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The quasilinear particle flux arising from gyrokinetic instabilities is calculated in

the electrostatic and collisionless approximation, keeping the geometry of the magnetic

field arbitrary. In particular, the flux of electrons and heavy impurity ions is studied

in the limit where the former move quickly, and the latter slowly, along the field com-

pared with the mode frequency. Conclusions are drawn about how the particle fluxes of

these species depend on the magnetic-field geometry, mode structure and frequency of

the instability. Under some conditions, such as everywhere favourable or unfavourable

magnetic curvature and modest temperature gradients, it is possible to make general

statements about the fluxes independently of the details of the instability. In quasi-

isodynamic stellarators with favourable bounce-averaged curvature for most particles,

the particle flux is always outward if the temperature gradient is not too large, sug-

gesting that it might be difficult to fuel such devices with gas puffing from the wall.

In devices with predominantly unfavourable magnetic curvature, the particle flux can

be inward, resulting in spontaneous density peaking in the centre of the plasma. An

estimate for the level of transport caused by magnetic-field fluctuations arising from

ion-temperature-gradient instabilities is also given and is shown to be small compared

with the electrostatic component.
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1 Introduction

Turbulence is ubiquitous in both tokamaks and stellarators, and generally degrades

the energy confinement, which is therefore maximised if there is as little turbulence as

possible in the plasma. Such a state is however undesirable because heavy impurity

ions then tend to accumulate in the plasma core under the influence of neoclassical

transport [1, 2, 3, 4, 5, 6]. This is a particular problem in stellarators, where neoclassical

transport is much larger than in tokamaks. Moreover, in stellarators this transport is

such as to cause a hollow electron density profile in the absence of turbulence, because

the thermodiffusion – i.e. particle transport driven by the temperature gradient – is

nearly always outward for the electrons. In the absence of a central particle source it

thus becomes impossible to maintain a steady-state density profile [7]. Turbulence is

however usually unavoidable, and it is therefore of interest to try to predict its effect

on the particle transport. In tokamaks, this has been done with considerable success,

using quasilinear theory of gyrokinetic instabilities [8, 9, 10, 11], but no similar study

of stellarator plasmas has been published, except for the study of impurity transport

by Mikkelsen et al. [12].

This is the aim of the present article, where the gyrokinetic turbulent particle

transport is calculated in the quasilinear approximation. As always in gyrokinetics,

this transport is intrinsically ambipolar [13], so in a pure plasma the calculation can

be done either for the ions or for the electrons; the two results always coincide. Of

course, the gyrokinetic equation for both species needs to be solved to obtain the mode

structure and frequency, but valualbe information about the particle transport can be

extracted from the electron equation alone. In contrast, little can be said using only

the ion equation, for if the electrons for instance are taken to be adiabatic (Boltzmann-

distributed), the particle flux vanishes identically.

In an impure plasma, it is of great interest to calculate the transport of the impurity

ions, which tend to spoil the energy confinement by causing excessive radiation losses.

This transport can be calculated relatively easily for impurities that are sufficiently

heavy that their motion along the magnetic field can be neglected in the gyrokinetic

equation.
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The outcome of these calculations is a particle transport law for each species a,

Γa = −na
(

Da1
d lnna
dψ

+Da2
d lnTa
dψ

+ Ca

)

, (1)

relating the cross-field particle flux Γa to the density and temperature gradients as

well as a term, here denoted by Ca, related to the curvature of the magnetic field. In

tokamaks, this term usually describes inward-directed transport and is referred to as

the “curvature pinch”.

2 Linear gyrokinetics

Our analysis proceeds from the linearised gyrokinetic equation in the electrostatic

and collisionlesss approximation. The notation and the analysis in this section fol-

low Ref. [14], but are reproduced here for convenience. The distribution function of

each species a is written as

fa = fa0

(

1− eaφ(r, t)

Ta

)

fa0 + ga(R, v, λ, t),

where r denotes the particle position, R the guiding-centre position, φ the electrostatic

potential, ea the charge, v the speed, λ = v2⊥/(v
2B) the ratio between the magnetic

moment µ = mav
2

⊥/(2B) and the kinetic energy mav
2/2 = x2Ta, and

fa0 = na

(

ma

2πTa

)3/2

e−x
2

the Maxwellian with number density na(ψ) and temperature Ta(ψ). The magnetic

field is written in Clebsch form, B = ∇ψ × ∇α, the wave vector in ballooning space

as k⊥ = kψ∇ψ + kα∇α, and the diamagnetic and drift frequencies, respectively, are

defined by

ω∗a =
kαTa
ea

d ln na
dψ

,

ωT∗a = ω∗a

[

1 + ηa

(

x2 − 3

2

)]

,

ωda = k⊥ · vda,

where ηa = d lnTa/d ln na and vda denotes the drift velocity. In this notation, the

equation for ga becomes

iv‖∇‖ga + (ω − ωda)ga =
eaφ

Ta
J0

(

k⊥v⊥
Ωa

)

(

ω − ωT∗a
)

fa0, (2)

3



where J0 is a Bessel function, Ωa = eaB/ma the gyrofrequency and the derivatives are

taken at fixed energy and magnetic moment.

The gyrokinetic equation (2) usually needs to be solved numerically. Indeed, great

efforts have gone into the construction of computer codes for this purpose. As is well

known, it is however a simple matter to solve the equation analytically in the limit of

fast and slow-moving particles.

For gyrokinetic instabilities other than the electron-temperature-gradient mode,

the frequency tends to lie well below the electron bounce/transit frequency, ωb. The

electron distribution function can then be expanded in the small parameter ω/ωb ≪ 1,

ge = ge0 + ge1 + · · · , so that

v‖∇ge0 = 0,

implying that ge0 vanishes for untrapped particles, since it must do so at infinity in

ballooning space, whereas for trapped ones

iv‖∇‖ge1 + (ω − ωde)ge0 = −eφ
Te
J0

(

ω − ωT∗e
)

fe0. (3)

In each magnetic well, labelled by an integer j and defined by the condition λB < 1,

the first term is this equation is annihilated by a bounce average,

φj(λ) =
1

τj

∫

φ(l) dl
√

1− λB(l)
,

where the integral is carried out between the two bounce points of the j:th well and

τj(λ) =

∫

dl
√

1− λB(l)
(4)

denotes the normalised bounce time. The application of this bounce average to Eq. (3)

gives

gtre0 = −ω − ωT∗e
ω − ωde

J0
eφj
Te

feo (5)

in each trapping region.

The opposite limit, where the mode frequency exceeds the bounce frequency, applies

to heavy ions, particularly impurities with charge numbers Z ≫ 1. In this limit the

solution of the gyrokinetic equation (2) becomes to leading order

gZ =
ω − ωT∗Z
ω − ωdZ

J0
Zeφ

TZ
fZ0. (6)
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3 Quasilinear particle flux

The cross-field E×B velocity is

vE =
b× J0∇φ

B
· ∇ψ = −ikαJ0φ,

where J0 again denotes the gyro-averaging operator, and the quasilinear turbulent flux

of any species a is thus given by

Γa = ℜ
〈
∫

fav
∗
E · ∇ψ d3v

〉

= −kαℑ
〈

φ∗
∫

gaJ0d
3v

〉

,

where an asterisk indicates complex conjugation and angular brackets the flux-surface

average [15]

〈· · ·〉 = lim
L→∞

∫ L

−L
(· · · )dl

B

/
∫ L

−L

dl

B
.

3.1 Electron flux

Using Eq. (5) we thus obtain the electron flux as

Γe = kαℑ
〈

φ∗
∫

tr.

ω − ωT∗e
ω − ωde

J2

0

eφj
Te

feod
3v

〉

.

Here, the integral is only taken over the trapped part of velocity space, and can be

simplified by using

∫ ∞

−∞
φ∗(l)dl

∫

1/Bmin

1/Bmax

φj dλ√
1− λB

=

∫

1/Bmin

1/Bmax

dλ
∑

j

τj|φj |2,

where the sum is taken over all relevant magnetic wells (regions with magnetic field

strength B < 1/λ). The electron flux can thus be written as

Γe =
ekα
Te

ℑ
∫ ∞

0

fe02πv
2dv

∫

tr.

∑

j

ω − ωT∗e
ω − ωde

τj|φj|2J2

0dλ

/
∫

dl

B
,

where the λ-integral is taken over all trapped particles, i.e.

1

Bmax

< λ <
1

Bmin

,

with Bmin and Bmax denoting the minimum and maximum field strength on the flux

surface in question. This expression for the flux can be simplified by using Eq. (4) and

interchanging the integrations in l and λ, giving

Γe =
ekα
Te

ℑ
〈
∫

tr.

ω − ωT∗e
ω − ωde

fe0|φ|2J2

0d
3v

〉

.
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When interpreting this expression, it must be remembered that the quantities ωde and

φ depend both on the velocity space variable λ (through the bounce average) and,

discretely, on the coordinate along the file line l, which selects the appropriate trapping

well over which the bounce average is taken.

Finally, if we write ω = ωr + iγ and for γ > 0 define the function

∆γ(x) =
γ/π

γ2 + x2
,

which approaches a Dirac delta function in the limit γ → 0+, then we can write our

result as

Γe
d lnne
dψ

= −πω∗e

〈

∫

tr.

∣

∣

∣

∣

eφ

Te

∣

∣

∣

∣

2

∆γ(ωr − ωde)
(

ωT∗e − ωde
)

J2

0fe0d
3v

〉

(7)

= −dne
dψ

(

De1
d lnne
dψ

+De2
d lnTe
dψ

+ Ce

)

,

where we have recalled Eq. (1). We thus see that the particle flux is a sum of three

terms, proportional to the density and temperature gradients in ωT∗e and to the mag-

netic curvature in ωde, respectively. Since γ must be positive for quasilinear theory to

apply, the function ∆γ is also positive, and it follows that the diffusion coefficient mul-

tiplying the density gradient is always positive, De1 > 0, as required by the condition

of positive entropy production. (Quasilinear transport satisfies both an H-theorem and

Onsager symmetry.) The term containing the temperature gradient dTe/dψ is called

thermodiffusion and can have either sign. The term Ce from the magnetic curvature

is usually called the ‘curvature pinch’ on the grounds that it usually describes inward

transport in tokamaks, but as we shall see it can be directed outward in stellarators.

3.2 Impurity ion flux

Similarly, but somewhat more straightforwardly, the quasilinear flux of heavy impurity

ions can be obtained from Eq. (6),

ΓZ = −Zekα
TZ

ℑ
〈

|φ|2
∫

ω − ωT∗Z
ω − ωdZ

J2

0 fZ0d
3v

〉

,

and can thus be written as

ΓZ
d lnnZ
dψ

= −πω∗Z

〈

∣

∣

∣

∣

Zeφ

TZ

∣

∣

∣

∣

2 ∫

∆γ(ωr − ωdZ)
(

ωT∗Z − ωdZ
)

J2

0fZ0d
3v

〉

. (8)
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= −dnZ
dψ

(

DZ1
d lnnZ
dψ

+DZ2
d lnTZ
dψ

+ CZ

)

.

Note that, in constrast to the electrons, not only trapped ions but also circulating ones

contribute to the transport. Again, DZ1 is positive whereas DZ2 and CZ can have

either sign.

4 Important special cases

The expressions (7) and (8) are valid within the assumptions of the model, but require

knowledge about the eigenfunction φ(l) and the eigenvalue ω of the linear stability

problem. Without this knowledge, little can in general be said about the magnitude

and directions of the fluxes. However, in certain special cases valuable conclusions can

be drawn without knowing much about the linear instability.

4.1 Good average curvature

One such case for the electron transport occurs when the bounce-averaged magnetic

curvature is favourable (or ‘good’) for all orbits, i.e. ω∗eωde < 0, and, additionally, ηe

lies between 0 and 2/3. When these two conditions are satisfied, then ω∗eω
T
de is negative

throughout velocity space and according to Eq. (7)

Γe
d lnne
dψ

< 0,

so that the electron particle flux is in the direction of lower density. These conditions,

which can be satisfied in quasi-isodynamic stellarators [16], also imply that collisionless

trapped-electron modes are stable, both lineraly [17] and nonlinearly [18].

Nothing can be concluded about the impurity flux in this case, however, since the

local (rather than the bounce-averaged) drift frequency appears in Eq. (8). Even if the

bounce-average curvature is favourable, the local curvature will usually be unfavourable

somewhere, particularly in the region where |φ| peaks.

4.2 Bad magnetic curvature

If the magnetic curvature is everywhere unfavourable, ω∗aωda > 0, and the temperature

gradient is neither too large nor too small, definite statements can be made about the
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direction of both the electron and impurity ion fluxes, as can be seen from the expression

ω∗a

(

ωT∗a − ωda
)

= ω2

∗a

[

1− 3ηa
2

+ x2
(

ηa −
ω̃da
ω∗a

)]

, (9)

where we have written ωda = ω̃da(λ)x
2, noting that the drift velocity is proportional to

energy. If now
2

3
< η < min

λ

ω̃da(λ)

ω∗a
, (10)

the expression (9) is negative definite and it follows from Eqs. (7) and (8) that

Γe
d lnne
dψ

> 0,

ΓZ
d lnnZ
dψ

> 0,

so both the electron and impurity fluxes are in the direction of the respective density

gradient, i.e. usually into the plasma. The resulting density peaking in the centre of

the plasma is generally desirable for the electrons but undesirable for the impurities.

Note that the condition (10) depends on the density gradient for the particle species

in question and therefore gets progressively more difficult to satisfy when the density

profile becomes steeper. The peaking of this profile will stop when the particle flux

balances the sources within the plasma.

The condition that the magnetic curvature be unfavourable everywhere applies in

a Z-pinch, a screw-pinch, a reversed-field pinch and in a dipole magnetic field. In a

typical tokamak or stellarator, however, the magnetic curvature is good in some places

on each magnetic surface and bad in others, but the fluctuation amplitude |φ| usually
peaks in the bad-curvature region on the outboard side of the torus. If this peaking

is sufficiently strong, the conclusions of this subsection then apply. In particular, if

η > 2/3 and the transport caused by the temperature gradient can then be so strong

that it exceeds that from the density gradient, resulting in a density profile that peaks

in the core of the plasma, regardless of other properties of the turbulence.

4.3 Thermodiffusion

We now specifically consider the effect of the temperature gradient on the particle

transport. From Eq. (7) the electron thermodiffusion coefficient is equal to

De2 =
γ

ne

(

kαTe
e

)2〈∫

tr.

∣

∣φ
∣

∣

2 x2 − 3/2

γ2 + (ωr − ωde)2
fe0d

3v

〉

, (11)
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where we have set the Bessel function equal to unity for simplicity. As Angioni et al. [9]

have pointed out, the integrand is positive for x2 > 3/2 and negative for x2 < 3/2, and

were it not for the energy-dependence of ωde in the denominator, the integral would

vanish. Ion-temperature-gradient (ITG) modes in tokamaks usually propagate in the

ion diamagnetic direction, which we take to be positive, ω > 0, and since |φ| peaks on
the outboard side of the torus, ωde is negative, making (ωr−ωde)2 an increasing function

of energy. The expression (11) then becomes negative, implying inward thermodiffusion

of electrons. If, on the other hand, ω and ωde have the same sign and ω/ωde ≫ 1, as

expected for trapped-electron modes (TEMs), then the integral in Eq. (11) becomes

negative, implying outward thermodiffusion. This is thought to explain ‘density pump-

out’ in tokamaks with electron cyclotron resonance heating [10].

A similar argument can now be made for thermodiffusion of impurity ions. Accord-

ing to Eq. (8), the thermodiffusion coefficient is

DZ2 =
γ

nZ

(

kαTZ
Ze

)2 〈

|φ|2
∫

x2 − 3/2

γ2 + (ωr − ωdZ)2
fZ0d

3v

〉

,

where we have ignored the Bessel function on the grounds that its argument is much

smaller for heavy ions than for light ones. If it is of order unity for the bulk ions, it

should thus be permissible to neglect finite-gyroradius effects for heavy impurities. For

ITG modes in tokamaks, and for other modes propagating in the same direction of the

impurity drift, ωωdZ > 0, we expect outward thermodiffusion, DZ2 > 0.

4.4 Curvature pinch

The presence of a ‘curvature-pinch’ term in Eqs. (1), (7) and (8) is fundamentally

interesting since it implies that the state of zero particle flux is not necessarily one

where the density and temperature gradients vanish. Even if they do, there is in general

a finite particle flux, which reflects a tendency of the plasma to ‘spontaneoulsly’ develop

a density gradient [11, 19]. The underlying reason is that the lowest accessible energy

state is generally not homogeneous if the plasma dynamics is contrained to conserve

adiabatic invariants [18].

In the present context, the curvature pinch can be read off from Eqs. (7) and (8):

Ce =
πekα
nTe

〈
∫

tr.
ωde

∣

∣φ
∣

∣

2
∆γ(ωr − ωde)J

2

0 fe0d
3v

〉

,
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CZ =
πZekα
nZTZ

〈

∣

∣φ
∣

∣

2

∫

ωdZ∆γ(ωr − ωdZ)J
2

0 fZ0d
3v

〉

.

Hence it is clear that the curvature pinch is indeed caused by magnetic curvature

through the drift frequency ωd. Its direction is most clearly understood from a com-

parison with ordinary density-gradient-driven diffusion,

Ce

De1
d lnn
dψ

= −
〈
∫

tr.

ωde
ω∗e

∣

∣φ
∣

∣

2
∆γJ

2

0 fe0d
3v

〉/〈
∫

tr.

∣

∣φ
∣

∣

2
∆γJ

2

0 fe0d
3v

〉

.

Hence it is clear that the curvature pinch is indeed a ‘pinch’, i.e. it transports electrons

up the density gradient, if the bounce-averaged magnetic curvature is unfavourable,

ωdeω∗e > 0, for most relevant orbits. This tends to be the case in tokamaks [11, 19] but

not in quasi-isodynamic stellarators [14, 17], where the curvature pinch is thus outward

[20].

Such devices thus suffer from a curvature ‘anti-pinch’, potentially leading to hollow

density profiles. The corresponding impurity flux,

CZ

DZ1
d lnnZ

dψ

= −
〈
∫

ωdZ
ω∗Z

∣

∣φ
∣

∣

2
∆γJ

2

0fZ0d
3v

〉/〈
∫

∣

∣φ
∣

∣

2
∆γJ

2

0 fZ0d
3v

〉

,

is however beneficial, driving the impurities in the same direction as ordinary diffusion,

if the fluctuations peak in regions of favourable local magnetic curvature, ωdZω∗Z < 0.

4.5 Near-marginality

Just above the linear stability threshold, γ → 0+, the function ∆γ approaches a Dirac

delta function, which simplifies the calculation of the velocity-space integral in Eqs. (7)

and (8). One of the two velocity-space integrals can then be carried out, but the re-

sulting expression does not yield much more information than already discussed above.

For instance, the electron flux (7) becomes in this limit

Γe = −k2α
dn

dψ

∫

1/Bmin

1/Bmax

∑

j

τj |φ|2
|ω̃de|

√

πω

ω̃de
Θ(ωω̃de)e

−ω/ω̃de

×
[

1 + ηe

(

ω

ω̃de
− 3

2

)

− ω

ω∗e

]

dλ

/
∫

dl

B
,

where Θ denotes the Heaviside function, which in this expression ensures that the

frequencies ω and ω̃de(λ) have the same sign, so that only resonant orbits contribute to

the flux. ¿From this result, we again see that the flux is in the direction of increasing

density if the condition (10) is satisfied. We also note that thermodiffusion is outward

if ω/ω̃de > 3/2, but otherwise it is difficult to draw any general conclusions.
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5 Extension to electromagnetic instabilities

The two main limitations of our results are the neglect of collisions and electromagnetic

effects, which arise at finite plasma beta and perturb the equilibrium magnetic field.

The electromagnetic fluctuation components are of two types: one associated with

magnetic compressibility, δB‖, and the other with “magnetic flutter”, δB⊥ arising

from perturbed electric currents parallel to B. Magnetic compressibility affects ion-

temperature-gradient modes if the electron pressure is of the order of βe ∼ Lp/R,

where Lp denotes the pressure gradient length scale and R the curvature radius of the

magnetic field [22]. As is well known in the gyrokinetic simulation community, the

destabilising effect of δB‖ is largely cancelled by a reduction in the equilibrium ∇B-

drift (at constant magnetic curvature), so that little net effect is seen if one is careful

to keep the magnetic drifts consistent with the magnetic equilibrium [22]. This is true

even when β is large enough to excite kinetic ballooning modes [23].

Perpendicular magnetic fluctuations, coming from a term containing the magnetic

potential A‖ in the gyrokinetic equation, arise already at smaller pressures, of order

[22]

β ∼
(

k⊥ρik‖cs

ω

)2

,

where ρi denotes the ion gyroradius and cs the sound speed. These fluctuations cause

extra particle transport by electrons streaming along perturbed magnetic field lines,

but only if these reconnect and form overlapping magnetic islands, so that the field

becomes chaotic. A quasilinear estimate of the island width, and of this transport,

can be given if the electrostatic perturbation driven by ion-scale turbulence generates

a magnetic perturbation at the electron scale, δ < ρi, where magnetic flux surfaces are

not preserved and reconnection can indeed occur. This is an intricate calculation that,

to our knowledge, has only been performed in the case of the slab ion-temperature-

gradient mode [24]. In a more general setting, it is possible to highlight some features

of the quasilinear stochastic transport without going into too many details. First of

all, the amplitude of the magnetic perturbation that generates a magnetic island must

be related to the amplitude of the electrostatic potential, φ. The amplitude of electro-

magnetic fluctuations, A‖, can be considered the unknown of the ion-scale problem if

it is assumed that the solution of the leading-order electrostatic problem at the char-
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acteristic scale of the instability, kψ∇ψ ∼ kα/a, is known, where a ∼ |∇α|−1 denotes a

normalising length. This means that the eigenfunction φ and the eigenvalue ω of the

electrostatic mode (typically an ITG or TEM instability) must be given for a specific

wave number kα/a. Then, A‖ is determined by multiple asymptotic matching between

the ion-region solution, (kψ∇ψ)ρi ∼ 1, and the leading-order electrostatic solution. At

the ion scale, A‖ is a β−correction to the electrostatic potential associated with the

driving turbulence so that A‖∝βφ, [see Eq. (11) of [24]]. Not surprisingly, this implies

that the addition of an electromagnetic component to Eq. (7) would only contribute

significantly to the transport if β is large enough. We note that the explicit form of A‖

depends on the details of the leading order electrostatic problem. Under the assumption

δ ≪ ρi, the matching of A‖ found from by perturbing the electrostatic problem to the

value A‖

∣

∣

δ
, evaluated from Ampere’s law at the electron scale δ, gives the amplitude

A‖

∣

∣

δ
as a function of φ. The specific form of the electron response is thus eventually

required. In this regard, the analysis of Connor et al. was performed for semicollisional

electrons. However, a simple adaptation of the their analysis to the collisionless case is

straightforward and gives the magnetic perturbation at the rational surface

vthiA‖(0) = βib
2

0

δLs
ρiLT

F (
ω0

ηeω∗e
, βi

ρiL
2
s

δL2

T

, b0, Ie)φ, (12)

where the function F takes into account of the details of the driving instability at

the ion scale [i.e. it is a function of the ∆∗ quantity introduced by the authors], and

given by the electrostatic problem, Ie is an O(1) number resulting from the integration

of a function of the collisionless electron conductivity [25, 26, 27], b0 = k2α(ρi/a)
2/2,

L−1

T = d log T/dψ̂, Ls denotes the shear length, ψ̂ = ψ/(a2B0), and B0 a reference

magnetic field. In Eq. (12), the explicit dependence on b0 and Ls/LT are specific

of the slab ITG mode, however the δ/ρi and βi−dependencies are general. By using

δBr ∼ (kα∇α)A‖(0), a quasilinear estimate for the collisionless Rechester-Rosenbluth

transport coefficient gives [28]

χe = vtheL

(

δB⊥

B

)2

∼
(

vthe
kα |∇α|

)

β2i b
2
0

T 2
e /T

2
i

δL3
s

ρ2iL
2

T

F 2
k2α |∇α|2 φ2
v2thiB

2
0

, (13)

where L = Ls/(kα |∇α| δ) is the length that a particle needs to travel along the magnetic

field to encounter the electron scale δ. Let us now consider the particle transport due

to the effective diffusion caused by magnetic perturbations: ∂tn = χe∇2n. This will
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compete with the radial E×B transport of Eq. (7): Γed lnn/dψ = ω∗enIp, where Ip is

an O(1) quantity defined by the right-hand side of Eq. (7) . We can now compare the

ratio of the particle diffusion due to the stochastic magnetic field, and the one given by

the radial component of the E×B drift

χeL
−2

T n

Γe
d
dψ lnn

= 2a∇α β2i b
4
0

(Te/Ti)
5/2

√

mi

me

δ3L3
s

ρ3iL
3

T

F 2

Ip

k2α |∇α|2 φ2
v2thiB

2
0

∼ β2i b
4

0

√

Timi

Teme

δ

ρi

(

Ls
LT

)3

≪ 1.

(14)

Since δ < ρi and in accordance with the result of Connor et al. [24], this is a very

small number whose smallness is dictated by the electron-ion scale separation, by β,

and by b0.

6 Conclusions

Our conclusions can be summarised as follows. Not all of them are novel, in particular

those relating to tokamaks, but we nevertheless list all significant findings here for

convenience:

• Most of the electron transport is carried by trapped particles.

• In tokamaks, most trapped particles experience unfavourable magnetic curvature

on an orbit-average. Instabilities propagating in the ion diamagnetic direction

therefore tend to produce inward thermodiffusion, and those propagating in the

electron direction cause outward thermodiffusion, which is thought to explain

‘density pump-out’ during electron-cyclotron-resonance heating. The curvature

pinch is directed inward and tends, in combination with ITG-driven thermodif-

fusion, to cause slightly peaked density profiles.

• In so-called maximum-J devices [21], such as quasi-isodynamic stellarators [17],

where most trapped electrons experience favourable magnetic curvature on a time

average, the net particle transport is always in the direction of decreasing density

if 0 < ηe < 2/3, and the curvature pinch is outward. This result suggests that it

could be relatively difficult to achieve efficient fuelling of such stellarators using

gas puffing at the plasma edge. Such difficulties have indeed been observed in the

first operational phase of Wendelstein 7-X.
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• In magnetic configurations with unfavourable magnetic curvature everywhere,

such as magnetic dipoles, reversed-field pinches, Z-pinches and screw pinches,

both the electron and the impurity fluxes are in the direction of increasing density,

i.e., usually into the plasma, if the condition (10) is satisfied. Spontaneous density

peaking should then occur at least to the point where Eq. (10) is no longer

satisfied.

• In turbulence driven by the ion-temperature-gradient instability, the contribution

to transport from parallel streaming along chaotic magnetic field lines is relatively

small.

The main limitation of our calculation is the neglect of collision, which in particular

for heavy impurities restricts its validity to high-temperature plasmas.
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