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Abstract
Purpose of the Review Weather and climate extremes substantially affect global- and regional-scale carbon (C) cycling,
and thus spatially or temporally extended climatic extreme events jeopardize terrestrial ecosystem carbon sequestration.
We illustrate the relevance of drought and/or heat events (BDHE^) for the carbon cycle and highlight underlying
concepts and complex impact mechanisms. We review recent results, discuss current research needs and emerging
research topics.
Recent Findings Our review covers topics critical to understanding, attributing and predicting the effects of DHE on the terrestrial
carbon cycle: (1) ecophysiological impact mechanisms and mediating factors, (2) the role of timing, duration and dynamical
effects through which DHE impacts on regional-scale carbon cycling are either attenuated or enhanced, and (3) large-scale
atmospheric conditions under which DHE are likely to unfold and to affect the terrestrial carbon cycle. Recent research thus
shows the need to view these events in a broader spatial and temporal perspective that extends assessments beyond local and
concurrent C cycle impacts of DHE.
Summary Novel data streams, model (ensemble) simulations, and analyses allow to better understand carbon cycle impacts
not only in response to their proximate drivers (drought, heat, etc.) but also attributing them to underlying changes in
drivers and large-scale atmospheric conditions. These attribution-type analyses increasingly address and disentangle
various sequences or dynamical interactions of events and their impacts, including compensating or amplifying effects
on terrestrial carbon cycling.
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Drought, Heat, and the Carbon Cycle:
an Introduction and Overview

The Earth’s climate is inherently variable on time scales
from seconds to millennia [1], including extreme condi-
tions on time scales of a few days to several years [2].
These extremes affect the biosphere, inducing substantial
changes in the functioning of terrestrial ecosystems. These
changes further affect regional- and global-scale variability
in the C cycle via multiple, sometimes not yet understood,
and often highly nonlinear processes [3–5], including
lagged effects that may perturb ecosystem C cycling from
years to decades [6, 7].

For example, during the European heat wave and
drought 2003, losses of up to 0.5 PgC were reported
([8]), corresponding to 4 years of terrestrial net carbon
uptake [8]. This would be equivalent to half of the an-
nual anthropogenic CO2 emissions (2015 levels) of the
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28 European Union member states (i.e., 0.99 PgC1), im-
plying that targets and policies for reducing anthropogen-
ic CO2 emissions (e.g., 20% on an EU level by 2020
relative to 1990 levels2) could be simply offset by positive
C cycle feedbacks in a more extreme climatic regime. However,
Vetter et al. and Bastos et al. [9, 10] estimate lower C releases for
the same event based on different baselines, spatio-temporal
event definitions (including whether the event is regarded as a
drought or heat wave) and datasets, illustrating high methodo-
logical uncertainties and sensitivity to baseline choice of such
calculations. Hence, improved understanding of the effects of
DHEs on the carbon cycle is essential to evaluate the carbon
sequestration potential of the terrestrial biosphere.

Complexities of Drought and Heat Extreme Impacts
in the Terrestrial Carbon Cycle

Seven years after the European heat wave, a heat event of sim-
ilar magnitude hit Western Russia [11]. While events of such a
magnitude have not been observed at least since the beginning
of the instrumental record [11] and both induced reductions in
net carbon uptake [8–10, 12], the primary pathways through
which these events affected terrestrial carbon cycling were not
identical: in the case of Europe 2003, direct plant physiological
responses to drought stress led to a reduction in gross primary
productivity (GPP, for conventions regarding carbon fluxes,
please see [13]) that was accompanied by a significant but
smaller reduction in respiration [12]. In the case of Russia
2010, forests responded mainly to heat rather than to drought
[10], inducing a reduction in GPP but unchanged or even in-
creased (autotrophic) respiration rates [10], even though these
respiration estimates are modeling results. Moreover, and unlike
Europe 2003, indirect carbon losses via forest and peat fires
added an additional C loss equivalent of 78% of the reported
GPP losses (i.e., fire emissions of around 70 Tg C [14] and GPP
losses in the order of 90 Tg C [10]). These examples illustrate
the complexity of pathways (even without considering indirect
effects beyond fire, e.g., facilitation of pest and/or pathogen
outbreaks) through which even seemingly analogue Bdrought
and heat mega-events^ may affect terrestrial carbon cycling.

A crucial feature of carbon uptake by terrestrial ecosystems at
the global scale is that it provides a negative feedback to anthro-
pogenic climate change, as terrestrial ecosystems absorb around
3.1 PgC year−1 or a fraction of 30% of anthropogenic CO2

emissions from fossil fuel burning and land use changes
(2006–2015 [15]). However, this fraction varies strongly from
year to year, with coefficients of variation (i.e., year-to-year stan-
dard deviation divided by the long-term mean) that range from
around 23% in 2006–2015 up to 61% in 1986–1995 (based on

[15]). These global-scale differences are associated with large-
scale modes of ocean-atmospheric variability (see BLarge-Scale
Carbon Cycle Extremes and Their Link to Ocean-Atmosphere
Variability^ section) and are largely driven by climatic variability
[16, 17] and extreme events such as in particular drought, heat,
and fire [18]. On an ecosystem scale, the importance of relatively
short (Bextreme^) periods that cause disproportionate flux reduc-
tions can be illustrated by the fact that, for example, in a US
Midwest deciduous broadleaf forest (Morgan Monroe State
Forest3), almost 50% of cumulative negative flux anomalies in
GPP occur during less than 5% of the time (Supplementary
Fig. 1). In the context of climatic changes in the twenty-first
century, heat extremes are projected to increase widely, and even
relatively modest changes in the magnitude of events can result
in disproportionately large changes in the occurrence frequencies
(e.g., [19, 20]). For example, climate changes have induced a
roughly 1 °C temperature increase, but this relatively modest
increase relative to the total magnitude of events such as
Russian heat wave (+ 6° relative to long-term mean monthly
temperature) resulted in a tripling of the occurrence frequencies
of heat extremes [21]. Because ecosystem carbon cycling re-
sponses to DHE often depend on the exceedance of ecophysio-
logical thresholds, e.g., photosynthesis is inhibited at very high
temperature values, or heterotrophic respiration limited by water
availability [3, 22], these insights on changes in extreme event
characteristics might imply crucial consequences for the carbon
cycle (see Fig. 1 for an illustrative example).

Changes in drought and its characteristics are more nuanced,
however, and assessments of drought trends typically depend
on the type of drought, metrics, and models used and their
underlying assumptions and datasets [23–25]. Hence, the catch-
phrase Bmore frequent, intense, and extreme droughts are to be
expected in the future,^ stated in the introduction or motivation
of many scientific studies, is oversimplified. While thermody-
namic arguments indicate that increased heating might indeed
amplify droughts via increased atmospheric water demand [25],
potentially coinciding with a tendency towards more variable
precipitation 26], negative feedbacks via relative humidity, soil
moisture limits to further drying [19], and plant physiological
responses to increased CO2 [27] can counteract drought. In
addition changes in atmospheric circulation can be play an
overriding role regionally. Thus, twenty-first century drought
projections remain widely uncertain. Nonetheless, in some re-
gions such as Southern Europe trends towardsmore intense and
frequent droughts have been observed historically and are in-
deed projected with confidence according to the IPCC [19, 28].

Despite these expected changes in climate extremes in the
twenty-first century, global land carbon uptake is thought to in-
crease, mainly due to a longer temperate and boreal growing
season, higher CO2 availability and N deposition, albeit uncer-
tainties are still large [29]. These uncertainties are related to1 http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-

gases-viewer
2 https://ec.europa.eu/clima/policies/strategies/2020_en 3 http://www.fluxdata.org:8080/sitepages/siteInfo.aspx?US-MMS
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nitrogen or nutrient limitations [30], the time scales of carbon
sequestration, for instancewhether faster vegetation growth leads
to only transitory or long-term carbon sequestration [31–33], and
carbon cycle feedbacks via future climate extremes [4].

Concepts, Definitions, and Study Objectives

Weather and climate extremes are typically defined as the
Boccurrence of a value of a weather or climate variable above
(or below) a threshold value near the upper (or lower) ends of
the range of observed values of the variable^ [19]—although a
large suite of definitions exists. In the context of extreme
events relevant to the carbon cycle, a strict climatological
definition is not always useful. Carbon cycle impacts are not
only determined or triggered by univariate climatological var-
iables [3, 4], and thus, various constellations of climate vari-
ables that lead to an extreme impact would have to be consid-
ered. These issues are currently discussed under the term
Bcompound events^ [19, 34] and, although still in its infancy,
corresponding suitable multivariate detection methods are be-
ing developed [35–37]. As an alternative, definitions starting
from extreme ecosystem or carbon cycle responses have been
proposed [3]. Moreover, ecosystem processes are subject to
thresholds, and climatologically Bextreme^ conditions might
be within a plant’s tolerance limits, or vice versa, an ecosys-
tem might experience Bextreme^ conditions for periods that
are sufficiently persistent to not be considered as Bextreme^ in
a statistical sense any more. In summary, differences in the
nature of extreme events, the affected ecosystems’ responses
and associated time scales, and varying objectives of scientific
enquiry might imply that a universally acceptable definition,

let alone specific analysis metric or index of C cycle relevant
weather and climate extremes might currently not exist.

In this review, we focus on drought and/or heat events
(DHEs), thus following a broadly climatological definition,
and—in addition—refer to Bcarbon cycle extremes^ (CCEs)
as an impact-oriented definition to illustrate global patterns of
carbon cycle variability and extremes (in many cases, but not
all, related to heat and drought, BLarge-Scale Carbon Cycle
Extremes and Their Link to Ocean-Atmosphere Variability^
section).

Uncertainties on future developments of DHEs become
even more pronounced when considering the impacts on the
global carbon cycle. Frank et al. [5] distinguish four categories
of carbon cycle impacts: Bconcurrent^ vs. Blagged^ impacts
according to their differences in response time (i.e., impacts
during and after the DHE, respectively), and Bdirect^ vs.
Bindirect^ impacts, with Bindirect impacts^ being facilitated
by the climate extreme but initialized by an external trigger.
Here, we focus on direct impacts of DHEs, and obtain a wider
spatial (i.e., large-scale atmospheric phenomena) and tempo-
ral (the role of Bpre-onset^ ecosystem conditions) perspective
on these impacts. For indirect effects of DHEs, we refer the
reader to specialized, in-depth literature: (1) fire following
drought and other drivers [38], (2) insect outbreaks and path-
ogens [39], and (3) changes in litter quality and soil microbial
communities following drought (e.g., [40]). Also, Seidl et al.
[41] review in detail climate impacts on fire, drought, insect
and pathogen disturbance, and their interactions in forests.

Achieving a comprehensive understanding or performing a
quantitative meta-study on the effects of DHEs on the global
carbon cycle is still a considerable challenge, despite several
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decades of active research and detailed insights on a plant
physiological level [42]. This is because, in addition to issues
of definition, the sample size of observed extreme events in
situ is small by definition, and vastly different conceptual and
methodological approaches are being pursued that reach from
local plot-scale experiments to global-scale remote sensing
and modeling, including direct/indirect and concurrent/
lagged effects, which thus render syntheses difficult.

Here, we aim at an overview of recent developments and
emerging research themes on the effects of DHEs on the ter-
restrial carbon cycle.4

First,we focus on ecophysiological and phenological pro-
cesses (BPhysiological and Phenological Processes Through
Which Heat and Drought Affect Ecosystem Carbon
Cycling^ section), biotic and abiotic factors thatmediate car-
bon cycle impacts (BThe Role of Mediating Factors:
Ecosystem-Specific Characteristics^ section), and effects
of timing, duration and Bpre-onset effects^ that modulate
the response of ecosystem carbon cycling to DHEs
(BTiming, Duration, Dynamical, and Legacy Effects that
Enhance or Dampen Heat/Drought Impacts on the Carbon
Cycle^ section). Second, we review recent insights on
large-scale patterns of atmospheric circulation variability,
and its link via DHEs to the terrestrial carbon cycle
(BLarge-Scale Carbon Cycle Extremes and Their Link to
Ocean-Atmosphere Variability^ section). All in all,
BEcosystem-Scale Carbon Cycle Responses to Heat and
Drought: Processes and the Role of Mediating Factors^ and
BLarge-Scale Carbon Cycle Extremes and Their Link to
Ocean-Atmosphere Variability^ sections indicate that a
broader spatial and temporal perspective on DHE events,
extending assessments beyond local and concurrent C cycle
impacts might be important (Fig. 2). Finally, we summarize
potential future research directions and needs formodel-data
evaluation and conclude with an outlook on the prospects of
attributing carbon cycle extremes to underlying drivers of
climatic changes and large-scale atmospheric circulation
(BSummary and Research Needs^ section).

Ecosystem-Scale Carbon Cycle Responses
to Heat and Drought: Processes and the Role
of Mediating Factors

Basic plant physiological theory suggests that drought and/or
heat adversely affect plant productivity [42] and thus terrestri-
al ecosystem C cycling. These effects have since been further

quantified from ecosystem to global scales via case studies of
observed DHE [8, 12], dedicated ecosystem manipulation ex-
periments (e.g., [43]), synthesis studies based on several
events across several sites [44, 45] and empirical or process-
orientedmodels [46]. However, it often remains less clear how
ecosystem carbon cycle responses to DHE are mediated by
individual factors. In this section, we provide an overview of
processes that trigger direct effects of DHE on ecosystem
carbon cycling (BPhysiological and Phenological Processes
Through Which Heat and Drought Affect Ecosystem Carbon
Cycling^ section), ecosystem-specific and abiotic factors that
mediate these responses (BThe Role of Mediating Factors:
Ecosystem-Specific Characteristics^ section), and review the
role of timing, duration, dynamical and legacy effects that
enhance or dampen these impacts (BLarge-Scale Carbon
Cycle Extremes and Their Link to Ocean-Atmosphere
Variability^ section).

Physiological and Phenological Processes
Through which Heat and Drought Affect Ecosystem
Carbon Cycling

DHE affect ecosystem productivity through both ecophysio-
logical and phenological processes [47], and these events oc-
cur throughout all major biomes of the Earth because plants
are adapted to thermal and water availability characteristics of
their respective environments [48, 49]. DHE synergistically
affect plant productivity: on one hand, given a constant spe-
cific humidity, with increasing temperature the vapor pressure
deficit increases exponentially, which determines the gradient
affecting the diffusion of water from the leaves to the atmo-
sphere. On the other hand, soil drought or high VPD leads to
stomatal closure and thus reduced photosynthesis and transpi-
ration, reduced evaporative cooling of the leaf and conse-
quently warmer leaves. This implies higher vapor pressure
within the leaves and a stronger gradient exacerbating the
drought stress.

Extreme heat affects plant physiological processes at cell,
leaf, and plant level, including changes in leaf area and leaf
development, decreases in photosynthesis and growth, and
increased oxidative stress [50]. In the absence of severe
drought, a decoupling of photosynthesis (reduced under heat)
from transpiration (sustained under heat) was observed recent-
ly for Eucalyptus trees in conjunction with rapidly increased
leaf thermal tolerance, leading to a vegetation-induced nega-
tive feedback to heatwave intensity [51].

At ecosystem level, via physiological and biophysical in-
teractions [52], drought and heat often co-occur, and com-
bined have a stronger effect on vegetation photosynthesis than
each of the factors alone, as recently detected at the ecosystem
level [45]. For respiration, in particular soil respiration,
drought and heat rather have compensating effects: high tem-
perature increases microbial respiration and drought decreases

4 Most of the manuscript content is based on a Web of Science search in
October 2017 and updated in February 2018 for the terms: (Climate
Extremes AND carbon cycle) OR (heat wave AND carbon cycle) OR (drought
AND carbon cycle). The resulting 1040 research papers were filteredmanually
and classified into topics based on the structure of the manuscript, and
complemented with classical references during writing.
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it. Hence, the immediate effect of drought and heat on the
overall carbon balance is rather negative as confirmed inmany
studies [12, 44, 45]. However, the relative role of heat vs.
drought can vary. For instance, in a mesic C4 grassland, soil
drought was dominant and additional heat effects only had
relatively small effects [53], while in the absence of soil
drought, extreme heat directly reduced photosynthesis.
Current research focuses on the question how respiration com-
ponents such as autotrophic and heterotrophic respiration are
affected [54, 55].

Moreover, DHEs alter the diurnal pattern of ecosystem
carbon uptake and release, where the peak of maximum C
uptake occurs earlier in the day, followed by an intensified
noon and afternoon C uptake depression [56]. This pattern is
illustrated in Fig. 3 for a deciduous broadleaf forest in the US
Midwest (Morgan Monroe State Forest, Indiana) in the
drought and heat year 2012. This Bfingerprint^ of flux anom-
alies also demonstrates a Bprototypical^ reduction of net car-
bon uptake under DHE and an associated suppression of
nighttime respiratory fluxes (Fig. 3). When drought ceases,
rewetting of soils typically induces a soil respiration pulse
leading to further C losses [57].

The above processes operate on time scales of minutes to
several days. Yet, one has to consider longer timescales to
address long-term effects. At a seasonal time scale, phenology,
i.e., the development of morphologically visible and function-
ally relevant characteristic stages of vegetation, such as
budburst, leaf unfolding, and leaf coloring is affected [58,
59], leading to altered productivity but also to regional climate
feedback via albedo changes for instance [60]. After the DHE,
lagged effects on the carbon cycle are induced via changes in
plant or soil structural characteristics (e.g., defoliation, reduc-
tion in carbohydrate reserves or changes in soil microbial
communities), and constitute a crucial topic of present re-
search (see Section 3.3).

The Role of Mediating Factors: Ecosystem-Specific
Characteristics

Several ecosystem-specific factors mediate direct physiologi-
cal and phenological carbon cycle DHE impacts; here, we
focus on vegetation type and the role of elevated CO2, but
note that for instance nutrient interactions [40], and ecosystem
management can also be important.
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Fig. 2 a Conceptual illustration of spatial and temporal mechanisms that
can affect ecosystem and regional-scale C-cycle responses to DHEs (as
reviewed in the BLarge-Scale Carbon Cycle Extremes and Their Link to
Ocean-Atmosphere Variability^ and BSummary and Research Needs^
sections), and also affect the intensity, probability and spatial patterns of
DHEs. The regional carbon balance affected by a DHE event is thus

ideally viewed in a broad spatio-temporal continuum (rather than a nar-
row focus on local and concurrent C-cycle effects of DHEs). b Recent
studies address important effects of DHEs on the regional carbon balance
that go beyond local and concurrent DHE effects, including both pre-
event conditions, legacy effects, and spatial interactions
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Vegetation Type

Different vegetation types imply different growth patterns,
and accordingly, a fundamentally different C allocation re-
sponse to water stress and heat between species and ecosys-
tems [42]. For instance on an ecosystem-scale, forests did not
show obvious changes in canopy optical characteristics during
the European heat wave 2003, but GPP reduction via a distinct
physiological response, while non-forests responded fast
through canopy changes [61]. These different mechanisms
are also consistently reflected by contrasting forest vs. grass
responses of transpiration to heat and drought [62], with dif-
ferent response times (grasses respond faster than trees) and
feedbacks to local temperature via altered partitioning of sen-
sible vs. latent heat [52]. Deeper tree roots enable access to
deeper soil layers, which thus can sustain transpiration, and

accordingly photosynthesis, for a longer period, but depend-
ing on the availability of fine roots in deeper soil layers [63]. A
similar grass-tree dichotomy was observed for ecosystem pro-
ductivity during the Russian heat wave 2010 [10] and the US
drought 2012 [64]. Yet, it remains unclear, if in remote sensing
based studies the drought effects in forests are simply not
detected, because forests do not change their spectral charac-
teristics and absorption of light as quickly as grasses but rather
react physiologically (see, e.g., [61]). Figure 4 illustrates these
different response patterns of forests vs. nonirrigated crop/
grassland ecosystems to temperature over the contiguous
USA, and shows that in summer, forests reach their tempera-
ture optimum earlier (at 15–20 °C summer mean temperature)
than crops/grasslands (approx. 20–25 °C), but the reduction of
GPP after exceeding optimum temperatures is much stronger
in the latter. Furthermore, even among grassland sites within a
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single biome, ecosystem sensitivity to precipitation can vary
several fold [66], thus highlighting considerable variation
within grasslands. For instance, C4 grasses are adapted to
higher temperatures and are typically more drought resistant
than C3 grasses, with a slower decline of stomatal conduc-
tance, carbon uptake, and transpiration under drought, due to
photosynthetic and hydraulic advantages and a deeper root
system [67].

Within forests, isohydric tree species such as tulip poplar or
sugar maple have been shown to strongly regulate stomatal
conductance, thus minimizing the risk of cavitation but

leading to proportionally high C losses [68, 69]. In contrast,
anisohydric species such as oak tended to regulate their sto-
mates only moderately, indicating a greater risk of xylem cav-
itation and stronger reliance on nighttime refilling of water
storage, but only minor reductions in GPP even under severe
drought such as in the US 2012 [68].

In addition to inter-specific variation in hydraulic strategies
and drought sensitivity, Plant physiological knowledge sug-
gests that plants adapt C allocation strategies to overcome
resource limitations most efficiently [70]. In grasslands, ex-
periments indicate a proportionally increased belowground C

Fig. 4 Temperature and soil moisture response of 8-daily GPP fluxes
from forested and crop/grassland ecosystems in the contiguous USA
(25.75–48.75° N, 66.75–106.25° W, 0.5° spatial resolution) in spring
and summer. Figure modified after Fig. 7 in Flach et al. (2018,

under review in Biogeosciences Discussions, https://doi.org/10.5194/bg-
2018-130); GPP data based on the FLUXCOM initiative (http://www.
fluxcom.org/) [65]
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allocation during drought to optimize supply of available soil
water [71] at the expense of aboveground NPP. For trees under
moderate drought, similar responses have been hypothesized
[72] and observed [73]. In contrast, however, under severe
DHE, trees are expected to reduce belowground NPP and to
shift to aboveground allocation either due to transport or sink
limitations [72], or perhaps because trees might prioritize
growth to avoid competitive disadvantages [74]. The latter
had been hypothesized based on the observation that the
Amazon drought 2010 reduced overall GPP and autotrophic
respiration, but not growth (i.e., NPP); trees thus reduced in-
vestments in roots and defense components and shifted C
allocation aboveground after drought [74]. Conversely, pre-
cipitation reduction experiments suggest that Norway spruce
shows plasticity of root growth under drought, resulting in
enhanced growth of deeper roots under drought at the expense
of shallow roots [75]. Hence, plants adapt to drought stress via
adjustments in C allocation, which might be key to under-
standing often differential, sometimes contrasting ecosystem
C cycling responses to DHE, but mechanisms vary depending
on species type, nutrients, DHE timing, magnitude and dura-
tion, among others [72].

Because of these different strategies and susceptibilities of
species and plant types to drought and heat stress, changing
frequency and intensity of these stressors will also affect veg-
etation dynamics. For instance, Gherardi and Sala [76] found
that under increased precipitation variability shrubs are fa-
vored over grasses because of their deeper rooting system,
which can catch deeply drained water and thus cope with
longer dry spells. In summary, a systematic regional-scale
quantification of differences in C cycling responses to DHEs
due to different vegetation types is widely lacking, and effects
and interactions with local topography, soil and nutrient char-
acteristics [40], or biotic effects such as stand age or species
richness [77] are rarely considered.

Effects of Elevated CO2

There is empirical evidence that elevated CO2 can mitigate
effects of meteorological drought indirectly because of water
savings via reduced stomatal opening under elevated CO2

[78], in addition to anticipated direct Bfertilization^ effects of
elevated CO2 on plant photosynthesis and leaf area in the
absence of extreme conditions [79, 80]. Hence, there is poten-
tial that increasing CO2 levels alleviate the impacts of meteo-
rological dryness over the coming century indirectly via re-
duced transpiration [27, 81], but can both increase and reduce
temperatures [82]. This is an important example where ex-
treme events interfere with slowly changing conditions.
State-of-the-art models in CMIP5 exhibit indeed a relative
decrease of extreme drought impacts globally [83]. Yet, both
experimental and modeling approaches have their limitations.
The experimental approach ignores coupling with the

boundary layer, i.e., stomatal closure will lead to less moist-
ening of the air and thus atmospheric demand and potential
drought stress. The modeling approaches have certain as-
sumption on stomatal behavior, partly lack the effects of the
energy balance on leaf physiology and biological processes
with are important for the response to drought.

Further, under high temperatures or very dry conditions,
benefits of elevated CO2 might be limited as shown in a mesic
grassland experiment [80] and cotton growth experiments
[84]. Moreover, combined effects, e.g., of temperature and
elevated CO2 are often not simply additive [85]—and thus
constitute a considerable challenge for model development
and evaluation. In summary, while elevated CO2 is generally
expected to alleviate DHE impacts on the carbon cycle via
both direct and indirect effects, with anticipated indirect ef-
fects most pronounced in water-limited ecosystems [86], ac-
curate regional-scale quantifications of these effects are still
lacking, and interactions between variables often remain
elusive.

Timing, Duration, Dynamical, and Legacy Effects that
Enhance or Dampen Heat/Drought Impacts
on the Carbon Cycle

Ecosystem carbon cycle responses depend not only on the
intensity of DHEs or mediating factors. Biotic processes fol-
low a distinct phenological cycle, and thus, carbon cycle im-
pacts depend on the initial ecosystem state at the onset of a
DHE, its timing [71, 87], and duration. Furthermore, se-
quences of events [43], drought-heat interactions [52], possi-
bly interacting with transient climatic trends [88], mediate
carbon cycle responses to DHE.

The Role of Timing and Duration

Grassland experiments show that spring and summer drought
effects can range from being detrimental to growth to almost
no impact only due to shifts in spring drought timing of a few
weeks—sensitivity to drought appears to be highest at very
early development stages and in summer [71, 89]. The impact
of high temperatures on vegetation greenness and productivity
also depends on its timing with contrasting sensitivities across
the year in mid-latitudes [64, 90]. Furthermore, heat and
drought effects on carbon fluxes are affected by the duration
of events [45], thus lending support to conceptual dose-
response relationships as the product of stress intensity and
stress duration [5]. Nonetheless, more complex patterns
emerge as well: for instance, von Buttlar [45] shows that heat
triggers initially enhanced soil respiration, and the latter is
reduced only after several weeks of enduring heat, which thus
highlights the role of antagonistic mechanisms linked to heat
but operating on different time scales.
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The Role of Antecedent Conditions and Event Sequences

Consideration of early-season or previous season(s) effects
and event sequences on the carbon cycle response to DHE
has emerged as a cross-cutting theme in recent studies.
Long-term monitoring sites show strong positive autocorrela-
tion of carbon flux anomaly time series, i.e., previous ecosys-
tem states and variability (not necessarily Bextremes^) deci-
sively influence carbon flux anomalies today [91]. This link
might come about through biotic feedback loops, e.g., via
carbohydrate reserves, changes in ecosystem, or canopy struc-
ture [6], but also via abiotic pathways such as longer-term
effects of previous season soil moisture or snow anomalies
[92, 93]. The importance of antecedent effects on vegetation
is highest in regions of low total annual precipitation [94], and
for instance, moisture conditions in spring can be indeed de-
cisive for summer net carbon exchange in arid ecosystems
[95].

Nonetheless, few studies have targeted sequences of events
within or across seasons (but see [43]). For instance, a synthe-
sis of a flux tower network and remotely sensed products
revealed that losses in net carbon uptake induced by the US
drought in 2012 were compensated by high spring tempera-
tures that triggered exceptionally high spring carbon uptake
[64]. But, early plant activity in spring might have induced a
Bcarry-over^ soil moisture deficit in early summer that exac-
erbated drought impacts in summer (ibid.). Models suggest
that prior to summer drought, increases in spring carbon up-
take due to higher temperature and elevated CO2 indeed com-
pensate up to 20% of summer losses in European regions [96],
and in the longer term, perhaps, spring water savings due to
elevated CO2 and reduced transpiration could alleviate sum-
mer drought to some extent [82]. However, whether warmer
springs can compensate for carbon losses in summer in the
longer term, all other things held constant, also depends on
sufficient winter chilling [97] and the absence of late spring
frosts during sensitive plant development stages [98], with
potential risks associated with both factors depending on in-
dividual species and future climate characteristics.

Legacy Effects

After DHE occurred, carbon cycle effects might persist
through plant phenological or plant structural changes, e.g.,
reductions in carbohydrate reserves [91] or defoliation, and
mortality [99], and changes in soil structure, communities,
and nutrients [40]. Rewetting of soils after drought typically
induces a soil respiration peak [100]. According to recent
studies legacy effects span 1–2 years in shrubs and grasses
[101] and up to four [59, 102] or more years [6] in forests.
Recovery times from drought are thought to be longer in trop-
ical and boreal biomes [103] and correlate positively with
climatic anomalies post-drought (temperature, precipitation)

and GPP amplitude, and negatively with CO2 concentration,
among other secondary factors [103]. On a process level, root
architecture and C allocation belowground are thought to be
important factors for post-drought recovery [100], along with
eco-hydrological properties [101] and plant water use strate-
gies [104]. Recently, several mechanisms that could lead to
post-drought compensatory C dynamics have been hypothe-
sized: Possibly, (1) increased C allocation belowground might
lead to increased C uptake post-drought due to sink control
[100], and (2) more diverse plant communities might dampen
drought losses through post-drought compensation [105].

Legacy effects may interact with other factors such as in-
sect attacks, e.g., previously less produced defense compo-
nents may facilitate post-drought insect attacks, but depending
on tree species [106]. Legacy effects of moderate drought or
warming on soil organismic communities appear rather limit-
ed [107]. However, when stress induced by drought or heat
exceeds a threshold, mortality can happen, which plays an
important role in particular in forests [99] due to their longev-
ity, high C storage and decades to centuries for recovery.
Simplified, it has been hypothesized that under these condi-
tions, plants have to choose between carbon starvation and
disruption of their water transport system [108], and recent
research indicates that carbon starvation occurs rather rarely
[109, 110].

In summary, DHE legacies, dynamical mechanisms due to
temporal sequences of events, or interactions with long-term
trends (e.g., in temperature, CO2, or snow), might enhance or
dampen carbon cycle impacts of DHEs, and might require a
broader view on DHEs that includes conditions prior to the
onset of the actual DHE. Hence, it is essential that ecosystem
experiments and data syntheses consider effects of timing,
duration, interactions of events, and legacy effects. Because
the Bsample size^ of event constellations in observations or
experiments is limited, model ensembles or various sets of
simulations might provide a tool to address different spatial
or temporal patterns, sequences or interactions of events, and
the role of individual factors (e.g., [82, 86, 96]).

Large-Scale Carbon Cycle Extremes and Their
Link to Ocean-Atmosphere Variability

In this section, we provide a brief overview of large-scale
patterns of extremes in the carbon cycle and their proximate
climatic drivers and discuss the links between different modes
of ocean-atmosphere variability and carbon cycle responses.

Year-to-year variability in terrestrial carbon uptake is large-
ly, yet not solely, driven by variations in the interplay of pho-
tosynthesis and carbon release processes in tropical semi-arid
regions [16, 111]. Accordingly, the largest spatio-temporally
integrated extreme anomalies in GPP occur in semi-arid
steppe, savanna, or cropland regions at the southern and

274 Curr Clim Change Rep (2018) 4:266–286



eastern edges of the Amazon forest, East and South Africa,
Eurasian steppe, and Central North America [112]. In Fig. 5,
we illustrate the importance of semi-arid regions for extreme
reductions in GPP in the hydrologically motivated BBudyko
space^ [113]. Assuming long-term stationary climate condi-
tions, this framework separates regions of Benergy-limited^
and Bwater-limited^ evapotranspiration regimes.5 A random
sample of mean land GPP6 shown in Fig. 5 spans a wide range
of energy-limited (low dryness and low evaporative index)
and water-limited regimes (high dryness and evaporative in-
dex approaching unity). However, if these subsampled grid
cells are weighted by the occurrence of total GPP losses in-
duced by the largest 1000 negative spatio-temporal extreme
events (following [115] for an in-depth methodological de-
scription), the bivariate distribution in the Budyko framework
is confined to regions that are transitional between water-

limited and energy-limited regimes (Fig. 5). This example
thus illustrates the importance of semi-arid regions for ex-
treme reductions in the terrestrial carbon cycle. Besides the
mere location of GPP reductions in geographical or climato-
logical space, the majority of these events have been linked to
water scarcity, fire, or heat [18], thus emphasizing the role of
DHEs in these regions that are subject to pronounced land-
atmosphere interactions [52].

Do Large-Scale Patterns of Ocean-Atmosphere
Variability Propagate into the Terrestrial Carbon Cycle
via Drought, Heat, and Fire?

Large-scale patterns of ocean-atmosphere (or atmosphere-
only) variability such as the El Niño-Southern Oscillation
(ENSO) phenomenon or the North Atlantic Oscillation
(NAO) have been long recognized as dominant sources of
interannual climatic variability and extremes (e.g.,
[116–118]). The ENSO phenomenon consists of two op-
posite extreme phases, El Niño and La Niña [119]. During
El Niño, large-scale warming of sea surface temperatures
(SSTs) occurs in the Eastern tropical Pacific, which
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Fig. 5 For any given location, the
Budyko framework relates,
climatological dryness (expressed
as the ratio of annual potential
evapotranspiration to actual
annual evapotranspiration, PET/
ET) to the ratio of annual
evapotranspiration to
precipitation (i.e., the evaporative
index, ET/P). Overview of (1)
land grid cells weighted by the
GPP losses imposed by the 1000
largest negative extremes (orange
lines) and (2) all land grid cells
(black lines) in the bivariate
Budyko space (i.e., dryness index
(PET/P) vs. evaporative index
(ET/P)); marginal distributions of
the dryness index and evaporative
index are shown at top panel and
right panel, respectively.
Background colors show the
difference between bivariate
kernel density estimates of (1)
GPPextremes weighted grid cells
and (2) all land grid cells

5 For any given location of the world, the Budyko framework essentially
relates, climatological dryness (expressed as the ratio of annual potential
evapotranspiration to actual annual evapotranspiration, PET/ET) to the ratio
of annual evapotranspiration to precipitation (i.e., the evaporative index, ET/
P).
6 Here, 5000 randomly subsampled grid cells, weighted by area, from [114]
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reduces the zonal (east-west) gradient in SSTs and surface
pressure (as reflected in the Southern Oscillation Index) in
the Pacific and accordingly reduces the strength of the
(east-west) Walker circulation, which weakens trade
winds and displaces the main convective center from the
western to the central Pacific [120]. These conditions are
typically associated with a large area of the Southern
hemisphere under drought [117] and the occurrence of
heat waves regionally [121] with particularly dry condi-
tions over western Pacific regions and wet conditions over
the northwest coast of South America. Moreover, El Niño
and the opposite La Niña phases, potentially interacting
with other ocean-atmosphere modes of variability [122],
induce manifold ramifications and Bteleconnections^ of
anomalous, spatio-temporally coherent weather patterns
across many regions of the globe [116], thus affecting
multiple weather and climate variables simultaneously at
any particular location as shown below.

It is widely recognized that ENSO induced climatic
variability and extremes propagate into hydrological
[123] and ecological [124, 125] systems. ENSO is inti-
mately related to global terrestrial carbon cycling, with
El Niño years and associated widespread dryness acting
to reduce the magnitude of the residual land sink [15, 111]
likely via reductions in NPP, as seen in remote sensing
based, diagnostically modeled (i.e., about 40% of global
NPP explained by ENSO dynamics [126]) and simulated
[127] datasets. The imprint of ENSO on productivity dy-
namics is also reflected in a significant, but not particu-
larly strong, relationship between changes in tropical GPP
due to large-scale carbon cycle extremes and the Southern
Oscillation Index (Fig. 6; Pearson correlation on annual
aggregates R = 0.56; however, note that the empirically

upscaled GPP dataset used here is known to underesti-
mate interannual variability). Consequently, several recent
case studies have highlighted patterns and mechanisms
that draw a more complex picture, including regional
peculiarities:

For instance, Cleverly et al. [128] highlight that rather
than ENSO alone, a synchronization of different Southern
hemisphere climate modes controls drought and precipita-
tion patterns in Australia, reducing primary productivity
and providing a basis for wildfires due to hot and dry con-
ditions [129]. Moreover, combinations of different ocean-
atmosphere climate modes provide predictive skill of fire
activity globally [130]. While variations and extremes in
water availability are generally considered as the dominant
mechanistic link between ENSO and the terrestrial carbon
cycle [65, 126], Liu et al. [131] report different carbon
cycle mechanisms in response to the strong 2015/16 El
Niño year, which include dryness-driven GPP reductions
in South America, heat-induced increases in TER in
Africa, and indirect, fire-induced C losses in tropical Asia.

The North Atlantic Oscillation is a meridional dipole in
surface pressure that controls the position of the jet stream
and winter circulation patterns regionally over Eastern North
America and Eurasia [132] with implications for regional-
scale carbon cycling: the European net carbon balance is joint-
ly affected by the NAO and a southerly displaced pattern, the
East Atlantic oscillation, i.e., for instance with both in their
negative phases wet and cool summers tend to increase pho-
tosynthesis [133]. These conditions also tend to increase win-
ter precipitation in Southern Europe [133] with positive effects
on the C-cycle in these water-limited ecosystems. Negative
ENSO phases (La Niña) in conjunction with a negative
NAO can induce large losses of carbon uptake over
Texas via seasonal-scale drought and heat [134].
Regionally, winter circulation patterns associated with the
NAO and Arctic Oscillation that drive winter warm south-
erly winds are associated with enhancing carbon uptake via
reduced snow cover and a longer growing season in the
Northern Alps [135].

Despite these insights, a systematic understanding and as-
sessment of large-scale circulation-induced climate extremes,
their spatio-temporal variation, and the mechanistic pathways
that directly and indirectly affect carbon cycle components, is
still lacking. Developing such an understanding is crucial for
(at least) two reasons:

First, understanding these patterns might pave the way
towards short-term predictive capacity of carbon cycle
responses [136] useful for management or planning and
towards process understanding of atmospherically coher-
ent spa t io- tempora l anomaly pat te rns tha t can
Bcompensate^ each other from a carbon cycle perspective
and thus might lead to misinterpretation of continental-
to global-scale correlations: for example, Jung et al. [65]

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

M
T

E
−

G
P

P
 e

xt
re

m
es

 tr
op

ic
s,

 P
g 

C

1982 1986 1990 1994 1998 2002 2006 2010

−
3

−
2

−
1

1
2

3

MTE−GPP extremes, annual
SOI, annual
MTE−GPP extremes, monthly+smoothed
SOI, monthly+smoothed

S
O

I (
sm

oo
th

ed
)

R (MTE−annual, SOI−annual) = 0.56

Fig. 6 Southern Oscillation index (SOI) and changes in carbon uptake
due to large spatio-temporal extremes following [115], but without
detrending, aggregated over the tropical regions of the Earth (30° N–
30° S) in the 1982–2011 time period (both time series smoothed using a
12-month centered running mean). Negative SOI values correspond to El
Niño episodes

276 Curr Clim Change Rep (2018) 4:266–286



showed that on a local scale, water availability is the
main driver of carbon uptake. However, spatially com-
pensating patterns and compensation between TER and
GPP lead to a weak continental-scale correlation between
net carbon uptake and temperature, which thus should
not be interpreted in terms of ecosystem-scale processes.
Second, projections of changes in circulation characteris-
tics are still uncertain [120, 137]. This is due to partly
counteracting processes and feedbacks in a warming cli-
mate (e.g., [120] for details regarding ENSO changes),
although interactions between large-scale warming and
ENSO might lead to more frequent strong El Niño due
to reduced zonal temperature gradients [138]. Further,
reduced meridional temperature gradients in the
Northern hemisphere might contribute to a weakening
of the summer circulation in the mid-latitudes, thus fa-
voring persistent heat waves and atmospheric blocking
[139], consistent with enhanced interannual variability
of the North Atlantic Jet stream latitudinal position
[140]. Nonetheless, unavoidable uncertainties related to
large-scale circulation are implicit in twenty-first century
carbon cycle projections and feedbacks, including the
potential of simulated DHE to trigger self-amplifying
feedbacks that lead to forest dieback responses [141].
In general, how distortions of atmospheric moisture
recycling affects water supply, especially at remote loca-
tions, has not been studied extensively. Keys et al. [142]
showed that the continental evaporation recycling ratio
over land is highly variable, with clear zonal tendencies
towards a less oceanic influences, e.g., in the Amazon
basin, Eastern Africa, and central Asia. These large-scale
patterns bring another aspect into play: the fact that any
land use change may also have a feedback to the region-
al water recycling with obvious consequences for
drought occurrence probabilities. However, the effects
of such lateral transport issues that are, of course, always
triggered by atmospheric transport, and hence, circulation
patterns, are not yet studied in detail (but, see [143] for
an analysis of remote GPP changes via eco-climatic
teleconnections induced through Amazon and Western
North America forest loss). In particular, we miss global
assessments for the impacts on the C cycle.

Potential future research might disentangle the effects
of atmospheric circulation, changes, land use effects
(through moisture transport), and direct thermodynamic
changes (due to anthropogenic greenhouse gases), all of
which affect the carbon cycle via DHEs. This could be
achieved by conducting and analyzing dedicated ensem-
ble simulation experiments conditioned to specific atmo-
spheric circulation types, hypothesis about anthropogenic
changes, or land-use scenarios (e.g., [96, 144, 145]).

Summary and Research Needs

In this review, we have provided an overview of recent
research regarding the ecosystem-scale mechanistic links
between DHE and the terrestrial carbon cycle. These
mechanisms include direct physiological and phenologi-
cal responses (BPhysiological and Phenological
Processes Through Which Heat and Drought Affect
Ecosystem Carbon Cycling^ section), which are mediat-
ed by ecosystem-specific factors such as ecosystem type
and CO2 availability (BThe Role of Mediating Factors:
Ecosys t em-Spec i f i c Cha rac t e r i s t i c s^ sec t i on ) .
Furthermore, DHE timing and duration, Bpre-onset^ eco-
system state and legacy effects play an important role in
shaping carbon cycle responses to DHE, as these can
directly or via various dynamical effects enhance or
dampen DHE impacts (BLarge-Scale Carbon Cycle
Extremes and Their Link to Ocean-Atmosphere
Variability^ section). Moreover, recent research high-
lights the need to view DHE that affect ecosystem car-
bon cycling in the context of large-scale atmospheric
phenomena (e.g., circulation regimes, long-term trends,
remote moisture transport, see the BLarge-Scale Carbon
Cycle Extremes and Their Link to Ocean-Atmosphere
Variability^ section), which alter spatial patterns and
occurrence probabilities of DHE.

Overall, research on the link between DHE and ter-
restrial carbon cycling has moved beyond individual
Bcase study type^ approaches, enabled by the availabil-
ity of various multidecadal in situ observations, remote
sensing, and experiments (Box 1). Now, systematic syn-
theses based on monitoring networks [44, 45] are pos-
sible, and increasingly allow to pinpoint the role of
various contributing and mediating factors in experi-
ments [146] and models [86, 96], and a more clear-
sighted view on spatial patterns of DHE events and
their link to large-scale atmospheric phenomena [133].
Furthermore, we find that compensatory dynamics that
might dampen adverse physiological or phenological
DHE impacts were observed recently: these include (1)
temporal compensation due to previous events, or inter-
actions with long-term trends [64, 96]; (2) compensating
recovery dynamics due to increased rhizosphere C allo-
cation [100] or community diversity effects [105], and
(3) spatial compensatory effects in relation to large-scale
atmospheric patterns [65]. However, these effects have
not been systematically quantified, and dynamics that
amplify drought/heat impacts need to be considered as
well, e.g., via soil moisture [64], atmospheric boundary
layer dynamics [147] or albedo dynamics [60] in the
short term, and via tree mortality in the long term [99].
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Box 1 The data basis for understanding the impact of cli-
mate extremes on the carbon cycle

Opportunities for Model-Data Evaluation and Model
Development

Taken together, drought and heat triggers a hierarchy of
ecosystem-physiological and thus carbon-cycle responses
which occur across a range of time scales, and partly depend
on the intensity and partly on the duration of extreme condi-
tions. Modeling this interconnected hierarchy remains a cru-
cial challenge for describing carbon cycle responses to ex-
treme heat and drought. At short time scales (minutes to
hours), modeling of energy balance, stomatal responses, inter-
nal leaf physiology, and plant-hydraulics are relevant, includ-
ing an accurate causal representation of vegetation responses

(a) Ecosystem manipulation experiments improve process understanding
Experiments are a natural approach to study the impacts of extreme

events as they allow to simulate key attributes of extreme events such
as frequency, intensity, timing or duration and at levels of interest from
single leaves or plants to entire ecosystems [148]. Controlled
experiments have substantially added to our understanding of the effect
of climate extremes on ecosystem functioning [149] and CCE
mechanisms specifically [150]. For instance, Shi et al. [151]
synthesized the effect of extreme drought on net primary productivity
(NPP) and heterotrophic respiration (Rh) and found a consistently
greater reduction in NPP than Rh across grasslands, and Denton et al.
[71] showed that summer drought shifts C allocation towards below-
ground NPP to secure soil water. Laboratory or field manipulation
experiments also include combinations of extreme climatic variables
such as coinciding extreme drought and heat [152], but also interac-
tions between long-term trends such as increasing CO2 with extreme
drought or heat [51]. However, because laboratory or single-site ex-
periments are often hard to compare and generalize, coordinated dis-
tributed experiments [153] are used to systematically investigate the
consequences of a specific impact (e.g., drought), or multifactorial
experiments across multiple ecosystem types [85]. However, designing
these experiments can be practically challenging, as the number of
event characteristics (e.g., frequency, intensity, duration, pre--
conditioning, multiple extreme variables, etc.) to test for, and
co-variates to control for (species composition, plant development
stage, nutrient status, “background” meteorology and capturing
feedbacks, etc.) are limited. For instance, precipitation manipulation
and resulting soil moisture drought often leaves VPD unchanged, and
thus possibly induce a bias towards soil moisture as a driver of C-cycle
impacts [154]. Moreover, experiments involve often unrealistic step
changes in treatment plots [155] and controls plots can be affected by
interannual variability in ambient meteorological conditions (see [155]
for a detailed overview). Nonetheless, in summary, manipulation ex-
periments are crucial for realizing rigorous statistical testing of the
effects of, e.g., drought on productivity or mortality, but also to eval-
uate process based models under extreme conditions [156].

(b) In situ flux measurements allow to quantify CCE at the ecosystem
level

An alternative to controlled experiments is to rely on continuous
measurements that may coincidentally capture extreme events as
“natural experiments.” Contemporary in situ networks experience
extreme events because most droughts and heatwaves have a
substantial spatial extent and duration [157]. Measurements of net
carbon exchanges with the eddy covariance technique have proven to
be highly relevant to elucidate the impacts of extremes on the C-cycle,
and the derived GPP and terrestrial ecosystem respiration (TER) can
further reveal direct impacts of DHE [44, 151]. In the past, many
singular events were studied, such as the European summer 2003 [8],
the extreme DHE year 2012 in the USA [64] or even multiyear
droughts [158]. A recent synthesis study across 11 ecosystem types
revealed that integral quantities, such as the duration of DHEs, mainly
determine the size of the reductions in gross fluxes [45], and relation-
ships that involve interannual variability and extremes in climate
drivers and ecosystem C-cycle responses might be useful to determine
C-cycling under climate change [159]. However, several ecosystems
that are highly relevant for the global-scale C balance, such as sub-
tropical or tropical forests [160] that have not been so well sampled in
the past, but coverage is improving. Nonetheless, incomplete coverage
still reduces detection probabilities of regional extremes [157], and in
combination with methodological issues such as incomplete energy
balance closure [161] especially under nocturnal conditions, and the

(continued)

often “slow-in fast-out” characteristics of carbon exchange under ex-
treme meteorological conditions [162] still challenges improved un-
derstanding and interpretation of regional-scale DHE impacts in some
ecosystems.

(c) Remote sensing and derived data quantify CCE across scales
Space-borne remote sensing offers a unique vantage point from which to

monitor Earth’s ecosystems and to directly detect and interpret climate
variability and extremes and associated CCEs [94]. These global data
streams offer the opportunity to assess canopy phenology, stress, and
fire at the regional and larger scales [163]. However, remote sensing
data are a strong abstraction from the effective carbon cycle impacts,
because they measure interaction with electromagnetic radiation and
no direct fluxes or stocks. In particular, widely used remotely sensed
canopy “greenness” indicators based on differences in spectral
reflectances (NDVI, EVI, etc.) are often unable to detect physiological
reductions in C uptake under DHE in forest ecosystems if structural
properties of the canopy remain unchanged [164, 165], and products
derived from such indices such as the MODIS GPP algorithm might
fail in precisely detecting drought reductions at specific sites [166].
Nonetheless, recent refinements towards capturing drought responses
include the incorporation of information from spatially adjacent pixels
in vegetation mosaics [164], or targeting species-specific water use
strategies in response to droughts via the use of differences between
shaded and sunlit canopy portions [167]. Moreover, a surge of meth-
odological innovations and applications have emerged that have the
potential for direct inferences on the C-cycle. In particular, the
sun-induced chlorophyll fluorescence (SIF) measurements [168–170]
provide a promising way for estimating photosynthesis from space,
which have already been applied in studying drought-CCEs links, e.g.,
in the context of regional-scale stress responses [171, 172] or fire
[173]. In addition, satellite retrievals of atmospheric CO2

concentrations, such as those from Japan’s GOSAT, NASA’s OCO-2,
and China’s TanSat, provide a unique top-down view of the Earth’s
carbon cycle and the CO2 concentration retrieval from these
spaceborne sensors are particularly suitable to study the CCEs over
broad scales [172, 174, 175].

In summary, process understanding of DHE impacts on the C-cycle
(“Ecosystem-Scale Carbon Cycle Responses to Heat and Drought:
Processes and the Role of Mediating Factors” section) emerges
through multiple lines of evidence, including (a) manipulation
experiments, (b) C-cycle monitoring, and (c) remote sensing. Each of
these methods involves its unique advantages but also design
challenges, which can be partly overcome by integrating and synthe-
sizing data obtained through different methods or scales.

278 Curr Clim Change Rep (2018) 4:266–286



to co-limiting stressors such as low soil moisture and high
VPD, which can become decoupled at short time scales and
in the long term under climate change [154, 176] At seasonal
time scale in particular phenology, growth, acclimation, allo-
cation, and repair mechanisms are crucial. On longer time
scales (years to decades), still allocation remains very impor-
tant while competition, adaptation, demographic processes,
and thus changes in vegetation composition come into play.
It is evident that at longer time scales, biological processes
rather than bio-physical processes become decisive, which is
backed up by empirical studies (e.g., [177]). Current land-
surface models tend to emphasize the physical side, while
biological processes are rather modeled ad hoc or empirically.
Consequently, many effects seen in experiments are not rep-
resented in models or models fail to reproduce these. These
include, for instance, C allocation or phenological sensitivity
to soil water deficits [178], including variation across soil
layers [179], phenology in response to warming treatments,
nutrient cycling, and competition dynamics, as recently iden-
tified in a grassland experiment [178], photoperiodic controls
[179], and leaf dynamics in tropical forests [59]. Furthermore,
trait-based approaches have great promise in more realistically
modeling biological responses and incorporating diversity of
hydraulic traits has already been shown to improve simulated
plant responses to water stress [180]. In the long term, plant
trait diversity might decrease the sensitivity of vegetation car-
bon cycling to climate change in models [181]. Yet, it will be
important to understand the effect of gradual climate changes
versus extreme events in this context.

The wealth of available data allows to integrate models
and data using, e.g., pattern-oriented model evaluation
strategies [182] to avoid scale mismatches and thus po-
tential misinterpretations of drivers. The latter is crucial,
as for instance continental-scale correlations cannot be
interpreted on a process level [65]. Model-data integration
with a focus on temporal or spatial patterns of drivers of
carbon cycle extremes remains rare (but see, e.g., [46,
183]), as large model intercomparison projects are primar-
ily focused on means, seasonal quantities and/or interan-
nual variability [184], and biases in (simulated) climate
forcing data affect the magnitude of simulated CCE se-
verely [185, 186]. New experiments are designed to eval-
uate ecosystem responses to precipitation manipulation
that compare model-data responses at the ecosystem scale
[148, 187]. Pattern-oriented model-data comparisons on
larger scales that use metrics designed for evaluating ex-
tremes could yield further insights into drivers and eco-
system responses. For example, present-day models ap-
pear to overestimate drought responses [188], perhaps
due to compensatory dynamics (BEcosystem-Scale
Carbon Cycle Responses to Heat and Drought: Processes
and the Role of Mediating Factors^ section), or biological
adaptation [189]. Such model-data intercomparisons not

only reveal current limitations in models, but also pin-
point possible directions by which models can improve
structure and parameterization.

Outlook: Towards an Attribution of Carbon Cycle
Extremes to Large-Scale Atmospheric Conditions
and Changing Drivers

Improvements in large-scale monitoring abilities offer un-
precedented opportunities for cross-scale detection and
attribution of the link between DHE and the carbon cycle.
These data streams will serve as the basis for designing
model-data evaluation and integration approaches targeted
to evaluate the DHE-carbon cycle link. However, beyond
detecting and evaluating CCEs, attributing these events to
their respective proximate drivers (e.g., water availability,
temperature, radiation), or linking these to large-scale at-
mospheric events such as El Niño is a rapidly evolving
practice in the carbon cycle community [115, 131].
Nonetheless, in IPCC terminology, Battribution^ is de-
fined in a broader way as Bthe process of evaluating the
relative contributions of multiple causal factors to a
change or event with an assignment of statistical
confidence^ [190]. Hence, C-cycle attribution approaches
might be extended towards understanding the drivers be-
hind changes in occurrence probabilities of CCE, thus
extending attribution of weather and climate extremes
(see [191] for an overview) towards C-cycle impacts.
For example, anthropogenic climate changes might have
contributed both through thermodynamical and dynamical
changes to the odds of precipitation extremes, which are
typically disentangled via dedicated model simulations
([145], see also [96] for an attribution test case using
climate-ecosystem model simulations). Given unprece-
dented monitoring capabilities and data products that al-
low careful carbon cycle model evaluation from local to
global scales, and the availability of atmospheric model
ensembles suitable for these purposes,7 we argue that at-
tributing carbon cycle extremes not only to their proxi-
mate drivers, but also to the underlying global and local
drivers of change might reveal new insights into C-cycle
risk imposed by DHEs, their various spatial and/or tem-
poral characteristics and interactions, and thus broader
climatic changes. However, this requires that models are
evaluated carefully against observations and that uncer-
tainties are clearly stated, and as such attribution of car-
bon cycle extremes can be seen as an analogous problem
to future prediction of carbon cycle extremes.

7 E.g., https://www.climateprediction.net/weatherathome/
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