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Abstract: Coarse-grained molecular simulation models can provide significant insight into the
complex behavior of protein systems, but suffer from an inherently distorted description of dynamical
properties. We recently demonstrated that, for a heptapeptide of alanine residues, the structural and
kinetic properties of a simulation model are linked in a rather simple way, given a certain level of
physics present in the model. In this work, we extend these findings to a longer peptide, for which
the representation of configuration space in terms of a full enumeration of sequences of helical/coil
states along the peptide backbone is impractical. We verify the structural-kinetic relationships by
scanning the parameter space of a simple native-biased model and then employ a distinct transferable
model to validate and generalize the conclusions. Our results further demonstrate the validity
of the previous findings, while clarifying the role of conformational entropy in the determination
of the structural-kinetic relationships. More specifically, while the global, long timescale kinetic
properties of a particular class of models with varying energetic parameters but approximately fixed
conformational entropy are determined by the overarching structural features of the ensemble, a shift
in these kinetic observables occurs for models with a distinct representation of steric interactions.
At the same time, the relationship between structure and more local, faster kinetic properties is not
affected by varying the conformational entropy of the model.

Keywords: helix-coil transition; structural-kinetic relationships; coarse-grained dynamics; Markov
state models

1. Introduction

Coarse-grained (CG) molecular simulation models have played a key role in laying the foundation
for modern theories of protein folding, and continue to provide significant insight into the complex
dynamical processes sampled by biological macromolecules [1,2]. These models are useful for
providing microscopic interpretations that complement experimental findings, especially for systems
and processes that are computationally out of reach for atomically-detailed models. For example,
single-molecule experiments probe a large range of complex kinetic processes sampled by biomolecular
systems, but require an underlying molecular model for accurate structural interpretations [3]. The
computational effort required to investigate a system not only depends on the sheer number of
particles but also on the range of relevant timescales, thermodynamic and chemical conditions, as well
as system variations (i.e., mutations). Therefore, it is clear that CG models will continue to be essential
for providing consistent and exhaustive interpretations for experimental observations.

Despite significant advances in the development of chemically-specific CG models for proteins [4-7],
a fundamental challenge severely limits the predictive capabilities of CG models—the interpretation
of CG dynamical properties. The process of removing degrees of freedom from a system typically
results in decreased molecular friction and softer interaction potentials. This effect is a double-edged
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sword: Effectively speeding up the sampling of configuration space while obscuring the connection
to the true dynamics of the system. These “lost” dynamics not only prevent quantitative prediction
of kinetic properties, but may also lead to qualitatively incorrect interpretations generated from
CG simulations [8,9]. Unlike many polymer systems, where a homogeneous dynamical rescaling
factor is capable of recovering the correct dynamics of the underlying system [10,11], the rescaling
associated with the complex hierarchy of dynamical processes generated by biological molecules is
likely a complex function of the system’s configuration. Consequently, the application of bottom-up
approaches that aim to re-insert the appropriate friction via a generalized Langevin equation remains
conceptually and computationally challenging [12].

We recently demonstrated that, if a CG model incorporates certain essential physics, simple
relationships between structural and kinetic properties may emerge [13]. These structural-kinetic
relationships represent powerful tools that can be employed to ensure a CG protein model generates
consistent kinetic information, in terms of both relative timescales of dynamical processes and
the dynamical pathways sampled during a particular process. To identify these relationships we
considered a model system for helix formation—a heptapeptide of alanine residues—and employed
a flavored-Go model [14-16], whose parameters are easily tuned to generate particular structural
features. To ensure accurate modeling of the structural ensemble, i.e., to avoid sterically forbidden
conformations, we incorporated a detailed representation of steric interactions into the model. We
then performed a systematic search through parameter space, afforded by the simplicity of the model,
and analyzed correlations between the emergent structural and kinetic properties. To validate the
generality of our conclusions, we also considered a transferable model with more complex interaction
potentials but a slightly simpler representation of steric interactions.

In this study, we investigate the robustness of our previous conclusions by considering a longer
peptide with experimental reference data—the capped, helix forming peptide AC-(AAQAA )3 - NH,.
We follow the strategy of our previous study, while expanding upon the models employed, which
clarifies the impact of model representation or, more precisely, conformational entropy on the resulting
structural-kinetic relationships. More specifically, by varying the energetic parameters of a given
model type, we keep the conformational entropy approximately fixed and demonstrate that the
global, long timescale kinetic properties (i.e., ratio of folding to unfolding timescales) are determined
precisely by the average helical content of the ensemble. Comparison between two distinct model types
demonstrates a shift in the timescale ratios due to the change in model representation. Furthermore, by
adjusting the steric interactions of one model type, we provide clear evidence that the conformational
entropy is the dominant contributor to this shift. In contrast, we find that more local, faster kinetic
processes are consistently determined by structural features of the ensemble, regardless of the precise
model representation.

2. Computational Methods
2.1. Coarse-Grained (CG) Models

2.1.1. Hybrid Go (Hy-Go)

To investigate the relationship between structural and kinetic properties generated from CG
simulation models, we employ a Go-type model [17], which defines attractive interactions based on
the location of atoms in the native structure. More specifically, we use a flavored-Go model with
three simple, Go-type parameters [14-17]: (i) a native contact (nc) attraction, Uy, employed between
pairs of C, atoms which lie within a certain distance in the native structure, i.e., the a-helix, of the
peptide, (ii) a desolvation barrier (db) interaction, Uy, also employed between native contacts, and
(iii) a hydrophobic (hp) attraction, Uy, employed between all pairs of Cg atoms of the amino acid
side chains. The same functional forms are employed as in many previous studies [16], with a tunable
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prefactor for each interaction as described below. The form of the interactions are illustrated in the top
two panels of Figure 1.
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Figure 1. A visualization of the Hy-Gomodel representation and interactions for (AAQAA);.
(Left) Illustration of a native contact between C, atoms and a generic contact between Cg
atoms, along with the corresponding parameters, {€nc, €4p, €np }, associated with these interactions.
(Right) The top two panels present the interaction potentials for the Go-type interactions as a
function of the model parameters. In the top panel, €4, = 0.5enc. The bottom panel presents the
Weeks-Chandler-Andersen-like potentials employed to model sterics along the peptide backbone.

In addition to the three Go-type interactions, we also partially employed a standard AA
force field, AMBER99sb [18], to model both the steric interactions between all non-hydrogen
atoms and also the specific local conformational preferences along the chain. More specifically,
the bond, angle, dihedral, and 1-4 interactions of the AA force-field are employed without
adjustment. To incorporate generic steric effects, without including specific attractive interactions, we
constructed Weeks-Chandler-Andersen potentials [19] (i.e., purely repulsive potentials) directly from
the Lennard-Jones parameters of each pair of atom types in the AA model (bottom panel, Figure 1).
For simplicity of implementation, we then fit each of these potentials to an ~!2 functional form. The
van der Waals attractions and all electrostatic interactions in the AA force field were not included and
water molecules were not explicitly represented. The total interaction potential for the model may
be written: Utot = €nclUnc + €4bUdb + €npUnp + €pb Upp, Where the backbone (bb) interaction includes
both the intramolecular and steric interactions determined from the AA force field. The first three
coefficients represent the only free parameters of the model, while €, = 1.

The philosophy of this model is that the three Go-type interactions will roughly sample the correct
conformational ensemble for short peptides, while atomically-detailed local sterics restrict the model to
sample a physically-realistic ensemble of structures. More specifically, the steric interactions ensure that
(i) conformations that are sterically forbidden in the all-atom (AA) model are not sampled and (ii) the
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relevant regions of the Ramachandran plot are sampled, while retaining barriers between metastable
states. We have previously determined that these characteristics are essential for constructing models
with reasonable kinetic properties [9,20]. Although the local sterics of the backbone are modeled with
near-atomistic resolution, the Hy-G6 model substitutes the full atomistic description of the peptide
with a highly coarse-grained representation by modeling the complex combination of dispersion and
electrostatic peptide-peptide and peptide-solvent interactions with a limited set of simple interactions
between C, and Cg atoms. Note that this is quite distinct from all-atom Go6 [21] models, which employ
atomically-detailed energetic parameters based on the positions of each atom in the native structure.

2.1.2. PLUM

As an alternative CG model, we considered PLUM, which also describes the protein backbone with
near-atomistic resolution, while representing each amino acid side chain with a single CG site, within
an implicit water environment [6]. In PLUM, the parametrization of local interactions (e.g., sterics)
aimed at a qualitative description of Ramachandran maps, while longer-range interactions—hydrogen
bond and hydrophobic—aimed at reproducing the folding of a three-helix bundle, without explicit
bias toward the native structure [6]. The model is transferable in that it aims at describing the
essential features of a variety of amino-acid sequences, rather than an accurate reproduction of any
specific one. After parametrization, it was demonstrated that the PLUM model folds several helical
peptides [6,22-25], stabilizes B-sheet structures [6,26-29], and is useful for probing the conformational
variability of intrinsically disordered proteins [30]. We also considered four minor reparametrizations
of the PLUM model:

the side chain van der Waals radius is decreased to 90% of its original value [20].

the hydrogen-bonding interaction strength is decreased to 94.5% of its original value [30].
the hydrogren-bonding interaction strength is decreased to 90% of its original value.

the side chain interaction interaction strength is decreased to 95% of its original value.

Ll

Although PLUM provides a near-atomistic representation of the peptide backbone,
the representation is coarsened with respect to the atomically-detailed backbone and side chain sterics
of the Hy-Go model. It is important to note that while parametrizations 2—4 change only energetic
parameters (i.e., approximately fixed conformational entropy), parametrization 1 significantly changes
the conformational entropy of the system by adjusting the steric interactions of the amino acid side
chains. In the following, we refer to the latter as the PLUM-ent model.

2.2. Simulation Details

In this study, we consider the capped helix forming peptide AC-(AAQAA)3-NH,, which has
been extensively characterized both computationally and experimentally [31] and is often employed
as a reference system for force field optimization. Throughout the manuscript, we refer to the system
simply as (AAQAA)s.

2.2.1. Hy-Go

CG molecular dynamics simulations of (AAQAA )3 with the Hy-G6 model were performed with
the Gromacs 4.5.3 simulation suite [32] in the constant NVT ensemble, while employing the stochastic
dynamics algorithm with a friction coefficient v = (2.0 7°)~! and a time step of 1 x 1073 7. For each
model and for each temperature considered, 40 independent simulations were performed with starting
conformations varying from full helix to full coil. Each simulation was performed for 100,000 75,
recording the system every 0.5 75. The CG unit of time, 75, can be determined from the fundamental
units of length, mass, and energy of the simulation model, but does not provide any meaningful
description of the dynamical processes generated by the model. In this case, 7° = 1 ps.
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2.2.2. PLUM

CG simulations of (AAQAA )3 with the PLUM force field [6,24,33] were run using the ESPRESSO
simulation package [34]. For details of the force field, implementation, and simulation parameters,
see Bereau and Deserno [6]. For each temperature considered, a single canonical simulation was
performed for 2,500,000 7* with at timestep of 0.01 7T, recording the system every 0.5 7', where
TP ~ 0.1 ps. Temperature control was ensured by means of a Langevin thermostat with friction
coefficient y = (1.0 77) 1,

2.3. Lifson-Roig Models

According to the Lifson-Roig (LR) formulation [35,36], a peptide system is treated as a 1D-Ising
model, which represents the state of each residue as being either helical, h, or coil, c. These simple
equilibrium models employ two parameters, w and v, which are related to the free energy of
helix propagation and nucleation, respectively. These parameters may be determined directly from
simulation data using a Bayesian approach [31], and describe the overarching structural characteristics
of the underlying ensemble. The average fraction of helical segments, (f},), i.e., propensity of sequential
triplets of h states along the peptide chain, is directly determined from {w, v}. Although residue- or
sequence-specific LR parameters may be determined in order to more faithfully reproduce the helix-coil
properties generated from a simulation of a particular peptide system, in this work we determine a
single set of {w, v} for each simulation model. These simple models are incapable of describing certain
features, e.g., end effects, of the underlying systems; however, we utilize the LR parameters only as a
characterization tool. For consistent comparison with the experimentally-determined w parameter, we
determine w for each model while setting v = 0.05.

2.4. Markov State Models

Given a trajectory generated from molecular dynamics simulations, Markov state models (MSMs)
attempt to approximate the slow modes of the exact dynamical propagator with a finite transition
probability matrix, T(7) [37-39]. This requires a discretization of configuration space, which groups
all possible configurations into a manageable set of microstates. Once the microstates are chosen,
the number of observed transitions from microstate i to j at a time separation T, Cl@]-bs (7), is determined.

The matrix of transition counts, C°*(t), embodies the dynamics of the simulation trajectory. An
estimator for the transition probability matrix is then constructed such that the simulation data
is optimally described, while ensuring normalization and detailed balance constraints. The latter
constraint applies to any system at equilibrium and alleviates finite-sampling issues. The transition
probability matrix is constructed by maximizing the posterior p(T | C) « p(C | T) =[T;; Tl?/ , where
we applied Bayes’ theorem and a uniform prior distribution [40].

In the present work, MSMs are built from the (AAQAA)3 helix-coil trajectories generated by each
CG model. To determine the MSM microstate representation, time-lagged independent component
analysis [41] was performed on the configurational space characterized by the ¢ /¢ dihedral angles of
each residue along the peptide backbone. A density clustering algorithm, developed by Sittel et al. [42],
was then applied to the five “most significant” dimensions in order to determine the number and
placement of microstates. We employed the same parameters as used in the original publication for
clustering along an all-atom trajectory for Alay. In particular, we used a radius of R = 0.1, an energy
spacing of 0.1 kgT for the free energy screening, and an energy spacing of 0.2 kgT for constructing the
network of clusters. A population minimum of 400 and 200 samples per cluster were employed for the
Hy-Go6 and PLUM models, respectively.

This semi-automated procedure for determining the relevant microstates yields a different number
of microstates for each system and for each temperature considered. To estimate the average structural
characteristics for a given microstate, we first performed a simple regular space, two-state clustering
along the ¢ dihedral angle for each peptide bond. This resulted in a dividing surface approximately
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at the barrier between a and  metastable states on the Ramachandran plot. We denoted « states as
h and p states as c and determined an approximate trajectory of the sequence of h/c states. We then
compared this trajectory with the trajectory generated from the density clustering and determined
the average h/c content for each microstate. These quantities were used to determine the Lifson-Roig
parameters, but do not inform the construction of the MSM in any way.

Following the determination of microstates, the simulation trajectories were “cored” using
the most probable path analysis [43] to avoid imperfect definitions of dividing surfaces between
microstates. A constant waiting time was used for all microstates and was determined for each
system individually in order to ensure that the resulting implied timescales of the model were
approximately constant with increasing lag time. This resulted in waiting times between 20 and
100 T5(TT) depending on the particular parametrization of the Hy-G6 (PLUM) model and the
simulation temperature. Using the cored microstate trajectories, MSMs were generated via a standard
maximum-likelihood technique [40]. For each MSM, the lag time was chosen in the normal way by
constructing MSMs for increasing lag times to determine when the resulting set of timescales were
converged. Typically, the lag time closely corresponded to the waiting time used in the coring analysis
and did not exceed three times this number. Figure 2a presents a representative implied timescale plot.
To validate the resulting models, we performed the standard Chapman-Kolmogorov tests in order
to compare the probability decay from various metastable states estimated from the simulation and
predicted from the MSM. Figure 2b presents a representative Chapman-Kolmogorov result for the
decay of probability from the helix state as a function of time. MSM construction and analysis were
performed using the PYEMMA package [44].
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Figure 2. (a) Representative implied timescale test. Each line represents a different characteristic
timescale of the Markov state model as a function of lag time. The vertical dashed line denotes the lag
time chosen in this case. (b) Representative Chapman-Kolmogorov test. The “helix” state corresponds
to the microstate for each model with the highest helical content (see Methods section for details).
The blue solid curve presents the probability decay of the helix state, as determined directly from the
simulation trajectory, while the red dashed curve presents the same quantity determined from the
MSM. The transparent cyan and orange regions denote the error bars for each quantity.

We note that in the following analysis the uncertainty of observables estimated from MSMs or
from the LR models is not explicitly determined. This uncertainty is difficult to accurately estimate
because we are determining these properties via a simplified description of the simulation, which
results in compounding sources of errors. In particular, there are errors due to both the approximate
representation of configuration space and also sampling errors from the simulation. We have
minimized the latter by running many independent simulations for each model as described above,
while the former is assessed via the implied timescale and Chapman-Kolmogorov tests discussed in
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this section. While there are methods for estimating the uncertainty in, e.g., the transition probability
elements, this becomes prohibitively expensive for the large number of distinct MSMs considered in
this work. Since the correlations between observables determined in the work demonstrate very small
variations (as indicated by the Pearson correlation coefficients), we assert that the uncertainty in the
observables is rather small, resulting in robust conclusions extracted from the analysis.

3. Results and Discussion

In this study, we investigate the relationship between structural and kinetic properties of helix-coil
transition networks generated by microscopic simulation models. As a structural-characterization
tool, we construct Lifson-Roig (LR) models from each simulation trajectory. Although the kinetics of
helix-coil transitions are often interpreted in terms of a kinetic extension of the Ising model [45,46],
the precise impact of the model’s assumptions on the fine details of the resulting kinetic network is not
well understood. For example, we recently demonstrated that the topological details of the kinetic
networks generated by various simulations models for Alay may vary drastically, while generating
nearly identical structural properties [13]. Here, we construct Markov state models (MSMs) directly
from the simulation trajectories, allowing a more complex relationship between the LR parameters
and the kinetic properties of the system.

As a model system, we investigate the AC-(AAQAA )3 - NH; peptide, which contains 15 peptide
bonds. From the LR point of view, there are 215 states, determined by enumerating the various
sequences of helical (h) and coil (c) states along the peptide backbone. However, this representation
is inappropriate for constructing MSMs from the simulation trajectories. Instead, we systematically
determine coarser, representative microstates, which correspond to collections of the more detailed
configurations of the system. See the Methods section for a detailed description of microstate
determination. For reference, we employ data from previous analysis of the (AAQAA); system [31].
In particular, we characterize the ensembles generated by CG simulation models with respect to those
obtained from NMR experiments and from simulations of the ff03* all-atom (AA) model.

We consider two distinct types of CG models in this study, as described in greater detail in the
Methods section. First, we employ a relatively simple, native-biased CG model. The hybrid Go
(Hy-G6) model, is a flavored-Go model [14-16], with 3 Go-type interactions and also physics-based
interactions in the form of sterics and torsional preferences along the backbone [13]. We constructed
15 distinct Hy-Go parametrizations by varying the Go-type interactions while keeping the steric
interactions fixed (i.e., the conformational entropy of the models remains approximately unchanged).
We also considered the transferable PLUM model [6] along with four minor reparametrizations. Three
of the reparametrizations also corresponded to changing only the energetic parameters, while one
reparametrization changed the side chain bead size and, thus, the conformational entropy with respect
to the other PLUM models. We simulated each model over a range of temperatures to assess their
thermodynamic properties (i.e., the temperature dependence of structural quantities). The energy
scales of the models were aligned by shifting the temperature scale such that the average fraction of
helical segments (i.e., three consecutive helical states), (f},), at the reference temperature, T*, matched
the experimental value at 300 K. For each model and each temperature considered, we determined the
two LR parameters, {w, v}, and constructed an MSM directly from the simulation data.

3.1. Properties of the (AAQAA)3 Helix-Coil Transition

We characterized the overall structure of each ensemble in terms of the LR free energy
of helix extension, w, and the average fraction of helical segments, (f,). Figure 3a,b present
these two quantities, respectively, as a function of temperature for the 15 Hy-Gomodels
(colored curves with circle markers) and five PLUM models (gray-scale curves). The
original PLUM model and three energetic reparametrizations are denoted with square
markers, while the steric reparametrization, named “PLUM-ent”, is denoted with an X
marker. From the temperature dependence of w, we fit a thermodynamic model to quantify
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the T-independent enthalpy and entropy of helix extension. In particular, we assume
kgTInw(T) ~ AHy, — TASyp,, neglecting the heat capacity contributions to the free energy and
considering a relatively small range in T. AHyy, corresponds to the slope of the curves in Figure 3a and
is a simple measure of the cooperativity of the transition. For consistency with the CG models, we fit
the experimental w values from a similarly small temperature range, resulting in a slightly inflated
experimental AHyy, compared with that reported in previous work [31].
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Figure 3. Temperature dependence of the Lifson-Roig helix propagation parameter, w (a), and the
average fraction of helical segments, (f;,) (b). The curves presented are a linear fit of the raw data.
(c) The slope of In(fy,)(1/T), denoted Af;,, versus the enthalphy of helix extension (determined as the
slope of Inw(1/T)). Data from the Hy-Go models are denoted with circle markers and are colored
according to their relative cooperativity (as determined by A f},). The results from the PLUM models
are colored in gray-scale according to AHyy,. The energetic reparametrizations of PLUM are indicated
with square markers, while the PLUM-ent model is indicated with X markers. The experimental and
all-atom results taken from Best and Hummer [31] are denoted with triangle magenta and dark blue
markers, respectively. Note that the models are aligned by shifting the temperature such that all models
achieve (f;,)®Pt at T*.

Figure 3c presents the slope of In{f,)(1/T), denoted simply Afy,, versus AHy,, for each model.
Recall that within the LR formulation, both the helix extension parameter, w, and the helix nucleation
parameter, v, contribute to determining the average fraction of helical segments, (fy,). Since it
is typically assumed that v is dominated by entropic contributions [36], one may expect a linear
correlation between A fy, and AHy,, for models with similar conformational entropy (i.e., models that
differ only by their energetic parameters). (Note that although we determine LR models with fixed
v, the corresponding entropic effects are effectively folded into w to generate the appropriate (fy)).
Indeed, Figure 3c demonstrates that both the Hy-Gd and PLUM models (except the PLUM-ent model,
gray X marker) generate individual linear correlations between Af,, and AHyy,. This is consistent
with our previous results for Alay [13]. For models with differing conformational entropy, we expect,
in general, distinct trends between Af}, and AHyy,, as long as entropy is playing a significant role in
determining (f},). This is clearly the case for the Hy-Go and PLUM models for (AAQAA)3 (Figure 3c).
In our previous investigation of Ala; [13], we found a consistent linear correlation for both model
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types. This could be because either (i) entropy does not play a significant role in determining (f},) or (ii)
The PLUM models considered happened to fall on the intersection of the two linear trends. The
implication of conformational entropy as the dominant factor in the difference between the two linear
correlation trends in Figure 3c is strongly supported by the PLUM-ent model, which represents a
change in the conformational entropy via adjustment of steric interactions. For this model, the van der
Waals radius of the side chain was adjusted to better represent the Ramachandran regions sampled by
a higher-resolution model. This adjustment results in a A f, / AHyy, trend in closer agreement with the
Hy-Go models, which employ detailed steric interactions that faithfully describe the conformational
entropy of the peptide backbone. Figure 3c demonstrates that the slope of the A f, / AHyy, correlation
for the various parametrizations of the Hy-Go model is consistent with both experimental and AA
results [31].

3.2. Validation of Structural-Kinetic Relationships for (AAQAA)3

Our previous work identified a robust relationship between structural and kinetic properties
generated by distinct models for Alay [13]. In particular, it was demonstrated that the average fraction
of helical residues, (Ny,), and the average fraction of helical segments, ( f,), determined the ratio of rates
for characteristic nucleation and elongation processes. The calculation of nucleation and elongation
rates for Alay depended upon the identification of particular microstates representing nucleation states
of the peptide. Here, the situation is complicated by our heterogeneous microstate representation
for the (AAQAA )3 ensembles. For this reason, we first considered coarser processes—global folding
and unfolding of the peptide. We define the timescales of folding, t;,, and unfolding, t,,¢, as the
mean first passage times from the coil ensemble to the full helix state and vice versa, respectively. The
coil ensemble is comprised of all microstates whose average structure contains no consecutive set of
three residues with greater than 50% helicity (according to a naive dividing surface definition of the
helical state of a single residue, see Methods section for details). Subsequently, we also considered
faster processes corresponding to the waiting time that each residue, 7, spends in a helical state before
transitioning to the coil state, t,,[h — c], and vice versa, i, [c — h]. These waiting times were calculated
using the two-state dividing surface along the ramachandran plot, as described in the Methods section.
Note that since the CG unit of time does not correspond to a physical time, there is always an arbitrary
speed-up associated with dynamical properties generated by CG models. For this reason, we only
consider ratios of timescales, to effectively account for this speed-up.

Figure 4ai presents the temperature dependence of the ratio of folding to unfolding timescales.
Remarkably, the Hy-G6 models generate nearly identical folding versus unfolding timescales at the
reference temperature T*, regardless of the particular parametrization. The PLUM models with similar
conformational entropies also demonstrate similar folding to unfolding ratios, although the variance is
somewhat higher than the Hy-G6 models. Recall that the energy scales of the models are aligned by
shifting the temperature such that all models have the same value of (f,,) at T*. Thus, similar to our
previous results for nucleation/elongation timescales, the folding/unfolding timescales are largely
determined by the average fraction of helical segments in a consistent manner over all parametrizations
of a given model type. However, in this case, there is a shift in the timescale ratio at the reference
temperature depending on the details of the model representation. This is supported by the fact that
the PLUM-ent model (Figure 3c) displays kinetics at the reference temperature which are closer in
line to the Hy-Go models. The validity of the structural-kinetic relationship is further demonstrated
in Figure 4aii, which presents the slope of the curves in panel (ai) versus the enthalpy of helix
elongation, AHyy,. Interestingly, the temperature-dependence of the timescale ratio is dictated by AHyy,,
determined from the LR model, rather than the slope of the actual helical content, Afj,, albeit these two
quantities largely coincide within a model class. It is noteworthy that this particular structural-kinetic
relationship is one that is well-known—the ratio of folding to unfolding timescales quantifies the free
energy difference between the folded and the unfolded state for a two-state folder [47].
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Panel (b) of Figure 4 presents similar results to panel (a), but for the ratio of waiting time in
the helical (h) state to waiting time in the coil (c) state for a particular residue i. Here, i represents
a position on the helix and an average is performed over residues in that position from either end
of the helix. In particular, panel (b) presents results from the terminal ends of the helix (excluding
capping groups), which corresponds to the fastest h to c transitions along the peptide chain. However,
equivalent results were obtained for each position along the peptide. Unlike the folding to unfolding
ratios, the various models generate distinct waiting time ratios at T*. However, panel (bi) demonstrates
that the differences in the ratios is determined by structural features of the ensemble at T*, namely,
the average fraction of helical residues, (N},), and the average fraction of lone helices, (N}). In other
words, while the global folding to unfolding ratio is determined only by the average fraction of
helical segments, the consistency of local kinetics requires further alignment of the structural ensemble.
Correspondingly, panel (bii) demonstrates that the temperature dependence of the ratio of waiting
times depends not only on AHyy, but also the temperature dependence of (Ny,) and (Nj).
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Figure 4. (ai) Temperature dependence of the ratio of folding to unfolding timescales, t(,)/t . (aii)
Slope of the linear fit of In(t;/ty,¢) as a function of inverse temperature versus the enthalphy of
helix extension, AHy, (determined as the slope of Inw(1/T)). (bi) Ratio of waiting time in the helix
state, t,[h — c], to waiting time in the coil state, ti,[c — h], for residue position i as a function of
the average fraction of helical residues, (N},), and the average fraction of lone helices, (N}), at T*.
The free parameter, c;, was determined by a fit over all models to maximize the pearson correlation
coefficient, R, between the plotted quantities. Here, i corresponds to the terminal ends of the peptide
(not including capping groups). (bii) Slope of the linear fit of In(ti,[h — c]/t\,[c — h]) as a function of
inverse temperature versus AHyy, the slope of the linear fit of (N},) as a function of inverse temperature,
and the slope of the linear fit of (N}) as a function of inverse temperature. The free parameters, dj, and
d;, were determined by a fit over all models to maximize the pearson correlation coefficient, R, between
the plotted quantities. Data from the Hy-Go6 models are denoted with circle markers and are colored
according to their relative cooperativity (as determined by Afy). The results from the PLUM models
are colored in gray-scale according to AHyy,. The energetic reparametrizations of PLUM are indicated
with square markers, while the PLUM-ent model is indicated with X markers.
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3.3. Thermodynamics and Transition Network Topology

Our previous analysis of Ala; suggested that topological features of the transition network
at a single reference temperature may be capable of determining the thermodynamics (i.e.,
temperature dependence) of the model, without explicitly taking into account simulations at various
temperatures [13]. We found that the distribution of paths from full helix to full coil states in the
network provided a good characterization of the topology of the network. To quantify this distribution,
we employed the conditional path entropy [48], H,y),, which characterizes the average degree of
randomness for paths from s to d passing through a particular intermediate state, 1. Our hypothesis
was that models with more directed transitions to the helix state, i.e., lower average conditional path
entropy in the folding direction, would undergo a faster change in helical content with decreasing
temperature (i.e., higher cooperativity). Our results demonstrated that this naive picture was partially
valid, although a more complex relationship between the topology and cooperativity was necessary
for a quantitative description [13].

Figure 5 presents the conditional path entropy in the folding direction, averaged over all
intermediate states, versus AHy,, for each model. Note that the PLUM-ent model was left out because
its microstate representation contained too few states to produce meaningful results with this analysis.
It is also important to note that the models were not simulated exactly at T*, introducing errors into
any legitimate trend. For numerical convenience, we weighted each of the features by the fractional
flux passing through each state. We also chose to normalize the path entropies by the total number

of paths for each network. Similar to our previous results, <H§gl‘u

(T*)) provides a rough description
of cooperativity of the model. Extrapolating to the experimental value of AHyy, (~1.9 kcal - mol 1),
Figure 5 implies that the experimental helix-coil transition would have a very low conditional path
entropy and, thus, it undergoes an incredibly directed transition from helix to coil state. This is in line
with the conventional view of a two-state transition, where there is an exponential suppression of

intermediate states [23].
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Figure 5. Average conditional path entropy in the folding direction versus the enthalpy of helix
extension, AHyy, (determined as the slope of Inw(1/T)).

4. Conclusions

We recently demonstrated structural-kinetic relationships for peptide secondary structure
formation that emerge if a CG model incorporates certain essential physics [13]. In this work, we
further validate these structural-kinetic relationships for a longer peptide, where the representation
of configuration space in terms of the full enumeration of sequences of helical/coil states along the
peptide backbone is impractical. Furthermore, the role of conformational entropy in the determination
of these relationships was clarified by distinguishing between models with fixed or varying steric
interactions. More specifically, a change in the conformational entropy, achieved by either changing
the model representation or by explicitly adjusting the steric interactions, results in a shift in the global,
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long timescale kinetic observables at the reference temperature. However, this does not affect the
temperature dependence of the kinetic properties, which vary consistently with the enthalpy of helix
extension. Additionally, local kinetic properties are determined by structural features of the ensemble,
without dependence on the model representation. The semi-automated construction of Markov state
models provides a network picture of dynamics, allowing at least the partial characterization of
temperature-dependent quantities from a single reference temperature. In combination with our
previous work [9,13,20], the results presented here provide a potential strategy for ensuring kinetic
accuracy in CG models through the matching of particular structural quantities. This approach requires
further identification and validation of structural-kinetic relationships for tertiary structure formation,
and may be especially useful for providing structural interpretations for kinetic protein experiments.
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