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Abstract—Indoor operation of unmanned aerial vehicles
(UAVs) poses many challenges due to the lack of GPS signal
and cramped spaces. The presence of obstacles in an unfamil-
iar environment requires reliable state estimation and active
algorithms to prevent collisions. In this paper, we present a
teleoperated quadrotor UAV platform equipped with an on-
board miniature computer and a minimal set of sensors for
this task. The platform is capable of highly accurate state-
estimation, tracking of desired velocity commanded by the user
and ensuring collision-free navigation. The robot estimates its
linear velocity through a Kalman filter integration of inertial
and optical flow (OF) readings with corresponding distance
measurements. An RGB-D camera serves the purpose of provid-
ing visual feedback to the operator and depth measurements to
build a probabilistic, robo-centric obstacle model, allowing the
robot to avoid collisions. The platform is thoroughly validated
in experiments in an obstacle rich environment.

I. INTRODUCTION

Multirotor unmanned aerial vehicles (UAVs) constitute an
attractive platform for many robotics applications because of
their ability to hover and their smooth operation at a wide
range of velocities. The large interest in these platforms is
reflected in the high number of publications in the field and
the wide variety of available commercial products. The main
limitations of UAVs are their short battery life and limited
payload capacity, which limit the computational power and
sensors that can be embedded on a platform and thus, the
autonomy that is achievable. The ongoing development of
miniature lightweight computers and sensors, however, has
helped to overcome this issue and extend the complexity of
possible applications.

Although human supervision is often required due to
legal and safety reasons, operating an UAV can be greatly
simplified, and performance similarly improved by endowing
the UAV with autonomy [1], [2]. For example, during a
teleoperation task, the operator may have limited situational
awareness due to the reduced feedback provided by the
system. Autonomous obstacle avoidance, especially when
operating in tight and unstructured GPS-denied environ-
ments, can enhance visual inspection or search and rescue
missions. Thus allowing for operation closer to objects of
interest, and in more cluttered environments, leaving the
operator free to focus on higher level goals [3], [4], [5].
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Fig. 1: Representation of the frames involved in the control
and estimation of the quadrotor.

Depending on the objective and the amount of a priori
knowledge of the system, we can distinguish several formu-
lations of the navigation problem. In general, path planning
addresses trajectory optimization, e.g., path length minimiza-
tion or energy efficiency maximization, and usually under the
assumption of full knowledge of the system and environment,
including obstacles sizes and positions [6]. Teleoperation
applications, however, consider mostly unknown and/or non-
static environments. Moreover, when the UAV has only a
generic goal (e.g., exploration of the given space), a path
planning approach becomes ineffective.

To ensure collision-free navigation, obstacle avoidance is
usually implemented as a reactive control law that adjusts
the system’s behavior given exteroceptive measurements. The
most basic approach is the use of distance sensors emulating
the behavior of mechanical bumpers that limit motion in
the sensing directions [3], [7]. Gageik et al. [8] propose
an array of complementary ultrasonic and infrared distance
sensors to enhance their system’s robustness. An evolution
of this concept uses a 360° laser range finder to create a 2D
occupancy grid map used to determine obstacle-free paths
for a UAV [9]. A natural 3D extension can also be obtained
by rotating the sensor via servomotors [3].

In monocular camera based approaches, instead of build-
ing a 3D model of the environment, researchers have tried
to avoid obstacles based on optical flow methods [10], or
by determining the size expansion ratios of obstacles from
feature tracking in the field of view (FOV) of the sensor [11].
The perspective from a monocular camera, however, does
not provide any metric correlations between the detected
features and the robot other than the relative direction. Stereo
cameras enable generation of disparity images based on



Fig. 2: Our quadrotor platform.

epipolar geometry and hence the distance estimation. In [12],
a reactive avoidance is proposed based on local planning
using a U-map, an accumulated histogram along the columns
of the disparity image.

For most of the aforementioned works, the limiting factor
was the onboard computational power. The transition from
sensor arrays to 2D grid maps and frame-to-frame image
analysis was possible not only thanks to the development of
more advanced algorithms, but also because of to the recent
progresses in mobile CPUs. In addition, the availability of
lightweight sensors has extended the data gathering and
processing abilities of UAVs with limited payload.

More recent works take advantage of smaller size and
higher performance of miniature computers by employing
more sophisticated methods not only in map building but
also for obstacle avoidance. In [13], an octree-based 3D
path planning algorithm using a state lattice concept is
employed to find an optimal trajectory. Gohl et al. [14]
equipped their platform with four stereo cameras allowing
the robot to have an omnidirectional view of the environment.
Detected obstacles are stored as points in a local, spherical
coordinate frame that is transformed as the robot moves with
the estimate of it’s state.

The aforementioned works could also be categorized in
terms of approaches they take to estimate their state. In
general, the full knowledge of drift-free position is not
critical for safe teleoperation [15], however, the robot must be
able to reliably estimate its own velocity. Such an approach,
usually based on inertial measurement unit (IMU) and optical
flow integration ([4], [12]), requires fewer resources and
quite often can be executed on an embedded microcontroller
[16]. Although the more resource-intensive methods such
as visual odometry ([5], [8]) or visual-inertial odometry
([14], [13]) can provide low drift position estimates they
also require higher computational power or even dedicated
hardware.

II. MOTIVATION AND CONTRIBUTIONS

In our previous work [1] we presented initial results in the
development of a system for automatic obstacle detection,
tracking and avoidance with a quadrotor equipped with a
single RGB-D sensor [1].

In that paper, the obstacle state, expressed in a local,
robo-centric coordinate system, is updated not only with
the new depth measurements but is also propagated using
the estimated state of the robot (i.e., its own velocity and
3D orientation). That approach allows the robot to avoid

obstacles that are not in the direct, limited FOV of the
camera. Additionally, the 3D probabilistic representation
of the obstacle state enables a complex, predictive based
avoidance, not limited to the 2D plane. The predefined size
of the obstacle state, in contrast to octree-based voxel grids
that require complex ray casting, allows for rapid occupancy
checks of any subregion.

In order to avoid collision, as our algorithm was designed
for a teleoperation system, we took a passive approach with
the robot only reacting to the commands of the operator and
modifying them when necessary. In [1], we also validated our
algorithm in experiments with single obstacles, simulating
the estimate of the robot velocity through an external motion
capture system.

As a consequential follow-up of that initial setup, in this
work we have added an on-board state estimator that utilizes
a cascade architecture to estimate the robot’s orientation and
velocity, using a complementary filter and a dual Kalman
filter (KF) fed with the measurements of an IMU and OF
sensor with a down-pointing sonar rangefinder, respectively.
As the Kalman filter assumes zero-mean noise of the sig-
nals, we have improved its performance by introducing an
extended set of filter’s equations that estimates accelerometer
drift in the pre-flight phase. This approach uses minimal
computational resources, does not add significant mass and
runs on the same on-board computational unit as our main
algorithm and the teleoperation framework.

As compared to [1], the system presented in this paper is
independent from external infrastructures and UAV can be
flown in practically any indoor areas, while the limiting fac-
tor for outdoor obstacle detection is the sensing technology.

In order to achieve this result, we have tackled a number
of practical issues, and adjustments to the system have been
necessary. As expected, the on-board velocity estimation
required improved calibration of the IMU, for which we
detail two procedures in this work, an optimization based
approach for general calibration using manually collected
data and an automatic, pre-flight calibration for both the
accelerometer and gyroscope. Another major improvement
to account for the change from a reliable low-noise velocity
estimate to a higher-noise estimation is the introduction of an
active term in the obstacle avoidance that also compensates
for small delays in the velocity control loop.

The main contributions of this work are therefore (i) an
improved version of our previous algorithm which is suitable
for higher-noise velocity estimates and delays in the control
loop, (ii) a detailed implementation of a dual KF state
estimator with on-line, pre-flight bias estimation, (iii) the
implementation of a portable teleoperation setup with full
on-board sensing and computation, and (iv) a comprehen-
sive experimental validation of obstacle avoidance and state
estimation in teleoperation.

III. SYSTEM SETUP

In this work we consider a multirotor UAV equipped
with an IMU, an optical flow sensor with a dedicated
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Fig. 3: Block diagram of the estimation scheme.

rangefinder and an RGB-D camera for environment sens-
ing. The relevant quantities are represented in the ref-
erence frames shown in Fig. 1. The quadcopter frame
of reference @ :{Oqg,Xq,Yg,Zq}, represented in the
common aerospace North-East-Down (NED) notation is
used to express the robot’s position and orientation in an
arbitrary, North-West-Up (NWU), world reference frame
W {Ow, Xw,Yw, Zw}. Q is attached to the middle point
of the robot, ideally its center of mass, the X axis defines
the front direction and the Z¢ axis points downward.

The robot’s orientation is represented in the roll-pitch-yaw
notation, where ¢, 6, 1 denote the corresponding angles and

Ry = R.(mR.(¥)Ry(O)R.(¢) € SOB3), (1)

is the rotation matrix, that defines the orientation of Q in W.
R.(-), R,(:), R.(-) are the basic rotation matrices, which
represent the elemental rotations around the X, Y and Z axes
respectively. The R, (7) matrix describes the transformation
from NED to NWU notation.

The state of the system, and commands sent to the
robot are expressed in a local, robo-centric, horizontal
frame H : {Op,Xp,Yy,Zy} in which the XiYy plane
is parallel to the world Xu Yy plane. It is defined
such that Oy = Og and its orientation differs from RS’
only by the yaw angle and the NED-NWU conversion,
R?I =R, (0)R.(¢). The position of the quadrotor and its
yaw angle expressed in such a frame, “pg and T,
respectively, are equal to zero.

Lastly, we represent the camera frame in which the sensor
captures images as C' : {O¢, X¢, Yo, Z¢ }. The position and
orientation of C' in @, i.e. Qpc and R¢, are constant
extrinsic parameters of the camera, obtained in an off-line
calibration.

IV. STATE ESTIMATION

The state of the platform is defined as a set of quantities
that need to be estimated as they are required for the purpose
of control. In the context of teleoperation, a robo-centric
approach has been proven convenient [15] to express the state
of the system and the operator’s commands (i.e., the desired

TABLE I: Estimated accelerometer biases

‘ bas “ bao
x | 0.9963 |[ 0.0028
y | 1.0053 || 0.0096
z | 1.0098 || 0.0517

velocity). Therefore, the state of the system, expressed in the
horizontal frame H,

Tq=["iq My Mig ¢ 0 4 )

includes the linear velocity of the robot, the roll and pitch
angles and the angular velocity around the Zp axis.

T
5

A. Inertial Sensor Model

The on-board IMU provides measurements of the linear
acceleration and the angular velocity in (). In principle, the
IMU can also include a magnetometer to collect absolute
heading measurements. However, in indoor settings, due to
disturbances caused by power lines, ferromagnetic structures,
and robotic motors, the measurements provided by digital
compasses are unreliable [17]. Therefore, in most indoor
mobile robotics research, e.g., [18], the heading is consid-
ered as an unknown quantity that requires estimation using
localization filters.

Considering sensor imperfections and measurement errors,
we model the measurements from the accelerometer as

a= bas(a+ya) +ba07 (3)
and the measurements from the gyroscope as
W = bys(w + V) + by, 4)

where, for ¢ = {a,w}, 4 denotes the measured value, 4 the
real value of acceleration and angular rate respectively, b,
and b;, represent, respectively, scaling and offset biases, and
v; is a zero-mean random error.

Although the zero-mean error v; can be filtered out in
the estimation process, the offset and scaling biases must be
estimated in order to decrease their negative effect on the
state estimate (2).

For the purpose of this work, we have employed the
ellipsoid fitting method [19] to calibrate the accelerometer.
This process requires samples of a known acceleration,
e.g., gravity, in at least six widely-spread orientations and
was performed off-line. The obtained calibration results are
presented in Table I. In principle, the same method could be
applied to estimate the gyroscope bias. That would require,
however, to rotate the sensor with a known angular velocity
around different axes.

Our experiments showed that the factory calibration of the
gyroscope is accurate enough to neglect the scaling factor
(i.e., b,s ~ 1). The gyroscope’s offset b,,, can be estimated
by averaging steady measurements over a sampling period 7,
which for the platform presented in this work, is performed
every time during the on-ground phase with motors switched
off. The sampling period is set to 2s, which corresponds to
1000 samples at 500 Hz.

We introduce a set of bias-corrected measurements, a and
w, for the acceleration and angular velocity, respectively.
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Fig. 4: Block diagram of the navigation system.

Hence, these new quantities, assuming an accurate bias
estimation, should be affected only by the random, zero-
mean noise:

a—b>b

d:%:a—kya, (5a)
~_bwo

Q:Lb —wt . (5b)

In addition, considering the non-inertial character of the body
frame (), the measured acceleration consists not only of the
quadrotor’s self-acceleration a, but also the gravity term g.
Thus, the following relation completes the IMU model:

a=a,—g=a,— RYgw, (6)

where gw = [0, 0, g]"

B. Complementary Filter

The robot’s state is estimated in a cascade scheme shown
in Fig. 3 with two main components for simultaneous es-
timation of the platform’s orientation (attitude) and linear
velocity.

In order to estimate the platform’s orientation, i.e., the roll
and pitch angles ¢, 6, we have used a complementary filter
[20], whose principle we summarize here for completeness.
This algorithm has the form of a low-pass filter, in which the
angles are integrated using a proper projection of the gyro
readings and corrected using the orientation of the gravity
vector, estimated from the filtered accelerometer readings.
First, the gyro readings, angular velocity in the sensor (body)
frame @, must be properly transformed to obtain the roll,
pitch and yaw rates 7 [qb, 0, w]

1= D(n)w, (7)
where D(n), the transformation matrix, has the following
form:

1 sgte cply
D(n)= |0 ¢4 —S¢ | - (8)
0 S¢/Ca C¢/Ca

The notation sg, cs and t5 indicates the sin, cos and tan of a
generic angle §. Then, using the accelerometer measurement
model (6):

S0

—CeS¢p
—CyCyp

a=Rjgw +a, = gw +ag (9
and assuming that the acceleration of the platform a, is zero
(or negligible with respect to the gravity acceleration gy ),
the attitude can be estimated as:

(/gacc = atang(—ay, —a,),

i — G a2 4+ g2
Oucc = atans (am, a; + az

) . (10)

Thus, the complementary filter equations with gain « are:
(lgk = (]- - C“)(ng—l + ¢kAt) + aqgacm
0 = (1 — a)(0p—1 + OrA) + abgee.
C. Kalman Filter

The second component of the estimation system is a
Kalman filter for the platform’s linear velocity in the hor-
izontal frame

(1)

H = [ H

. T
po=["i Myo ] -

. 1T ..
HZQ] = [x y z d (12)
Since the optical flow sensor is also equipped with an echo
sonar sensor to provide the metric reference for the flow
based velocity estimate, we have extended the filter’s state
to also include the distance to the ground d. Hence, the state
vector of our Kalman filter is

.. T

qk:[;v y oz d] . (13)

The filter’s state equation, representing the integration of
accelerometer measurements, has the form

gy = Apqr_1 + Bruy, (14)
where - indicates an estimate, and, at instant &,
1 0 0 O
o
R e
00 0 (5)
0 0 At 1

uy, = ay, — (R gw

The estimate resulting from (14) is inherently encum-
bered with an accumulating error and noise resulting from
inaccuracy in the estimation of system’s orientation R Or-
The estimate’s precision and accuracy can be 1ncreased
using additional measurements, i.e., the optical flow and the
distance to the ground [21], [22].

The optical flow measurement

~ v
Zflow = |:,l';c:|
Y

where v and f represent the optical flow measurement (with
rotation compensation [23]) and the sensor’s focal length,
respectively, has the following measurement model,

5 |0y 10 0 0
flow =15, =10 1 0 0
To correct the estimates of the horizontal velocity Z and

distance to the ground d, we use measurements from the
echo sonar with the corresponding measurement model,

| d 000 1
Fdist = de—des | T 10 0 1 0
At

It is important to note that the OF velocity measurement
(16) is computed from the flow value v using the estimate
of the ground distance d that, thanks to the filtering process,
has lower covariance than the direct measurement from the
echo sonar d.

(16)

A7)

= Cyiowqk-

= Claistqi, (18)



D. On-ground Bias Estimation

Throughout our experiments, we noticed that the ac-
celerometer biases (3) tend to drift slightly between con-
secutive tests. The Open/LibrePilot community!' confirmed
our observations claiming that the IMU chip is sensitive to
mechanical stress applied to the controller board mounted on
a flying platform. Therefore, the biases can change due to
vibrations and impacts during landings.

To mitigate this issue, we have employed an additional on-
ground bias estimation based on an extension to our Kalman
filter’s state model (14):

. L. T
qk:[qkT, baTo]:[:B ¥y Z2 d by by bz} , (19a)
1 0 0 O X
01 0 0|-AtRJ
«_ |00 1 0
AT = 0 0 At 1|0 0 O ’ (19b)
034 I35
AtRG
B* = (19¢)
O4x3

This bias estimation utilizes the fact that when the platform
is on the ground its state is constant (in particular, its velocity
is equal to zero) to correct the biases with assumed zero
measurements in (16) and (18).

Once the robot is commanded to lift-off, the estimation
system switches from (19) to the reduced form (15).

V. NAVIGATION SYSTEM ARCHITECTURE

The obstacle detection and tracking part of our algorithm
serves primarily as a means to extend the limited field of
view of the camera by including regions that are not instantly
visible. Using filtering, we can extend the knowledge of
obstacles in the vicinity of the robot and reduce measurement
noise as well.

The block diagram of the navigation system is shown
in Fig. 4; the principle is that the operator’s commands
are being altered by the Obstacle Avoidance block given
the knowledge of the estimated obstacle state by the Bin-
Occupancy filter [24].

A. Obstacle Detection and Tracking

The algorithm detects obstacles using the depth images
provided by the camera and represents them in a quantized,
and bounded, surveillance region S, in the cylindrical co-
ordinate frame M : {Oyps, Par, Uas, Zas }, defined such that
Oy =0y and Zy; = Zy. The Py, V) coordinates are,
respectively, the radial and the azimuth distances.

The surveillance region S is defined as a set of bins b,
with constant size in M, Ap x Ay x Az, and the obstacle
state is represented as the probability of bins b; € S being
occupied. In order to extend the knowledge of the obstacles
to the region of S outside the field of view of the camera,

Uhttps://forum.librepilot.org/
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Fig. 5: Top view (left) of the bin representation and, in red,
the restricted area; a top view (right) of a part of robot’s
trajectory, in gray, projection of the restricted area.

the obstacle state is propagated with the estimated velocity
of the robot.

The choice of the cylindrical coordinate system to express
the obstacle state was motivated by the fact that in such
a system, the volume of the bins increases with the radial
distance. This in turn corresponds to the change of the area
that each pixel of the depth images represents. The pre-fixed,
limited, size of S with a constant number of bins ensures
finite computational time and memory demand.

B. Obstacle Avoidance

To ensure collision-free navigation, the obstacle avoidance
part of the algorithm ought to prevent obstacles from entering
the region of S occupied by the robot. We define the
probability of collision as a joint probability of occupancy
over a subset of bins b; € S C S, where Sy represents the
part of the surveillance region associated to the robot. The
boundary of the restricted area Sg is represented in the right
part of Fig. 5 with the red continuous circle.

Assuming that collisions with obstacles in different bins
are independent, we define the probability of collision with
obstacles in Sg at instant k as

1= IT (1= pia),

i€SR

(20)

where p(Uy(i)) = p; is the probability of bin i being
occupied.

In general, the two main sources of possible collision (i.e.,
an obstacle moving into Sg) are:

a) the operator driving the robot towards an occupied area,
b) uncommanded drift of the robot.

In our previous work [1], we specifically addressed the first
case.

The algorithm described there and employed also in this
work foresees possible collisions based on the user input
and the current obstacle state. The reference velocity for the
robot is obtained by solving an optimization problem over



N steps:

argurjlinj :iwt (1 - H (1 p(Uk-s-t(i)ut)))

t=1 1€ESR
+ wy - |uy) (2D
+wz . |uz|7

where u; = (up, Uy, u,)? is the control input expressed in
the cylindrical coordinates M and represents a transforma-
tion of the obstacle state, and p(Uy¢(4)|u;) is the probability
of occupancy given the input u;. Parameters w;, wy and w,
are the weights that correspond to the probability of collision
at step IV, change of direction, and change of elevation,
respectively. Thus, the algorithm produces a set of N op-
timal control inputs u} that ensure obstacle avoidance and
minimize the change of user input’s magnitude, direction,
and altitude of the robot. The command is then tracked using
the controller described in [1].

It is a passive approach (i.e., no action is performed in
absence of an operator command), and, as proven in the
previous experiments, it is valid under the assumption of an
accurate state estimation and fast control.

C. Active Avoidance

In the current on-board implementation, two main factors
contribute to the second cause of possible collision related
to the presumably lower quality of the on-board velocity
estimate with respect to the estimate provided by an exter-
nal motion capture system. First, the on-board estimate is
affected by larger noise and may be biased for some time.
As a result the quadrotor will naturally drift in the direction
of the error.

The second source of uncommanded drift is related to
the delay in the velocity control loop. As a lower quality
estimate of the velocity is now available, we need to reduce
the gains of the velocity controller, making the system slower
to respond to the reference velocity.

In order to tackle this issue we have individualized a subset
of Sg at its boundary Spg, (between the solid and dashed
red line in the right part of Fig. 5), thus, we can extract the
occupied bins in Sgp as: So = {b; € Sgy : p(U(i) > 0)}.
The algorithm actively checks this region of the obstacle state
for possible obstacles and in a case of detection performs a
repulsive avoidance action.

The active avoidance velocity command w4 is computed
in the opposite direction than the detected obstacles, propor-
tionally to the possibility of collision according to:

UAz —a - P; Lp,
U = = . ,
4 Lw] 2 L= [ (T—=pi) |z

bi€So b, €So '

(22)

where x, is the (x,y) coordinate of bin ¢ in H and a
is a parameter that defines the magnitude of the repulsive
velocity.

The vector w4 is then added to the reference command
obtained from (21) and the new command is sent to the robot.
In the worst case, when there is no motion that clears Sg

from the obstacles, the produced command minimizes the
possibility of collision (20).

VI. EXPERIMENTAL SETUP

Mechanically, the platform is based on a MK-Quadro
quadcopter from MikroKopter, which consists of a frame
with four 10inch propellers powered by brushless motors
with motor controllers. We have retrofitted the robot with a
low-level flight controller based on a CopterControl3D board,
developed in the OpenPilot project, equipped with a 16-bit
digital IMU, i.e., an accelerometer and gyroscope, whose
measurements are used for the state estimation. The flight
controller board runs our original software with the Near-
Hovering controller [25] to track the desired attitude (the
roll and pitch angles, and the yaw rate) and thrust commands
driving the brushless motor controllers over a standard 12C
bus.

The main computational unit is a smartphone-grade single-
board computer Odroid-XU3 running the ROS-based teleop-
eration framework, TeleKyb [2]. It communicates wirelessly
with a ground station PC, transmitting the visual feedback
for the operator (color images from the camera) and re-
ceiving joypad and Omega.6 haptic device inputs. Using
the joypad buttons, the operator can easily switch between
different modes of operation (turn on the motors, initiate
lift-off, switch to the haptic control mode, etc.) and give the
desired velocity with the haptic device while receiving force
feedback as described in more detail in [1].

The main on-board computer communicates with the
flight controller over a serial connection with two software
channels. On one channel, it receives the IMU data with a
500 Hz sample rate, while the second one is used to send the
commands, receive low-rate status data (e.g., battery voltage
level) and change some low-level controller settings (e.g.,
the controller gains).

The platform has two optical sensors, an RGB-D camera
(Asus Xtion Pro) mounted horizontally in the forward direc-
tion, which is used as the source of data for obstacle detection
and to provide RGB visual feedback to the operator, and
an optical flow sensor with a built-in echo sonar (PX4Flow,
[23]) oriented downward. The complete platform depicted in
Fig. 2 weights approximately 1.3 kg.

VII. EVALUATION

We validated the performance of our approach to obstacle
avoidance with on-board state estimation in different setups,
including both, horizontal and vertical obstacles. We per-
formed more than 50 experiments, in which the operator
was able to guide the robot along the full preplanned path
with a success rate of over 94%. Excessive motion of the
platform, due to drift in the state estimation, caused early
termination of two experiments, which were aborted as safety
measure to prevent crashes. Although the robot drifted, it
merely touched an obstacle, as our algorithm was still able
to limit the platform’s velocity and prevent major collisions.

In this section, we present selected results from our
experiments with the following setting of the algorithm’s
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velocity - user input and output of the algorithm - avoidance velocity.

parameters. With its radius doubled with respect to [1], the
size of surveillance region .S was set as:

p€10,3m], ze[-15m,1.5m],
1
Ap=0.1m, AYp= %ﬂrad, Az=0.1m,
and the restricted area S occupied by the robot as:
p€[0,0.5m], z€[-0.3m,0.2m].
The weights used in the cost calculation (21) are:
wy = 10, wy, = 3, w, = 3.
These values have been hand-tuned according to heuristic
criteria through experiments by the operator to adjust the
avoidance behavior.
The first experiment consisted of a corridor with four walls

perpendicular to the desired trajectory. The gap between
the walls was set such that it did not allow for a straight,

collision-free motion from the one end to the other. The
operator commanded the robot to fly along the corridor,
make a u-turn after the last obstacle, and return. A full 3D
view of the obstacle setup and the robot’s trajectory together
with the operator’s and the avoidance commands can be
seen in the left part of Fig. 6. Additionally, to illustrate the
compactness of the setting, we show the ground projection
of the trajectory with the gray shaded area corresponding to
the robot’s size. The left part of Fig. 5 shows a close view of
avoidance of one of the walls with detailed presentation of
corresponding commands. As can be seen in the right part
of Fig. 7, the avoidance algorithm added additional lateral
components to navigate between the obstacles, while limiting
the longitudinal component when necessary.

The left part of Fig. 7 presents the results of the state
estimation (x and y velocities) from this experiment together



TABLE II: Mean and standard deviation of the velocity
estimation error

‘ Herror “ Oerror
< | 0.0004 0.0312
y | 0.0018 0.0231

with the corresponding ground truth data, obtained with an
external tracking system. The mean and standard deviation
of the error is shown in Table II.

The second experimental setup presented here, consists of
two horizontal obstacles along the desired path of the robot.
In this case, our algorithm altered the commanded velocity
in the vertical direction resulting in motions below and above
corresponding obstacles. The 3D trajectory of the robot can
be seen in the right section of Fig. 6, split in two subplots
(top going forward, bottom coming back after the u-turn) for
better clarity.

The interested reader is invited to watch the accompanying
video illustrating the presented experiments and the results
of our algorithm.

VIII. CONCLUSIONS

In this work, we have developed a self-contained teleop-
erated quadrotor, in terms of sensor equipment and com-
putations. The platform is able to estimate its state in an
indoor, GPS-denied environment, using IMU and optical flow
integration. It can also detect and avoid obstacles using a
single RGB-D camera. In order to extend the limited field
of view of the camera, we have implemented an obstacle
tracking algorithm based on the Bin-Occupancy filter. The
estimated obstacle state is used to predict possible collisions
and to modify the velocity commanded by the operator to
avoid obstacles. We have successfully performed multiple
experiments in different obstacle setups to validate our
approach, performing all computation on-board.
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