities: nµ = (1,n) and ñµ = (1,−n)/2 (we

adopt the metric tensor ηµν = diag(+1,−1,−1,−1) such that φ = (nx)). Assuming obvious

differential properties of the four-vector potential Aµ(φ) and its derivatives, it is clear that it

is a solution of the free Maxwell’s equation �Aµ = 0, where � = ∂ν∂
ν , and it is assumed to

fulfill the Lorenz-gauge condition ∂µA
µ = 0, with the additional constraint A0(φ) = 0. Thus,

if we represent Aµ(φ) in the formAµ(φ) = (0,A(φ)), then the Lorenz-gauge condition implies

n ·A′(φ) = 0, with the prime indicating the derivative with respect to φ. If we make the

physically reasonable assumption thatA(φ) vanishes for φ→ ±∞, the equality n·A′(φ) = 0

implies that n ·A(φ) = 0. By introducing two four-vectors aµj = (0,aj), with j = 1, 2, such

that (naj) = −n · aj = 0 and (aiaj) = −ai · aj = −δij , the most general form of the vector

potential A(φ) readsA(φ) = ψ1(φ)a1+ψ2(φ)a2, where the two functions ψj(φ) are arbitrary

provided that they vanish for φ→ ±∞ and they feature the differential properties mentioned

above when the four-vector potential Aµ(φ) was introduced. The four-dimensional quantities

nµ, ñµ, and aµj fulfill the completeness relation: ηµν = nµñν + ñµnν − aµ1a
ν
1 − aµ2a

ν
2 (note

that (nñ) = 1 and (ñaj) = 0). Below, we will refer to the longitudinal (n) direction as

the direction along n and to the transverse (⊥) plane as the plane spanned by the two

perpendicular unit vectors aj. In this respect, together with the light-cone time φ = t− xn,
with xn = n · x, we also introduce the remaining three light-cone coordinates T = (ñx) =
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(t+xn)/2, and x⊥ = (xa1 , xa2) = (x·a1,x·a2). Analogously, the light-cone coordinates of an

arbitrary four-vector vµ = (v0, v) will be indicated as v− = (nv) = v0 − vn, with vn = n · v,
v+ = (ñv) = (v0 + vn)/2, and v⊥ = (va1 , va2) = (v · a1, v · a2). Since we will employ the

operator technique, it is convenient to also introduce the momenta operators Pφ = −i∂φ =

−(ñP ) = −(i∂t − i∂xn)/2, PT = −i∂T = −(nP ) = −(i∂t + i∂xn), and P⊥ = (Pa1 , Pa2) =

−i(a1 ·∇,a2 ·∇). These operators are the momenta conjugated to the light-cone coordinates

in the sense that the commutator between the operator corresponding to each light-cone

coordinate and the associated momentum operator is equal to the imaginary unit (all other

possible commutators vanish). Note that if |x〉 (|p〉) is the eigenstate of the four-position

(four-momentum) operator Xµ (P µ = i∂µ) with eigenvalue xµ (pµ), i.e., Xµ|x〉 = xµ|x〉
(P µ|p〉 = pµ|p〉), then, by normalizing the eigenstates |x〉 (|p〉) such that 〈x|y〉 = δ(4)(x− y)
[〈p|q〉 = (2π)4δ(4)(p − q)], it is 〈x|p〉 = exp(−i(px)) = exp[−i(p+φ + p−T − p⊥ · x⊥)] and

Pφ|p〉 = −p+|p〉, PT |p〉 = −p−|p〉, and P⊥|p〉 = p⊥|p〉.
The electron Green’s function Gb(x, x

′) in a general background electromagnetic field

described by the four-vector potential Aµ
b (x) is defined by the equation

{γµ[i∂µ − eAb,µ(x)]−m}Gb(x, x
′) = δ(4)(x− x′), (1)

where γµ are the Dirac matrices satisfying the anti-commutation relations {γµ, γν} = 2ηµν

[7]. In order to uniquely identify the Green’s function, boundary conditions have also to

be specified. When passing to the four-momentum (qµ) representation for the computation

of the Green’s function, this corresponds to the necessity of shifting the poles at q0 =

±
√

m2 + q2 of the four-dimensional Fourier transform of the Green’s function (depending

on the structure of the external field other poles may be present). Here, we always assume

the Feynman prescription corresponding to the shift m→ m− i0 [7]. Moreover, under the

gauge transformation Aµ(x) → Aµ(x) + ∂µΛ(x), the Green’s function Gb(x, x
′) transforms

according to the rule [7]

Gb(x, x
′)→ e−ie[Λ(x)−Λ(x′)]Gb(x, x

′). (2)

Within the operator technique the operator Gb corresponding to the Green’s function

Gb(x, x
′) is defined via the equation Gb(x, x

′) = 〈x|Gb|x′〉, i.e., as [see Eq. (1)]

Gb =
1

Π̂b −m+ i0
, (3)
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where v̂ = γµvµ for a generic four-vector vµ and where Πµ
b = P µ − eAµ

b (X). The trans-

formation of the Green’s function under a gauge transformation is easily obtained within

the operator technique. In fact, from the commutation relation between the four-position

operators and the four-momentum operators, it is clear that [P µ, f(X)] = i[∂µf(X)], where

f(X) is an arbitrary function of the four-position operator (with an abuse of notation, we

have indicated as ∂µ the partial derivative with respect to the operator Xµ). Analogously,

it can easily be shown that exp[if(X)]P µ exp[−if(X)] = P µ + ∂µf(X) and, more in gen-

eral, exp[if(X)]g(P ) exp[−if(X)] = g(P + ∂f(X)), for an arbitrary function g(P ) of the

four-momentum operators. In this way, if G′
b is the Green’s function corresponding to the

gauge-transformed field Aµ
b (X) + ∂µΛ(X), i.e., if

G′
b =

1

Π̂′
b −m+ i0

, (4)

with Π′µ
b = Πµ

b − e∂µΛ(X), it is

G′
b = e−ieΛ(X) 1

Π̂b −m+ i0
eieΛ(X), (5)

which provides the correct transformation law once the matrix element 〈x|G′
b|x′〉 is evaluated.

From now on we focus on the background field being the already introduced plane wave:

Aµ
b (x) = Aµ(φ), with the corresponding operator Πµ = P µ − eAµ(Φ) and Green’s function

operator G = (Π̂ − m + i0)−1 [G(x, x′) = 〈x|G|x′〉]. By employing the usual Schwinger

representation [62], we have

G =
1

Π̂−m+ i0
= (Π̂ +m)

1

Π̂2 −m2 + i0
= (−i)(Π̂ +m)

∫ ∞

0

ds eis(Π̂
2−m2), (6)

where, starting from the last equality on, the prescription m2 → m2 − i0 is understood.

Now, it is easily shown from the anti-commutation relations of the γ-matrices that

Π̂2−m2 = [P−eA(Φ)]2−m2− ie
2
σµνFµν(Φ) = 2PTPφ−[P⊥−eA⊥(Φ)]

2−m2−ien̂Â′(Φ), (7)

where σµν = [γµ, γν ]/2, Fµν(Φ) = ∂µAν(Φ) − ∂νAµ(Φ) = nµA
′
ν(Φ) − nνA

′
µ(Φ) (here, again

with an abuse of notation, the prime indicates the derivative with respect to the operator Φ

corresponding to the coordinate φ). In an analogous way as we have indicated, e.g., in [74],

we have to disentangle now the operator exp(is{2PTPφ− [P⊥−eA⊥(Φ)]
2−m2−ien̂Â′(Φ)}),

by writing it in the form

eis{2PTPφ−[P⊥−eA⊥(Φ)]2−m2−ien̂Â′(Φ)} = L(s)e2isPTPφ. (8)

6



In order to determine the operator L(s), we observe that it satisfies the differential equation

dL

ds
=− iLe2isPTPφ{[P⊥ − eA⊥(Φ)]

2 +m2 + ien̂Â′(Φ)}e−2isPTPφ

=− iL{[P⊥ − eA⊥(Φ + 2sPT )]
2 +m2 + ien̂Â′(Φ + 2sPT )},

(9)

where we have used the fact that, since [Φ, Pφ] = i and [Φ, PT ] = 0, then for an arbitrary

function f(Φ) it is exp(2isPφPT )f(Φ) exp(−2isPφPT ) = f(Φ + 2sPT ). The solution of Eq.

(9), with the initial condition L(0) = 1 [see Eq. (8)], is

L(s) = e−i
∫ s
0
ds′{[P⊥−eA⊥(Φ+2s′PT )]2+m2+ien̂Â′(Φ+2s′PT )}. (10)

Since all operators in the exponent of L(s) now commute with each other and since in general

n̂Â(Φ)n̂Â(Φ′) = 0, we have

G =(−i)(Π̂ +m)

∫ ∞

0

ds e−im2s
{

1 +
e

2PT
n̂[Â(Φ + 2sPT )− Â(Φ)]

}

× e−i
∫ s
0 ds′[P⊥−eA⊥(Φ+2s′PT )]2e2isPTPφ,

(11)

which coincides with the corresponding expression in [58, 60] (see also [63]). Now, by writing

|x〉 = |φ, T,x⊥〉 and |x′〉 = |φ′, T ′,x′
⊥〉, we obtain

G(x, x′) =(−i)
[

in̂∂φ + iˆ̃n∂T + iγ⊥ ·∇⊥ − eÂ(φ) +m
]

∫ ∞

0

ds e−im2s

× 〈φ, T,x⊥|
{

1 +
e

2PT
n̂[Â(Φ + 2sPT )− Â(Φ)]

}

× e−i
∫ s
0 ds′[P⊥−eA⊥(Φ+2s′PT )]2e2isPTPφ|φ′, T ′,x′

⊥〉.

(12)

Since the operator between the two four-position eigenstates does not contain Pφ, it is rela-

tively easy to evaluate the corresponding matrix element by noticing that exp(2isPTPφ)|φ〉 =
|φ− 2sPT 〉. The result is

G(x, x′) =(−i)
[

in̂∂φ + iˆ̃n∂T + iγ⊥ ·∇⊥ − eÂ(φ) +m
]

∫ ∞

0

ds e−im2s

× 〈T,x⊥|
{

1 +
e

2PT

n̂[Â(φ+ 2sPT )− Â(φ)]
}

× e−i
∫ s
0 ds′[P⊥−eA⊥(φ+2s′PT )]2δ(φ− φ′ + 2sPT )|T ′,x′

⊥〉.

(13)

By inserting the unity operator
∫

dp−d
2p⊥(2π)

−3|p−,p⊥〉〈p−,p⊥| and by exploiting the δ-

function to take the integral in p−, we have

G(x, x′) =− i

4π

[

in̂∂φ + iˆ̃n∂T + iγ⊥ ·∇⊥ − eÂ(φ) +m
]

∫ ∞

0

ds

s
e−im2s

×
∫

d2p⊥
(2π)2

[

1 + esn̂
Â(φ′)− Â(φ)

φ′ − φ

]

e−i(T−T ′)(φ−φ′)/2s+ip⊥·(x⊥−x′

⊥
)

× e−i
∫ s
0 ds′[p⊥−eA⊥(φ+s′(φ′−φ)/s)]2 .

(14)
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The integral in p⊥ is Gaussian and can be taken by employing the general formula [87]
∫ ∞

−∞

dx e−iax2

= e−iπ/4

√

π

a
(15)

for a > 0, and the final result is

G(x, x′) =− i

16π2

[

in̂∂φ + iˆ̃n∂T + iγ⊥ ·∇⊥ − eÂ(φ) +m
]

e−ie(x−x′)µ
∫ 1
0 dλAµ(φ′+λ(φ−φ′))

×
∫ ∞

0

ds

s2

[

1 + esn̂
Â(φ)− Â(φ′)

φ− φ′

]

e−ism̃2(x,x′)−i(x−x′)2/4s,

(16)

where

m̃2(x, x′) = m2 − e2
∫ 1

0

dλA2(φ′ + λ(φ− φ′)) + e2
[
∫ 1

0

dλAµ(φ′ + λ(φ− φ′))

]2

, (17)

with m̃2(x, x′) ≥ m2, is the square of the well-known dressed mass in configuration space [4,

72, 74, 82]. The reason why we have superfluously indicated the dressed mass as dependent

on all coordinates, will be clear below.

The remaining integral on the proper time s depends on the sign of (x− x′)2. First, we
notice that

I2 =

∫ ∞

0

ds

s2
e−ism̃2(x,x′)−i(x−x′)2/4s = 4i

∂I1
∂[(x− x′)2] , (18)

where

I1 =

∫ ∞

0

ds

s
e−ism̃2(x,x′)−i(x−x′)2/4s. (19)

Now, if (x − x′)2 > 0, we can set m̃2(x, x′)s = B+(x, x
′)ρ and (x − x′)2/4s = B+(x, x

′)/ρ,

which implies B+(x, x
′) = m̃(x, x′)

√

(x− x′)2/2, whereas if (x − x′)2 < 0, we can set

m̃2(x, x′)s = B−(x, x
′)ρ and (x − x′)2/4s = −B−(x, x

′)/ρ, which implies B−(x, x
′) =

m̃(x, x′)
√

−(x− x′)2/2. In this way, we have

I1 = θ
(

(x− x′)2
)

∫ ∞

0

dρ

ρ
e−iB+(x,x′)(ρ+1/ρ) + θ

(

− (x− x′)2
)

∫ ∞

0

dρ

ρ
e−iB−(x,x′)(ρ−1/ρ). (20)

These integrals can be expressed in terms of the Hankel function H
(2)
0 (z) and of the modified

Bessel function K0(z) [87] as

I1 = −iπθ
(

(x− x′)2
)

H
(2)
0

(

m̃(x, x′)
√

(x− x′)2
)

+ 2θ
(

− (x− x′)2
)

K0

(

m̃(x, x′)
√

−(x− x′)2
)

.

(21)

Now, in the limit of vanishing argument, the asymptotic expansions hold [87]

H
(2)
0 (z) ∼ 1− i 2

π

[

log
(z

2

)

+ C
]

z → 0, (22)

K0(z) ∼ −
[

log
(z

2

)

+ C
]

z → 0, (23)
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where C = 0.577... is the Euler constant. Thus, from Eq. (18) we have

I2 =4πδ
(

(x− x′)2
)

− 2πθ
(

(x− x′)2
) m̃(x, x′)
√

(x− x′)2
H

(2)
1

(

m̃(x, x′)
√

(x− x′)2
)

+ 4iθ
(

− (x− x′)2
) m̃(x, x′)
√

−(x− x′)2
K1

(

m̃(x, x′)
√

−(x− x′)2
)

.

(24)

In conclusion, we obtain the explicit expression of the Green’s function in the form

G(x, x′) =− 1

4π

[

in̂∂φ + iˆ̃n∂T + iγ⊥ ·∇⊥ − eÂ(φ) +m
]

e−ie(x−x′)µ
∫ 1
0
dλAµ(φ′+λ(φ−φ′))

×
{

δ
(

(x− x′)2
)

− 1

2
θ
(

(x− x′)2
) m̃(x, x′)
√

(x− x′)2
H

(2)
1

(

m̃(x, x′)
√

(x− x′)2
)

+
i

π
θ
(

− (x− x′)2
) m̃(x, x′)
√

−(x− x′)2
K1

(

m̃(x, x′)
√

−(x− x′)2
)

+
e

4π
n̂
Â(φ)− Â(φ′)

φ− φ′

[

−iπθ
(

(x− x′)2
)

H
(2)
0

(

m̃(x, x′)
√

(x− x′)2
)

+2θ
(

− (x− x′)2
)

K0

(

m̃(x, x′)
√

−(x− x′)2
)

]

}

.

(25)

This expression of the Green’s function can be significantly simplified by observing that (see,

e.g., [88])

√

(x− x′)2 − i0 =θ
(

(x− x′)2
)
√

(x− x′)2

− iθ
(

− (x− x′)2
)

√

−(x− x′)2,
(26)

H
(2)
0

(

m̃(x, x′)
√

(x− x′)2 − i0
)

=θ
(

(x− x′)2
)

H
(2)
0

(

m̃(x, x′)
√

(x− x′)2
)

+ i
2

π
θ
(

− (x− x′)2
)

K0

(

m̃(x, x′)
√

−(x− x′)2
)

,
(27)

H
(2)
1

(

m̃(x, x′)
√

(x− x′)2 − i0
)

√

(x− x′)2 − i0
=θ
(

(x− x′)2
)H

(2)
1

(

m̃(x, x′)
√

(x− x′)2
)

√

(x− x′)2

− i 2
π
θ
(

− (x− x′)2
)K1

(

m̃(x, x′)
√

−(x− x′)2
)

√

−(x− x′)2
.

(28)

By exploiting these identities, in fact, we can write the Green’s function simply as (see also

9



[4, 74, 88])

G(x, x′) =− 1

4π
e−ie(x−x′)µ

∫ 1
0
dλAµ(φ′+λ(φ−φ′))

× γρ
[

i∂ρ + e

∫ 1

0

dλ λFρσ(φ
′ + λ(φ− φ′))(x− x′)σ +m

]

×
[

δ
(

(x− x′)2
)

− 1

2

m̃(x, x′)
√

(x− x′)2 − i0
H

(2)
1

(

m̃(x, x′)
√

(x− x′)2 − i0
)

−ie
8
σαβ

∫ 1

0

dλFαβ(φ
′ + λ(φ− φ′))H

(2)
0

(

m̃(x, x′)
√

(x− x′)2 − i0
)

]

.

(29)

where we have used the operator identity [4]
[

in̂∂φ + iˆ̃n∂T + iγ⊥ ·∇⊥ − eÂ(φ)
]

e−ie(x−x′)µ
∫ 1
0 dλAµ(φ′+λ(φ−φ′))

= γρ[i∂ρ − eAρ(φ)]e
−ie(x−x′)µ

∫ 1
0 dλAµ(φ′+λ(φ−φ′))

= e−ie(x−x′)µ
∫ 1
0 dλAµ(φ′+λ(φ−φ′))γρ

[

i∂ρ + e

∫ 1

0

dλ λFρσ(φ
′ + λ(φ− φ′))(x− x′)σ

]

.

(30)

A. Gauge transformation of the Green’s function and the dressed mass

The expression in Eq. (29) is in agreement with the one in [4] and is particularly useful to

show that the Green’s function G(x, x′) transforms correctly under a general gauge transfor-

mations: Aµ(φ)→ Aµ(φ) + ∂µΛ(x), i.e., a gauge transformation which does not necessarily

keeps the four-vector potential to depend only on φ. In fact, it is clear that

e−ie(x−x′)µ
∫ 1
0
dλAµ(φ′+λ(φ−φ′)) → e−ie(x−x′)µ

∫ 1
0
dλAµ(φ′+λ(φ−φ′))e−ie(x−x′)µ

∫ 1
0
dλ∇µΛ(x′+λ(x−x′))

= e−ie[Λ(x)−Λ(x′)]e−ie(x−x′)µ
∫ 1
0 dλAµ(φ′+λ(φ−φ′)),

(31)

where the symbol ∇µ indicates the partial derivative with respect to the contravariant µ-

component of the argument of the function Λ(x) and where we have used the relation

(x − x′)µ∇µΛ(x
′ + λ(x − x′)) = dΛ(x′ + λ(x − x′))/dλ. In this way, the Green’s function

G(x, x′) will correctly transform as in Eq. (2) if we show that the dressed mass m̃(x, x′) is

gauge invariant. This result has been hinted in [82] (see also [72]) but, to the best of the

author’s knowledge, it has only been explicitly shown for a special gauge transformation,

which keeps the four-vector potential to depend only on φ, i.e., with Λ(x) = Λ̃(φ) such that

∂µΛ(x) = nµΛ̃′(φ). Now, it is clear that [see Eq. (17)]

m̃2(x, x′) =m2 − e2
∫ 1

0

dλ[Aµ(φ′ + λ(φ− φ′))− Aµ(φ′)]2

+ e2
{
∫ 1

0

dλ[Aµ(φ′ + λ(φ− φ′))− Aµ(φ′)]

}2 (32)
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and that

Aµ(φ′ + λ(φ− φ′))−Aµ(φ′) =

∫ λ

0

dλ′
d

dλ′
Aµ(φ′ + λ′(φ− φ′))

=

∫ λ

0

dλ′(x− x′)ν∇νAµ(φ′ + λ′(φ− φ′))

= Fµ(x, x′;λ) + nµ(x− x′)ν
∫ λ

0

dλ′A′ ν(φ′ + λ′(φ− φ′)),

(33)

where we have introduced the gauge-invariant four-vector

Fµ(x, x′;λ) = (x− x′)ν
∫ λ

0

dλ′F νµ(φ′ + λ′(φ− φ′)). (34)

Since n2 = (nF(x, x′;λ)) = 0, we have that

m̃2(x, x′) = m2 − e2
∫ 1

0

dλF2(x, x′;λ) + e2
[
∫ 1

0

dλFµ(x, x′;λ)

]2

, (35)

which is also manifestly gauge invariant. Before concluding this section, we report another

manifestly gauge-invariant expression of the dressed mass, which also elucidates the physical

meaning of this quantity. We start from the exact expression of the on-shell kinetic four-

momentum πµ(φ) of an electron in a plane wave at a given φ in terms of the same quantity

πµ(φ′) at another φ′ (see, e.g., [16, 89]):

πµ(φ) = πµ(φ′)− e[Aµ(φ)−Aµ(φ′)] +
e

π−(φ′)
[Aν(φ)−Aν(φ′)]πν(φ

′)nµ

− e2

2π−(φ′)
[Aν(φ)− Aν(φ′)]2nµ

= πµ(φ′) +
e

π−(φ′)
F

µν(φ, φ′)πν(φ
′) +

e2

2π2
−(φ

′)
F

µν(φ, φ′)Fνλ(φ, φ
′)πλ(φ′),

(36)

where the gauge-invariant quantity F µν(φ, φ′) =
∫ φ

φ′ dϕF
µν(ϕ) = (φ − φ′)

∫ 1

0
dλF µν(φ′ +

λ(φ − φ′)) has been introduced. Now, it is easy to show that, if we define the average

〈f〉(φ, φ′) = (φ− φ′)−1
∫ φ

φ′ dϕf(ϕ) =
∫ 1

0
dλf(φ′ + λ(φ− φ′)) of a generic function f(φ), then

〈πµ〉(φ, φ′) =πµ(φ′) +
e

π−(φ′)
nµ

∫ 1

0

dλ[Aν(φ′ + λ(φ− φ′))−Aν(φ′)]πν(φ
′)

− e
∫ 1

0

dλ[Aµ(φ′ + λ(φ− φ′))− Aµ(φ′)]

− e2

2π−(φ′)
nµ

∫ 1

0

dλ[Aν(φ′ + λ(φ− φ′))−Aν(φ′)]2

(37)

and we obtain (see also [66, 72])

m̃2(x, x′) = 〈πµ〉(φ, φ′)〈πµ〉(φ, φ′) = m2 − 1

φ− φ′

∫ φ

φ′

dϕ[πµ(ϕ)− 〈πµ〉(φ, φ′)]2. (38)

11



Thus, the square m̃2(x, x′) of the dressed mass coincides with the square of the average

kinetic four-momentum of the electron in the plane wave between φ and φ′.

B. Asymptotic properties of the Green’s function

The asymptotic expressions of the Green’s function G(x, x′) for small and large values

of the absolute value of (x− x′)2 can be found starting from the corresponding asymptotic

behavior of the modified Bessel functions and of the Hankel functions. For small space-time

intervals, we recall that [87]

H
(2)
0 (z) ∼ 1− i 2

π

[

log
(z

2

)

+ C
]

z → 0, (39)

K0(z) ∼ −
[

log
(z

2

)

+ C
]

z → 0, (40)

H
(2)
1 (z) ∼ z

2
+ i

2

π

{

1

z
− z

2

[

log
(z

2

)

+ C − 1

2

]}

z → 0, (41)

K1(z) ∼
1

z
+
z

2

[

log
(z

2

)

+ C − 1

2

]

z → 0. (42)

Thus, in the corresponding limit (x− x′)2 → 0 we obtain

G(x, x′) ∼ i

4π2
e−ie(x−x′)µ

∫ 1
0 dλAµ(φ′+λ(φ−φ′))

× γρ
[

i∂ρ + e

∫ 1

0

dλ λFρσ(φ
′ + λ(φ− φ′))(x− x′)σ +m

]{

1

(x− x′)2 − i0

− 1

2
m̃2(x, x′)

[

log

(

m̃(x, x′)
√

(x− x′)2 − i0
2

)

+ C − 1

2
+ i

π

2

]

− ie
4
σαβ

∫ 1

0

dλFαβ(φ
′ + λ(φ− φ′))

×
[

log

(

m̃(x, x′)
√

(x− x′)2 − i0
2

)

+ C + i
π

2

]}

.

(43)

Concerning the case of large space-time intervals |(x−x′)2|, we distinguish the two sub-cases

of large, time-like intervals: (x−x′)2 →∞ and of large, space-like intervals (x−x′)2 → −∞.

In the former sub-case we have that [87]

H(2)
ν (z) ∼

√

2

πz
e−i[z−(2ν+1)/4] z →∞, (44)
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and then, in the corresponding limit (x− x′)2 →∞, we obtain

G(x, x′) ∼ i

8π
eiπ/4

√

2

π
e−ie(x−x′)µ

∫ 1
0 dλAµ(φ′+λ(φ−φ′))

× γρ
[

i∂ρ + e

∫ 1

0

dλ λFρσ(φ
′ + λ(φ− φ′))(x− x′)σ +m

]

× e−im̃(x,x′)
√

(x−x′)2

√

m̃(x, x′)
√

(x− x′)2

[

m̃(x, x′)
√

(x− x′)2
+
e

2
σαβ

∫ 1

0

dλFαβ(φ
′ + λ(φ− φ′))

]

.

(45)

In the latter sub-case we recall that [87]

Kν(z) ∼
√

2

πz
e−z z →∞, (46)

such that, in the corresponding limit (x− x′)2 → −∞, we have

G(x, x′) ∼− i

4π2

√

π

2
e−ie(x−x′)µ

∫ 1
0
dλAµ(φ′+λ(φ−φ′))

× γρ
[

i∂ρ + e

∫ 1

0

dλ λFρσ(φ
′ + λ(φ− φ′))(x− x′)σ +m

]

× e−m̃(x,x′)
√

−(x−x′)2

√

m̃(x, x′)
√

−(x− x′)2

[

m̃(x, x′)
√

−(x− x′)2
− ie

4
σαβ

∫ 1

0

dλFαβ(φ
′ + λ(φ− φ′))

]

.

(47)

As expected from causality considerations, the Green’s function is highly oscillating for large

time-like intervals and exponentially suppressed for large space-time intervals. In either

case the typical “length” of the oscillation/exponential suppression is given by the effective,

space-time dependent Compton length 1/m̃(x, x′) ≤ λC (see also [72]).

III. THE GREEN’S FUNCTION OF THE DIRAC EQUATION IN A PLANE

WAVE AND THE VOLKOV PROPAGATOR

The Volkov states are the exact, analytical solutions of the Dirac equation in a plane

wave [1, 7]. The positive- and negative-energy Volkov states Us(p, x) and Vs(p, x) can be

classified by means of the asymptotic momentum quantum numbers p (and then the energy

ε =
√

m2 + p2) and of the asymptotic spin quantum number s = 1, 2 in the remote past,

13



i.e. for t→ −∞. Following the general notation in [7], these states are given by

Us(p, x) =

[

1 +
en̂Â(φ)

2p−

]

e
i

{

−(px)−
∫ φ
−∞

dϕ

[

e(pA(ϕ))
p−

−
e2A2(ϕ)

2p−

]}

us(p), (48)

Vs(p, x) =

[

1− en̂Â(φ)

2p−

]

e
i

{

(px)−
∫ φ
−∞

dϕ

[

e(pA(ϕ))
p−

+
e2A2(ϕ)

2p−

]}

vs(p), (49)

Here, we have introduced the on-shell four-momentum pµ = (ε,p) and the free, positive-

and negative-energy spinors us(p) and vs(p), respectively, normalized as u†s(p)us′(p) =

v†s(p)vs′(p) = 2εδss′ and such that u†s(p)vs′(−p) = 0. Even though the orthonormality

of the Volkov states will be derived in the next section, since it is already known, we report

here for the sake of convenience the final result (see, e.g., [14]):
∫

d3xU †
s (p, x)Us′(p

′, x) =

∫

d3xV †
s (p, x)Vs′(p

′, x) = 2ε(2π)3δ(3)(p− p′)δss′, (50)
∫

d3xU †
s (p, x)Vs′(−p′, x) =

∫

d3xV †
s (p, x)Us′(−p′, x) = 0. (51)

Anticipating also that the positive- and negative-energy Volkov states are a complete set of

states in the Hilbert space at hand, the Dirac field operator Ψ(x) can be expanded as

Ψ(x) =
∑

s

∫

d3p

(2π)3
1√
2ε

[

cs(p)Us(p, x) + d†s(p)Vs(p, x)
]

, (52)

where cs(p) and c†s(p) [ds(p) and d†s(p)] are the electron (positron) annihilation and cre-

ation operators, respectively, satisfying the anti-commutation relations {cs(p), c†s′(p′)} =

{ds(p), d†s′(p′)} = (2π)3δ(3)(p− p′)δss′, with all other anti-commutators vanishing [90].

Now, we recall that the Volkov propagator G(x, x′) is defined as (we already use the

same symbol, which denotes the Green’s function because below we will show that these

two functions indeed coincide):

G(x, x′) = −i〈0|T [Ψ(x)Ψ̄(x′)]|0〉, (53)

where |0〉 is the vacuum state corresponding to the electron/positron creation and annihi-

lation operators introduced above, T is the time-ordering operator and Ψ̄(x) = Ψ†(x)γ0

(the “bar” operation is analogously defined for any spinor). By using Eq. (52) and the

anti-commutation relations among the creation and annihilation operators, we obtain

G(x, x′) =− iθ(x0 − x′ 0)
∑

s

∫

d3p

(2π)3
1

2ε
Us(p, x)Ūs(p, x

′)

+ iθ(x′ 0 − x0)
∑

s

∫

d3p

(2π)3
1

2ε
Vs(p, x)V̄s(p, x

′).

(54)
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It is convenient at this point to introduce the Ritus matrices E(x, q) [14] for an arbitrary

(non-necessarily on-shell) four-momentum qµ as

E(x, q) =

[

1 +
en̂Â(φ)

2q−

]

e
i

{

−(qx)−
∫ φ
−∞

dϕ

[

e(qA(ϕ))
q−

− e2A2(ϕ)
2q−

]}

, (55)

such that Us(p, x) = E(x, p)us(p) and Vs(p, x) = E(x,−p)vs(p) and [14]

∫

d4xE(x, q)Ē(x, q′) =

∫

d4x Ē(x, q)E(x, q′) = (2π)4δ(4)(q − q′), (56)

∫

d4q

(2π)4
E(x, q)Ē(x′, q) =

∫

d4q

(2π)4
Ē(x, q)E(x′, q) = δ(4)(x− x′), (57)

with Ē(x, q) = γ0E†(x, q)γ0 (the “bar” operation on an arbitrary matrix or matrix oper-

ator is defined analogously). Since the free spinors us(p) and vs(p) satisfy the relations
∑

s us(p)ūs(p) = p̂+m and
∑

s vs(p)v̄s(p) = p̂−m [7], it is clear that

G(x, x′) =− iθ(x0 − x′ 0)
∫

d3p

(2π)3
1

2ε
E(x, p)(p̂+m)Ē(x′, p)

+ iθ(x′ 0 − x0)
∫

d3p

(2π)3
1

2ε
E(x,−p)(p̂−m)Ē(x′,−p).

(58)

In order to establish the identity between the Green’s function of the Dirac operator in a

plane wave and the Volkov propagator, we first show that the latter can be written as

G(x, x′) =

∫

d4q

(2π)4
E(x, q)

q̂ +m

q2 −m2 + i0
Ē(x′, q). (59)

The identity is indeed easily proved in an analogous way as in the free case (see, e.g., [7])

once one observes that

1. the divergence (pole) in q0 at q− = q0− qn = 0 can be integrated, as we have explicitly

shown in the previous section, due to the corresponding fast oscillations of the expo-

nential function whose argument also diverges at q− = 0 (the integration over q− there

is reduced to an integration over the proper time s);

2. when the integral in q0 is evaluated on a large semicircle either with Im(q0) > 0 or

with Im(q0) < 0, the additional terms in the phase related to the plane wave with

respect to the free case tend to zero as they are inversely proportional to q− = q0− qn.

Accounting now for these remarks, one can perform the integral in q0 in Eq. (59) exactly

as in the vacuum case and the expression in Eq. (58) is obtained. Finally, the equivalence
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between the Green’s function of the previous section and the Volkov propagator is established

once we notice that (see, e.g., [14, 61])

γµ[i∂µ − eAµ(φ)]E(x, q) = E(x, q)q̂, (60)

where it is understood that no other functions of xµ are present on the right of E(x, q) in

the left hand side. It is important to stress that in order to prove that the function G(x, x′)

in Eq. (59) satisfies the Green’s function equation like Eq. (1) with Aµ
b (x) = Aµ(φ), only

the properties in Eqs. (57) and (60) are necessary. These properties can be easily proved

directly from the expression of the Ritus matrices without relying, in particular, on the

completeness of the Volkov states mentioned below Eq. (53).

As a side remark, we notice that all the above results on the Ritus matrices can be easily

obtained within the operator technique by introducing the operator

E =

[

1− en̂Â(Φ)

2PT

]

e
i
∫ Φ
−∞

dϕ

[

e(PA(ϕ))
PT

− e2A2(ϕ)
2PT

]

(61)

such that E(x, q) = 〈x|E|q〉 [recall that PT |q〉 = −q−|q〉, that 〈x|q〉 = exp(−i(qx)) and

that in the Lorenz gauge (PA(Φ)) = (A(Φ)P )]. The relations (56) and (57) among the

Ritus matrices correspond to the identities EĒ = ĒE = I, with I being the unity operator,

whereas the corresponding operator equation of Eq. (60) reads Π̂E = EP̂ , which can all

be proved directly starting from Eq. (61). Finally, the Volkov propagator in Eq. (59)

and its equivalence with the Green’s function simply corresponds to the operator equation

G = E(P̂ − m + i0)−1Ē = (Π̂ − m + i0)−1, with the second identity following from the

identity Π̂E = EP̂ .

IV. A PROOF OF THE COMPLETENESS AND OF THE ORTHONORMALITY

OF THE VOLKOV STATES

As we have mentioned in the Introduction, we would like to present alternative and

relatively straightforward proofs of the completeness and the orthonormality of the Volkov

states at a fixed time. We have also recalled that these properties have been already proved

in [91] and in [14, 85], respectively. In our opinion, however, the proofs below shed light on

some interesting features, which are worth being noticed.
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The completeness of the Volkov states at a fixed time t is expressed by the identity [91]

∑

s

∫

d3p

(2π)3
1

2ε

[

Us(p, t,x)U
†
s (p, t,x

′) + Vs(p, t,x)V
†
s (p, t,x

′)
]

= δ(3)(x− x′). (62)

Now, we start from the expression of the Green’s function G(x, x′) of the Dirac equation in

a plane wave in Eq. (59), which, by exploiting the two remarks below that equation, can be

written in the form as in Eq. (58). Also, by using the properties of the Ritus matrices in

Eq. (57) and in Eq. (60), we have shown that {γµ[i∂µ− eAµ(φ)]−m}G(x, x′) = δ(4)(x−x′),
i.e., that

δ(4)(x− x′) ={γµ[i∂µ − eAµ(φ)]−m}
[

−iθ(x0 − x′ 0)
∫

d3p

(2π)3
1

2ε
E(x, p)(p̂+m)Ē(x′, p)

+ iθ(x′ 0 − x0)
∫

d3p

(2π)3
1

2ε
E(x,−p)(p̂−m)Ē(x′,−p)

]

=

= {γµ[i∂µ − eAµ(φ)]−m}
[

− iθ(x0 − x′ 0)
∑

s

∫

d3p

(2π)3
1

2ε
Us(p, x)Ūs(p, x

′)

+ iθ(x′ 0 − x0)
∑

s

∫

d3p

(2π)3
1

2ε
Vs(p, x)V̄s(p, x

′)

]

,

(63)

where in the second equality we have used the expression of the Volkov states in terms of

the Ritus matrices [see the relations between Eq. (55) and Eq. (56)]. At this point, the

derivative ∂µ acts both on the theta-functions and on the Volkov states. Since the Volkov

states are solutions of the Dirac equation in a plane wave, we obtain

δ(4)(x− x′) = δ(x0 − x′ 0)γ0
∑

s

∫

d3p

(2π)3
1

2ε
[Us(p, x)Ūs(p, x

′) + Vs(p, x)V̄s(p, x
′)], (64)

which, after multiplying it by γ0 once from the left and once from the right and integrating

with respect to either x0 or to x′ 0, implies the completeness relation in Eq. (62) with

x0 = x′ 0 = t. It is worth repeating [see also the discussion below Eq. (60)], that the

equivalence between Eq. (58) and Eq. (59) as well as the properties of the Ritus matrices

in Eq. (57) and in Eq. (60), can be proved independently of the completeness of the

Volkov states, which was used in Eq. (52) only to show the equivalence between the Green’s

function of the Dirac equation in a plane wave and the quantity −i〈0|T [Ψ(x)Ψ̄(x′)]|0〉, i.e.,
the dressed Feynman propagator of the Dirac field.

We pass now to prove the orthonormality of the Volkov states at a given time in Eqs.

(50) and (51). In fact, in order to follow the method outlined below, it is more convenient
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to start by assuming a finite quantization volume, to be a large cube of side L and volume

V = L3 centered at the origin of the coordinates. In this way, by imposing suitable periodic

boundary conditions (see below), the momenta quantum numbers become discrete and the

Volkov states can be normalized to a finite value. Only at the end of any actual calculation

the limit L→∞ has to be be taken.

Since the Volkov states in the case of a finite quantization volume differ from those in

Eqs. (48) and (49) by a factor 1/
√
V , they will be indicated by different symbols as

Up,s(x) =

[

1 +
en̂Â(φ)

2p−

]

e
i

{

−(px)−
∫ φ
−∞

dϕ

[

e(pA(ϕ))
p−

−
e2A2(ϕ)

2p−

]}

us(p)√
V
, (65)

Vp,s(x) =

[

1− en̂Â(φ)

2p−

]

e
i

{

(px)−
∫ φ
−∞

dϕ

[

e(pA(ϕ))
p−

+
e2A2(ϕ)

2p−

]}

vs(p)√
V
. (66)

The orthonormality at a fixed time t corresponding to Eqs. (50)-(51) reads
∫

V

d3xU †
p,s(x)Up′,s′(x) =

∫

V

d3xV †
p,s(x)Vp′,s′(x) = 2εδpp′δss′, (67)

∫

V

d3xU †
p,s(x)V−p′,s′(x) =

∫

V

d3xV †
p,s(x)U−p′,s′(x) = 0. (68)

Now, for the sake of definiteness, we assume that the plane wave propagates along the posi-

tive z direction. Thus, it is clear that the periodic boundary conditions along the x direction

[Up,s(x
0,−L/2, x2, x3) = Up,s(x

0, L/2, x2, x3) and Vp,s(x
0,−L/2, x2, x3) = Vp,s(x

0, L/2, x2, x3)]

and the y direction [Up,s(x
0, x1,−L/2, x3) = Up,s(x

0, x1, L/2, x3) and Vp,s(x
0, x1,−L/2, x3) =

Vp,s(x
0, x1, L/2, x3)] imply the usual conditions pxL = 2ℓxπ and pyL = 2ℓyπ, with ℓx, ℓy =

0,±1,±2, ... as in the vacuum case. Concerning the z direction, we observe that since the

limit L→∞ is ultimately taken, we can assume that the external field is defined as a given,

arbitrary function between, for example, φ = −L/2 and φ = L/2 and it is extended in a

periodic way beyond those limits, i.e., Aµ(t − L/2) = Aµ(t + L/2) for any t. Thus, the

remaining periodic boundary condition for positive- and negative-energy states implies the

conditions [see Eqs. (65) and (66)]

pzL+

∫ t+L/2

t−L/2

dφ

[

e(pA)

p−
− e2A2

2p−

]

= pzL+

∫ L/2

−L/2

dφ

[

e(pA)

p−
− e2A2

2p−

]

= 2ℓzπ, (69)

pzL−
∫ t+L/2

t−L/2

dφ

[

e(pA)

p−
− e2A2

2p−

]

= pzL−
∫ L/2

−L/2

dφ

[

e(pA)

p−
− e2A2

2p−

]

= 2ℓzπ, (70)

respectively, with ℓz = 0,±1,±2, .... By considering realistic plane-wave fields such that the

integrals
∫∞

−∞
dφAµ(φ) and

∫∞

−∞
dφA2(φ) are finite and having in mind the limit L→∞, we
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can also conclude that the density of Volkov states still corresponds to the formal substitution

rule
∑

ℓ → V
∫

d3p/(2π)3 as in the vacuum case. This discussion also clarifies why for a

monochromatic plane wave with amplitude Aµ
0 and angular frequency ω0, i.e., in the case

of linear polarization, Aµ(φ) = Aµ
0 cos(ω0φ), periodic boundary conditions on the electron

“four-quasimomentum” pµ−e2A2
0n

µ/4p− have to be enforced both for positive- and negative-

energy Volkov states [14]. At this point, by indicating as Ψp,s(x) any either positive- or

negative-energy Volkov state, we can first easily show that

∂µ[Ψ̄p,s(x)γ
µΨp′,s′(x)] = 0 (71)

as a consequence of the fact that the states Ψp,s(x) and Ψp′,s′(x) are solutions of the Dirac

equation in the plane wave, i.e.,

{γµ[i∂µ − eAµ(φ)]−m}Ψp′,s′(x) = 0, (72)

Ψ̄p,s(x){γµ[−i
←−
∂ µ − eAµ(φ)]−m} = 0. (73)

Eq. (71), in fact, holds as it is proportional to the difference between Eq. (72) multiplied

on the left by Ψ̄p,s(x) and Eq. (73) multiplied on the right by Ψp′,s′(x). Now, we fix a four-

dimensional volume Ω consisting of the three-dimensional volume V extended along the time

direction from x0 → −∞ to x0 = t, with t being an arbitrary time, where the presence of

the plane wave cannot be neglected. It is clear that
∫

Ω
d4x ∂µ[Ψ̄p,s(x)γ

µΨp′,s′(x)] = 0 and

then, by applying the Gauss theorem in four dimensions [89], that
∫

Σ

dΣµΨ̄p,s(x)γ
µΨp′,s′(x) = 0, (74)

where Σ is the three-dimensional hyper-surface enclosing the four-dimensional volume Ω.

Given the shape of the four-dimensional volume Ω, Eq. (74) can be written as

0 =

∫

V

d3x Ψ̄p,s(t,x)γ
0Ψp′,s′(t,x)−

∫

V

d3x lim
x0→−∞

Ψ̄p,s(x)γ
0Ψp′,s′(x)

−
∫

Σ1

dx0dx2dx3 Ψ̄p,s(x1,+)γ
1Ψp′,s′(x1,+) +

∫

Σ1

dx0dx2dx3 Ψ̄p,s(x1,−)γ
1Ψp′,s′(x1,−)

−
∫

Σ2

dx0dx1dx3 Ψ̄p,s(x2,+)γ
2Ψp′,s′(x2,+) +

∫

Σ2

dx0dx1dx3 Ψ̄p,s(x2,−)γ
2Ψp′,s′(x2,−)

−
∫

Σ3

dx0dx1dx2 Ψ̄p,s(x3,+)γ
3Ψp′,s′(x3,+) +

∫

Σ3

dx0dx1dx2 Ψ̄p,s(x3,−)γ
3Ψp′,s′(x3,−),

(75)

where the hyper-surface Σj , with j = 1, 2, 3, is obtained by extending from x0 → −∞ to x0 =

t a square of side L centered on the origin of the plane perpendicular to the jth direction,
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and where x1,± = (x0,±L/2, x2, x3), x2,± = (x0, x1,±L/2, x3), and x3,± = (x0, x1, x2,±L/2).
Now, it is clear that the first line of Eq. (75) gives already the desired result. In fact, the

first term is exactly the scalar product of two Volkov states at a given time x0 = t, where

the presence of the plane wave cannot be neglected. The second term, instead, coincides

with the same scalar product but for x0 → −∞, where the Volkov states coincide with the

free states, which indeed fulfill the wanted orthonormality conditions [see Eqs. (67)-(68)].

Analogous conclusions can be drawn for the remaining cases also involving Volkov states

with negative energy. In this way, the Volkov states fulfill Eqs. (67)-(68), once we proof

that the remaining contributions in Eq. (75) vanish. Since the plane wave propagates along

the positive z direction, it is clear that the two contributions on the second line as well as

the two on the third line cancel each other because of the periodic boundary conditions. The

same is true also for the last line and, for the sake of definiteness, we will explicitly prove

it only for two positive-energy Volkov states. By recalling the periodicity conditions on the

plane-wave four-vector potential, the last line of Eq. (75) becomes

∫

Σ3

dx0dx1dx2Ūp,s(x3,−)γ
3Up′,s′(x3,−)−

∫

Σ3

dx0dx1dx2Ūp,s(x3,+)γ
3Up′,s′(x3,+)

= δp⊥p′

⊥

∫ t

−∞

dx0

L
ūs(p)

[

1− en̂Â(x0 + L/2)

2p−

]

γ3

[

1 +
en̂Â(x0 + L/2)

2p′−

]

us′(p
′)

× e
i

{

(ε−ε′)x0+(pz−p′z)
L
2
−
∫ x0+L/2
−∞

dϕ

[

e(p′A(ϕ))

p′
−

−
e(pA(ϕ))

p−
−

e2A2(ϕ)
2

(

1
p′
−

− 1
p−

)]}

− δp⊥p′

⊥

∫ t

−∞

dx0

L
ūs(p)

[

1− en̂Â(x0 − L/2)
2p−

]

γ3

[

1 +
en̂Â(x0 − L/2)

2p′−

]

us′(p
′)

× e
i

{

(ε−ε′)x0−(pz−p′z)
L
2
−
∫ x0−L/2
−∞

dϕ

[

e(p′A(ϕ))

p′
−

−
e(pA(ϕ))

p−
−

e2A2(ϕ)
2

(

1
p′
−

− 1
p−

)]}

= δp⊥p′

⊥

∫ t

−∞

dx0

L
ūs(p)

[

1− en̂Â(x0 + L/2)

2p−

]

γ3

[

1 +
en̂Â(x0 + L/2)

2p′−

]

us′(p
′)

× e
i

{

(ε−ε′)x0+(pz−p′z)
L
2
−
∫ x0+L/2
−∞

dϕ

[

e(p′A(ϕ))

p′
−

− e(pA(ϕ))
p−

− e2A2(ϕ)
2

(

1
p′
−

− 1
p−

)]}

×
〈

1− e
i

{

−(pz−p′z)L+
∫ x0+L/2

x0−L/2
dϕ

[

e(p′A(ϕ))

p′
−

−
e(pA(ϕ))

p−
−

e2A2(ϕ)
2

(

1
p′
−

− 1
p−

)]}
〉

,

(76)

which vanishes due to Eq. (69). Since the remaining cases involving the negative-energy

Volkov states can be addressed analogously, we can conclude that the orthonormality prop-

erties in Eqs. (67)-(68) hold. Finally, by performing the limit L → ∞, one obtains the

orthonormality properties in Eqs. (50)-(51).
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V. CONCLUSIONS

In this paper we have provided alternative and relatively simple proofs of the completeness

and the orthonormality of the Volkov states at a fixed time. Whereas the orthonormality

relations have been proved by relying on a geometrical argument based on the Gauss theo-

rem in four dimensions, the proof of the completeness of the Volkov states exploited some

properties of the Green’s function G(x, x′) of the Dirac operator in a plane wave and the

Volkov propagator. Moreover, an explicit expression of G(x, x′) has been reported in terms

of special functions (modified Bessel functions and Hankel functions) and their derivatives,

and its equivalence with the Volkov propagator has been proved explicitly. Also, some

asymptotic expressions for small and large (both spacelike and timelike) four-dimensional

square distances (x−x′)2 have been derived. Special attention has been also devoted to the

transformation properties of the Green’s function G(x, x′) under general gauge transforma-

tion (which do not necessarily keep the four-vector potential be dependent only on a single

phase variable) and the related invariance of the dressed mass.
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