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Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the
intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the
prototypical magnetoelectric Cr,O3 as our model system, we show that excitation of a polar mode at 17 THz
causes a pronounced modification of the magnetic exchange interactions through a change in the average Cr-Cr
distance. In particular, the quasistatic deformation induced by nonlinear phononic coupling yields a structure with
amodified magnetic state, which persists for the duration of the phonon excitation. In addition, our time-dependent
magnetization dynamics computations show that systematic modulation of the magnetic exchange interaction by

the phonon excitation modifies the magnetization dynamics. This temporal modulation of the magnetic exchange
interaction strengths using phonons provides a route to creating nonequilibrium magnetic states and suggests
avenues for fast manipulation of spin arrangements and dynamics.
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I. INTRODUCTION

The field of nonlinear phononics, in which high-intensity
terahertz (THz) optical pulses are used to drive phonon exci-
tations, is of increasing interest [1,2]. The nonlinear processes
triggered by the strong phonon excitations have been shown
repeatedly to introduce complex structural modifications in
materials, which in turn cause striking and often unexpected
changes in properties. Examples include the stimulation of
insulator to metal transitions in correlated oxides [3-5] and
the enhancement of superconducting properties in high-7,
cuprates [6,7] and other materials [8]. In all cases, theoret-
ical studies combining density functional theory with phe-
nomenological modeling have been invaluable in interpret-
ing the experimental results [2,9—13] and even in predict-
ing new phenomena, such as the recent switching [14] and
creation [15] of ferroic states, ahead of their experimental
observation [16].

In addition to modifying electronic properties, there are a
number of examples of THz phonon excitation triggering mag-
netic phenomena on a picosecond (ps = 107!% s) timescale.
Early results indicate that selective phonon excitations can
induce demagnetization processes [17,18], and two-phonon
excitation [19] has been shown to excite magnons by the stimu-
lated rotational motion of atoms [13,15]. We note that these be-
haviors are distinct from ultrafast femtosecond (fs = 1015 )
spin-flip relaxation processes induced by optical frequency
pulses, such as the pioneering experiments of Refs. [20-22],
which heat the electronic/lattice subsystem. They are also
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distinct from the THz excitation of electromagnons in mul-
tiferroics [23], in which the electric field of the light pulse
couples directly to the dipole moment of the electron-magnon
quasiparticle.

In this work, we address theoretically how the structural
changes triggered by the nonlinear phononic processes affect
the magnetic energy landscape. We are particularly interested
in the situation in which an excited infrared-active phonon
mode couples quadratic linearly to a Raman-active mode,
causing a shift in the average structure that persists for
the duration of the phonon excitation. We show that the
induced structure can have a different magnetic ordering
from the equilibrium structure, so that the lattice excitation
can cause a spin-state transition. In addition, we explore the
spin dynamics induced by the phonon coupling, and show
that various complex spin-flip patterns can be selectively
excited through appropriate choice of the phonon driving
frequency.

In the next section we review the now well-established
theory of nonlinear phononics. We then present a model
that combines the nonlinear phononics formalism with the
Heisenberg Hamiltonian to describe spin-phonon coupling
through the changes in magnetic exchange interactions that
are induced by changes in structure. In Sec. III, we apply
the model to the prototypical magnetoelectric material Cr,O3
(Fig. 1), using first-principles calculations to obtain all the
material-specific parameters. In Sec. IV we present and discuss
the analytical solution of the nonlinear phononic Hamiltonian
for the lattice dynamics and in Sec. V the numerical simulations
of the magnetization dynamics based on the Landau-Lifshitz-
Gilbert equation [24,25]. The implications of our findings and
suggestions for future work are discussed in the Summary.

©2018 American Physical Society
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FIG. 1. (a) Unit cell of Cr,O; with the red arrows indicating the
ground-state antiferromagnetic spin magnetic order. (b) Schematics of
the phonon-driven change in magnetic ground state: the excitation of
a polar phonon mode (£1r ) induces an increase in the nearest-neighbor
Cr-Cr bond length by the square-linear anharmonic phonon coupling.
The longer bond length results in ferromagnetic exchange interaction
between the Cr ions creating a transient change in the magnetic state
for the duration of the phonon excitation.

II. THEORY

Here, we describe separately the modeling of phononic
and magnetic lattice systems before outlining our approach
to modeling their coupling. We begin with the description of
lattice anharmonicity.

For large atomic displacements, such as those induced
by intense optical pulses, the usual harmonic description of
lattice phonons breaks down and higher-order anharmonicities
become relevant. The lattice Hamiltonian can then be written
as [2,10]

vib wIZR 2 “’121 2 2
H"(¢Rr,Er) = T%-IR + TER +g éRglR

VIR YR
+T$+Z% (1

where wigr, wr are the frequencies of the infrared (IR) and
Raman (R) modes, &g and &g are distortions, yr,r are fourth-
order anharmonic constants, and g represents the coupling
between two phonon modes. (Terms in 5}% are small and
so are neglected for conciseness.) The dominant anharmonic
response to optical pumping comes from the third-order gRgé
term, which has been shown to cause a shift in the potential
energy to a finite value of the Raman normal mode coordinate,
creating in turn a quasistatic change in the structure [2,9,10].
For a single optical pulse, this structural distortion decays
and the system relaxes back to the ground state, whereas
continous driving yields a combination of time-dependent
and time-independent structural distortions. We will discuss
these distortions later based on the analytical solution of

Eq. (1).

To model the magnetic structure we consider a Heisenberg
Hamiltonian with

N
H™ =", (S-S + DY (55, )

(i,]) i=1

where S; is a localized spin magnetic moment, J; ; are the
magnetic exchange interactions between spins i and j, and D
is the uniaxial magnetocrystalline anisotropy (MCA) energy.
We introduce the coupling of the local spin moments contained
in the Heisenberg Hamiltonian, to the distortion & of the lattice
Hamiltonian by expanding the magnetic exchange interactions
with respect to the distortion [10,26]. For an expansion up to
second order we obtain the following spin-phonon coupling
Hamiltonian:

3 ; 9°Ji
HY =% agJ (Si-SHE+ D agZJ (Si- 8§ (3)

(i.j) i

Note that the first derivatives of exchange with respect to mode
& can be zero for certain mode symmetries, and in general only
the second-order derivatives are nonzero. For the symmetry-
conserving Raman modes &g, however, the first-order spin-
lattice coupling is nonzero; note also that these are the modes
that have a quadratic-linear lattice coupling with the IR modes
in Eq. (1). Since the &g distortion is symmetry conserving, we
can directly write the exchange interaction as a function of the
mode amplitude as
3Ji.j 9% ;.
Jz,](SR) = Ji,j + a";:R %.R + 351%
with the same labeling as in Eq. (2). (For a phonon mode of
general symmetry, either Raman or IR active, the situation
is more complicated since the symmetry breaking can split
degenerate exchange interactions, resulting in an increased
total number of inequivalent exchange interaction parameters.)
In principle, the MCA energy term D is also a function of
the mode amplitude. However, we find that its variation is
negligible for Cr,Os.

R RN C))

Computational details

To calculate the structure, phonons, and magnetic exchange
interactions of Cr, O3 we use density functional theory with the
local spin density approximation plus Hubbard U (LSDA + U)
exchange-correlation functional. We use parameters U = 4 eV
and J = 0.5¢eV on the Cr-d orbitals and treat the double-
counting correction within the fully localized limit. These pa-
rameters have been shown to give a good description of Cr,O3
in earlier work [27-29]. We use the Vienna ab initio simulation
package (VASP) [30] within the projector augmented wave
(PAW) method [31] using default VASP PAW pseudopotentials
generated with the following valence-electron configurations:
Cr (3s23p%4s'3d3), O (25?3p*). We sample the Brillouin
zone in our total-energy calculations using 11 x 11 x 11 and
9 x 9 x 5 k-point meshes for the primitive rhombohedral and
hexagonal cells, respectively, and use a plane-wave energy
cutoff of 600 eV. Finally, for computing the MCA energy of
Cr,03 we use an increased k-point grid of 14 x 14 x 14 within
the rhombohedral cell.
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Previous theoretical studies of Cr,O3 have addressed the
microscopic origin of the magnetoelectric effect [28,32,33]
and the magnetic properties [27,29] using a combination of
first-principles density functional theory (DFT) calculations
and effective Hamiltonian approaches. These studies demon-
strated that magnetoelectric properties, phonon frequencies,
and magnetic exchange interactions, all key quantities in this
work, are well described by DFT calculations with technical
details similar to those chosen here.

We calculate the atomistic spin dynamics by solving the
Landau-Lifshitz-Gilbert equation numerically using 1the Heun

method [34] with an integration time step that is 155, of the

fastest period of the oscillations [ u/(y D)1073 & 4 fs].

II1. Cl‘203

Cr,03 crystallizes in the corundum structure which is
composed of a combination of edge- and face-sharing CrOg
octahedra. The magnitude 3up spin magnetic moments on
the d* Cr** ions order antiferromagnetically below the Néel
temperature 7y = 307K in a collinear “(1,|,1,J)” pattern
with magnetic space group R3¢ (161) that breaks inversion
symmetry (Fig. 1) [35,36]. The primitive unit cell, with its
four chromium and six oxygen atoms, is shown in Fig. 1(a).
As a result of its simultaneous breaking of time-reversal and
space-inversion symmetry, Cr, O3 exhibits the linear magneto-
electric effect, in which a magnetic/electric field induces an
electric/magnetic polarization. Indeed, Cr,O3 is considered
to be the prototypical magnetoelectric, being the material in
which the effect was first predicted [37] and subsequently
measured [38].

A. Calculated lattice properties of Cr,0O;

We begin by calculating the lowest-energy structure of
Cr,03 by relaxing its thombohedral unit cell to obtain a
force- and stress-free DFT reference structure. We initialized
our computations using data from the experimental study of
Ref. [39] and optimized the structure until the forces on each
atom were less than 0.01 meV/ A and the stress on the unit

cell was less than lmeV/./QXz. The resulting structure has a

unit-cell volume of 96.46 AS, with the coordinates x = 0.152
for Crand x = 0.304 for O at the Wyckoff positions 4c and 6e,
respectively, in good agreement with literature experimental
[39] and theoretical [28] values.

Next, we compute the phonon frequencies and eigenvec-
tors of our ground-state structure using density functional
perturbation theory [43]. Light radiation only excites polar
phonon modes close to the center of the Brillouin zone,
q = (0,0,0). Consequently, we do not calculate the full phonon
band structure but only the modes at this special point in
reciprocal space. Since the primitive cell of Cr,O3 contains
10 atoms, there are 27 nontranslational zone-center phonon
modes, which span the irreducible representations of the 3I'm
point group: 2A1, ® 34, ® 2A1, ® 2A,, ® 10E, ® 8E,. Of
these modes, only the A,, and E, modes are polar, with the
dipole moments of the A,, modes pointing along the long
rhombohedral axis (a + b + ¢) and those of the E, modes
perpendicular to it. The A;, modes, which are not directly

TABLE 1. Phonon frequencies of infrared-active and symmetry-
conserving Raman modes of Cr,03 in THz. The experimental values
(EXPT) are taken from Refs. [40—42]. The displacement patterns of
the A, and A,, modes are shown in Figs. 2(a) and 2(b).

Sym. DFT EXPT
Ay, 9.3 9.0
Aqg 17.3 16.5
Az 8.0

Ag, 13.8

An 20.7

E, 9.2 8.7
E, 10.7 10.5
E, 12.4 12.0
E, 16.1 15.6
E, 19.2 18.5
A 122 12.1
As, 17.2 16.0
E, 9.3 9.1
E, 135 132
E, 17.0 16.1
E 19.0 18.2

excitable by light, have the symmetry of the Cr,Os3 point
group and consequently exhibit a square-linear coupling to
the polar modes in the anharmonic potential. We list in Table I
the computed frequencies of A, and optically active modes
together with available experimental frequencies from the
literature [40—42], and find good agreement.

In Fig. 2 we show the displacement patterns of the A,,
and A, modes with the gray arrows indicating the direction
of displacement of the atoms for positive mode amplitude.
Within the Cr,05 structure the 9.3 Thz A, [A1,(9)] mode
modulates the Cr-Cr distance, whereas the higher-frequency
17.3 Thz A,(17) mode modulates the Cr-O-Cr bond angles
via arotation of the oxygen octahedra around the thombohedral
axis. Both polar A,, modes exhibit a collective motion of
the oxygens along the rhombohedral axis, with the 17.2 Thz
A,,(17) mode involving the larger relative movement of the
Cr and oxygen atoms. The Cr-Cr bond lengths are unchanged
by the movement patterns of the polar modes.

With our calculated phonon eigenvectors as the starting
point, we next compute the anharmonic phonon coupling
constants by mapping the potential of Eq. (1) onto total-energy
calculations of Cr,Oj3 structures, distorted by appropriate
superpositions of the phonon eigenvectors as in previous work
[10,13]. We are primarily interested in the quadratic-linear
coupling of Eq. (1), which is only nonzero if the linear
component has the full point-group symmetry, which is A,
for Cr,O3. For convenience, we assume that the radiation is
oriented along the rhombohedral axis such that only A,, modes
are directly excited, then we compute the two-dimensional
(2D) potential of Eq. (1) for all combinations of polar A,,
and A, modes.

In Fig. 3(a) we show the computed potential landscape for
the combination of the A,(9) and A,,(17) phonon modes.
Displacement of the Aj,(17) mode causes a shift of the
potential minimum of the A,(9) mode, as shown in the cuts of
the 2D potential in Fig. 3(b). The red dashed line in Fig. 3(a)
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(a) Al1g®) A1g(17)

Au(17)

FIG. 2. Displacement pattern of the Cr,O; phonon modes rel-
evant in this work. (a) Shows symmetry-conserving A;, modes,
and (b) displays IR-active A,, modes. The gray arrows show the
displacement direction of each atom for the specific mode, with
the indicated directions defining positive displacement amplitudes.
The notation indicates the irreducible representation for the mode
symmetry followed in brackets by the calculated mode frequency in
THz, rounded to the nearest integer.

shows the position of the A1,(9) mode minimum within the
2D potential landscape. For negative and positive amplitudes
of the A,,(17) mode, the potential minimum position shifts to
positive amplitudes of the A14(9), corresponding to a negative
sign of the square-linear coupling. We quantify this observation
by fitting the complete potential landscape using Eq. (1),
to extract all anharmonic coupling constants and repeat the
calculation for all combinations of A, and A, modes. The
computed anharmonic constants are given in Table II.

We find that the nominal value of the quadratic-linear
anharmonic coupling g varies from 6 to 101 meV/ (\/EA)3
and exhibits positive or negative sign, so that modulations of
the Cr, O3 structure with positive and negative amplitudes of
the A1, modes can be induced by exciting the appropriate polar
mode. (Note that the opposite choice of sign in the definition
of the phonon eigenvectors would reverse the sign of g; the
signs given in Table II correspond to the phonons as defined in
Fig. 2.)

Minimization of Eq. (1) gives the amount of induced
structural distortion to be &g & —g &% /wg . Consequently, for
the combination of polar A,,(12) and A, (9) modes, excitation
of the polar mode induces, due to the positive coupling constant

~
~—

a

AV(Er,Er) (MeV)

~
(=3
~

AV (Er,Er) (MeV)

FIG. 3. (a) Calculated two-dimensional potential surface of the
anharmonic phonon-phonon interaction between &g = A,(9) and
&r = Ay,(17). The red line in the three-dimensional plot shows
the position of the potential minimum. (b) Selected cuts through
the two-dimensional potential surface shown in (a). Note that we
plot AV(Er &) = V(Emdr) — ViEr. — g6%/QwR)). so that the
minimum is set to 0 meV.

g, anegative amplitude of the A,(9) mode which results in a
decrease in the nearest-neighbor Cr-Cr distance. In contrast, the
A,,(17) mode couples with a negative coupling constant g to
the A1,4(9) mode and so the induced quasiequilibrium structure
has an increased Cr-Cr distance. The A,(17) mode changes
the oxygen octahedral rotation angles around the Cr ions. Its
negative coupling to the A,,(12) mode results in a decreased
rotational angle, whereas the positive coupling to the A, (17)

TABLE II. Upper panel: anharmonic coupling constants g, in
units of meV/(ﬁA)3, between symmetry-conserving A, and IR-
active phonon modes of A,, symmetry. Lower panel: quartic anhar-
monic constants y in units of meV/ (ﬁA)4.

Modes Ay, (12) Ay, (17)
Alg(9) 6 —86
A (17) —38 101
Modes A, (9) A (17) Ay, (12) Ay, (17)
Vir 1 4 4 14
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FIG. 4. (a) Illustration of the magnetic exchange interactions in Cr, O3, from first- to fifth-nearest neighbor. (b), (c) Changes in the magnetic
exchange interactions due to structural modifications by the A;,(9) and A,,(17) modes. Note that for the A,(9) mode the nearest-neighbor
magnetic exchange (J;) changes sign for negative phonon mode amplitudes.

mode increases the rotational angle in the quasiequilibrium
structure.

B. Calculated magnetic properties of Cr,0;

The fact that the transient structure generated through
the quadratic-linear coupling of the optically excited polar
modes to the Ai4,(9) Raman mode has a modified Cr-Cr
distance suggests that it might also have a different magnetic
ground state. To explore this possibility, we next calculate
the energy difference between the AFM ground-state ordering
1,4,1,{) and two other magnetic orderings of the Cr spins
[ferromagnetic (FM) (1,4,7,1) and another antiferromagnetic
(AFM)) (1,7,4.1)] as a function of the A;,(9) distortion
amplitude.

For the equilibrium structure, we find that the AFM, state
is 67 meV and the FM state 162 meV in energy above the
AFM ground state. Modulating the structure with the pattern
of atomic displacements corresponding to the Ay,(9) phonon
mode in the positive direction, so that the Cr-Cr nearest-
neighbor distance (dcr.cr) is increased, significantly lowers
both of these energy differences. For positive amplitudes larger
than &g > 0.75 \/E;\, corresponding to a stretching of dey.cr =
0.06 A, the energy of the AFM, state becomes lower than the
AFM ground state; at larger amplitudes (6§ > 1.94/u 10%) the
FM state becomes lower in energy than the original ground
state, but remains higher in energy than the AFM, state. We
therefore predict that a crossover to the AFM; state should be
achievable through quadratic-linear coupling with appropriate
choice of the polar mode excitation frequency and intensity.
[Note that modulating the structure with a negative amplitude
of A,4(9), which decreases the Cr-Cr nearest-neighbor bond,
increases the relative energies of the FM and AFM; states.]

In contrast, modulating the structure along the eigenvector of
the second A, mode at 17 THz, or along those of the polar
Ay, modes, has only a small effect on the magnetic energy
landscape.

To explore the magnetic behavior further, we next calcu-
late the magnetic exchange interactions of the ground-state
structure using the Heisenberg Hamiltonian of (2), including
magnetic exchange interactions J, up to fifth-nearest neigh-
bors, as shown in Fig. 4; this Hamiltonian has been shown to
give an accurate theoretical description of the magnetoelectric
effect and magnetic transition temperature of Cr,O3 [27,28].
Specifically, our Heisenberg Hamiltonian for the magnetic
exchanges reads as

HES = Ji(S1 - S2+ 3+ S4) +315(S) - Sa+ S2 - S3)
4+ 3J3(S1 - S0+ S5+ 84) +6J4(S1 - Sz 4+ Sz - S4)
+ J5(S2 - 83+ 81 - Sa), Q)

with the J,, as shown in Fig. 4, and the labeling of spins as in
Fig. 1. We extract the magnetic exchange interactions from
the total-energy differences between four distinct magnetic
arrangements within the nonprimitive hexagonal cell, using
the approach of Ref. [44]. The resulting magnetic exchange
interactions are listed in Table III and are in agreement with
earlier theoretical works [27-29]. We find the nearest- and
next-nearest-neighbor interactions J; and J, to be strongly
antiferromagnetic, whereas J; and Jy favor ferromagnetic
arrangements. The furthermost exchange interaction that we
consider, Js, is weakly antiferromagnetic. Finally, we note
that, in contrast to other magnetic insulators [45], higher-order
magnetic exchanges such as four-body interactions are not
required for the description of the magnetism in Cr, O3 [29].
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TABLE III. Upper panel: magnetic exchange interactions (meV)
for the ground-state structure of Cr,O;. Lower panel: spin-
phonon coupling constants (units meV/ (ﬁA) and meV/ (/\/1;1&)2 for
first/second order) for the A, and A,, modes of Cr,O;.

I J Js A Js
25.4 21.2 -39 -33 42
n 1 2 3 4 5
O

aJ,/0E ~579 —44 —0.1 —06 ~1.0
320, /082 14.5 0.2 0.1 0.0 0.1
A7)

3J,/0E 12.4 1.4 —0.0 0.1 0.3
3J,/08 39 0.4 0.1 0.0 0.0
Ay (12)

927,/0E? 0.5 0.1 —0.1 0.0 0.2
Az (17)

327, /98> —0.7 0.1 0.0 0.0 0.0

Next, we compute how the modulation of the Cr,Oj3 struc-
ture by the phonon mode eigenvectors changes the magnetic
exchange interactions, using the same approach to extract the
exchange interactions as we used above for the ground-state
structure. (For the A,, modes we neglect the small splittings
in J values that result from the lowered symmetry.) Our
calculated coefficients of the expansion of Eq. (4), listed
up to quadratic order in £ in Table III, are a measure of
the spin-phonon coupling for each mode. In Figs. 4(b) and
4(c), we plot the five nearest-neighbor magnetic exchange
constants as a function of the A,(9) and A,,(17) phonon mode
amplitudes. We find that the A ,(9) mode significantly changes
the nearest-neighbor exchange interaction, whereas the longer-
range magnetic exchange interactions are less affected by the
structural modulation. An intriguing result is the sign change
of the nearest-neighbor exchange interaction J; at amplitudes
£ > 0.75/uA, corresponding to an increase of 0.06 A in the
Cr-Cr bond length, consistent with the crossover to AFM;
ordering that we found above. In contrast to the A4(9) mode,
we see that the A,,(17) mode has minimal direct effect on
the magnetic exchange interactions. The other A, and Ay,
modes (not shown) also have minimal effect on the exchange
interactions. The spin-phonon coupling constants obtained by
fitting these results to Eq. (4) are listed in Table III; as expected,
the coefficients of J; for the A;,(9) mode are large.

We can understand the strong J; response by analyzing the
displacement pattern of the A1,(9) mode in the context of the
origin of the J; magnetic exchange interaction that has been
discussed in the literature. Earlier analysis of the magnetic
interactions in the ground state of Cr,O3 [27] showed that the
main contribution to J; arises from an antiferromagnetic direct
exchange interaction between the nearest Cr atoms combined
with a small ferromagnetic superexchange component from
the 82° Cr-O-Cr interaction. For positive amplitudes of the
A14(9) mode, the Cr-Cr distance increases, thus decreasing
the antiferromagnetic direct exchange interaction. At the same
time, the Cr-O-Cr angle becomes closer to 90° enhancing the
ferromagnetic superexchange. The result is a change in sign of
J1. We note that this observation is possibly connected to the

findings of Ref. [27], in which strong modulations of magnetic
energies induced by small changes of the Cr,O3 ground-state
structure were reported. Moreover, since the direct magnetic
exchange interaction only affects J;, the magnetic exchange
interactions J, with n > 2 are less affected by the structural
distortion.

Finally, we calculate the MCA energy of Cr,03, from the
energy difference between alignment of the Cr spin moments
along (E) and perpendicular (E ) to the thombohedral axis,
including the spin-orbit interaction in our calculations. We
obtain an energy difference £ — E; = —27 ueV; the exper-
imental [35,46,47] values range from —12 to —16 pueV. We
also calculate the change in MCA energy when the structure
is modulated by the A, or A, phonon modes and find no

significant change (a mode amplitude of £ = :|:2\/ﬁ/°% lowers
the MCA energy by ~10%). In particular, the rhombohedral
easy axis is preserved upon structural modulation. This finding
justifies our omission of MCA terms in our spin-phonon
Hamiltonian (3).

To summarize this section, we find a strong dependence
of the J; nearest-neighbor magnetic exchange interaction on
the structural distortion associated with the A,(9) mode, with
positive mode amplitude, corresponding to increased Cr-Cr
distance, inducing a change in sign. This dependence leads
to a crossover between antiferromagnetic states. Since the
A14(9) mode couples quadratic linearly to the A, modes,
this crossover can be induced by optical excitation of the
polar modes. Following the classical considerations derived in
Refs. [10,13], we estimate that a pulse fluence of ~40 mJ/ cm?
at a frequency 17 THz should be sufficient to induce this
crossover transition. A similar fluence was reported in Ref. [16]
without damaging the sample.

IV. NONLINEAR LATTICE DYNAMICS

Having established that the structural modification induced
via nonlinear phononic coupling can lead to a change in
magnetic ordering, we next evaluate the dynamical behavior
associated with driving a phonon. We begin by calculating
the nonlinear lattice dynamics using the vibrational crystal
potential given in Eq. (1), followed by the resulting spin
dynamics. We study the case in which an IR mode is excited
by a sinusoidal driving force F(¢) with amplitude Eg;,. With
frequency €2 and calculate the resulting dynamics of the
coupled R mode, focusing particularly on the combination of
A, (17) and A1,4(9) which yields a negative amplitude A,(9)
displacement and possible ferromagnetism. The time evolution
of the system described by the potential of Eq. (1) is then
governed by the following set of differential equations:

ER + oRER + VRER = 28ERER + F(1), ©6)
gR + G)Rfk + VR";:R gEIRs @)
F(t) = Eqrive sin(Q1). 8)

We derive a closed analytical solution of the dynamic equations
in the limit in which the coupling and the anharmonicity
are small relative to the frequency, that is, £18I% <1 by
following the approach of Ref. [48]. For the case of Cr203,0ur
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ab initio values, provided in Tables I and II, indicate that the
combination of A, with polar Ay, modes fulfills this criterion.
The dynamics of the IR mode is then given by

Er(t) = AR sin[or?] + Ag sin[Qr]
8ARAR
2[0f — (R — wr)?]
8ARAR
2[wf — (@R + ®r)?]
n 8AqAR
2[0f — (2 — wr)’]
8AqAR
oy — @ + o]
and those of the R mode by

+ cos[(@r — @r)I]

+ cos[(@r + @r)?]

sin[(R — wr)t]

sin[(2 + @wgr)t], 9)

3A12R

——FF—F X COS 26 t
Mo — dai] PO

Er(t) = &ro + AR cos[wrt] +

gA%
n 8ARAQ
2[wh — (2 + or)?]
gARAQ
2[wf — (2 — or)?]

cos[292¢]

sin[(Q2 4+ @r)?]

sin[(2 — CNL)]R)Z‘]. (10)

The time-independent displacement of the R mode oscillation
is given by & = g(A%R + Aé) / (4a)§), with the amplitude
factors Ajgr and Ar depending on the initial amplitudes &g (0)
and &R (0), and A =1 /(a)lzR — Q?%). We indicate frequencies
with a tilde which have been renormalized by the anharmonic
coupling, as given by Egs. (A1) and (A2) in the Appendix.

The solution shows that the anharmonic potential and
the coupling between the phonon modes induce motions of
the oscillators which display several components given by
cosine and sine terms. Each of these terms corresponds to
a single component of the motion with a specific amplitude
and frequency, either the renormalized original frequency of
each oscillator, indicated by the tilde, or sums or differences
of the original frequencies. We emphasize that these motions
arise from a single mode, which exhibits multiple frequencies
because of its anharmonicity and coupling.

Next, we analyze the frequencies and amplitudes of each
term in Eq. (10) for the A;,(9) R mode. In Figs. 5(a) and
5(b) we show the frequencies and relative amplitudes of the R
mode motions as a function of the drive frequency €2, obtained
using the parameters for the A5, (17) (IR)-A1,(9) (R) coupled
phonon modes. Note that the only effect of the external driving
amplitude Egye 15 to scale the amplitude of the motion. We see
that for drive frequencies close to the 17 THz eigenfrequency
of the IR mode, the frequencies of the R mode components
range from sub THz to 40 THz [note the logarithmic scale in the
lower part of Fig. 5(a)], with the highest-frequency components
at around 34 THz being twice the renormalized IR mode
eigenfrequency (blue line), twice the driver frequency (green
dashed line), and the sum of the renormalized IR mode and
driver frequencies (red dashed-dotted line). The renormalized
R mode frequency is close to 10 THz, and like the renormalized
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FIG. 5. (a) Frequencies w and (b) relative amplitudes & (normal-
ized to &go) of the five separate parts of the R mode motion as a
function of the external driving frequency. Note the separation and
the linear and logarithmic scales in (a).

IR mode frequency is independent of the drive frequency. The
frequency of the lowest-frequency component of the motion
is given by the difference between the frequency of the driver
and the IR mode eigenfrequency. As a result, it has a strong
dependence on the drive frequency, becoming small as the
drive frequency approaches the eigenfrequency of the IR mode
(note that the divergence when the drive frequency equals the
eigenfrequency of the IR mode is not physical, and arises
because of the absence of damping in our simulations.)

In Fig. 5(b) we show the relative amplitudes of each
frequency component normalized to the time-independent
displacement &gg of &r(#) which we set to 100%. We see a
large spread in amplitudes for the different components of
the motion, with the motions with the renormalized IR and
R eigenfrequencies having the largest amplitudes, in the order
of 10% to 20% of &gro, as well as minimal dependence on the
drive frequency. The other three motion components, whose
frequencies depend explicitly on the drive frequency, have
strongly drive-frequency-dependent amplitudes, as expected.
Of these, the high-frequency 22 motion has the smallest ampli-
tude followed by the Q + wr motion, with the slow Q — @
motion having the largest amplitude, becoming similar in size
to the wir and @wr motions in the vicinity of the eigenfrequency
of IR mode. Again, the divergence when the mode frequency
matches the driver frequency results from the absence of
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damping in our model, and so we do not analyze this point
in detail.

To summarize this section, we find that, in addition to the
time-independent offset &g of the R mode induced by its
quadratic-linear coupling to the IR mode, the R mode has a
complex oscillatory motion made up of different frequencies.
The largest amplitude motions have high frequencies, set by
the wr and wyr frequencies. Close to resonance between the
drive and IR mode frequencies, an additional component of
the motion with a slower frequency 2 — wr also develops a
significant amplitude. This slow motion is particularly inter-
esting since it is tunable in amplitude and frequency by the
external driver; in the next section, we will explore how it can
be exploited to engineer the spin dynamics.

V. SPIN DYNAMICS

Next, we discuss how the structural modulations we de-
scribed above drive the spin dynamics, by combining our
findings for the structural dynamics with those for the spin-
phonon coupling. The time-dependent exchange modulation
induced by the structural modulation is obtained by combining
Eq. (4) for J,,(§) with Eq. (10) for £(¢) to yield the J,,(£(¢)). We
include only the modulations caused by the A;,(9) R mode.
While this mode is driven by the excitation of the Aj,(17)
(IR) mode, the latter has negligible effect on the exchange
interactions, and so the time-dependent magnetic exchange
modulations are dominated by J,(&r(?)).

For the spin dynamics we consider a single Cr,O3 unit cell
with four magnetic Cr sites and periodic boundary conditions.
Rewriting the Heisenberg Hamiltonian of Eq. (5), we obtain

H™e N (1) = J1(Er(0)(S1 - S2+ 83+ Sa)
+ L(ERO)S1 -S4+ S; - S3)

+ BERMDNS1 - S5+ 82+ 84),  (11)
where the net magnetic exchange interactions J; are given by
Ji(E&r(®) = Ji(E&r(1) + 3J3(5r (1)),
h(Er(1) = 31(Er(1) + J5(Er(D),

J3(5r (1)) = 6J4(Er (1)) 12)

and S to Sy are the four classical spins in the unit cell as shown
in Fig. 1(a). Our full magnetic Hamiltonian is then

4
H™2E (1) :Hmag’eXCh(ER(t)) + D Z (Sl.z)z, (13)
i=1
where £r(#) denotes the specific time-dependent exchange
interaction strength [see Eq. (12) and Table III] and D is the
MCA energy which we fixed to the computed equilibrium
value.
We calculate the classical magnetization dynamics using
the Landau-Lifshitz-Gilbert equation [24,25,49] within an
atomistic approach [50,51]

ds;
== H’_’ L[S x HE(1)]
“ eSS BT O]l a4

(a) T T T
< 2
;'é - _
5
(b) 1 l 1 1 l 1 | 1 1 1 I 1 1 1
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FIG. 6. (a) Modulation of the phonon amplitude &g(¢) and (b)
resulting magnetic exchange interaction f,-(‘;‘R(t)) with &g () derived
from Eq. (10). The laser field E(¢) is switched on at time # = 0,
with Egive = 0.6MV/cm at Q = 16.900 THz. The change in sign
of the average exchange for J; is clearly visible; note that because
of the fast oscillating components (@ > 30 THz) of the & motion
the time-dependent exchange interaction can not be resolved on this
scale.

eff (o 1 SH™E(r)
Here, H;" (1) = wssS

the electron gyromagnetic ratio, and « is the Gilbert damping.
The value of the damping parameter is crucial in determining
the magnetization dynamics and the relaxation time of the
system. Antiferromagnetic resonance measurements suggest
[35,52] that « ~ 10~* for Cr,Os. However, it is not clear
if and how this value becomes modified by the selective
phonon excitation and associated modulations of exchanges.
To explore the influence of o on the magnetization dynamics,
we perform a series of spin-dynamics calculations with «
varied in a reasonable range around 104, assuming in each
case that it does not vary further with the exchange modulation
J~i(§R(l)) as the structure is modified by the quadratic-linear
coupling of the A,(9) and A3,(17) phonon modes. We hope
that our work will inspire experimental studies of the influence
of phonon excitation on the Gilbert damping.

We begin by simulating the excitation of the A,,(17) mode
with a continuous field of strength of Egjve = 0.6 MV /cm
oscillating at a frequency of 16.9 THz, and show the resulting
evolution of the phonon amplitude and resulting exchange
interactions in Fig. 6. Before the mode is excited (at t =
0), all Ji(t) are constant, with J; and J, positive and J3
negative. When the oscillating electric field is applied, the
frequency-dependent induced changes in bond lengths and
angles described in the previous section modify the J;(t). We
see that, while all the magnetic exchange interactions oscillate,
the average of the J; exchange changes sign and becomes
negative, corresponding to a net ferromagnetic interaction
between the nearest-neighbor sites. Note that the next-nearest-
neighbor interaction .J, remains positive, still favoring an AFM
alignment.

To investigate how these changes in .]~,-($R(t)) affect the
overall magnetic ordering, we next perform magnetization
dynamics simulation for three different Gilbert damping pa-
rameters «. We are particularly interested in whether the the

with up the Bohr magneton, y is
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FIG. 7. Spin dynamics in the phonon-driven state of Cr,O;at
three values of the Gilbert damping «. The time dependence of the z
components (normalized to their ground-state values) of the four spin
magnetic moments in the Cr,O3 unit cell are shown with the labeling
corresponding to Fig. 1(a). The blue spheres (Cr atoms) and red arrows
(spins) represent the Cr,O; magnetic ground state. (a) o = 1072,
(b)a = 1073, and (c) @ = 1074

system becomes fully FM, or instead adopts the AFM; state
with its (1,1,],{) ordering of magnetic moments on the Cr
sites. We include a noise corresponding to a temperature of
0.1 K to prevent the system from becoming stuck in shallow
metastable minima [53].

First, we evaluate the case of strong damping, o = 1072,
which is associated with fast relaxation, and show the time
evolution of the z component of magnetization of the individual
four Crions in Fig. 7(a). As a result of the strong damping, the
spins react to the change in their average exchange modulation
and reorient on the same timescale as the J oscillations,
which is the period of the exchange excitation oscillations,

27 /wg ~ 0.1 ps. We see that they reorient from their origi-
nal AFM arrangement to the AFM; (1,1,,]) state, which
remains stable without further dynamical evolution provided
that the displacement of the A,4(9) continues by excitation of
the A,,(17) phonon mode. This fast dynamics is consistent
with the crossover to the AFM; state with increasing A14(9)
amplitude that we observed in the first part of our study.

Second, we decrease the damping by a factor of 10 and show
in Fig. 7(b) the magnetization dynamics for @ = 1073, with
all other details of the calculation unchanged. As expected,
the spin system now takes longer to reach a steady state; the
timescale of around 50 ps is consistent with established trends
in antiferromagnetic materials [54]. Interestingly, in this case
the system does not adopt the AFM; state, but rather a nearly
FM alignment. In this dynamical state, the spins precess in the
xy plane, resulting in an S, component for each the four spins
smaller than one (the total moment |S| = 1 at all time steps.)
Analysis of the obtained magnetization trajectories indicates
that FM mutual orientation of the spins yields the lowest energy
2 Ji)Si(t) - S;(1).

Third, we examine the behavior at the measured equilibrium
damping value [35,52] @ = 10~* and show the resulting spin
dynamics in Fig. 7(c), again with other parameters unchanged.
The reduced spin relaxation increases the timescale for reach-
ing the steady state to around (100 ps). In addition, the final
state is now similar to the original AFM ground state but with
the S, component reduced to roughly half of its original value.

Finally, we study another excitation scenario, in which we
exploit our finding from Sec. IV that a component of the
R mode motion can be tuned to low frequency and large
amplitude by selecting a drive frequency €2 close to resonance.
Specifically, we solve Eq. (10) analytically for the case of
driving frequency 2 = 16.995 THz, close to resonance. We
show the time dependence of J;, calculated for the combination
of A4(9) and A,(17) modes in Fig. 8(a). It is clear that the
oscillation frequency of the exchange interactions develops a
significant slow component with a frequency around 10 GHz.
The resulting spin dynamics is depicted in the lower panels
of Fig. 8, for strong damping o = 1072, In contrast to the
case shown in Fig. 7, a steady AFM; state is not achieved
on pumping, and instead the spins exhibit a flipping between
up and down alignment. Again, the spin-dynamics behavior
persists as long as the phonon mode is driven.

In conclusion, our calculations indicate that the quadratic-
linear coupling between the A,(9) and A, (17) modes leads
to a reversal of the average value of the nearest-neighbor
exchange between the Cr ions when the optical Aj,(17)
mode is continuously excited with sufficiently large amplitude.
Depending on the closeness of the excitation laser frequency
to the eigenfrequency of the A,(17) mode, the additional
oscillatory component of J;(¢) can be either fast or slow. In
the fast oscillation case, the system develops a steady-state
response, which depending on the strength of the Gilbert
damping, can exhibit a new AFM, or FM order, or regain the
original AFM ground state with reduced spin moments. In the
slow oscillation case, the resonant pumping in combination
with a strong damping triggers an alternating switching, which
operates on a tens-of-picoseconds timescale. We note that the
cases shown here represent a small fraction of spin-dynamics
possibilities, with the tuning of the driving frequency relative
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FIG. 8. Spin dynamics in the phonon-driven state of Cr,0s. (a)
Modulation of the magnetic exchange interaction J~,-(.§R(t)) with &
derived from Eq. (10). The laser field E(¢) is switched onattimer = 0,
with Egive = 0.6 MV/cm at Q = 16.995 THz, close to resonance.
The time-dependent magnetic exchanges show a slow modulation
component, resulting from the slow, large-amplitude modulation in
the &g motion produced when the excitation frequency is close to
resonance. (b) Time dependence of the z component of the four
spin magnetic moments in the Cr,O; unit cell with the labeling
corresponding to Fig. 1(a) and the spin magnitudes normalized to their
static ground-state values. We illustrate the Cr,O; magnetic ground
state by the blue spheres representing the Cr atoms with the arrows
showing the magnetic moments.

to the resonance, as well as on-off schemes for the excitation,
offering the potential to modulate the exchange interactions in
multiple complex ways.

VI. SUMMARY

We calculated the structural and magnetic responses of
chromium oxide, Cr,03, to intense excitation of its optically
active phonon modes. Using a general spin-lattice Hamil-
tonian, with parameters calculated from first principles, we

J

showed that the quasistatic structural distortion introduced
through the nonlinear phonon-phonon interaction can change
the magnetic state from its equilibrium antiferromagnetic to
an antiferromagnetic ordering with ferromagnetically coupled
nearest-neighbor spins. This transition is driven by the change
in nearest-neighbor magnetic exchange interaction when the
Cr-Cr separation is modified through nonlinear coupling of the
optical phonons to a symmetry-conserving A, Raman-active
mode. This antiferromagnetic ground state persists for as
long as the system is continuously excited, provided that the
excitation frequency is faster than the magnetic relaxation time.

Regarding dynamics, we find that the motion of the ex-
cited optical modes and coupled Raman-active mode can be
decomposed into several different frequencies which depend
strongly on the difference between the excitation and resonance
frequencies. This sensitivity of the response to the input
frequency allows selection of complex vibrational frequency
patterns which can lead to additional components in the spin
dynamics, for example, flips of the Cr spin lattice.

We emphasize that we explored in this work a mini-
mal model of phonon-driven spin dynamics, and we expect
that extensions of the model will reveal yet more complex
physics, such as dynamically frustrated or spin-spiral states.
We hope that our work will inspire additional theoretical and
experimental studies to uncover the rich behavior of coupled
magnetophononic systems.
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APPENDIX

Detailed expressions for the renormalized frequencies

The explicit expressions for the mode frequencies renor-
malized by the anharmonic coupling are

B — o — AR | A, AR B 8’ A B 8 AG
8(,()]226()11{ 4(1)]22(1)11{ 16(1)1R [a)ﬁ — 40)12R] 40)1R [0)12{ — (Q + Q)IR)2] 4(1)1R [0)12{ - (Q - Q)IR)2]
8w [0k — (wr + @r)?]  8wr[wf — (wr — wr)?] 8wk 4R
for the IR mode, and
S S S wAh )
OR=OR ™ o T2 — 217 g 2 _ — o2l T 8 2 (O — on)? 3
wi[ok — (0r + or)?] wr[0k — (W — wr)?] wr[wf — ( wr)?] WR

for the R mode.
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