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We study the role of dephasing in transport through different structures. We show that interfer-
ence effects invalidate Kirchhoff’s circuit laws in quantum devices and illustrate the emergence of
ohmic conduction under strong dephasing. We present circuits where the particle transport and the
direction of rectification can be controlled through the dephasing strength. This suggests the pos-
sibility of constructing molecular devices with new functionalities which use dephasing as a control

parameter.
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I. INTRODUCTION

Electrical devices are reaching the scale where quan-
tum mechanical effects dominate the particle transport.
Thus, gaining a deeper understanding of transport pro-
cesses governed by quantum-mechanical laws is crucial.
Since it localizes particles that would otherwise act as
delocalized waves, quantum decoherence, also referred
to as dephasing, plays an important role. In the last
few decades, dephasing has been thoroughly discussed
@, E] as it provides an explanation for the transition from
quantum to classical. Dephasing in a quantum system is
caused by irreversible interactions with an environment
and is often seen as undesired noise that destroys desired
quantum properties. However, it has also been shown
that dephasing can greatly improve the transport effi-
ciency B—Iﬂ] by inhibiting destructive interference effects.
Symmetries and disorder in networks have also been in-
vestigated as key factors for quantum enhanced transport
efficiencies B] In contrast to those works, we focus on
particle currents through networks rather than the trans-
port efficiency of a single excitation.

Through the theory of open quantum systems, we use
a master equation approach to model simple quantum
transport devices. By numerically solving the master
equation for different systems, we determine properties
such as the resistance of a set of quantum circuits and
compare them to classical expectations. We also investi-
gate the role of dephasing for the particle transport.

A previous experimental result [9] showed that Ohm’s
law remains valid for a nanowire. In contrast, this work
addresses the question whether classical laws survive in
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more complicated quantum circuits. An early analy-
sis HE] and further simulations and measurements ﬂﬂ]
already provided the result that, on the scale of elec-
tron wavelengths, interference effects invalidate Kirch-
hoff’s circuit laws for parallel circuits. We show that our
simple model reproduces these results and can thus be
used to investigate quantum interference effects in com-
plicated geometries. Said parallel circuits are used to
exemplify the emergence of Kirchhoff’s laws when ap-
plying strong dephasing. Also here we demonstrate that
resistors in the quantum regime are not additive. Addi-
tionally, a device which only conducts under dephasing
is presented. Furthermore, we illustrate how, in a trian-
gular circuit with rectification properties, it is possible
to control the direction of rectification through control-
ling the dephasing strength. Recent research ﬂﬂ] hints
that complicated networks which exhibit such interest-
ing properties might be realised by simpler systems with
equivalent transport properties, leaving a lot of possibil-
ities for future research.

II. FORMALISM

In this work, we describe particle currents as time-
continuous quantum stochastic walks ﬂﬂ] on mathemat-
ical graphs that represent circuits. Couplings to external
baths are modeled by non-unitary effects. The states
{]i)} represent the possible positions on the graph that
is interpreted as a circuit. In analogy to a simple tight-
binding model, we choose the Laplacian matrix L, which
contains the information about the connections, to be the
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quantum system’s Hamiltonian H:

H=L=D-A (1)

(2)

Dij =0dijd.  (3)

A — 1 if vertices¢ and j are connected
Y 0 else

d0i; is the Kronecker-symbol, while d, denotes the de-
gree of vertex a, which is simply the number of ver-
tices connected to it. We describe a quantum sys-
tem’s state through the density operator p ﬂﬂ] p =
> Dili) (1i]. The evolution of an open quantum sys-
tem is generally given by a master equation of the
form [15]: p = —i[H,p] + L(p). From here, p de-
notes the density operator’s matrix representation in
position basis. The first term, which depends on the
system’s Hamiltonian H, causes unitary evolution while
L(p) is a superoperator which represents the coupling
to external baths. For L(p) = 0, this model corre-
sponds to coherent hopping of non-interacting parti-
cles between connected sites. The master equation is
Markovian if £(p) can be written in Lindblad form [16]:

L(p) = D5k [LkPLL -3 {LLLIC,PH, Vi = 0. Ly de-
note a complete set of operators and {-,-} is an anti-
commutator. The diagonal elements of the density ma-
trix p are interpreted as particle populations.

At the boundaries of the system, which are denoted as
|1) and |k), particles are being injected and ejected. Ex-
plicitly, this injection and ejection is realized by coupling
the system incoherently to external baths [3, 17, 18], |L)
and |R), whose populations are held constant throughout
the integration:

Lin = A[1)(L| (4)
Lous = V7|R) (K| (5)

Setting the rates to v = 2 for simplicity, and assuming
validity of the Markov approximation, we express the in-
jection and ejection of particles in Lindblad form:

Lr(p) = 2[)(LIp|L) (1] = {|L)(L]; p} (6)
Lr(p) = 2|R)(klplk)(R| - {|R)(R|, p} (7)

[1) and |k) denote the first and last site in the system. We
do not specify whether the system is bosonic or fermionic,
which is the reason for choosing the more general first-
quantization-expression above. With a constant popula-
tion pr, = 0.5 in |L), L, causes the injection of 1 particle
per arbitrary timestep, which defines the particle current
I =dN/dt =1.

When electric charge is being transported, the voltage
U between two positions is proportional to the difference
in charge, or, more accurately, charged particles. In anal-
ogy to that, we define the voltage U between two sites
on the graph as the difference in population, although
it is not necessarily charged particles that are consid-
ered. Once the populations become stationary after a
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FIG. 1. A quantum system is coupled to three Markovian
baths, represented by the operators L1, Lr and Lp. One
bath acts as a particle source, one as a sink, and the third
one destroys quantum coherences, which models irreversible
interactions with an environment.

sufficiently long time evolution (i.e. the Non-Equilibrium
Steady State (NESS) is reached), we determine a resis-
tance R over R = U/I. In the systems which are consid-
ered, different intial states of p(t = 0) are leading to the
same NESS, which follows from the known ergodicity of
models such as the one considered in this work HE]

Dephasing is a process where quantum coherences are
destroyed due to irreversible interactions with an environ-
ment. Mathematically, this means that the off-diagonal
elements of the density matrix p are being destroyed in
a certain basis {|j)}: p — p=>_,7)(jlpl7) (4. The cou-
pling to a bath which causes dephasing is being modelled
by an additional operator Lp:

Lp(p) =D Z[2lj><jlplj><jl =l ®)

J

with the dephasing rate yp > 0. A dephasing rate vp
corresponds to measurements in the chosen basis at a
timescale ~ ”yBl @] We define a dimensionless quan-
tity, the dephasing strength A, as the ratio of the dephas-
ing rate yp and the rate of coherent hopping 7 = |Aj
between connected sites, A = ~vp/7. In this work, we
focus on the possible positions {|i)} as the basis for de-
phasing, which implies local interactions with an environ-
ment (e.g. surrounding gas molecules randomly hit the
system at certain positions). The total master equation
for quantum evolution, particle currents and dephasing
then reads as:

dp .
o = "UH. P+ L(p) + Lr(p) + Lp(p)  (9)

We use the concept of the relative entropy ﬂﬂ] to ob-
tain a gauge for the amount of coherences in a quantum
system. The relative entropy between two density matri-
ces p and o is defined as:

S(pllo) = Tr(plnp) — Tr(plno) (10)

S(pllo) can be interpreted as the amount of information
in p when assuming the system to be in the state o.



Here, we choose o to be the coherence-free counterpart of
p: o =>,1i)(i|pli)(i|. The relative entropy S(p||c) can
then |17] be used as a gauge for the amount of coherences
with respect to the total particle number in a system.

III. RESULTS AND DISCUSSION

We now investigate different quantum circuits by defin-
ing Hamiltonians H according to their connections (see
Eqn.(@) and solving Eqn.(@) [22]. The most interest-
ing results are presented in this section. Parallel circuits
are considered in order to answer the question if classical
rules for the resistance are valid. Another simple cir-
cuit shows that resistors are not additive in our quantum
transport device, which exemplifies violations of Ohmic
scaling of the resistance in quantum systems. Addition-
ally, a simple, pentagonal circuit only conducts under
dephasing, which allows a controlled particle transport
parametrized by dephasing. Furthermore, through con-
trol of the dephasing strength, it is possible to control
the direction of rectification in a triangular structure.

A. Parallel Circuits

As a starting point, we put classical rules, which re-
main valid for a nanowire [J], to the test for a set of simple
quantum circuits. We determine the effective resistances
of parallel circuits with varying number of branches (see
the top left corner of Fig.[@b)). In Fig.([@), the conduc-
tance G (which is determined over G = 1/R), is plotted
in dependence of the number of branches with different
dephasing strengths A. According to Kirchhoff’s circuit
laws, the conductance scales linearly with the number
of branches, which is violated in quantum systems. The
black curve in Fig.([2h) shows the behaviour in absence
of dephasing. Using two branches instead of a single
wire quadruples the conductance due to constructive in-
terference between the particles. Under idealized condi-
tions, a Green’s function approach for molecular circuits
consisting of two parallel branches yielded a similar re-
sult ﬂﬂ] Here, we also show that a third branch only
slightly increases the conductance, while further branches
reduce the conductance due to destructive interference ef-
fects. When applying dephasing, the curve flattens until
(see Fig.([@)b) linear scaling, which corresponds to clas-
sical behaviour, is reproduced. It should also be noted
that, while the curve flattens when increasing the de-
phasing strength, the peak position moves. The num-
ber of branches which maximizes the conductance can
be accurately estimated by rounding the linear expres-
sion P(A) = 2.785+ 1.909 - A to the closest integer. For
example, when the dephasing rate is comparable to the
system’s dynamics (i.e. A & 1), the conductance peaks
when using 5 parallel branches. However, this relation
is relevant only for small values of A as the peak van-
ishes for A > 1. For the transport of a single excitation,

3

it was already shown ﬂﬁ] that, under strong dephasing,
such networks can be accurately mapped to localized, ki-
netic systems with quantum corrections. Although the
models differ (i.e. constant in- and outflux of particles
vs. trapping of a single excitation), this helps to un-
derstand how classical behaviour emerges. The reference
also discusses a two-branch system similar to ours and
also demonstrates the crucial role of quantum interfer-
ence.

B. Additivity

The next question we adress is whether quantum re-
sistors are additive. We send a current through the two
systems which are illustrated by the graphs in Fig.([3h).
For both systems, the determined effective resistance is
R = 1.75 without dephasing. This means that adding a
single resistor on top of system A does not affect the re-
sistance, which shows that, for non-trivial circuits, quan-
tum resistors are not additive. Thus, Ohmic Scaling of
the resistance is not generally valid in quantum systems.
The fact that the resistances are the same implies that
the particle transport from one end to the other is more
efficient in system B. In order to understand this phe-
nomenon, we consider the relative entropy between both
system’s density matrices and their decohered counter-
parts, as seen in Fig.([3h). As mentioned before, the rela-
tive entropy between a density matrix and its decohered
counterpart can be used as a gauge for coherence with
respect to the particle number. System B has a lower
relative entropy at the NESS, which implies less coher-
ences and thus, less destructive interference effects block-
ing the way. Under dephasing (see Fig.(Bb)), this effect
gets diminished and, as expected classically, the bigger
system has a higher resistance.

C. Pentagonal Circuit

We consider a 5-level-system which demonstrates how
strong destructive interference can completely block a
path. Fig.( ) shows the pentagonal system and the resis-
tance vs. the dephasing strength. For A = 0, the particle
distribution does not reach a steady state, which means
that the system cannot be seen as a conductor. Compar-
ing the system to the two-branch parallel circuit illus-
trates how strongly the conductance depends on molec-
ular symmetries. Along with the role of local dephasing,
this was also emphasized by other authors M] In accor-
dance to our findings, meta-benzene, which resembles our
5-level-system, exhibits a drastically lower conductance
] than para-benzene, which has a symmetry similar
to the two-branch parallel circuit. Destructive interfer-
ence prevents most particles from reaching the end of
the circuit. When introducing weak dephasing, the re-
sistance sharply falls down to its minimum. Afterwards,
it increases again due to the quantum Zeno effect HE]
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FIG. 2. (a): Conductance G vs. number of branches in parallel for different dephasing strengths A. In absence of dephasing,
using two parallel branches instead of a single wire quadruples the conductance in the quantum case, which is in accordance
with other results where actual molecules were discussed. A third parallel branch only increases the conductance slightly,
additional branches reduce the conductance due to destructive interference. Applying dephasing flattens the curve. (b): Same
curve as in (a) for A = 20.0. It illustrates how linear scaling, which is expected according to Kirchhoff’s circuit laws, emerges
under strong dephasing. The graph in the top left corner illustrates the circuits. The ovals are the nodes which represent
possible positions, the edges are interpreted as resistors.
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FIG. 3. (a): Relative Entropy over time for the systems illustrated by the graphs. In absence of dephasing, both systems have
the same resistance although system B has an additional resistor on top. When the NESS is reached, system B has a lower
relative entropy, which implies less coherences and thus less destructive interference effects blocking the way. This explains the
more efficient particle transport through B. (b): Resistance vs. Dephasing Strength A for both systems. Under dephasing,
system B’s resistance is higher than A’s, which is expected classically.

This illustrates the fact [6] [3] that, in some systems,
optimal particle transport occurs in a regime between
quantum and classical. Through controlling the dephas-
ing strength, it can be controlled whether the circuit acts
as an insulator or a conductor.

D. Triangular Circuits

Since it provides spatial assymmetries and resembles a
funnel, we consider a triangular structure (see Fig.([Gh))
in this section. Triangular electron cavities were shown
to possess interesting transport properties m] As single
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FIG. 4. Illustration of the 5-level system and its Resistance
depending on the dephasing strength A. For A = 0, the
resistance is infinitely high due to strong destructive inter-
ference. When introducing weak dephasing, the resistance
sharply falls down to its minimum and then, under stronger
dephasing, increases again due to the Zeno effect. Optimal
particle transport takes place in a regime between quantum
and classical.

molecules are known to possess rectification properties
ﬂﬁ] when used for conduction, we investigate the recti-
fication properties of the triangle. Explicitly, this means
that we determine the resistance for both directions of the
current. In experiments @], a voltage U is usually set
and a rectification ratio, £ 7=, measured and interpreted as
the strength of rectlﬁcatlon Here, we consider the resis-
tance rat1o == instead as it is the current I that is being
set. Fig. (IBO) shows the resistance ratio depending on the
dephasing strength. Depending on the dephasing, the re-
sistance ratio is either above or below one, with a point at

A = 0.2259 where the resistances for both directions are
the same. Under strong dephasing, the ratio converges
to 1, which corresponds to classical behaviour of a resis-
tor. As experiments with molecules have already shown
rectification ratios of 200 and higher [29], the magnitude
of rectification here seems comparably low. However, it
is a new result that the direction of rectification can be
controlled through controlling the dephasing strength.

IV. CONCLUSIONS

We devised a model for a simple quantum transport
device which allows the study of interference effects in
quantum circuits. We showed how interference effects
lead to violations of Kirchhoff’s circuit laws and how clas-
sical expectations emerge when applying strong, local de-
phasing. We also presented circuits which demonstrate
that quantum resistors are not additive in general. Ad-
ditionally, we discussed the role of quantum coherences
for the particle transport by controlling the dephasing
strength. Through discussing a specific 5-level-system,
we demonstrated that, in certain systems, the most effi-
cient particle transport takes place in the regime between
quantum and classical. Furthermore, we investigated rec-
tification properties in a triangular structure and showed
that the direction of rectification can be controlled in
a regime with weak dephasing. Although dephasing in
general seems to be well understood after decades of re-
search, this shows that even seemingly trivial transport
models can exhibit yet unknown properties. It also sug-
gests the construction of new, molecular devices which
use dephasing as a control parameter.

Future work includes trying to find similar, useful
properties in more realistic geometries while additionally
considering interactions between the transported parti-
cles.
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