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Machine learning approaches, enabled by the emergence of comprehensive databases of materials properties, are becoming a
fruitful direction for materials analysis. As a result, a plethora of models have been constructed and trained on existing data to
predict properties of new systems. These powerful methods allow researchers to target studies only at interesting materials —
neglecting the non-synthesizable systems and those without the desired properties — thus reducing the amount of resources spent
on expensive computations and/or time-consuming experimental synthesis. However, using these predictive models is not always
straightforward. Often, they require a panoply of technical expertise, creating barriers for general users. AFLOW-ML (AFLOW
Machine Learning) overcomes the problem by streamlining the use of the machine learning methods developed within the AFLOW
consortium. The framework provides an open RESTful API to directly access the continuously updated algorithms, which can be
transparently integrated into any workflow to retrieve predictions of electronic, thermal and mechanical properties. These types
of interconnected cloud-based applications are envisioned to be capable of further accelerating the adoption of machine learning
methods into materials development.

I. INTRODUCTION

Since their inception, high throughput materials sci-
ence frameworks such as AFLOW [1–8] have been amass-
ing large databases of materials properties. For instance,
the AFLOW database [9–12] alone contains over 1.7 mil-
lion material compounds with over 170 million calcu-
lated properties, generated from the Inorganic Crystal
Structure Database (ICSD) [13–15], as well as by deco-
rating crystal structure prototypes [16]. Combined with
other online databases and high-throughput frameworks
such as the Materials Project [17–20], NoMaD [21], OQMD
[22, 23], the Computational Materials Repository [24, 25],
and AiiDA [26, 27], materials data is abundant and avail-
able. As a result, machine learning (ML) methods [28–30]
have emerged as the ideal tool for data analysis [31–38],
by identifying the key features in a data set [39] to con-
struct a model for predicting the properties of a material.
Recently, several models were developed to predict the
properties of various material classes such as perovskites
[40, 41], oxides [42], elpasolites [43, 44], thermoelectrics
[45–47], and metallic glasses [48]. Additionally, general-
ized approaches have been devised for inorganic materials
[49–60] and for systematically identifying e�cient physical
models of materials properties [61].

While predictions are powerful tools for rational mate-
rials design, the discipline is still reasonably new within
the realm of materials science. As a result, a working un-
derstanding of machine learning principles, along with a
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high level of technical expertise, is required for using code
bases e↵ectively. This inhibits accessibility, where an av-
erage end user aims to utilize the codes to retrieve predic-
tions with as little complication as possible. With the ever
increasing number of predictive models, a unique chal-
lenge emerges: how does one create an accessible means
to integrate machine learning frameworks into a materials
discovery workflow?

AFLOW-ML alleviates this issue by providing a simpli-
fied abstraction on top of sophisticated predictive mod-
els. Predictions are exposed through a web accessible
Application Programming Interface (API) where function-
ality is distilled down to its essence: from the user input,
return a prediction. AFLOW-ML can be added into any
code base through use of an HTTP request library, native
to most languages. Alternatively, AFLOW-ML can be uti-
lized through use of the included Python client and com-
mand line interface. Through such abstractions, AFLOW-
ML is accessible to a wide audience: it unburdens the
user from having to understand the intricacies of machine
learning and eliminates the technical expertise required to
set up such codes.

II. REST API

The AFLOW-ML API is structured around a
REpresentational State Transfer (REST) architec-
ture, which allows resources to be accessed using HTTP
request methods. Each resource is located at an endpoint,
which is identified by a URL comprised of descriptive
nouns.
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Action Endpoint Object

POST /plmf/prediction task

POST /mfd/prediction task

GET /prediction/result/{id} status or
prediction

TABLE I. A list of all endpoints in the API. Actions specify the
supported HTTP request method, endpoints define the URL
and objects are the returned resource. An endpoint with {...}
denotes a path parameter.

A URL may also include special variables in the form
of path parameters and a query string. A path param-
eter is a segment of the URL that specifies a particular
resource and is denoted by a noun within braces ({...})
inside the endpoint. The query string is a list of key-value
pairs placed at the end of a URL, which controls the rep-
resentation (e.g. format) of the resource. Typically, it is
used to apply filters or define the structure of the returned
representation.

Resources within the API are represented in JavaScript
Object Notation (JSON), and are referred to as objects.
Once at an endpoint, the user must specify how to interact
with the object. This is referred to as an action, and is an
HTTP request method. The API supports the two most
common HTTP request methods, GET and POST, where
GET fetches an object and POST sends user defined data
to the server. Therefore, users interact with the API by
performing actions (GET, POST) on endpoints (URLs) to
retrieve objects (resources).

III. API STRUCTURE

The overall structure of the API can be seen in
Table I. All endpoints are located at the base URL
aflow.org/API/aflow-ml/v1.0/ and are organized by
the model and the returned object.

AFLOW-ML currently supports two models: molar
fraction descriptor (mfd) [50] and property-labeled
materials fragments (plmf) [49]. It is designed to be ex-
tensible, and additional models will be added in the future
as they are developed.

The mfd model [50] predicts the material properties
based on the chemical formula only: the vector of de-
scriptors has 87 components, each component bi being the
mole fraction of element Zi in the compound (Z1 is H, Z2

is He, etc.). The model is built with nonlinear support
vector machines [29] and a radial basis function kernel.
The model is trained using a data set of 292 randomly
selected compounds of the ICSD for which the vibrational
properties are computed with DFT calculations. Pear-
son and Spearman correlations for k-fold cross-validation
(k = 5 ! 14) are in excess of 0.9 for all predicted proper-
ties, while the mean average errors are 13.2 meV/atom (vi-
brational free energy) and 0.037 meV/(atom · K) (vibra-

tional entropy) and the root mean square errors are 18.8
meV/atom (vibrational free energy) and 0.052 eV/(atom
· K) (vibrational entropy). Further details on the model
training and validation can be found in Ref. 50.
The plmfmodel [49] represents each crystal structure as

a colored graph, where the atomic vertices are decorated
by the reference properties of the corresponding elemen-
tal species. Topological neighbors are determined using
a Voronoi tessellation, and these nodes are connected to
form the graph. The final feature vector for the ML model
is obtained by partitioning the full graph into smaller sub-
graphs, termed fragments in analogy with the fragment-
based descriptors used in cheminformatics [62]. All plmf
models are built with the Gradient Boosting Decision Tree
(GBDT) method [30]. Models for electronic and thermo-
mechanical properties were trained on 26,674 and 2,829
materials entries from the AFLOW repository, respec-
tively. All models are validated through Y -randomization
(label scrambling) and five-fold cross validation, with co-
e�cient of determination (r2) values in excess of 0.9 for
most quantities, while the mean average errors are 0.035
eV (electronic band gap), 8.68 GPa (bulk modulus), 10.6
GPa (shear modulus), 35.9 K (Debye temperature), 0.05
kB/atom (heat capacity at constant pressure) and 0.04
kB/atom (heat capacity at constant volume), and the root
mean square errors are 0.51 eV (electronic band gap), 14.3
GPa (bulk modulus), 18.4 GPa (shear modulus), 57.0 K
(Debye temperature), 0.09 kB/atom (heat capacity at con-
stant pressure) and 0.07 kB/atom (heat capacity at con-
stant volume). Further details on the model training and
validation can be found in Ref. 49.
In general, API usage involves uploading a mate-

rial structure to a POST endpoint, <model>/prediction,
and retrieving a prediction object from a GET endpoint,
/prediction/result/{id}, as shown in the flowchart in
Figure 1. POST endpoints are responsible for the submis-
sion of a material structure for a prediction. In their re-
quest body, the file keyword is required. It must contain
a string representation of the material’s crystal structure,
in POSCAR 5 format (the lattice geometry and atomic
position input file for version 5 of the VASP DFT package
[63, 64]). Upon receiving a request, the response body
returns a task object containing information about the
submitted structure, which has the following format:

{

"id": String,

"model": String,

"results_endpoint": String

}

When a material is posted to the API, a predic-
tion task is created and added to a queue. Each
task is assigned an identifier, the id keyword, used to
fetch the the prediction object at the endpoint refer-
enced in the results_endpoint keyword. This endpoint,
/prediction/result/{id}, supports the GET method
and requires the id as a path parameter. Depending on
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FIG. 1. A flowchart illustrating the typical use-case of the API. First a POSCAR file is posted to the <model>/prediction
endpoint to retrieve a task object. The id field of the task object is used to poll the <model>/prediction/{id} for the status of
the prediction. If the status field of the response equals SUCCESS then the prediction object is returned.

the status of the prediction task, the response body re-
turns a status object or prediction object. When the task
is still in the queue, the status object is returned:

{

"status": String,

"description": String

}

The status object details the state of the prediction
task. The state is identified by the keyword status which
takes one of the following values: STARTED, PENDING,
SUCCESS and FAILURE, while a description of each sta-
tus type is given by the description keyword. When
attempting to retrieve the prediction object, it is best to
poll the endpoint periodically to check the status. Tasks
that are still within the queue are given the STARTED

or PENDING status, while a completed task status reads
SUCCESS. In instances where the uploaded file is incor-
rectly formatted, a failed task occurs, status: FAILURE.
When the task is completed, the response contains the
prediction object. The prediction object is an extension of
the status object and contains di↵erent keywords depend-
ing on the model used. For plmf, the prediction object,
known as a plmf prediction, takes the following form:

{

"status": String,

"description": String,

"model": String,

"citation": String,

"ml_egap_type": String,

"ml_egap": Number,

"ml_energy_per_atom": Number,

"ml_ael_bulk_modulus_vrh": Number,

"ml_ael_shear_modulus_vrh": Number,

"ml_agl_debye": Number,

"ml_agl_heat_capacity_Cp_300K": Number,

"ml_agl_heat_capacity_Cv_300K": Number,

"ml_agl_heat_capacity_Cp_300K_per_atom":

Number,

"ml_agl_heat_capacity_Cv_300K_per_atom":

Number,

"ml_agl_thermal_conductivity_300K": Number,

"ml_agl_thermal_expansion_300K": Number

}

The mfd model returns an mfd prediction object:

{

"status": String,

"description": String,

"model": String,

"citation": String,

"ml_Cv": Number,

"ml_Fvib": Number,

"ml_Svib": Number

}

The details of each object and their keywords are found
in the List of API Endpoints and Objects section.
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IV. USING THE API

The process to retrieve a prediction is as follows: First, the contents of a POSCAR 5 file, titled test.poscar, are
uploaded to the submission endpoint. This can be achieved by using an HTTP library such as Requests (Python) [65],
URLSession (iOS SDK) [66], HttpURLConnection (Java) [67], Fetch (JavaScript) [68] or using a command line tool
such as Wget or cURL. For this example, cURL is used. The contents of the POSCAR are posted to the submission
endpoint as follows:

curl http://aflow.org/API/aflow-ml/v1.0/plmf/prediction --data-urlencode file@test.poscar

where the --data-urlencode flag handles encoding the contents of the POSCAR, located in the current directory, and
associating it to the file keyword. Note that as mentioned previously, the POST returns a JSON response including the
task id. The task id is then used to poll the results endpoint:

curl http://aflow.org/API/aflow-ml/v1.0/prediction/result/{id}

The status keyword is used as an indicator to determine if any additional polling is required. Depending on the
status of the job, the endpoint returns either a task status object or a prediction object. If the status keyword’s value
is SUCCESS then no additional polling is required, since the endpoint returns a prediction object, which is an extension
of the task status object.

V. LIST OF API ENDPOINTS AND OBJECTS

This section includes the details of each endpoint and
object accessible in the API. Endpoint information con-
tains the associated HTTP method, request parameters,
request body data and response object for each endpoint.
Object properties are listed along with their type and de-
scription.

A. Endpoints

• POST plmf/prediction

– Description. Uploads the contents of a
POSCAR 5 to retrieve a prediction using the
plmf model.

– Query parameters.

∗ file (required) - The contents of the
POSCAR 5.

– Response format. On success, the response
header contains the HTTP status code 200 OK
and the response body contains a task object,
in JSON format.

– Example.

curl http://aflow.org/API/aflow-ml/

v1.0/plmf/prediction

--data-urlencode file@test.poscar

• POST mfd/prediction

– Description. Uploads the contents of a
POSCAR 5 to retrieve a prediction using the
mfd model.

– Query parameters.

∗ file (required) - The contents of the
POSCAR 5.

– Response format. On success, the response
header contains the HTTP status code 200 OK
and the response body contains a task object,
in JSON format.

– Example.

curl http://aflow.org/API/aflow-ml/

v1.0/mfd/prediction

--data-urlencode file@test.poscar

• GET /prediction/result/{id}

– Description. Fetches the status object or re-
turns the prediction object when the task is
completed.

– Path parameters.

∗ id (required) - The unique identifier re-
trieved from the task object on submission.

– Query string arguments.

∗ fields - A comma separated list of the
fields to include in the JSON response ob-
ject. Note that specified fields only a↵ects
the prediction object.

– Response format. On success, the response
header contains the HTTP status code 200 OK.
If the task is still pending, the response body
contains a task status object in JSON format.
Upon completion the response body contains a
prediction object in JSON format.
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• Example.

curl http://aflow.org/API/aflow-ml/

v1.0/prediction/result

/59ea0f78-4868-4a1e-9a20-e7343f00907d

B. Objects

• Task

– Description. Describes the task for a submitted
prediction. Includes the unique identifier for
the prediction and results endpoint.

– Keys.

∗ id

· Description. The unique identifier of
the prediction task. Used at the fetch
prediction endpoint to retrieve the sta-
tus of a prediction and return the re-
sults on completion.

· Type. String.

∗ results_endpoint

· Description. The path of the endpoint
where the prediction task status and
results are retrieved.

· Type. String.

∗ model

· Description. The name of the machine
learning model used to generate the
prediction.

· Type. String.

– Example.

{

"id": "d29af704-06bf

-4dc8-8928

-cd2c41aea454",

"model": "plmf",

"results_endpoint":

"/prediction/result/

d29af704-06bf

-4dc8-8928-

cd2c41aea454"

}

• Status

– Description. Provides the status of a (predic-
tion) task.

– Keys.

∗ status

· Description. The status of the task.
Takes the following values: STARTED,
PENDING, SUCCESS and FAILURE. When
a task is added to the queue its status
reads PENDING. Once it reaches the top
of the queue the status reads STARTED
and the prediction will run. If the pre-
diction is successful the status reads
SUCCESS.

· Type. String.

∗ Description

· Description. Describes the status of
the task.

· Type. String.

– Example.

{

"status": "PENDING"

"description": "The calculation

is running"

}

• plmf prediction

– Description. The results of the prediction us-
ing the plmf model. This is an extension of the
task status object.

– Keys.

∗ status

· Description. The status of the task.
Takes the following values: STARTED,
PENDING, SUCCESS and FAILURE. When
a task is added to the queue its status
reads PENDING. Once it reaches the top
of the queue the status reads STARTED
and the prediction will run. If the pre-
diction is successful the status reads
SUCCESS.

· Type. String.

∗ description

· Description. Describes the status of
the task.

· Type. String.

∗ model

· Description. The model used in the
prediction.

· Type. String.

∗ citation

· Description. The DOI for the model’s
publication.

· Type. String.

∗ ml_egap_type

· Description. Specifies if the material
is a metal or an insulator. Takes the
following values: Metal, Insulator.
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· Type. String.

∗ ml_egap

· Description. The electronic band gap.

· Units. eV.

· Type. Number.

∗ ml_energy_per_atom

· Description. The energy per atom.

· Units. eV/atom.

· Type. Number.

∗ ml_ael_bulk_modulus_vrh

· Description. The bulk modulus,
trained on data calculated with the
Automatic Elasticity Library (AEL).
[69]

· Units. GPa.

· Type. Number.

∗ ml_ael_shear_modulus_vrh

· Description. The shear modulus,
trained on data calculated with AEL.

· Units. GPa.

· Type. Number.

∗ ml_agl_debye

· Description. The Debye temperature,
trained on data calculated with the
Automatic GIBBS Library (AGL) [70].

· Units. K.

· Type. Number.

∗ ml_agl_heat_capacity_Cp_300K

· Description. The heat capacity at
300K and constant pressure, trained
on data calculated with AGL.

· Units. kB/cell.

· Type. Number.

∗ ml_agl_heat_capacity_Cp_300K_per_atom

· Description. The heat capacity per
atom at 300K and constant pressure,
trained on data calculated with AGL.

· Units. kB/atom.

· Type. Number.

∗ ml_agl_heat_capacity_Cv_300K

· Description. The heat capacity at
300K and constant volume, trained on
data calculated with AGL.

· Units. kB/cell.

· Type. Number.

∗ ml_agl_heat_capacity_Cv_300K_per_atom

· Description. The heat capacity per
atom at 300K and constant volume,
trained on data calculated with AGL.

· Units. kB/atom.

· Type. Number.

∗ ml_agl_thermal_conductivity_300K

· Description. The lattice thermal con-
ductivity at 300K, trained on data cal-
culated with AGL.

· Units. W/(m K).

· Type. Number.

∗ ml_agl_thermal_expansion_300K

· Description. The thermal expansion
coe�cient at 300K, trained on data
calculated with AGL.

· Units. K�1.

· Type. Number.

– Example.

{

"status":

"SUCCESS"

"description":

"The job has

completed.",

"model": "plmf",

"citation": "10.1038/ncomms15679",

"ml_egap_type":

"Insulator",

"ml_egap":

0.923,

"ml_energy_per_atom":

-5.760,

"ml_ael_bulk_modulus_vrh":

178.538,

"ml_ael_shear_modulus_vrh":

140.121,

"ml_agl_debye":

713.892,

"ml_agl_heat_capacity_Cp_300K":

23.362,

"ml_agl_heat_capacity_Cp_300K

_per_atom":

2.333,

"ml_agl_heat_capacity_Cv_300K":

22.625,

"ml_agl_heat_capacity_Cv_300K

_per_atom":

2.311,

"ml_agl_thermal_conductivity

_300K":

2.792,

"ml_agl_thermal_expansion_300K":

6.093e-05

}

• mfd prediction

– Description. The results of a prediction using
the mfd model. This is an extension of the task
status object.

– Keys.

∗ status
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· Description. The status of the task.
Takes the following values: STARTED,
PENDING, SUCCESS and FAILURE. When
a task is added to the queue its status
reads PENDING. Once it reaches the top
of the queue the status reads STARTED
and the prediction will run. If the pre-
diction is successful the status reads
SUCCESS.

· Type. String.

∗ description

· Description. Describes the status of
the task.

· Type. String.

∗ model

· Description. The model used in the
prediction.

· Type. String.

∗ citation

· Description. The DOI for the model’s
publication.

· Type. String.

∗ ml_Cv

· Description. The heat capacity at con-
stant volume.

· Units. meV/(atom · K).

· Type. Number.

∗ ml_Fvib

· Description. The vibrational free en-
ergy per atom.

· Units. meV/atom.

· Type. Number.

∗ ml_Svib

· Description. The vibrational entropy
per atom.

· Units. meV/(atom · K).

· Type. Number.

– Example.

{

"description":

"The job has completed.",

"model": "mfd",

"citation":

"10.1021/acs.chemmater.

7b00789",

"status": "SUCCESS",

"ml_Cv": 0.221,

"ml_Fvib": 21.188,

"ml_Svib": 0.211

}

VI. PYTHON CLIENT

A Python client is available for the AFLOW-ML REST
API that provides researchers and developers a means to
integrate AFLOW-ML into their applications or workflows,
such as AFLOW⇡ [8]. The client includes the AFLOWmlAPI
class which provides all the functionality needed to inter-
face with the AFLOW-ML API, and can be downloaded at
aflow.org/src/aflow-ml. From the client, a prediction
is retrieved by passing the contents of a POSCAR to the
get_prediction method. The AFLOWmlAPI class can be
incorporated into a Python framework using code similar
to the example illustrated below.

from aflowml.client import AFLOWmlAPI

with open(’test.poscar’, ’r’) as input file:

aflowML = AFLOWmlAPI()

data = aflowML.get prediction(

input file.read(),

’plmf’

)

This method takes two arguments: poscar and model,
where poscar is the content from the file test.poscar

and model is a string specifying the model to use (plmf
or mfd). This method returns a Python dictionary, in
which the keys and respective predicted values are model
dependent. For a list of each prediction object’s key and
value pair, please refer to the previous section.
The client’s AFLOWmlAPI class includes two additional

methods, submit_job and poll_job, that provide more
control when submitting a prediction, and which can
be used in place of the get_prediction method in the
previous example. The submit_job method targets the
<model>/prediction endpoint and returns the jobs task
id. From the id, the job can be polled using the poll_job
method which returns a prediction object upon comple-
tion. These methods are ideal for cases where the user
would prefer to postpone polling to a later time.

VII. COMMAND LINE INTERFACE

Upon installation, the Python AFLOW-ML client pro-
vides a command line interface (CLI) titled aflow-ml.
The CLI exposes all the functionality of the Python client
and is targeted at users who are not familiar with Python
or using REST APIs. To receive a prediction the path of
the POSCAR 5 file is passed to the CLI as a positional ar-
gument. Additionally, the model type is specified via the
--model flag:

aflow-ml test.poscar --model=plmf

By default, the CLI outputs the results to the terminal.
The default functionality is modified by the use of addi-
tional flags. For instance, results can be saved to an out
file by use of the -s flag:
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aflow-ml test.poscar --model=plmf -s

where the predicted results are saved to a file titled
prediction.txt. Additional flags exist which provide
various levels of customization such as specifying the pre-
dicted values to return or the format of the output. A list
of each flag is found below. This list is also viewable from
the CLI using the -h or --help flags.

A. CLI flags

• Model

– Flag. -m or --model

– Description. (Required) Specifies the model to
use in the prediction.

– Example.

aflow-ml test.poscar --model=plmf

• Save

– Flag. -s or --save

– Description. Saves the prediction to a file. If
the out file is not specified contents are saved
to a file named prediction.txt.

– Example.

aflow-ml test.poscar -m plmf -s

• Outfile

– Flag. --outfile

– Description. Specifies the path and name of
the out file.

– Example.

aflow-ml test.poscar -m plmf -s

--outfile=prediction.txt

• Format

– Flag. --format

– Description. Specifies the format of the out
file. Currently, text and JSON are supported.

– Example.

aflow-ml test.poscar -m plmf -s

--format=json

• Fields

– Flag. --fields

– Description. State the predicted fields to show
in the output. Expects fields as a comma sep-
arated list. If the flag is not present, all fields
are shown.

– Example.

aflow-ml test.poscar -m plmf -s

--fields=ml_egap,ml_egap_type

• Verbose

– Flag. -v or --verbose

– Description. Toggle verbose mode. When en-
abled the CLI logs the progress of the predic-
tion.

– Example.

aflow-ml test.poscar -m plmf -v

VIII. EXAMPLE APPLICATIONS

In order to demonstrate the utility of the AFLOW-ML
API, two examples are provided, one each for the plmf

and mfd models. These examples demonstrate how the
API can be used to access machine-learning predictions,
and to rapidly identify property trends for di↵erent classes
of materials.

A. Predicting shear and bulk moduli for MoTi

For the first example, the AFLOW-ML API and the
AFLOW data API are used to retrieve AFLOW-ML pre-
dictions for the shear and bulk moduli for the structures
in the MoTi alloy system, which is one of the most
populated binary alloy systems in the AFLOW database
and is expected to form several ordered compounds
[71]. Specifically, the shear and bulk moduli for the
compositions that comprise the convex hull are investi-
gated. First, the convex hull for MoTi is calculated using
AFLOW via the following command:

aflow --chull --alloy=MoTi --output=json

The command outputs convex hull information in JSON
format to the file aflow_MoTi_hull.json, containing an
array of objects detailing information on each point in the
convex hull as depicted in Figure 2(a). Here, the points
on the hull are extracted by filtering the array for entries
in which the key ground_state is true.
Next, the AFLOW data API is used to fetch the AFLOW

Unique Identifier (AUID) [11], species, stoichiometry and
POSCAR for every MoTi entry in the AFLOW database.

import urllib2
import json

BASE URL = ’http://aflowlib.duke.edu/
,! AFLOWDATA/LIB2 RAW/Mo pvTi sv’

# Fetch a list of all Mo Ti aflowlib entries
,! by prototype

req = urllib2.Request(BASE URL + ’?
,! aflowlib entries’)

res = urllib2.urlopen(req).read()
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aflowlib entries = res.replace(’\n’, ’’).
,! split(’,’)

print len(aflowlib entries), " MoTi entries
,! found"

print ’Fetching data:’

# For each entry get its json
entries data = []
count = 1
for entry in aflowlib entries:

obj = {}
obj[’prototype’] = entry

# auid
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’?auid’)
res = urllib2.urlopen(req).read().

,! replace(’\n’, ’’)
obj[’auid’] = res

# get species
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’?species’)
res = urllib2.urlopen(req).read().

,! replace(’\n’, ’’)
obj[’species’] = res.split(’,’)

# get composition
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’?composition’)
res = urllib2.urlopen(req).read().

,! replace(’\n’, ’’)
obj[’composition’] = [int(d) for d in

,! res.split(’,’)]

# get stoichiometry
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’?stoichiometry’)
res = urllib2.urlopen(req).read().

,! replace(’\n’, ’’)
obj[’stoichiometry’] = [float(d) for d

,! in res.split(’,’)]

# formation entropy per atom
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’?enthalpy formation atom
,! ’)

res = urllib2.urlopen(req).read().
,! replace(’\n’, ’’)

obj[’enthalpy formation atom’] = float(
,! res)

# sg relax
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’?spacegroup relax’)
res = urllib2.urlopen(req).read().

,! replace(’\n’, ’’)
obj[’spacegroup relax’] = int(res)

# POSCAR
req = urllib2.Request(BASE URL + ’/’ +

,! entry + ’/CONTCAR.relax’)
res = urllib2.urlopen(req).read()

poscar lines = res.split(’\n’)
poscar lines.insert(5, ’ ’.join(obj[’

,! species’]))
poscar = ’\n’.join(poscar lines)
obj[’poscar’] = poscar

print ’%s of %s %s’ % (
count,
len(aflowlib entries),
BASE URL + ’/’ + entry

)
count += 1
entries data.append(obj)

print ’Writing to json’
with open(’entries data.json’, ’w’) as

,! outfile:
json.dump(

entries data ,
outfile,
sort keys=True,
indent=2,
ensure ascii=False

)

The resulting JSON file, entries_data.json, contains an ar-
ray of objects holding the desired set of information for each
MoTi entry. Finally, each POSCAR is passed to the AFLOW-
ML API client to retrieve the predictions.

from AFLOWml.client import AFLOWmlAPI
import json

with open(’entries data.json’, ’r’) as
,! json file:
entries data = json.load(json file)
predictions = []
ml = AFLOWmlAPI()
count = 1
print "Fetching predictions:"
for entry in entries data:

print ’%s of %s %s’ %
,! (
count,
len(entries data),
entry[’prototype’]

)
count += 1
prediction = ml.get prediction(entry

,! [’poscar’], ’plmf’)
# merge entry and prediction dict
merged = prediction.copy()
merged.update(entry)
predictions.append(merged)

print ’Writing predictions.json’
with open(’predictions.json’, ’w’) as

,! outfile:
json.dump(

predictions ,
outfile,
sort keys=True,
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indent=2,
ensure ascii=False

)

Predictions are obtained from the plmf model and saved
to the JSON file, predictions.json. This file also holds
an array of objects, where each object contains the pre-
diction results merged with the entry information found in
entries_data.json. At this point, the AUIDs for each hull
point, retrieved by filtering aflow_MoTi_hull.json, are used
to identify their predictions found within predictions.json.

The shear and bulk moduli vs. composition are plotted for
each composition on the convex hull in Figure 2. The top two
panels (b,c) show the predicted moduli for each convex hull
point (orange points) along with the range of predicted values
for each entry that shares the same composition, while the bot-
tom panels (d,e) display the distribution for equi-composition.

The plots in Figure 2(b,c) indicate that the elastic moduli
generally decrease with reducing Mo content. Furthermore,
Figure 2(d,e) demonstrate that while the range of predicted
moduli for hull member compositions is large, the majority of
predicted values cluster around the values for the entries on
the hull. This suggests that the mechanical properties of the
hull entries are generally representative of all entries sharing
the same composition, and may also be partly due to the relax-
ation of many initial structures to the lowest energy one. Addi-
tionally, it is evident that the hull point bulk modulus values
are always near the maximum predicted value, which is ex-
pected since it is known that this property correlates strongly
with cohesive energy [53], of which the formation enthalpy is
a component. This is supported by the strong dependence of
the bulk modulus on the formation enthalpy for a given stoi-
chiometry, as indicated by Figure 2(f).

B. Vibrational free energy and entropy of
perovskite oxides (ABO3)

The second example leverages the mfd ML model to inves-
tigate the vibrational free energy and entropy for perovskite
oxides (ABO3). POSCAR files are generated using the
aflow --proto command [16]:

aflow --proto=AB3C_cP5_221_a_c_b:A:O:B
--params=3.795 > AOB.poscar

where A and B are set for each combination of the following
elements: Al, Si, S, P, Pd, Se, Ni, N, B, C, H, Ga, Pt, Sn, In,
Ge, Er, Rh, Li, Zn, Te, K, Cu, Au, Ir, Ca, Ho, Br, Y, As, Pb,
La, Ti, Sb, Bi, Cs, Ba, Tl, Cl, Co, Ce, Sr, Na, Rb, V, Cd, Ta
and Sc. This results in 1,126 POSCAR files, stored in a direc-
tory named POSCARS. Note that the generated POSCAR files
are not in POSCAR 5 format and require conversion. Next,
the AFLOW-ML API client is used to retrieve predictions for
the vibrational free energy and entropy using the mfd model.
As in the previous example, output is saved in JSON format
to a file titled predictions.json.

import json
import os
from AFLOWml.client import AFLOWmlAPI

predictions = []
ml = AFLOWmlAPI()
for root, dirs, files in os.walk(’POSCARS’):

count = 1
for f in files:

if f.endswith(’.poscar’):
print ’%s of %s %s’ % (

count,
len(files),
f

)
count += 1
with open(root + ’/’ + f, ’r’)

,! as poscar:
prediction = ml.

,! get prediction(poscar
,! .read(), ’mfd’)

prediction[’name’] = f.
,! replace(’.poscar’, ’’
,! ) + ’O’

predictions.append(
,! prediction)

print ’Writing predictions.json’
with open(’predictions.json’, ’w’) as

,! outfile:
json.dump(

predictions ,
outfile,
sort keys=True,
indent=2,
ensure ascii=False

)

Heat maps for each AB combination are plotted in Fig-
ure 3 for the predicted vibrational free energy, Fvib, and en-
tropy, Svib. Two tendencies are visible: Fvib decreases and
Svib increases with atomic size; and local minima in Fvib and
maxima in Svib occur at compositions containing alkali met-
als. In general, heavy atoms with large radii result in lower
vibrational frequencies, resulting in lower values of internal vi-
brational energy Uvib(⇠ ~!), and higher values of Svib. Since
Fvib = Uvib�TSvib, this results in Fvib having lower values for
materials containing heavier atoms (towards the bottom right
of the plot), as well as for compositions containing alkali met-
als that have large radii resulting in weak interatomic bonds
and thus low vibrational frequencies. The inverse of this rela-
tionship is seen in panel (b), with maxima in Svib occurring for
compositions containing alkali metals or very heavy elements
such as Tl and Pb.

Rapidly generated plots such as these facilitate the discov-
ery of design rules, enabling the identification of suitable com-
positions for specific applications. It also provides insight into
the criteria used by the machine-learning algorithms to predict
materials properties.

IX. CONCLUSION

AFLOW-ML enhances materials discovery by providing
streamlined open access to predictive models. The REST API
promotes resource sharing, where any application, workflow
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FIG. 3. The predicted vibrational free energy (a) and entropy (b) for perovskite oxides (ABO3).
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or website may leverage our models. Additionally, the Python
client provides a closed solution, which requires little program-
ming knowledge to get started. With this flexibility, AFLOW-
ML presents the accessible option for machine learning in the
materials design community.
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using the AFLOW data API [11], with detailed instruc-
tions provided in Section VIII. The AFLOW-ML pre-
dicted data required to reproduce these findings can be
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